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Introduction

We are pleased to bring you the Proceedings of the Fifth Workshop on Speech and Language Processing
for Assistive Technologies (SLPAT), held in Baltimore, US on 26 June 2014. We received 9 paper
submissions, of which 7 were chosen for oral presentation. In addition, we have also accepted special
talks Technology Tools for Students With Autism: Innovations That Enhance Independence and Learning
by K.I. Boser, M. Goodwin, and S.C. Wayland, and Dysarthria as a noisy channel in speech production
by Frank Rudzicz.

This workshop is intended for researchers from all areas of speech and language technology with a
common interest in making everyday life more accessible for people with physical, cognitive, sensory,
emotional, or developmental disabilities. This workshop builds on four previous such workshops (co-
located with NAACL HLT 2010, EMNLP in 2011, NAACL HLT 2012, and Interspeech 2013), as well
as the previously held SMIAE workshop (co-located with ACL 2012). The workshop provides an
opportunity for individuals from research communities, and the individuals with whom they are working,
to share research findings, and to discuss present and future challenges and the potential for collaboration
and progress.

While augmentative and alternative communication (AAC) is a particularly apt application area for
speech and natural language processing (NLP) technologies, we purposefully made the scope of the
workshop broad enough to include assistive technologies (AT) as a whole, even those falling outside
of AAC. While we encouraged work that validates methods with human experimental trials, we also
accepted work on basic-level innovations and philosophy, inspired by AT/AAC related problems. Thus
we have aimed at broad inclusivity, which is also manifest in the diversity of our Program Committee.

We would like to thank all the people and institutions who contributed to the success of the SLPAT 2014
workshop. Finally, we would like to thank the Association for Computational Linguistics (ACL) for
support in preparing and run the workshop.

Jan Alexandersson, Dimitra Anastasiou, Cui Jian, Ani Nenkova,
Rupal Patel, Frank Rudzicz, Annalu Waller, Desislava Zhekova

Co-organizers of SLPAT 2014
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Standing on the shoulders of giants: attacking the meta-problems of
technical AAC research

Joseph Reddington
joe@joereddington.com

Abstract

Augmentative Alternative Communica-
tion (AAC) policy suffers from a lack of
large scale quantitative evidence on the de-
mographics of users and diversity of de-
vices.

The 2013 Domesday Dataset was created
to aid formation of AAC policy at the
national level. The dataset records pur-
chases of AAC technology by the UK’s
National Health Service between 2006 and
2012; giving information for each item on:
make, model, price, year of purchase, and
geographic area of purchase. The dataset
was designed to help answer open ques-
tions about the provision of AAC services
in the UK; and the level of detail of the
dataset is such that it can be used at the
research level to provide context for re-
searchers and to help validate (or not) as-
sumptions about everyday AAC use.

This paper examine three different ways
of using the Domesday Dataset to pro-
vide verified evidence to support, or refute,
assumptions, uncover important research
problems, and to properly map the tech-
nological distinctiveness of a user commu-
nity.

1 Introduction

Technical researchers in the AAC community are
required to make certain assumptions about the
state of the community when choosing research
projects that are calculated to make the most ef-
fective use of research resources for the greatest
possible benefit.

A particular issue is estimating how easily tech-
nical research can achieve wide scale adoption or
commercial impact. For example, (Szekely et al.,
2012) uses a webcam and facial analysis to al-
low a user to control expressive features of their
synthetic speech by means of facial expressions.
Such work is clearly useful, but it is difficult to as-
sess its potential commercial impact without also
knowing what proportion of currently available
AAC devices include webcams and how that pro-
portion is changing over time. Similarly, corpus
based approaches such as (Mitchell and Sproat,
2012) could potentially be brought to market very
quickly, but that potential can only be assessed
if we also have some awareness of the range and
popularity of AAC devices that either have space
for such a corpus or the internet capability to ac-
cess one. Unfortunately, even though there are a
range of AAC focused meta-studies in the litera-
ture (see, for example, (Pennington et al., 2003;
Pennington et al., 2004; Hanson et al., 2004; Al-
well and Cobb, 2009)) they give little information
on the technical landscape of AAC.

This paper examines three issues of interest to
technical researchers in AAC, each from a differ-
ent stage in the research lifecycle. It then shows
how the Domesday Dataset (Reddington, 2013)
can provide evidence to support, or refute, as-
sumptions, uncover important research problems,
and map the technological distinctiveness of a user
community.

This paper is structured as follows, Section 2 in-
troduces the Domesday Dataset and discusses the
context it is used in in this work. Section 3 exam-
ines the issue that little is known about the preva-
lence of equipment within the AAC user commu-
nity, and because of this lack of information it is
difficult to establish baselines, or contexts. We
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show how the Domesday Dataset can allow re-
searchers to ground their assumptions in empirical
data.

Section 4 examines a cultural shift in AAC tech-
nology. The arrival of the iPad and other tablets in
the field has caused a great deal of change and it
is unclear what the long term implications will be.
We believe it is important to provide hard data on
the direct economic changes that have occurred in
the marketplace. The Domesday Dataset allows
us to examine the number of physical devices pur-
chased before and after the tablet explosion.

Section 5 examines the issue of transferability.
It is assumed by many AAC professionals that the
ability for AAC users to transfer page sets between
different devices is a significant issue for AAC
users. This section first shows how we can de-
rive some context information from the Domesday
Dataset and goes on to discuss the sociotechnical
context of the problem space.

2 The Domesday Dataset

In 2013 the Domesday Dataset was created to aid
formation of AAC policy at the national level. The
dataset records purchases of AAC technology by
the UK’s National Health Service between 2006
and 2012; giving information on make, model,
price, year of purchase, and geographic area of
purchase for each item. It was formed by sub-
mitting freedom of information requests to every
NHS (National Health Service) trust asking for de-
tails of all AAC devices provided since 2006. The
requests required the year of purchase, make, and
manufacture of each device. The full details of the
construction are reported in (Reddington, 2013).

At the time of writing, the Domesday Dataset
contained details of 9,157 purchases from NHS
Trusts. (Reddington, 2013) estimates that the
trusts that have responded cover approximately
90% of the UK population. All versions of the
dataset are held online and licensed under an Open
Data Commons Attribution License. The dataset
meets the requirements for three star linked open
data according to (Berners-Lee, 2010). A sample
of information appearing in the Domesday Dataset
is given in Table 1. The dataset was not only in-
tended to shape UK policy and research, but also
as a snapshot for international researchers: allow-
ing comparison of manufacturers, types of aids,
budgets, and prevalence within a tight geograph-
ical domain.

There are, of course, caveats to consider before
using the Domesday Dataset. Firstly, for privacy
reasons, it is presented with no connection to any
other element of AAC provision: it is impossible
to match equipment with a particular user.

Secondly, the NHS does not have the complete
information: information from AAC manufactur-
ers shows that only 44% of sales and 38% of
the spend were by the NHS. Even with complete
data from the public bodies, researchers would be
forced to extrapolate the information, perhaps con-
firming the trends by means of another research
methodology. This work makes the assumption
that the relative frequency of AAC purchases and
trends in the UK are reflected in the dataset. We
are careful not to over-analyse this information,
but we do note that having a complete list of
NHS purchases, even if they only cover 44% of
a county’s purchases, is vastly more detailed than
any previous record of AAC provision. Potential
problems with the dataset underrepresenting tablet
sales are discussed in Section 4.

3 Research Granularity

Little is known about the prevalence of equipment
within the AAC user community, and because of
this lack of information it is difficult to establish
baselines, or contexts. Perhaps worse, when re-
searchers propose solutions, they must also make
a range of assumptions about the applicability of
their work to the wider AAC audience. We can,
for example, imagine an innovative new model
for AAC not being successful because it requires
a consistent internet connection from the device,
which perhaps only 5% of users have. The ma-
jority of AAC research is devoted to building up
a library of case studies to show the benefits of
AAC for user groups. This focus on social is-
sues in AAC research is laudable, and vital for
the overall area; however, researchers working in
the assistive technology field would be more ef-
fective if they could answer direct questions about
need, capability and technology. For example, a
researcher who must choose between supporting a
project that reduces errors in word-prediction us-
ing eye-gaze by 20%, or a project that makes Step-
By-Step devices more responsive and intuitive to
use for children, faces a difficult choice without
evidence. If the researcher could check that in a
particular geographic area there were 45 eye-gaze
systems and nearly 600 Step-by-Steps, then that
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Purchase year Manufacturer Model Num. Unit Price Total Price
2006 Liberator E-Tran Frame 1 £120.00 £120.00
2006 Servox Digital Electronic Larynx 2 £520.00 £1,040.00
2006 Ablenet Armstrong Mount 1 £190.00 £190.00
2006 Ablenet Big Mack 6 £84.00 £504.00
2007 Inclusive Switchit “Bob the Builder” 1 £49.00 £49.00
2007 Cricksoft Crick USB Switch Box 2 £99.00 £198.00
2007 Sensory Software Joycable2 1 £49.00 £49.00
2007 Dynavox Boardmaker 1 £209.00 £209.00
2007 ELO LCD Touch Monitor 1 £419.00 £419.00
2008 Ablenet iTalk2 Communication Aid 2 £95.00 £190.00
2008 Attainment Company Inc Go Talk(unknown type) 4 £130.00 £520.00
2008 Aug. Communication Inc. Talking Photo Album 2 £18.91 £37.82

Table 1: Extract from the Domesday Dataset, taken from (Reddington, 2013) (Geograpic information
held seperately)

might influence the decision1 (at a higher level this
is, of course, the calculation that one expects fund-
ing bodies to make when awarding the grants that
allow projects to even begin). Having quantita-
tive manufacturing data also supports much more
general estimations of research impact, as well
as helping research groups evaluate possible com-
mercial partners.

