Towards README-EVAL : Interpreting README File Instructions

James Paul White
Department of Linguistics
University of Washington

Seattle WA 98195-4340
Jimwhite@uw.edu

Abstract

This abstract describes README-EVAL,
a novel measure for semantic parsing eval-
uation of interpreters for instructions in
computer program README files. That
is enabled by leveraging the tens of thou-
sands of Open Source Software programs
that have been annotated by package main-
tainers of GNU/Linux operating systems.
We plan to make available a public shared
implementation of this evaluation.

1

That natural language is learned by humans in
rich grounded perceptual contexts has been rec-
ognized by many researchers for quite some time
(Regier, 1996) (Silberer and Lapata, 2012). But
most efforts at machine learning of natural lan-
guage continue to address tasks which are en-
tirely divorced from any grounding and/or have
perceptual requirements for which machines are
ill-suited. Computers are machines and their nat-
ural perceptual context is that of the computing
machine world. Therefore, to apply the model of
grounded language learning most effectively, we
should choose tasks in which the relevant percepts
are of those in the computing world (e.g., bits,
bytes, characters, files, memory, operations, pro-
grams, events, processes, services, devices, pro-
cessors, drivers, operating systems, and networks).

This abstract describes proposed work aimed
at the goal of deep semantic parsing of the web,
which for us includes the ability to interpret doc-
uments that give instructions for acting on com-
puter systems in human natural language. To facil-
itate research in that direction, we plan to evaluate
systems that build software packages by follow-
ing the README! file instructions contained in

Introduction

'We use the term README file in a broad sense mean-
ing a document that contains instructions to be read by a hu-

76

GNU/Linux distributions like Centos and Debian.
Key to this plan is the novel README-EVAL
score which we propose as an extrinsic (i.e. goal-
oriented) performance measure for parsing, map-
ping/planning, and related linguistics tasks. The
planned baseline system is a pipeline using a doc-
ument classifier and instruction sequence extractor
trained on hand-labeled data followed by a rein-
forcement learner for mapping the instructions to
a build script (plan of actions) for that software
package (context).

2 Background

A significant challenge for semantic parsing re-
search is finding a method to measure a system’s
performance that will indicate its effectiveness in
the domain of interest. Traditionally the approach
has been to gather and have human annotators
make judgements that are of the same kind the
system is intended to perform. That process is rel-
atively costly and may result in a corpus which is
actually too small considering the amount of varia-
tion that occurs when humans perform an activity.
Relevant prior work in the computing domain pro-
duced the Linux and Monroe plan corpora (Blay-
lock and Allen, 2005). The Linux Plan Corpus
consists of 457 interactive shell script sessions,
with an average of 6.1 actions each, captured from
human experimental subjects attempting to satisfy
one of 19 different goals stated as an English sen-
tence. Although it has been used successfully by
those and other researchers, the natural variation
in human behavior means that a corpus of such
relatively small size appears to be very noisy. As
a result they have had to rely on artificially gener-
ated data such as the Monroe Plan Corpus in order
to get results that are more easily compared across
system evaluations.

man that concern performing actions on a computer (whether
at the keyboard or some other input device). For this task

we confine ourselves to instructions given for the purpose of
building a software package.

Proceedings of the ACL 2014 Workshop on Semantic Parsing, pages 76-81,
Baltimore, Maryland USA, June 26 2014. (©2014 Association for Computational Linguistics

More promising therefore is the way some re-
searchers have discovered ways to repurpose data
and/or judgements created for other purposes and
turn them into training data and/or evaluations of
NLP systems. We employ that paradigm here by
repurposing the efforts of Open Source Software
(OSS) package maintainers who have created an-
notations (aka metadata) including dependency re-
lations and scripts that build computer programs.

