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Figure 1: Generated scene for “There is a room
with a chair and a computer.” Note that the system
infers the presence of a desk and that the computer
should be supported by the desk.

1 Introduction

We propose text-to-scene generation as an appli-
cation for semantic parsing. This is an applica-
tion that grounds semantics in a virtual world that
requires understanding of common, everyday lan-
guage. In text to scene generation, the user pro-
vides a textual description and the system gener-
ates a 3D scene. For example, Figure 1 shows the
generated scene for the input text “there is a room
with a chair and a computer”. This is a challeng-
ing, open-ended problem that prior work has only
addressed in a limited way.

Most of the technical challenges in text to
scene generation stem from the difficulty of map-
ping language to formal representations of vi-
sual scenes, as well as an overall absence of real
world spatial knowledge from current NLP sys-
tems. These issues are partly due to the omis-
sion in natural language of many facts about the
world. When people describe scenes in text, they
typically specify only important, relevant informa-
tion. Many common sense facts are unstated (e.g.,
chairs and desks are typically on the floor). There-
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fore, we focus on inferring implicit relations that
are likely to hold even if they are not explicitly
stated by the input text.

Text to scene generation offers a rich, interactive
environment for grounded language that is famil-
iar to everyone. The entities are common, every-
day objects, and the knowledge necessary to ad-
dress this problem is of general use across many
domains. We present a system that leverages user
interaction with 3D scenes to generate training data
for semantic parsing approaches.

Previous semantic parsing work has dealt with
grounding text to physical attributes and rela-
tions (Matuszek et al., 2012; Krishnamurthy and
Kollar, 2013), generating text for referring to ob-
jects (FitzGerald et al., 2013) and with connect-
ing language to spatial relationships (Golland et
al., 2010; Artzi and Zettlemoyer, 2013). Seman-
tic parsing methods can also be applied to many
aspects of text to scene generation. Furthermore,
work on parsing instructions to robots (Matuszek
et al., 2013; Tellex et al., 2014) has analogues in
the context of discourse about physical scenes.

In this extended abstract, we formalize the text
to scene generation problem and describe it as a
task for semantic parsing methods. To motivate
this problem, we present a prototype system that
incorporates simple spatial knowledge, and parses
natural text to a semantic representation. By learn-
ing priors on spatial knowledge (e.g., typical posi-
tions of objects, and common spatial relations) our
system addresses inference of implicit spatial con-
straints. The user can interactively manipulate the
generated scene with textual commands, enabling
us to refine and expand learned priors.

Our current system uses deterministic rules to
map text to a scene representation but we plan to
explore training a semantic parser from data. We
can leverage our system to collect user interactions
for training data. Crowdsourcing is a promising
avenue for obtaining a large scale dataset.
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Figure 2: Illustration of our system architecture.

2 Task Definition

We define text to scene generation as the task of
taking text describing a scene as input, and gen-
erating a plausible 3D scene described by that
text as output. More concretely, we parse the
input text into a scene template, which places
constraints on what objects must be present and
relationships between them. Next, using priors
from a spatial knowledge base, the system expands
the scene template by inferring additional implicit
constraints. Based on the scene template, we select
objects from a dataset of 3D models and arrange
them to generate an output scene.

After a scene is generated, the user can interact
with the scene using both textual commands and
mouse interactions. During interaction, semantic
parsing can be used to parse the input text into
a sequence of scene interaction commands. See
Figure 2 for an illustration of the system archi-
tecture. Throughout the process, we need to ad-
dress grounding of language to: 1) actions to be
performed, 2) objects to be instantiated or manip-
ulated, and 3) constraints on the objects.