Even within the United States, which is the ma-
jor market for manufacturers, and the most ac-
tive area for AAC research, the complexities of its
healthcare system, differing state legislation, and
disability culture make estimation difficult. Even
the strong efforts that have been made (Matas et
al., 1985; Bloomberg and Johnson, 1990; Binger
and Light, 2006; Huer, 1991) give estimations of
need and use, but none that can be expected to give
the granularity that technologists need for their in-
vestigation, or even to frame research questions.

3.1 What Domesday tells us

To illustrate the use of the Domesday Dataset for
technical researchers, we give some simple results
regarding the popularity of various types of AAC
device. Table 2 shows the list of most common
‘high tech’ AAC purchases by the NHS in Scot-
land, ordered by the number of units purchased be-
tween 2006 and 2012. Table 3 gives the same table
for purchases in England. Both tables are based on
a relatively open definition of ‘high tech’ AAC:
these lists include only devices that can produce a
range of different utterances, and allow those ut-

1In either direction of course, depending on the weighting
given to a variety of other factors.

Rank Model Units
1 Lightwriter (SL35/SL40) 37
2 GoTalk (all types) 34
3 iPads and iPods 15
4 Springboard Lite 12
5 Vantage Lite 6
6 SuperTalker 6
7 Dynamo 6
8 V Max 5
9 Tech/Speak 32 x 6 4

10 Liberator 14 4
11 C12 + CEYE 4

Table 2: The 11 most common ‘high tech’ speech
aids purchased by the NHS in Scotland 2005-2011

terances to be selected by icon, or keyboard. As
a result they do not include such devices as, for
example: Big Macks; Digital Electronic Larynxs;
Jelly Bean Twists; Step–by-Steps; MegaBees and
many others, which are included in the Domesday
Dataset. As discussed in Section 2 we do not ad-
vise the direct quoting of these figures without first
being familiar with the caveats discussed in (Red-
dington, 2013). The figures should be considered
comparative only.

Some of the more counter-intuitive results from
Tables 2 and 3 include the general absence (with
the notable exception of the iPad/iPod) of touch
screen devices. Indeed, both the Lightwriter and
the GoTalk range comfortably sell more than twice
as many units as their nearest touchscreen rival.

A more sobering result to consider for re-
searchers in technical AAC is the popularity of
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Rank Model Units
1 Lightwriter (SL35/SL40) 77
2 GoTalk (all types) 74
3 iPad/iPod/iPhone 29
4 Springboard Lite 27
5 V Max 11
6 Dynamo 10
7 SuperTalker 7
8 Vantage Lite 6
9 Tech/Speak 32 x 6 6

10 Chatbox 5
11 C12 + CEYE 4

Table 3: The 11 most common ‘high tech’ speech
aids purchased by the NHS in England 2005-2011

devices that are less obvious targets for cus-
tomisation and improvement. The GoTalk and
Tech/Speak ranges are solid favourites for a par-
ticular section of the market and part of their ap-
peal is that they are relatively ’non-technical’2 and
are much easier for users and staff to get to grips
with: this appeal is somewhat in tension with ad-
vanced features like automatic generation of con-
tent and voice banking. It is entirely possible that
technical research would have more impact if it
focuses on making high-capability devices more
acceptable to existing users rather than increasing
the already impressive capability of existing de-
vices.

Another aspect of interest is the speed at which
the AAC market changes with respect to the ex-
isting landscape. The Dynavox Dynamo, for ex-
ample, is a popular device in both tables, but it
has been discontinued for some time. Section 5
explores some of the issues that this situation can
raise. Finally we consider that there are some sys-
tems that we would have expected to appear in
these lists that are absent: for example, Dynavox’s
Xpress and Maestro or Tobii’s MyTobii, and Lib-
erator’s Nova. Speculating on why some products
become more popular is beyond the scope of this
work; however, we do consider it an area for future
interest.

This section has shown that examining the
Domesday Dataset at even the most basic level
identifies a range of factors that can help contex-
tualise the technical landscape for researchers in
AAC. To return to the examples given in the in-

2For example, neither device has a LCD screen, instead
they have buttons with printed icons

troduction, we can see how it would be simple
for (Szekely et al., 2012) to use the iPod and iPad’s
position in the marketplace as evidence for the po-
tential of their work and we can see how corpus
based approaches such as (Mitchell and Sproat,
2012) can use the range of AAC devices with in-
ternet connections to inform the design process.
We note that as the data covers a five year period
it is possible to examine ‘fashions’ as purchases
rise and fall and even map the gradual spread geo-
graphically.

4 Tablets and other animals

This section examines the extent to which the in-
troduction of tablet-based AAC has altered the
user community at the technical level and dis-
cusses how this data can be used by technical re-
searchers.

Since 2010, when Apple released the iPad, there
have been major upheavals in the AAC market,
caused by the explosion in tablet computing. From
an engineering perspective, the iPad only suf-
fers in comparison to existing devices in terms
of ruggedness; however, at potentially one quarter
the price3, it is comparatively replaceable. From a
software perspective the iPad gives many ‘cottage
industry’ developers for AAC a low cost way to
enter the market. Such developers already include
Alexicom, TapToTalk, AssistiveWare, and over
100 others. Such developers are well placed to
take advantage of the platform’s underlying hard-
ware.

Apples’s position as a top-tier technology gi-
ant, along with the iPad’s position as the dominant
tablet platform can be seen as a serious change
to the AAC industry as a whole. However, for
many working within the AAC community, it is
unclear what the long term implications will be.
Apple represents the most successful of a large
group of companies such as Samsung, HP, and (via
the Android operating system, and the purchase
of Motorola) Google (Weber, 2011) that have in-
vested heavily in tablet technology. It is conceiv-
able that one or more manufacturers will develop
a ‘ruggedised’ tablet for military or medical use.
Such a tablet, particularly if using the Android op-
erating system, which has a large group of dedi-
cated AAC developers (Higginbotham and Jacobs,
2011), would open a ‘second front’ from the point
of view of the existing manufacturers, as it would

3Based on estimates from (Reddington, 2013)
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remove many of the perceived weaknesses of the
iPad (fragility, waterproofing, volume).

The picture is muddied greatly because neither
the major AAC manufacturers nor Apple release
reliable sales figures. This results in the uncom-
fortable situation for users, professionals, and re-
searchers alike, that we are simultaneously being
told that “The iPad is simply the flavour of the
month at the moment and it is just the effect of
hype” and “The major manufacturers simply can’t
compete at any level other than eye-gaze”.

Of course, the issue of the overall effective-
ness of tablet-based AAC must be paramount for
the general AAC community, and there is a large
amount of research resources investigating this.
This paper simply attempts to provide some hard
data on the technical changes that have occurred
in the marketplace since 2010.

4.1 Domesday on tablet AAC

If we assume an average lifespan of four years per
device, then Table 2 and Table 3 can be consid-
ered to give a reasonable approximation of the rel-
ative popularity of AAC devices currently active
in the UK AAC community. As discussed in Sec-
tion 3, touchscreen and other high-capability de-
vices are not dominating the market, but we can
deduce that Apple devices have a strong market
share compared to devices with similar capabili-
ties. In Table 2 and Table 3 iPads and other Ap-
ple devices are shown to be approximately even
in terms of units shipped with established touch-
screen systems such as the Springboard Lite. It
would be difficult to argue that Apple devices were
not a major part of the AAC landscape.

A factor in these estimations must be the rela-
tively recent explosion in table computing. If we
limit our data to only purchases since 2010 (as
shown in Table 4), we see that Apple devices dom-
inate the sector and we would expect that when the
Domesday Dataset is extended in 2014, we shall
see that Apple devices have achieved the position
of market leader in terms of AAC devices in use.

4.1.1 Other tablets
We note that, other than some appearances of the
FuturePad Windows system (running Grid 2 soft-
ware and predating the tablet explosion), there are
no tablet purchases in the dataset that are not an
Apple device. This is a somewhat unexpected find:
the Android app store shows hundreds of thou-
sands of downloads (worldwide) for AAC appli-

cations for the Android platform. Some potential
explanations for this tension are discussed in the
following section, but we consider this an area for
future research.