3 GNU/Linux Software Package Data

The advent of the Internet resulted in explosive
growth for OSS, the premier example of which
is the GNU/Linux operating system family. Cur-
rent distributions contain packages built from over
15,000 program source bundles.? The production
of OSS packages for such systems typically in-
volves two different types of programmers work-
ing independently. The authors of the source
computer program usually do not produce pack-
aging metadata for their work and instead tend
to write README files and related documenta-
tion explaining how to build and use the software.
The package maintainers then work out the spe-
cific requirements and scripts necessary to build
the program as some package(s) using the partic-
ular package manager and format of the OS dis-
tribution (aka “distro”) that they are supporting.
Software package metadata contained in bundles
such as Debian .deb and Fedora RPM . spec
files are rich in annotations.>*

See Figure 1 for excerpts of text describing the
Bean Scripting Framework (BSF) from its Source
RPM Package Manager (SRPM) package in the
Fedora Core 17 distribution.> The two kinds of
data shown are file contents (la, 1c, le), which
usually originate with the “upstream” program au-
thor(s), and sections from the RPM Spec file (1b,
1d, 1f), which are annotations (aka metadata) cu-
rated by the package maintainers. There are other

’Debian Wheezy has over 37,000 packages from about
17,500 source packages https://www.debian.org/
News/2013/20130504 and Fedora 20 has more than
15,000 packages https://admin.fedoraproject.
org/pkgdb/collections/.

*https://www.debian.org/doc/manuals/
maint-guide/dreq.en.html

*nttp://www.rpm.org/max-rpm/
ch-rpm-inside.html

>For more examples, we refer the interested reader the
author’s web page which includes access to a web linked
data explorer for the entire corpus.
http://students.washington.edu/jimwhite/
spl4.html

77

sections and fields used in RPM Spec files, but
those tend to more distro-specific and these suffice
for this discussion.

Figure 1a shows some BSF package description
text from the source README.txt file and Figure
1b shows the version appearing the RPM Spec.
That close textual similarity is a common occur-
rence in the data and can be used to identify some
likely README files. Those are only a starting
point though, because the natural language pro-
gram build instructions are often in other files, as
in this case. For many packages those instruc-
tions are in a file named INSTALL. There is an
INSTALL.txt file with some instructions for BSF
here (Figure le), but they are for a binary instal-
lation. The instructions for building from source
that we will primarily concerned with here are in
the file BUILDING.txt (Figure 1c).

A potential use for this data that we haven’t ex-
plored yet is its use in summarization tasks. In ad-
dition to the text which is usually in the README
file and RPM Spec DESCRIPTION section, there
is the “Summary” field of the PACKAGE section.
Although in Figure 1d the value for the summary
field appears as just the package’s full name, this
is typically a full sentence that is a good one-line
summary of the multiple line description section.

It is worthwhile to notice that thousands of
programs have been packaged multiple times for
different systems (e.g. Debian, Fedora, Cygwin,
NixOS, Homebrew, and others) and many pack-
ages have also been internationalized.® Both of
those aspects point to opportunities for learning
from parallel data.

For the present discussion we focus on two par-
ticular elements of package metadata: dependen-
cies and build scripts.” The packages in a distribu-
tion have dependency relationships which desig-
nate which packages must be built and installed for
other packages to be built, installed, and/or exe-
cuted. These relationships form a directed acyclic
graph (DAG) in which the nodes are packages and
the edges are dependency relationships.

Debian for example currently lists more than 800k sen-
tences in the localization database and about 75 human lan-
guages have translations for at least 100k of them with the
top ten languages having over 500k each https://www.
debian.org/international/110n/po/rank.

"Packaging systems usually support at least three types of
scripts: build, install, and remove. The build script usually
has more in common with the README instructions than
the install and remove scripts which are more distro specific.
Some packages also have a check script to validate the state
of a build prior to performing the install operation.

(a) README.txt file

Bean Scripting Framework (BSF) is a set of Java classes
which provides an easy to use scripting language support
within Java applications. It also provides access to Java
objects and methods from supported scripting languages.

(b) RPM Spec DESCRIPTION section

Bean Scripting Framework (BSF) is a set of Java classes
which provides scripting language support within Java
applications, and access to Java objects and methods from
scripting languages.