2.1 Scene Template

A scene template 7 = (O,C) consists of a set
of object descriptions O = {01, ...,0,} and con-
straints C = {cy,. .., } on the relationships be-
tween the objects. For each object o;, we identify
properties associated with it such as category la-
bel, basic attributes such as color and material, and
number of occurrences in the scene. Based on the
object category and attributes, and other words in
the noun phrase mentioning the object, we iden-
tify a set of associated keywords to be used later
for querying the 3D model database. Spatial rela-
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tions between objects are extracted as predicates of
the form on(o0;, 05) or le ft(0;, 0;) where o; and o,
are recognized objects.

As an example, given the input “There is a room
with a desk and a red chair. The chair is to the left
of the desk.” we extract the following objects and
spatial relations:

Objects | category | attributes | keywords
00 room room
01 desk desk
09 chair color:red | chair, red

Relations: left(o2,01)
2.2 Scene Interaction Commands

During interaction, we parse textual input provided
by the user into a sequence of commands with rele-
vant parts of the scene as arguments. For example,
given a scene S, we use the input text to identify a
subset of relevant objects matching X = {Os,Cs}
where O is the set of object descriptions and C,
is the set of object constraints. Commands can
then be resolved against this argument to manip-
ulate the scene state: Select(X), Remove(X),
Insert(X), Replace(X,Y), Move(X,AX),
Scale(X,AX), and Orient(X,AX). X and Y
are semantic representations of objects, while A X
is a change to be applied to X, expressed as either
a target condition (“put the lamp on the table”) or
a relative change (“move the lamp to the right™).
These basic operations demonstrate possible
scene manipulations through text. This set of op-
erations can be enlarged to cover manipulation of
parts of objects (“make the seat of the chair red”),
and of the viewpoint (“zoom in on the chair”).

2.3 Spatial Knowledge

One of the richest sources of spatial knowledge
is 3D scene data. Prior work by (Fisher et al.,
2012) collected 133 small indoor scenes created
with 1723 3D Warehouse models. Based on their
approach, we create a spatial knowledge base with
priors on the static support hierarchy of objects in
scenes', their relative positions and orientations.
We also define a set of spatial relations such as /lef?,
right, above, below, front, back, on top of, next to,
near, inside, and outside. Table 1 gives examples
of the definitions of these spatial relations.

We use a 3D model dataset collected from
Google 3D Warehouse by prior work in scene syn-

'A static support hierarchy represents which objects are
likely to support which other objects on their surface (e.g.,
the floor supports tables, tables support plates).



Relation | P(relation)
inside(A,B) %&?)
right(A,B) —Vol(@jfgi}l; (B)
near(A,B) 1(dist(A, B) < tpear)

Table 1: Definitions of spatial relation using object
bounding box computations.

thesis and containing about 12490 mostly indoor
objects (Fisher et al., 2012). These models have
text associated with them in the form of names and
tags, and category labels. In addition, we assume
the models have been scaled to physically plausi-
ble sizes and oriented with consistent up and front
direction (Savva et al., 2014). All models are in-
dexed in a database so they can be queried at run-
time for retrieval.

3 System Description

We present how the parsed representations are
used by our system to demonstrate the key issues
that have to be addressed during text to scene gen-
eration. Our current implementation uses a sim-
ple deterministic approach to map text to the scene
template and user actions on the scene. We use the
Stanford CoreNLP pipeline? to process the input
text and use rules to match dependency patterns.

3.1 Scene generation

During scene generation, we want to construct the
most likely scene given the input text. We first
parse the text into a scene template and use it to
select appropriate models from the database. We
then perform object layout and arrangement given
the priors on spatial knowledge.

Scene Template Parsing We use the Stanford
coreference system to determine when the same
object is being referred to. To identify objects,
we look for noun phrases and use the head word
as the category, filtering with WordNet (Miller,
1995) to determine which objects are visualizable
(under the physical object synset, excluding loca-
tions). To identify properties of the objects, we ex-
tract other adjectives and nouns in the noun phrase.
We also match syntactic dependency patterns such
as “X is made of Y” to extract more attributes and
keywords. Finally, we use dependency patterns to
extract spatial relations between objects.