4.1.2 Potential understatement of tablet sales
Section 2 discussed some caveats about informa-
tion in the Domesday Dataset, in particular that it
only examines purchases in the medical sector and
is understood to cover less than half of the AAC
market. We note here that these caveats may dis-
proportionately affect tablet computing purchases.
For example, the relatively low cost of tablet
devices means that there is a growing possibil-
ity that the paradigms used by service providers
are no longer fit for purpose. Whereas previous
paradigms may have involved users waiting two
years for a £7000 communication aid, with £3000
worth of support and training, the same users may
now, out of desperation, opt to pay out of their own
pocket for a £700 tablet with ‘app’. In terms of the
goals of this paper, such situations artificially de-
press the recorded purchases of tablet devices, and
in terms of the goals of the AAC community, the
choice of a ‘better device later or cheaper device
now’ may not be to the long term benefit of users,
or society.

Moreover, we can also imagine situations where
tablet devices are already present in an AAC user’s
life before they become used as a dedicated de-
vice. In the same way that family members often
‘hand down’ older phones to parents or children
when they upgrade, we have anecdotal evidence
of situations were “Chris can try an app on Steve’s
old iPad while he is at university and then we’ll
buy Steve a new one if that works”. Such prac-
tices would again artificially depress the number
of purchases recorded.

In this work we concentrate on only the re-
ports of purchase of physical tablets. Although
the Domesday Dataset does contain app purchases
where they have been recorded by the NHS, the
wide range of AAC applications, both free and
paid for, and their transferability between devices
mean that only the most vague of comparisons
could be made.

Even without these caveats, it is clear from ex-
amination of the Domesday Dataset that, in the
UK at least, Apple devices like the iPad have be-
come a large part of the technical AAC landscape
and we note that their level of hardware and strong
developer communities make them attractive tar-
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Rank Model Units
1 iPad/iPod/iPhone 25
2 GoTalk (all types) 10
3 Lightwriter (SL35/SL40) 10
4 Springboard Lite 6
5 EC02 6
6 C12 + CEYE 3
7 SuperTalker 2
8 Dynavox Maestro 2
9 Powerbox 7 2

10 S5 2
11 Dynavox (type unknown) 2

Table 4: The 11 most common ‘high tech’ speech
aids purchased by the NHS in England 2010-2011

gets for researchers building prototype AAC de-
vices.

5 Transferability of data

It is assumed by many AAC professionals that
transferability, the ability for AAC users to trans-
fer page sets between different devices, is a sig-
nificant issue for AAC users. Unfortunately there
is no previous academic research to support this
in general or estimate the size of the problem
space. This section first shows how we can derive
some contextual information from the Domesday
Dataset and goes on to discuss the sociotechnical
context of the problem space.

We can examine the set of devices purchased
in the years 2006-2012 and check to see if they
were still available to purchase in 2012. From this
we can estimate the lifespan of each device to ex-
tract the set of devices that are ‘irreplaceable’ in
the sense that the same model cannot be purchased
in cases of loss.

A large proportion of the devices listed in the
Domesday Dataset are no longer available to buy4;
however, they are still in service and, in some
cases, still in manufacturer’s warranty. The result-
ing set of irreplaceable devices is large and this
information supports a need for more research.

These irreplaceable devices contextualise a
space in which a range of sociotechnical issues at
the social and economic level have special reso-
nance with the AAC user community (for work
examining the reliability of AAC devices and their

4The Domesday Dataset has examples from major man-
ufactures that include the DV4, the Dynamo, the Vanguard,
the Springboard, and many others.

likely length of time before needing repairs please
see, for example, (Shepherd et al., 2009; Ball et
al., 2007)).

As discussed in (Reddington and Coles-Kemp,
2011; Coles-Kemp et al., 2011), the custom utter-
ances and user history on a device form not only a
large part of the user’s way of interacting with the
world, but often, their memories and sense of self.

It is recognised by manufacturers that this data
is precious and many manufacturers of electronic
AAC systems offer the functionality to back up the
devices to external storage. However, in the event
of irrecoverable hardware failure, such backups
are only generally useful if the user’s replacement
device is of the same model as the existing device
(in some cases, manufacturers can transfer back-
ups between different models of the same manu-
facturer). If it is the case that an AAC device’s
functional lifespan is longer than the device sales
lifespan, then it is also the case that massive in-
formation loss must occur when a range’s devices
reach the end of their lifespan and users are shifted
onto other devices.

Moreover, because AAC device backups are
not held in a common format, it is difficult for
AAC users to transfer sets of pages between de-
vices at all. If a user wishes to switch from, say
Proloque2go to Dynavox, then the only way to
transfer potentially key parts of their identity and
memory between the devices is for the user, or
care staff, to laboriously recreate systems by hand.
This results in users having difficulties ‘trying out’
new systems, and the occasional sight of a user
with two AAC devices: one that is failing but
has the full range of utterances, and a more mod-
ern device that may be clearer and more effective,
but which does not yet have all the necessary ut-
terances. Finally, the lack of a common format
stands as a barrier to the deployment of a truly
‘open source’ page and symbol set that could be
used across formats and developed independently
of hardware manufactures.

It is the author’s position that this shows a clear
and present need for not only a standardised for-
mat for transferring sets of pages between devices
but also that this standardised format be open and
accessible to researchers. We consider these to
be a counterpart of the work in (Deruyter et al.,
2007); however, where (Deruyter et al., 2007) fo-
cused on increased interoperability between AAC
and mainstream technologies, we argue in favour
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of increased interoperability between the devices
themselves. The work is perhaps philosophically
closer to the work of (Lesher et al., 2000b; Lesher
et al., 2000a), which seeks to produce universal
standards of logging of AAC utterances for re-
search purposes. We argue that a standardised
format would also allow technical researchers to
develop their prototypes to interface directly with
a user’s existing systems. This would produce a
much more seamless way of testing innovations,
without the need to introduce users to dedicated
equipment or a specialised app for testing a partic-
ular innovation in AAC technology.

6 Discussion

Research in AAC policy and technology suffers
greatly from a lack of large scale quantitative ev-
idence on the prevalence of devices, and the de-
mographics of users. This work has shown that
the Domesday Dataset can be used at the research
level to provide context for researchers and to help
validate (or not) assumptions about everyday AAC
use. This work examined three different issues
of interest to technical researchers in AAC, each
from a different stage in the research lifecycle. It
provided a case study in using the dataset to gain
an understanding of the level of technology cur-
rently deployed in the UK AAC community, and
exposed a number of open research questions.

This work also gave an analysis of the impact
of the explosion in tablet computing on the AAC
technological landscape. We provided evidence
that Apple devices are already a significant part
of the AAC community and that we expect their
presence to grow as older devices phase out of the
market.

Finally we considered how the Domesday
Dataset suggests that product function lifespan
may be longer than the product sales lifespan in
AAC technology and discussed the consequences
of this from a sociotechnological perspective. This
work has pushed the AAC research agenda in a
direction more attractive to larger studies, com-
mercial manufactures, and quantitative research
to support the traditionally qualitatively focused
field. The range of possibilities for AAC research
includes: more accurate estimates of populations
of AAC users, and levels of AAC use; the ability
to evaluate the potential impact of research pro-
totypes and methodologies; and the ability to ex-
amine those sectors of the AAC industry that have

been most successful at delivering improved func-
tionality to users.

6.1 Future research agenda
At the more fundamental level we hope that this
work encourages public debate about where the
trade-offs lie in terms of targeting technical re-
search in both AAC and the wider intellectual dis-
ability field. It is the author’s position that stake-
holders at all levels in AAC should be involved in
debate on the areas of focus for research resources.

Moreover, we believe that an open format
for transferring sets of pages between devices is
needed, and that such a format will improve both
user experience, commercial competition, and re-
search effectiveness. We would welcome further
work.
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Abstract

The  requirements  of  user  interface  for
dyslexics  have  not  been  yet  properly
explored.  Accessibility  to  any  kind  of
information  or  just  to  entertainment  web
pages  is  a  key  factor  to  equality  of  rights,
moreover  it  breaks  down  social  barriers.
Considering  that  study  materials  are
nowadays  very  much  accessible  through
internet,  by accommodating  web  content  to
anyhow  disabled  users  must  be  seen  as
natural  thing.  Dyslexia  is  considered  as  an
cognitive  impairment  arising  from  visual
similarity  of  letters,  therefore  we  focus  on
Czech  language  which  uses  special
characters.  The  aim  of  our  research  is  to
introduce an application that allows dyslexics
to  decode  text  easier  and  understand  it
properly.

1 Introduction

Unlike  for  blind  or  deaf  people,  it  is  quite
difficult  to identify requirements for users with
dyslexia,  as  they  are  very  individual.  The
dyslexics'  inability  to  decode  information  is
socially  restrictive  as  much  as  the  inability  of
visually  impaired  to  read  the  information
(Deibel,  2006). For more,  missing one sense is
balanced  by  higher  sensitivity  of  other  senses.
But dyslexics do not miss a sense. 