(c) BUILDING.txt file
From the ant "build.xml" file:
Master Build file for BSF
Notes:
This is the build file for use with
the Jakarta Ant build tool.
Optional additions:
BeanShell -> http://www.beanshell.org/
Jython -> http://www.jython.org/
JRuby —-> http://www. jruby.org/ (3rd ...)
Xalan -> http://xml.apache.org/xalan—7j

Build Instructions:

To build, run
java org.apache.tools.ant.Main <target>

on the directory where this file is
located with the target you want.

Most useful targets:

- all -> creates the binary and src
distributions, and builds the site

- compile —-> creates the "bsf.jar"

(d) RPM Spec PACKAGE section (metadata)

Name: bsf

Version: 2.4.0

Release: 12.£fcl7

Summary: Bean Scripting Framework
License: ASL 2.0

URL: http://commons.apache.org/bsf/
Group: Development/Libraries
BuildRequires: jpackage-utils >= 1.6
BuildRequires: ant, xalan—-3j2, jython
BuildRequires: rhino

BuildRequires: apache—-commons—logging
Requires: xalan-j2

Requires: apache-commons—-logging
Requires: jpackage-utils
BuildArch: noarch

(e) INSTALL.txt file

Installing BSF consists of copying
bsf.jar and .jars for any languages
intended to be supported to a directory
in the execution CLASSPATH of your
application, or simply adding them

to your CLASSPATH.

BSF can be used either as a standalone
system, as a class library, or as part

of an application server. In order to be
used as a class library or as a standalone
system, one must simply download the
bsf.jar file from the BSF web site
(http://jakarta.apache.org/bsf/index.html)
and include it in their CLASSPATH, along

package in "./build/lib" (default target)With any required classes or Jjar files

- samples —-> creates/compiles the samples

(f) RPM Spec BUILD section (shell script)

[-z "$JAVA_HOME"]

implementing the desired languages.

&& export JAVA_HOME=/usr/lib/jvm/java

export CLASSPATH=$ (build-classpath apache-commons-logging jython xalan-3j2 rhino)

ant jar

/usr/bin/rm -rf bsf/src/org/apache/bsf/engines/java

ant javadocs

Figure 1: Bean Scripting Framework (BSF) excerpts from Fedora Core 17 RPMS.

4 From Dependencies to Validation

The idea that turns the package dependency DAG
into training, test, and evaluation data is to choose
dependency targets for test (i.e. the system build
script outputs will be used for them in test) and
dependency sources (the dependent packages) for
validation (their package maintainer written build
scripts are used as is to observe whether the depen-
dencies are likely to be good). Validation subsets
can be arranged for both internal validation (tun-
ing) and external validation (evaluation).

Two kinds of dependency relationships are
of special interest here: Requires and
BuildRequires. The former typically means
the target package (its name appears to the right of
aRequires or BuildRequires in Figure 1d)

is required at both build time and execution time
by the source package (identified by the Name
field of Figure 1d) while the latter means it is only
required at build time. That distinction can be
used to guide the selection of which packages to
choose for the validation and test subsets. Pack-
ages that are the target of a BuildRequires
relationship are more likely to cause their depen-
dents’ build scripts to fail when they (the targets)
are built incorrectly than targets of a Requires
relationship.

Analysis of the 2,121 packages in Release 17 of
the Fedora Core SRPM distribution shows 1,673
package nodes that have a build script and some
declared dependency relationship. Those build
scripts average 6.9 non-blank lines each. Of
those nodes, 1,009 are leaves and the 664 inter-

78

nal nodes are the target of an average of 7 de-
pendencies each. There are 218 internal nodes
that are the direct target of at least one leaf node
via a BuildRequires relationship and they av-
erage 12.4 such dependent leaves each. We ex-
pect to have a larger corpus prepared from a full
GNU/Linux distribution (at least 15,000 source
packages) at the time of the workshop.

S Task Description

The top-level README-EVAL task would be to
generate complete packaging metadata given the
source files for a program thus automating the
work of a package maintainer. Since that task
is somewhat complicated, it is useful to break
it down into multiple subtasks which can be ad-
dressed and evaluated separately before proceed-
ing to combine them. For the discussion here we
will consider a partial solution using a four stage
pipeline: README document classification, in-
struction extraction, dependency relation extrac-
tion, and build script generation.