2http ://nlp.stanford.edu/software/corenlp.shtml
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Figure 3: Select “a blue office chair” and “a
wooden desk” from the models database

Object Selection Once we have the scene tem-
plate, we use the keywords associated with each
object to query the model database. We select ran-
domly from the top 10 results for variety and to
allow the user to regenerate the scene with differ-
ent models. This step can be enhanced to take into
account correlations between objects (e.g., a lamp
on a table should not be a floor lamp model). See
Figure 3 for an example of object selection.

Object Layout Given the selected models, the
source scene template, and priors on spatial rela-
tions, we find an arrangement of the objects within
the scene that maximizes the probability of the lay-
out under the given scene template.

3.2 Scene Interaction

Here we address parsing of text after a scene has
been generated and during interaction sessions.

Command Parsing We deterministically map
verbs to possible actions as shown in Table 2.
Multiple actions are possible for some verbs (e.g.,
“place” and “put” can refer to either Move or
Insert). To differentiate between these, we as-
sume new objects are introduced with the indefi-
nite article “a” whereas old ones are modified with
the definite article “the”.

Object Resolution To allow interaction with the
scene, we must resolve references to objects within
a scene. Objects are disambiguated by category
and view-centric spatial relations. In addition to
matching objects by their categories, we use the
WordNet hierarchy to handle hyponym or hyper-
nym referents. Depending on the current view,
spatial relations such as “left” or “right” can refer
to different objects (see Figure 4).

Scene Modification Based on the action we
need to appropriately modify the current scene.



verb Action Example Text Example Parse
generate Generate generate a room with a desk and a lamp | Generate( {room,desk,lamp} , {}))
select Select select the chair on the right of the table | Select({lamp},{right(lamp,table)})
add, insert Insert add a lamp to the table Insert({lamp},{on(lamp,table)})
delete, remove Remove remove the lamp Remove({lamp})
move Move move the chair to the left M ove({chair},{left(chair)})
place, put Move, Insert put the lamp on the table Move({lamp},{on(lamp,table)})
replace Replace replace the lamp with a vase Replace({lamp},{vase})

Table 2: Mapping of verbs to possible actions.

Figure 4: Left: chair is selected by “chair to the
right of the table” or “object to the right of the ta-
ble”, but not selected by “cup to the right of the
table”. Right: Different view results in a different
chair selection for “chair to the right of the table”.

Figure 5: Left: initial scene. Right: after input
“Put a lamp on the table”.

We do this by maximizing the probability of a new
scene template given the requested action and pre-
vious scene template (see Figure 5 for an example).

4 Future Directions

We described a system prototype to motivate ap-
proaching text to scene generation as a semantic
parsing application. While this prototype illus-
trates inference of implicit constraints using prior
knowledge, it still relies on hand coded rules for
mapping text to the scene representation. This is
similar to most previous work on text to scene gen-
eration (Winograd, 1972; Coyne and Sproat, 2001)
and limits handling of natural language. More re-
cently, (Zitnick et al., 2013) used data to learn how
to ground sentences to a CRF representing 2D cli-
part scenes. Similarly, we plan to investigate using
data to learn how to ground sentences to 3D scenes.

Spatial knowledge can be helpful for resolving
ambiguities during parsing. For instance, from
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spatial priors of object positions and reasoning
with physical constraints we can disambiguate the
attachment of “next to” in “there is a book on the
table next to the lamp”. The book and lamp are
likely on the table and thus next_to(book,lamp)
should be more likely.

User interaction is a natural part of text to scene
generation. We can leverage such interaction to
obtain data for training a semantic parser. Every
time the user issues a command, the user can indi-
cate whether the result of the interaction was cor-
rect or not, and optionally provide a rating. By
keeping track of these scene interactions and the
user ratings we can construct a corpus of tuples
containing: user action, parsed scene interaction,
scene operation, scene state before and after the
operation, and rating by the user. By building up
such a corpus over multiple interactions and users,
we obtain data for training semantic parsers.
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