According  to  psycho-linguistic  studies
(Marshall and Newcombe, 1973; Friedman et al.,
2012), the words in text should not contain more
letters  (or  letters  close  to  each  other)  that  are
visually similar. It counts letters like b, p, d, o, q
etc.  Also,  dyslexics  find  very  hard  encoding
words that are too long for them. Such a word
should  be  broken  up  by  linguistic  or  visual
syllable, depending on the order of problematic

symbols. In Czech language it might be: nej-roz-
ší-ře-něj-ší  instead of nejrozšířenější (“the most
widely  used”,  by  linguistic  syllable,  too  long
word),  kap-oun instead of  ka-poun etc.  (“fish”,
visually). The finding, reported in Proceedings of
the National Academy of Sciences (Siok et al.,
2008) surprisingly shows that there is significant
difference in ability to decode words in different
languages.

2 Related Work

The  main  elements  causing  reading  inability
dwells  in  visual  attention  deficit  and  letter
concentration,  both  based  in  neural  cognition.
Research that was done with eye tracker shows
that  at  least  one  third  of  probands  have
difficulties  with  catching  text  with  eyes
(Bellocchi  et  al.,  2013).  The  same  results  are
indicated in independent study of Laboratory for
visual Learning at the Smithsonian Astrophysical
Observatory (Schneps et al., 2013).

    For  instance  mobile  application  American
Wordspeller  & Phonetic Dictionary helps users
to  check  their  writing  and  converts  phonetic
spelling into the proper one. Other software that
use text to speech conversion,  so that users do
not  have  to  deal  with  visual  matter,  are  Web
Reader and CapturaTalk.  In  past  year,  IDEAL,
the  e-book  reader  was  introduced  by  Rello
(2012). Anyway, this application is not a solution
for modifying  too long words or words with a
combination of wrong letters.  Moreover, Czech
language  is  too  complicated  to  get  by  with
IDEAL application. 

Most  of  the  applications  use  text  to  speech
conversion  approach  for  its  usefulness  and
simplicity.  However,  reading  should  not  be
avoided  by  dyslexics.  The  research  study
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conducted  by  experts  from  the  Institute  of
Education,  University  of  London  shows  that
reading strenghts attention,  brain cognition and
information  processing  over  time  (Battye  and
Rainsberry,  2013).  Therefore,  an  application
based on text modification is very much needed.

3 The Complexity of the Czech 
Language

Czech language belongs to West Slavic language
class. It is inflected language, characterized by a
complicated  system  of  declension  and
conjugation. According to the complexity and a
huge  vocabulary,  the  use  of  applications  for
instance  offering  synonyms  seems  not  usable.
The  declension  and  conjugation  that  affects
nouns  and  verbs  are  grammatical  tasks  that
makes  the  language  and  assistive  applications
most complicated. 

3.1  Declension

Czech speakers typically refer to the noun cases
by  number  and  learn  them  by  means  of  the
question   and  answer  (Šaur,  2004).  These
numbers  do  not  necessarily  correspond  to
numbered  cases  in  other  languages.  Nouns,
adjectives,  pronouns and numbers are declined,
there  are  seven  cases  over  a  number  of
declension models (Tab. 1).

3.2  Conjugation

Conjugation applies to verbs.  It  is  a  system of
grammatically-determined  modifications.  There
are  several  types  of  conjugation  with  more  or
less  complicated  rules.  A  brief  overview is  in
Tab. 2. 

Table 1. Declension of Czech nouns.

case question title

1 who/what? nominative

2 without whom/what? genitive

3 to whom/what? dative

4 We see whom/what? accusative

5 We address/call vocative

6 about whom/what? locative

7 with whom/what? instrumental

Table 2. Conjugation of Czech verbs.

Affection Types/Classes

Infinitive

Participles Past/Passive

Transgressive

Aspect Perfect/Imperfect

Tense Present/Past/Future

Imperative Singular/Plural

Conditionals Present/Past

Passive voice

Reflexive verbs

Negation

Verb Classes 1 – 5

Irregular Verbs

3.3  Phonetical and Grammatical Syllables

Czech language, as it was stated, is a quit hard
language  with  many  words  that  follow
declension  and  conjugation.  It  is  still  under
linguistic  concern  how  to  divide  syllables  in
Czech words. There are rules that often do not
follow natural feelings of those speaking Czech,
respectively  those  whose  Czech  is  a  mother
language  (Moravec-Robur,  1939).  Automatic
syllabication  is  therefore  still  not  flawless  and
there may be accidental errors that would make
dyslexics  even  more  confused.  Moreover,
phonological syllable does not omit proximity of
problematic letters that are hardly decodable. 

4 Methodology

4.1  Experimental Approach

We introduce  an  application  that  modifies  text
according  to  needs  of  Czech  language
environment.
Because  the  complexity  of  words  depends  on
individual  language,  we  have  to  find  out  the
pattern  that  makes  the  Czech  words  hard  to
decode.  We  prepare  sets  of  text,  one  that  is
original  and  contains  general,  non-scientific
words, one that divides the letters according to
linguistic syllables and the last one that divides
the letters in words according to visual syllables. 
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Figure 1. The three texts read by dyslexics.

Each set has 3 texts which are similar in length.
To  avoid  subjectivity,  the  proband  cannot  be
tested with same text but we need the texts to be
similar  as  much  as  possible  (Fig.  1).  The
dyslexics read the three texts, not told what the
aim of the experiment is. We measure how fast
the dyslexic read each text while the text is read
loudly to avoid distorting elements like skipping
letters, returning etc. The text with phonological
(grammatical) syllables divides the letters only in
words they appear in. For exact measurement we
use  a  system  reacting  on  sound  so  while  the
dyslexic start  reading, the tool starts measuring
and stops when the last letter is read. 

4.2   Technical Approach

Among  observation,  we  need  a  tool  that  will
detect long words and visually similar letters in
the  words  (according  to  above  mentioned
pattern). For modifying the text we use syntactic
analyzer that looks for symbols given in a rule
that  was  set  according  to  general  text  reading
problems. For instance, a diagram using cyclical
algorithm  defines  the  way  to  detect  such
words/letters (Fig. 2). The tool will be built up
using state machine. 

   To  the  system  in  Figure  2,  if  NIS  is  for
example ≥ 2, the word is possibly hard to decode
and has to be broken up into syllables or visually
not similar groups of letters. For instance a word
“podobná” has more  than 2 problematic  letters
close  to  each  other  (there  are  5  problematic
letters  together  –  p+o+d+o+b)  so the letters  in
the word should be broken up at least after two
of such letters (po-do-bná), better after each of
the letter (p-o-d-o-bná), depending on preset rule
for  each  language.  The  same  way  we  detect
number of letters contained in a single word.  

Figure  2.  Cyclical  algorithm  for  detecting
problematic words. 

 The  only  need  is  to  determine  what  letters,
respectively  what  pair  or  triplet  of  letters  are
problematic  for  exact  language.  Once  the
observation  is  done,  the  application  we  design
can be used for any language. 

5 Scientific and Practical Impact

Based on previous work that was done in area of
dyslexic  users,  within  psychological,  linguistic
and  technical  studies,  we  strongly  believe  that
our solution fits best to dyslexics who are very
individual  users  to  work  with.  There  are  no
standards,  like  WCAG  2.0  for  general
accessibility that would make web designers and
ICT developers to follow such needs. First, they
would have to care about accommodating these
needs in every single webpage, ebook, ICT tool.
It  seems  impossible,  too  hard  and  time
consuming.  Second,  designers  and  developers
have  almost  none  of  experience  with  dyslexic
users  and  self-experience  is  more  than  needed
when building an assistive technology tool.

We believe that our research, proving explicit
problems that dyslexics deal with, will move the
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research in assistive technologies far more ahead.
Existing applications are helpful but do not fulfill
the needs as much as they could. We add value
to actual applications and make the gap between
society and people with special needs smaller.

6 Conclusion

The outcome of the application is necessary to
confront with a sufficient group of dyslexics. It is
generally  stated  that  up  to  one  twentieth  of
population  suffers  from  learning  and
concentration disabilities, although only some of
them are diagnosed (Rello et al., 2013). It would
be  unethical  to  stop  having  interests  in
problematic with dyslexia.

Our future work will be directed the way of
developing proposed tool, to make it usable in e-
books, study materials, and within daily routine
needs.
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Abstract

We aim to build dialogue agents that op-
timize the dialogue strategy, specifically
through learning the dialogue model com-
ponents from dialogue data. In this paper,
we describe our current research on au-
tomatically learning dialogue strategies in
the healthcare domain. We go through our
systematic approach of learning dialogue
model components from data, specifically
user intents and the user model, as well
as the agent reward function. We demon-
strate our experiments on healthcare data
from which we learned the dialogue model
components. We conclude by describ-
ing our current research for automatically
learning dialogue features that can be used
in representing dialogue states and learn-
ing the reward function.

1 Introduction

Cognitive assistive technologies provide support
systems for the elderly, possibly with cognitive or
physical disabilities, for instance people with de-
mentia (such as Alzheimer’s disease) (Boger et al.,
2005; Pineau et al., 2011; Rudzicz et al., 2012).
Such support systems can significantly reduce the
costs of performing several tasks, currently done
by family members or employed caregivers. In
this context, (Rudzicz et al., 2012) are working
on a computerized caregiver that assist individuals
with Alzheimer’s disease (AD) to complete daily
tasks (e.g., preparing meals) using verbal commu-
nication. Thus, an important component of such
technologies is the dialogue agent.