The corpus’ package metadata can be used to
directly evaluate the results of the last two stages
of that pipeline. The first two stages, README
document classification and instruction extraction,
are well understood tasks for which a moderate
amount of manually labelled data can suffice to
train and test effective classifiers.

The dependency relation extraction subtask can
be treated as a conventional information extraction
task concerned with named entity recognition for
packages and relation extraction for dependencies.
We may regard the dependencies in the corpus as
effectively canonical because the package main-
tainers strive to keep those annotations to a rea-
sonable minimum. Therefore computing precision
and recall scores of the dependency DAG edges
and labels of this stage’s output versus the corpus’
metadata will be a meaningful metric.

Work on instruction and direction following is
applicable to the build script generation subtask.
Such systems tend to be somewhat more complex
than shallow extraction systems and may incor-
porate further subcomponents including goal de-
tectors and/or planners that interact with a seman-
tic parser (Branavan et al., 2012). It is possible
to evaluate the final stage output by comparing it
to the build script in the package’s metadata, but
that would suffer from the same sort of evalua-
tion problems that other language generation tasks
have when we are concerned with semantics rather

79

than syntax. This is where the superiority of an
NLP task where the target language is understood
by computers comes in, because we can also eval-
uate it using execution. Which isn’t to say we can
solve the program equivalence problem in general,
but README-EVAL does a pragmatic determina-
tion of how good a substitute it is based on its us-
age by the package’s dependency sources.

6 README-EVAL Scoring

The README-EVAL score is a measure of how
effective the system under test (SUT) is at gener-
ating software package metadata. For the compo-
nents of the SUT this score can serve as an extrin-
sic indication of their effectiveness.

Let N be a set of tuples (z, y) representing the
corpus in which z is the package data and relevant
metadata subset minus the labels to be generated
and y is a known good label for z. To prepare the
corpus for the task, two disjoint subsets C' and T’
are selected from the set of all package nodes N.
C is for the common packages which are available
to the SUT for training, and 7" is for the test pack-
ages that the SUT’s interpretation function will be
tested on. A third set V' which is disjoint from 7'
is selected from N for the validation packages.

Many partitioning schemes are possible. A sim-
ple method is to choose the leaf nodes (packages
that are sources but not targets of dependency re-
lationships) for V. The members of 71" can then
be chosen as the set of packages which are the di-
rect targets of the dependency relationships from
V. The members of V are expected to be likely
to fail to build correctly if there are errors in the
system outputs for 7T'. Note that for the SUT to
do tuning it will need some leaf node packages in
C. Therefore if V' is made disjoint from C' then it
should not actually select all of those leaves.

The README-EVAL score R is computed us-
ing a suitable loss function L for the SUT’s la-
bel predictor function Y. Yis presumed to have
been trained on C' and it yields a set of (z,) tu-
ples given a set of x values. The loss function
L((x,y), D) yields a real number in the range 0
to 1 inclusive that indicates what fraction of the
components in package (x,y) are incorrect given
the context D C N. It is required forallv € V
that L(v, (CUT UV)\ {v}) =0.

For this exposition, assume y is a build script
and L yields 0 if it succeeds and 1 if it fails. Linux
processes typically indicate success by returning a
zero exit code. Therefore a simple realization of

L is to return 0 if the process executing the build
script y of (x,y) given D returns zero and 1 oth-
erwise.

The computation iterates over each member
D € partition(T') and obtains measures of cor-
rectness by evaluating B(Y (X (D))UCUT \ D)
where X is a function that yields the set of = val-
ues for a given set of (x, y) tuples. To keep the task
as easy as possible, the members of partition(T")
may be singletons.

B(D) = V| = Xy L. (DUV)\ {0})

Those values are normalized by a scale factor
for each D determined by the value of B given D
minus B given Z(D). Z(D) is the set of tuples
(z,) for a given set D where A is the null label.
A null label for a build script is one which has no
actions and executes successfully.

R(D) = B(c?u(i)(i(é?%)(%c;ﬁgb?)\z))

The final README-EVAL measure R is the av-
erage score over those partitions:

R _ ZDEpartition(T) R(D)
- [partition(T)|

6.1 Loss Function Variations

There are other useful implementation variations
for the loss function L. In a system where the
number of components can be determined inde-
pendently from whether they are correct or not, a
possibly superior alternative is to return the num-
ber of incorrect components divided by the total
number of components. To determine loss for a
build script for example, the value may be deter-
mined by counting the number of actions that exe-
cute successfully and dividing by the total number
of steps.

A further consideration in semantic evaluation
is parsimony, which is the general expectation that
the shortest adequate solution is to be preferred
(Gagne et al., 2006). To incorporate parsimony
in the evaluation we can add a measure(s) of the
solution’s cost(s), such as the size of the label y
and/or execution resources consumed, to L.

7 Conclusion

A common objection to tackling this task is that
it seems too hard given the state of our knowl-
edge about human language, computer program-
ming (as performed by humans), and especially
the capabilities of current NLP systems. We con-
sider that to be a feature rather than a bug. It
may be some time before a state-of-the-art im-
plementation of a README interpreter is suffi-

80

ciently capable to be considered comparable to
an expert human GNU/Linux package maintainer
performance, but that is perfectly fine because we
would like to have an evaluation that is robust,
long-lived, and applicable to many NLP subtasks.
We also have the more pragmatic response given
here which shows that that difficult task can be
decomposed into smaller subtasks like others that
have been addressed in the NLP and computa-
tional linguistics communities.

To conclude, this proposal recommends
README-EVAL as an extrinsic (goal-oriented)
evaluation system for semantic parsing that could
provide a meaningful indication of performance
for a variety of NLP components.

Because the evaluation platform may be some-
what complicated to set up and run, we would
like to make a publicly available shared evalua-
tion platform on which it would be a simple matter
to submit new systems or components for evalua-
tion. The MLcomp.org system developed by Percy
Liang and Jacob Abernethy, a free website for ob-
jectively comparing machine learning programs,
is an especially relevant precedent (Gollub et al.,
2012). But we notice that the NLP tasks on ML-
comp receive little activity (the last new run was
more than a year ago at this writing) which is in
stark contrast to the other ML tasks which are very
active (as they are on sites like Kaggle). With the
README-EVAL task available in such an easy-
to-use manner could draw significant participation
because of its interesting and challenging domain,
especially from ML and other CS students and re-
searchers.

Finally we look forward to discussing this pro-
posal with the workshop attendees, particularly in
working out the details for manual annotation of
the README files for the instruction extractor
(including whether it is needed), and discussing
ideas for a baseline implementation.

8 Acknowledgements

Thank you to my University of Washington col-
leagues who reviewed earlier drafts of this abstract
and the workshop’s blind reviewers for their help-
ful comments.

References

Nate Blaylock and James Allen. 2005. Recognizing
Instantiated Goals using Statistical Methods. In 1J-
CAI Workshop on Modeling Others from Observa-
tions (MOO-2005), page 79.

S. R. K. Branavan, Nate Kushman, Tao Lei, and Regina
Barzilay. 2012. Learning High-Level Planning from
Text. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics:
Long Papers-Volume 1, page 126. Association for
Computational Linguistics.

Christian Gagne, Marc Schoenauer, Marc Parizeau,
and Marco Tomassini. 2006. Genetic Programming,
Validation Sets, and Parsimony Pressure. In Genetic
Programming, page 109. Springer.

Tim Gollub, Benno Stein, and Steven Burrows. 2012.
Ousting Ivory Tower Research: Towards a Web
Framework for Providing Experiments as a Service.
In Proceedings of the 35th international ACM SIGIR
conference on Research and development in infor-
mation retrieval, page 1125. ACM.

Terry Regier. 1996. The Human Semantic Potential:
Spatial Language and Constrained Connectionism.
MIT Press.

Carina Silberer and Mirella Lapata. 2012. Grounded
Models of Semantic Representation. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, page 1423. Associa-
tion for Computational Linguistics.

81