Table 1 (left) shows sample dialogues collected
by SmartWheeler, an intelligent wheelchair for
persons with disabilities (Pineau et al., 2011). In
particular, SmartWheeler aims to minimize the
physical and cognitive load required in steering it.

SmartWheeler is equipped with a dialogue agent,
thus the users can give their commands through
the spoken language besides a joystick.

The first line denoted by u1 shows the true user
utterance, which is the one that has been extracted
manually from user audio recordings. The follow-
ing line denoted by ũ1 is the recognized user utter-
ances by automatic speech recognition (ASR). Fi-
nally, the line denoted by a1 shows the performed
action in response to the ASR output at the time
of collecting the dialogues. First, the users may
say a command in different ways. For instance for
turning right, the user may say turn right a little
please, turn right, right a little, or right.

Furthermore, challenges can occur when ASR
output is imperfect. That is, for each dialogue
utterance recognized by ASR, the dialogue agent
must estimate the human user intent and then to
perform the best action that satisfies the user in-
tent. The recognized utterance by ASR is not re-
liable for decision making. For instance, the first
utterance, u1: “turn right a little”, shows the true
user utterance. The ASR output for this utterance
is, ũ1: [10 writer little]. As such, the action per-
formed by SmartWheeler at this dialogue turn is,
the general query action u1: PLEASE REPEAT
YOUR COMMAND.

We are working on automatically learning the
dialogue strategy by learning the dialogue model
components such as user intents, dialogue fea-
tures, and the agent’s reward function from data.
Our data includes dialogues between human users
and expert agents (such as caregivers).

2 Theoretical approach

Sequential Decision Making: Figure 1 shows
the cycle of interaction between an agent (such as
a dialogue agent or a caregiver) and its environ-
ment (such as a human user). The agent performs
an action and receives an observation in return.
The observation can be used by the agent, for in-
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u1 : turn right
ũ1 : [turn right]
a1 : TURN RIGHT

u2 : turn right a little
ũ2 : [10 writer little]
a2 : PLEASE REPEAT YOUR COMMAND

u3 : turn right a little
ũ3 : [turn right to lead a]
a3 : TURN RIGHT A LITTLE

u4 : stop
ũ4 : [stop]
a4 : STOP

u1 : turn right
ũ1 : [turn right]
s1 : turn-right-little, 60%

u2 : turn right a little
ũ2 : [10 writer little]
s2 : turn-right-little, 90%

u3 : turn right a little
ũ3 : [turn right to lead a]
s3 : turn-right-little, 90%

u4 : stop
ũ4 : [stop]
s4 : stop, 90%

Table 1: Left: A sample from the SmartWheeler dialogues (Pineau et al., 2011). Right: results of learning
human user intents from patients’ noisy dialogues.

stance to update its state and reward. The reward
works as reinforcement from the environment that
shows how well the agent performed. In sequen-
tial decision making, the agent is required to make
decision for sequence of states rather than making
a one-shot decision. Then, the sequential decision
making is performed with the objective of maxi-
mizing the long term rewards. The sequence of
actions is called a strategy, and the major question
in sequential decision making is how to find a near
optimal strategy.

Reinforcement learning (RL): RL in (partially
observable) Markov decision processes, so called
the (PO)MDPs, is a learning approach in sequen-
tial decision making. In particular, (PO)MDPs
have been successfully applied in dialogue agents
(Roy et al., 2000; Zhang et al., 2001; Williams,
2006; Thomson and Young, 2010; Gašić, 2011).
The (PO)MDP framework is a formal framework
to represent uncertainty explicitly while support-
ing automated strategy solving. Specifically, it
is an optimization framework that supports au-
tomated strategy solving by maximizing a “re-
ward function”.

3 Objective

SDS (Spoken dialogue system) researchers have
addressed several practical challenges of apply-
ing (PO)MDPs to SDS (Williams, 2006; Paek
and Pieraccini, 2008). Specifically, estimating the
user model and the reward function is a signifi-
cant challenge since these model components have
a direct impact on the optimized dialogue strat-
egy. Furthermore, the reward function is perhaps
the most hand-crafted aspect of the optimization
frameworks such as (PO)MDPs (Paek and Pierac-

cini, 2008). Using inverse reinforcement learning
(IRL) techniques, a reward function can be deter-
mined from expert actions (such as caregiver ac-
tions) (Ng and Russell, 2000). Fortunately, learn-
ing the reward function using IRL methods have
already been proposed for the general (PO)MDP
framework (Ng and Russell, 2000; Kim et al.,
2011), paving the way for investigating its use for
dialogue (PO)MDPs. In this context, the IRL algo-
rithms require dialogue features (for instance ASR
recognitions with their confidence scores) for rep-
resenting the reward function. Extracting relevant
dialogue features is important since the dialogue
features and their representation highly affect the
learned reward function and finally the optimized
strategy.

Thus, our goals include building (PO)MDP-
based dialogue technologies that optimizes the di-
alogue strategy through learning user intents and
the user model, and reward function from dialogue
data, as follows:

1. Learning user intents and the user model
from collected dialogues, i.e., ASR recogni-
tions, or directly from acoustic data.

2. Learning the reward function.

(a) Learning useful dialogue features.
(b) Representing features in IRL for learn-

ing the reward function.

Recall Figure 1 that shows the cycle of interac-
tion between an agent (such as a dialogue agent or
a caregiver) and its environment (such as a human
user). In this figure, circles represent the learned
models. The model denoted by (PO)MDP in-
cludes the (PO)MDP model components, without

14



(PO)MDP

R

IRL
(PO)MDP

solver
Environment Agenta/o

trajectories learning

acting

Figure 1: The cycle of acting/learning between the agent and environment. The circles represent the
models. The model denoted by (PO)MDP includes the (PO)MDP model components, without a reward
function, learned from step 1 in the objective section. The learned (PO)MDP model together with expert
action/observation trajectories are used in IRL to learn the reward function denoted by R, in step 2 in
the objective section. The learned (PO)MDP and reward function are used in the (PO)MDP solver to
learn/update the strategy.

a reward function, which have been learned from
step 1 above. The learned (PO)MDP together with
action/observation trajectories are used in IRL to
learn the reward function, denoted by R. Then,
the learned (PO)MDP and the reward function are
used in a (PO)MDP solver to learn/update the op-
timal strategy.

4 SmartWheeler data

The SmartWheeler project aims to build an in-
telligent wheelchair for persons with disabil-
ities (Pineau et al., 2011). In particular,
SmartWheeler aims to minimize the physical and
cognitive load required in steering it. This project
has been initiated in 2006, and a first prototype,
shown in Figure 2, was built in-house at McGill’s
Center for Intelligent Machines.

We used the dialogues collected by
SmartWheeler to develop dialogue (PO)MDPs,
learned primarily from data. The data includes
eight dialogues with healthy users and nine dia-
logues with target users of SmartWheeler (Pineau
et al., 2011). The dialogues with target users,
who are the elderly, are somehow more noisy than
the ones with healthy users. More specifically,
the average word error rate (WER) equals 13.9%

Figure 2: The SmartWheeler robot plat-
form (Pineau et al., 2011).

for the healthy user dialogues and 18.5% for the
target user dialogues. In order to perform our
experiments on a larger amount of data, we used
all the healthy and target user dialogues. In total,
there are 2853 user utterances and 422 distinct
words in the SmartWheeler dialogues.

5 Learning user intents from data

We learned the (PO)MDP states by learning the
user intents occurred in the dialogue set using
a topic modeling approach, i.e., Hidden Topic
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Markov Model (HTMM) (Gruber et al., 2007).
HTMM is a variation of Latent Dirichlet Alloca-
tion (LDA) which learns topics from text based on
co-occurrence of words and using Dirichlet dis-
tribution for generating the topics of text docu-
ments (Blei et al., 2003). HTMM adds Markovian
assumption to the LDA model in order to exploit
the Markovian property between sentences in the
documents. Thus, HTMM can be seen both as a
variation of Hidden Markov Model (HMM) and a
variation of LDA.

Our experimental results showed that HTMM
learns proper user intents that can be used as dia-
logue states, and is able to exploit the Markovian
property between dialogue utterances, adequately.
The learned states, using our proposed methods,
from SmartWheeler data are as follows: s1 :
move-forward-little, s2 : move-backward-little,
s3 : turn-right-little, s4 : turn-left-little, s5 :
follow-left-wall, s6 : follow-right-wall, s7 :
turn-degree-right, s8 : go-door, s9 : set-speed,
s10 : follow-person, s11 : stop. Table 3 shows the
learned user intents, five of them, with their top-
four words, i.e., the intent keywords.

Table 1 (right) shows results of HTMM appli-
cation on SmartWheeler for the example shown
in Table 1 (left). For instance, the second ut-
terance shows that the user actually uttered turn
right a little, but it is recognized as 10 writer lit-
tle by ASR. The most probable intent returned by
HTMM for this utterance is s3 : turn-right-little
with 90% probability. This is because HTMM
considers Markovian property for deriving intents.
As a result, in the second turn it estimates correctly
the true user intent based on the user intent in the
first turn.

The list of all SmartWheeler actions are shown
in Table 2. Each action is the right action of
one state (the user intent for a specific com-
mand). So, ideally, there should be 24 states
for SmartWheeler dialogues (There are 24 actions
other than the general query action: REPEAT).
However, we only learned 11 of the states, mainly
because of the number of dialogues. That is, not
all of the states appeared in the data frequently
enough. There are also states that do not appear
in dialogues at all.

6 Learning reward functions from data

In this section, we experiment our implementation
of the trajectory-based MDP-IRL algorithm pro-

a1 DRIVE FORWARD A LITTLE
a2 DRIVE BACKWARD A LITTLE
a3 TURN RIGHT A LITTLE
a4 TURN LEFT A LITTLE
a5 FOLLOW THE LEFT WALL
a6 FOLLOW THE RIGHT WALL
a7 TURN RIGHT DEGREE
a8 GO THROUGH THE DOOR
a9 SET SPEED TO MEDIUM
a10 FOLLOW THE WALL
a11 STOP
a12 TURN LEFT
a13 DRIVE FORWARD
a14 APPROACH THE DOOR
a15 DRIVE BACKWARD
a16 SET SPEED TO SLOW
a17 MOVE ON SLOPE
a18 TURN AROUND
a19 PARK TO THE RIGHT
a20 TURN RIGHT
a21 DRIVE FORWARD METER
a22 PARK TO THE LEFT
a23 TURN LEFT DEGREE
a24 PLEASE REPEAT YOUR COMMAND

Table 2: The list of the possible actions, performed
by SmartWheeler.

posed by (Ng and Russell, 2000). The IRL ex-
periments are designed to verify if the introduced
IRL methods are able to learn a reward function
for the expert strategy, where the expert strategy is
represented as a (PO)MDP strategy. That is, the
expert strategy is the strategy that the underlying
(PO)MDP framework optimizes. The MDP expert
strategy for each of the (PO)MDP state is repre-
sented in Table 4. This strategy suggests perform-
ing the right action of each state.

6.1 MDP-IRL learned rewards

We applied the MDP-IRL algorithm on
SmartWheeler dialogue MDP described above
using the introduced keyword features in Table 5.
The algorithm was able to learn a reward function
in which the strategy equals the expert strategy for
all states, (the expert strategy shown in Table 4).
Table 6 shows the learned reward function. Note
that, for instance for state s3: turn-right-little, the
reward of performing both actions a3: TURN
RIGHT A LITTLE and a4: FOLLOW THE
RIGHT WALL is close to 1. Nevertheless,
the optimized strategy for this reward function
suggest the correct action, i.e., TURN RIGHT A
LITTLE for this state (turn-right-little).
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intent 1
forward 18.0%
move 16.1%
little 11.4%
drive 08.1%
. . . . . .

intent 2
backward 38.0%
drive 33.3%
little 10.9%
top 01.7%
. . . . . .

intent 3
right 20.9%
turn 17.1%
little 13.1%
bit 07.4%
. . . . . .

intent 4
left 18.9%
turn 17.1%
little 13.8%
right 09.0%
. . . . . .

. . .

. . . . . .

intent 11
stop 94.2%
stopp 02.2%
scott 00.7%
but 00.2%
. . . . . .

Table 3: The learned user intents from the SmartWheeler dialogues and their top words. Each percentage
shows the probability of each word given the intent.

state state description expert action expert action description
s1 move-forward-little a1 DRIVE FORWARD A LITTLE
s2 move-backward-little a2 DRIVE BACKWARD A LITTLE
s3 turn-right-little a3 TURN RIGHT A LITTLE
s4 turn-left-little a4 TURN LEFT A LITTLE
s5 follow-left-wall a5 FOLLOW THE LEFT WALL
s6 follow-right-wall a6 FOLLOW THE RIGHT WALL
s7 turn-degree-right a7 TURN RIGHT DEGREES
s8 go-door a8 GO THROUGH THE DOOR
s9 set-speed a9 SET SPEED TO MEDIUM
s10 follow-wall a10 FOLLOW THE WALL
s11 stop a11 STOP

Table 4: The learned strategy using the learned dialogue MDP from SmartWheeler dialogues.

forward backward right left turn go for top stop
s1 1 0 0 0 0 0 0 0 0
s2 0 1 0 0 0 0 0 0 0
s3 0 0 1 0 0 0 0 0 0
s4 0 0 0 1 0 0 0 0 0
s5 0 0 0 1 0 0 0 0 0
s6 0 0 1 0 0 0 0 0 0
s7 0 0 0 0 1 0 0 0 0
s8 0 0 0 0 0 1 0 0 0
s9 0 0 0 0 0 0 1 0 0
s10 0 0 0 0 0 0 0 1 0
s11 0 0 0 0 0 0 0 0 1

Table 5: Keyword features for the SmartWheeler dialogues.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 ... REPEAT
s1 1.0 0 0 0 0 0 0 0 0 0 0 0 . . . 0
s2 0 1.0 0 0 0 0 0 0 0 0 0 0 . . . 0
s3 0 0 1.0 0 0 1.0 0 0 0 0 0 0 . . . 0
s4 0 0 0 1.0 1.0 0 0 0 0 0 0 0 . . . 0
s5 0 0 0 1.0 1.0 0 0 0 0 0 0 0 . . . 0
s6 0 0 1.0 0 0 1.0 0 0 0 0 0 0 . . . 0
s7 0 0 0 0 0 0 1.0 0 0 0 0 0 . . . 0
s8 0 0 0 0 0 0 0 1.0 0 0 0 0 . . . 0
s9 0 0 0 0 0 0 0 0 1.0 0 0 0 . . . 0
s10 0 0 0 0 0 0 0 0 0 1.0 0 0 . . . 0
s11 0 0 0 0 0 0 0 0 0 0 1.0 0 . . . 0

Table 6: The learned reward function for the learned dialogue MDP from SmartWheeler dialogues using
keyword features.
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6.2 Choice of features

IRL needs features to represent the reward func-
tion. We propose keyword features for applying
IRL on the learned dialogue MDP/POMDP from
SmartWheeler. The keyword features are automat-
ically learned as the top-one words for each user
intent (see Table 3). There are nine learned key-
words:

forward, backward, right, left, turn, go, for,
top, stop.

The keyword features for each state of
SmartWheeler dialogue POMDP are represented
in a vector, as shown in Table 5. The fig-
ure shows that states s3, (turn-right-little) and
s6 (follow-right-wall) share the same features,
i.e., right. Moreover, states s4 (turn-left-little)
and s5 (follow-left-wall) share the same feature,
i.e., left. In our experiments, we used keyword-
action-wise feature representation. Such features
include an indicator function for each pair of state-
keyword and action. Thus, the feature size for
SmartWheeler equals 216 = 9 × 24 (9 keywords
and 24 actions).

Note that the choice of features is application
dependent. The reason for using keywords as state
features is that in the intent-based dialogue appli-
cations the states are the dialogue intents, where
each intent is described as a vector of k-top words
from the domain dialogues. Therefore, the key-
word features are relevant features for the states.

7 Conclusion

In this paper, we described our our systematic
approach for learning dialogue (PO)MDP model
components from unannotated dialogues. In
our approach, we start by learning the dialogue
(PO)MDP states, i.e., the learned user intents from
data. The learned states were then used for learn-
ing the user model. Building off these model com-
ponents, we learned the agent’s reward function by
implementing a model-based IRL algorithm. We
demonstrated our experiments on data collected in
a healthcare domain to learn the dialogue model
components solely from data.

8 Ongoing work

We are working on a variation of MDP-IRL algo-
rithm, that is a model-free trajectory-based MDP-
IRL algorithm. In the model-free MDPs, the
states are usually presented using features (and

thus there is no defined/learned transition model).
Then, model-free MDP algorithms are used for
estimating the optimal strategy of such MDPs.
Model-free MDPs can be used in the place of
POMDPs where state features are analogous to ob-
servations.

In this context, data analysis for feature selec-
tion is highly important. Dialogue features can
be used to represent dialogue situations (as well
as the observations in the dialogue POMDPs).
Moreover, the IRL algorithms require (dialogue)
features for representing the reward function.
As mentioned earlier, the reward function of
(PO)MDPs highly affects the optimized strategy.
A relevant reward function to the dialogue agent
and users can only be learned by studying and
extracting relevant features from the dialogue do-
main. We would like to learn the relevant and
proper features that are suitable for both state fea-
tures as well as the reward representation. In par-
ticular, we are going to use the experts’ (care-
givers’) strategies in the place of a (PO)MDP strat-
egy in order to learn a reward function that ac-
counts for caregivers’ strategies.
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at McGill University, École Polytechnique de
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Abstract

To help individuals with Alzheimer’s dis-
ease live at home for longer, we are de-
veloping a mobile robotic platform, called
ED, intended to be used as a personal care-
giver to help with the performance of ac-
tivities of daily living. In a series of ex-
periments, we study speech-based inter-
actions between each of 10 older adults
with Alzheimers disease and ED as the
former makes tea in a simulated home en-
vironment. Analysis reveals that speech
recognition remains a challenge for this
recording environment, with word-level
accuracies between 5.8% and 19.2% dur-
ing household tasks with individuals with
Alzheimer’s disease. This work provides a
baseline assessment for the types of tech-
nical and communicative challenges that
will need to be overcome in human-robot
interaction for this population.

1 Introduction

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder primarily impairing mem-
ory, followed by declines in language, ability to
carry out motor tasks, object recognition, and ex-
ecutive functioning (American Psychiatric Asso-
ciation, 2000; Gauthier et al., 1997). An accu-
rate measure of functional decline comes from
performance in activities of daily living (ADLs),
such as shopping, finances, housework, and self-
care tasks. The deterioration in language com-
prehension and/or production resulting from spe-
cific brain damage, also known as aphasia, is a
common feature of AD and other related con-
ditions. Language changes observed clinically
in older adults with dementia include increasing
word-finding difficulties, loss of ability to verbally
express information in detail, increasing use of

generic references (e.g., “it”), and progressing dif-
ficulties understanding information presented ver-
bally (American Psychiatric Association, 2000).

Many nations are facing healthcare crises in the
lack of capacity to support rapidly aging popula-
tions nor the chronic conditions associated with
aging, including dementia. The current healthcare
model of removing older adults from their homes
and placing them into long-term care facilities
is neither financially sustainable in this scenario
(Bharucha et al., 2009), nor is it desirable. Our
team has been developing “smart home” systems
at the Toronto Rehabilitation Institute (TRI, part
of the University Health Network) to help older
adults “age-in-place” by providing different types
of support, such as step-by-step prompts for daily
tasks (Mihailidis et al., 2008), responses to emer-
gency situations (Lee and Mihaildis, 2005), and
means to communicate with family and friends.
These systems are being evaluated within a com-
pletely functional re-creation of a one-bedroom
apartment located within The TRI hospital, called
HomeLab. These smart home technologies use
advanced sensing techniques and machine learn-
ing to autonomously react to their users, but they
are fixed and embedded into the environment, e.g.,
as cameras in the ceiling. Fixing the location of
these technologies carries a tradeoff between util-
ity and feasibility – installing multiple hardware
units at all locations where assistance could be re-
quired (e.g., bathroom, kitchen, and bedroom) can
be expensive and cumbersome, but installing too
few units will present gaps where a user’s activ-
ity will not be detected. Alternatively, integrat-
ing personal mobile robots with smart homes can
overcome some of these tradeoffs. Moreover, as-
sistance provided via a physically embodied robot
is often more acceptable than that provided by an
embedded system (Klemmer et al., 2006).

With these potential advantages in mind, we
conducted a ‘Wizard-of-Oz’ study to explore the

20



feasibility and usability of a mobile assistive robot
that uses the step-by-step prompting approaches
for daily activities originally applied to our smart
home research (Mihailidis et al., 2008). We con-
ducted the study with older adults with mild or
moderate AD and the tasks of hand washing and
tea making. Our preliminary data analysis showed
that the participants reacted well to the robot itself
and the prompts that it provided, suggesting the
feasibility of using personal robots for this appli-
cation (Begum et al., 2013). One important iden-
tified issue is the need for an automatic speech
recognition system to detect and understand ut-
terances specifically from older adults with AD.
The development of such a system will enable
the assistive robot to better understand the be-
haviours and needs of these users for effective in-
teractions and will further enhance environmental-
based smart home systems.

This paper presents an analysis of the speech
data collected from our participants with AD when
interacting with the robot. In a series of exper-
iments, we measure the performance of modern
speech recognition with this population and with
their younger caregivers with and without signal
preprocessing. This work will serve as the basis
for further studies by identifying some of the de-
velopment needs of a speech-based interface for
robotic caregivers for older adults with AD.

2 Related Work

Research in smart home systems, assistive robots,
and integrated robot/smart home systems for older
adults with cognitive impairments has often fo-
cused on assistance with activities of daily living
(i.e., reminders to do specific activities according
to a schedule or prompts to perform activity steps),
cognitive and social stimulation and emergency
response systems. Archipel (Serna et al., 2007)
recognizes the user’s intended plan and provides
prompts, e.g. with cooking tasks. Autominder,
(Pollack, 2006), provides context-appropriate re-
minders for activity schedules, and the COACH
(Cognitive Orthosis for Assisting with aCtivities
in the Home) system prompts for the task of hand-
washing (Mihailidis et al., 2008) and tea-making
(Olivier et al., 2009). Mynatt et al. (2004) have
been developing technologies to support aging-in-
place such as the Cooks Collage, which uses a se-
ries of photos to remind the user what the last step
completed was if the user is interrupted during a

cooking task. These interventions tend to be em-
bedded in existing environments (e.g., around the
sink area).

More recent innovations have examined in-
tegrated robot-smart home systems where sys-
tems are embedded into existing environments that
communicate with mobile assistive robots (e.g.,
CompanionAble, (Mouad et al., 2010); Mobiserv
Kompai, (Lucet, 2012); and ROBADOM (Tapus
and Chetouani, 2010)). Many of these projects
are targeted towards older adults with cognitive
impairment, and not specifically those with sig-
nificant cognitive impairment. One of these sys-
tems, CompanionAble, with a fully autonomous
assistive robot, has recently been tested in a simu-
lated home environment for two days each with
four older adults with dementia (AD or Pick’s
disease/frontal lobe dementia) and two with mild
cognitive impairment. The system provides assis-
tance with various activities, including appoint-
ment reminders for activities input by users or
caregivers, video calls, and cognitive exercises.
Participants reported an overall acceptance of the
system and several upgrades were reported, in-
cluding a speech recognition system that had to be
deactivated by the second day due to poor perfor-
mance.

One critical component for the successful use of
these technological interventions is the usability of
the communication interface for the targeted users,
in this case older adults with Alzheimer’s disease.
As in communication between two people, com-
munication between the older adult and the robot
may include natural, freeform speech (as opposed
to simple spoken keyword interaction) and non-
verbal cues (e.g., hand gestures, head pose, eye
gaze, facial feature cues), although speech tends to
be far more effective (Green et al., 2008; Goodrich
and Schultz, 2007). Previous research indicates
that automated communication systems are more
effective if they take into account the affective
and mental states of the user (Saini et al., 2005).
Indeed, speech appears to be the most powerful
mode of communication for an assistive robot to
communicate with its users (Tapus and Chetouani,
2010; Lucet, 2012).

2.1 Language use in dementia and
Alzheimer’s disease

In order to design a speech interface for individ-
uals with dementia, and AD in particular, it is
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important to understand how their speech differs
from that of the general population. This then can
be integrated into future automatic speech recog-
nition systems. Guinn and Habash (2012) showed,
through an analysis of conversational dialogs, that
repetition, incomplete words, and paraphrasing
were significant indicators of Alzheimer’s dis-
ease relative but several expected measures such
as filler phrases, syllables per minute, and pro-
noun rate were not. Indeed, pauses, fillers, for-
mulaic speech, restarts, and speech disfluencies
are all hallmarks of speech in individuals with
Alzheimer’s (Davis and Maclagan, 2009; Snover
et al., 2004). Effects of Alzheimer’s disease on
syntax remains controversial, with some evidence
that deficits in syntax or of agrammatism could be
due to memory deficits in the disease (Reilly et al.,
2011).

Other studies has applied similar analyses to
related clinical groups. Pakhomov et al. (2010)
identified several different features from the au-
dio and corresponding transcripts of 38 patients
with frontotemporal lobar degeneration (FTLD).
They found that pause-to-word ratio and pronoun-
to-noun ratios were especially discriminative of
FTLD variants and that length, hesitancy, and
agramatism correspond to the phenomenology of
FTLD. Roark et al. (2011) tested the ability of an
automated classifier to distinguish patients with
mild cognitive impairment from healthy controls
that include acoustic features such as pause fre-
quency and duration.

2.2 Human-robot interaction

Receiving assistance from an entity with a physi-
cal body (such as a robot) is often psychologically
more acceptable than receiving assistance from an
entity without a physical body (such as an em-
bedded system) (Klemmer et al., 2006). Physical
embodiment also opens up the possibility of hav-
ing more meaningful interaction between the older
adult and the robot, as discussed in Section 5.

Social collaboration between humans and
robots often depends on communication in which
each participant’s intention and goals are clear
(Freedy et al., 2007; Bauer et al., 2008; Green
et al., 2008). It is important that the human
participant is able to construct a useable ‘men-
tal model’ of the robot through bidirectional com-
munication (Burke and Murphy, 1999) which can
include both natural speech and non-verbal cues

(e.g., hand gestures, gaze, facial cues), although
speech tends to be far more effective (Green et al.,
2008; Goodrich and Schultz, 2007).

Automated communicative systems that are
more sensitive to the emotive and the mental states
of their users are often more successful than more
neutral conversational agents (Saini et al., 2005).
In order to be useful in practice, these commu-
nicative systems need to mimic some of the tech-
niques employed by caregivers of individuals with
AD. Often, these caregivers are employed by lo-
cal clinics or medical institutions and are trained
by those institutions in ideal verbal communica-
tion strategies for use with those having demen-
tia (Hopper, 2001; Goldfarb and Pietro, 2004).
These include (Wilson et al., 2012) but are not
limited to relatively slow rate of speech, verba-
tim repetition of misunderstood prompts, closed-
ended (e.g., ‘yes/no’) questions, and reduced syn-
tactic complexity. However, Tomoeda et al. (1990)
showed that rates of speech that are too slow
may interfere with comprehension if they intro-
duce problems of short-term retention of working
memory. Small et al. (1997) showed that para-
phrased repetition is just as effective as verbatim
repetition (indeed, syntactic variation of common
semantics may assist comprehension). Further-
more, Rochon et al. (2000) suggested that the syn-
tactic complexity of utterances is not necessarily
the only predictor of comprehension in individuals
with AD; rather, correct comprehension of the se-
mantics of sentences is inversely related to the in-
creasing number of propositions used – it is prefer-
able to have as few clauses or core ideas as possi-
ble, i.e., one-at-a-time.

3 Data collection

The data in this paper come from a study to
examine the feasibility and usability of a per-
sonal assistive robot to assist older adults with
AD in the completion of daily activities (Begum
et al., 2013). Ten older adults diagnosed with
AD, aged ≥ 55, and their caregivers were re-
cruited from a local memory clinic in Toronto,
Canada. Ethics approval was received from the
Toronto Rehabilitation Institute and the Univer-
sity of Toronto. Inclusion criteria included fluency
in English, normal hearing, and difficulty com-
pleting common sequences of steps, according to
their caregivers. Caregivers had to be a family
or privately-hired caregiver who provides regular
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care (e.g., 7 hours/week) to the older adult partici-
pant. Following informed consent, the older adult
participants were screened using the Mini Mental
State Exam (MMSE) (Folstein et al., 2001) to as-
certain their general level of cognitive impairment.
Table 1 summarizes relevant demographics.

Sex Age (years) MMSE (/30)
OA1 F 76 9
OA2 M 86 24
OA3 M 88 25
OA4 F 77 25
OA5 F 59 18
OA6 M 63 23
OA7 F 77 25
OA8 F 83 19
OA9 F 84 25
OA10 M 85 15

Table 1: Demographics of older adults (OA).

(a)

(b)

Figure 1: ED and two participants with AD during
the tea-making task in the kitchen of HomeLab at
TRI.

3.1 ED, the personal caregiver robot
The robot was built on an iRobot base (operat-
ing speed: 28 cm/second) and both its internal
construction and external enclosure were designed
and built at TRI. It is 102 cm in height and has
separate body and head components; the latter is
primarily a LCD monitor that shows audiovisual
prompts or displays a simple ‘smiley face’ other-

wise, as shown in Figure 2. The robot has two
speakers embedded in its ‘chest’, two video cam-
eras (one in the head and one near the floor, for
navigation), and a microphone. For this study,
the built-in microphones were not used in favor of
environmental Kinect microphones, discussed be-
low. This was done to account for situations when
the robot and human participant were not in the
same room simultaneously.

The robot was tele-operated throughout the
task. The tele-operator continuously monitored
the task progress and the overall affective state
of the participants in a video stream sent by the
robot and triggered social conversation, asked
task-related questions, and delivered prompts to
guide the participants towards successful comple-
tion of the tea-making task (Fig. 1).

Figure 2: The prototype robotic caregiver, ED.

The robot used the Cepstral commercial text-to-
speech (TTS) system using the U.S. English voice
‘David’ and its default parameters. This system
is based on the Festival text-to-speech platform in
many respects, including its use of linguistic pre-
processing (e.g., part-of-speech tagging) and cer-
tain heuristics (e.g., letter-to-sound rules). Spo-
ken prompts consisted of simple sentences, some-
times accompanied by short video demonstrations
designed to be easy to follow by people with a cog-
nitive impairment.

For efficient prompting, the tea-making task
was broken down into different steps or sub-task.
Audio or audio-video prompts corresponding to
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each of these sub-tasks were recorded prior to
data collection. The human-robot interaction pro-
ceeded according to the following script when col-
laborating with the participants:

1. Allow the participant to initiate steps in each
sub-task, if they wish.

2. If a participant asks for directions, deliver the
appropriate prompt.

3. If a participant requests to perform the sub-
task in their own manner, agree if this does
not involve skipping an essential step.

4. If a participant asks about the location of an
item specific to the task, provide a full-body
gesture by physically orienting the robot to-
wards the sought item.

5. During water boiling, ask the participant to
put sugar or milk or tea bag in the cup. Time
permitting, engage in a social conversation,
e.g., about the weather.

6. When no prerecorded prompt sufficiently an-
swers a participant question, respond with the
correct answer (or “I don’t know”) through
the TTS engine.

3.2 Study set-up and procedures

Consent included recording video, audio, and
depth images with the Microsoft Kinect sensor in
HomeLab for all interviews and interactions with
ED. Following informed consent, older adults and
their caregivers were interviewed to acquire back-
ground information regarding their daily activi-
ties, the set-up of their home environment, and the
types of assistance that the caregiver typically pro-
vided for the older adult.

Participants were asked to observe ED mov-
ing in HomeLab and older adult participants were
asked to have a brief conversation with ED to
become oriented with the robot’s movement and
speech characteristics. The older adults were
then asked to complete the hand-washing and tea-
making tasks in the bathroom and kitchen, respec-
tively, with ED guiding them to the locations and
providing specific step-by-step prompts, as neces-
sary. The tele-operator observed the progress of
the task, and delivered the pre-recorded prompts
corresponding to the task step to guide the older
adult to complete each task. The TTS system
was used to respond to task-related questions and
to engage in social conversation. The caregivers

were asked to observe the two tasks and to in-
tervene only if necessary (e.g., if the older adult
showed signs of distress or discomfort). The
older adult and caregiver participants were then
interviewed separately to gain their feedback on
the feasibility of using such a robot for assis-
tance with daily activities and usability of the sys-
tem. Each study session lasted approximately 2.5
hours including consent, introduction to the robot,
tea-making interaction with the robot, and post-
interaction interviews. The average duration for
the tea-making task alone was 12 minutes.

4 Experiments and analysis

Automatic speech recognition given these data is
complicated by several factors, including a pre-
ponderance of utterances in which human care-
givers speak concurrently with the participants, as
well as inordinately challenging levels of noise.
The estimated signal-to-noise ratio (SNR) across
utterances range from−3.42 dB to 8.14 dB, which
is extremely low compared to typical SNR of 40
dB in clean speech. One cause of this low SNR
is that microphones are placed in the environment,
rather than on the robot (so the distance to the mi-
crophone is variable, but relatively large) and that
the participant often has their back turned to the
microphone, as shown in figure 1.

As in previous work (Rudzicz et al., 2012),
we enhance speech signals with the log-spectral
amplitude estimator (LSAE) which minimizes the
mean squared error of the log spectra given a
model for the source speech Xk = Ake

(jωk),
where Ak is the spectral amplitude. The LSAE
method is a modification of the short-time spectral
amplitude estimator that finds an estimate of the
spectral amplitude, Âk, that minimizes the distor-
tion

E

[(
logAk − log Âk

)2]
, (1)

such that the log-spectral amplitude estimate is

Âk = exp (E [lnAk |Yk])

=
ξk

1 + ξk
exp

(
1

2

∫ ∞

vk

e−t

t
dt

)
Rk,

(2)

where ξk is the a priori SNR,Rk is the noisy spec-
tral amplitude, vk = ξk

1+ξk
γk, and γk is the a pos-

teriori SNR (Erkelens et al., 2007). Often this is
based on a Gaussian model of noise, as it is here
(Ephraim and Malah, 1985).

24



As mentioned, there are many utterances in
which human caregivers speak concurrently with
the participants. This is partially confounded by
the fact that utterances by individuals with AD
tend to be shorter, so more of their utterance is lost,
proportionally. Examples of this type where the
caregiver’s voice is louder than the participant’s
voice are discarded, amounting to about 10% of
all utterances. In the following analyses, func-
tion words (i.e., prepositions, subordinating con-
junctions, and determiners) are removed from con-
sideration, although interjections are kept. Proper
names are also omitted.

We use the HTK (Young et al., 2006) toolchain,
which provides an implementation of a semi-
continuous hidden Markov model (HMM) that al-
lows state-tying and represents output densities by
mixtures of Gaussians. Features consisted of the
first 13 Mel-frequency cepstral coefficients, their
first (δ) and second (δδ) derivatives, and the log
energy component, for 42 dimensions. Our own
data were z-scaled regardless of whether LSAE
noise reduction was applied.

Two language models (LMs) are used, both tri-
gram models derived from the English Gigaword
corpus, which contains 1200 word tokens (Graff
and Cieri, 2003). The first LM uses the first 5000
most frequent words and the second uses the first
64,000 most frequent words of that corpus. Five
acoustic models (AMs) are used with 1, 2, 4, 8,
and 16 Gaussians per output density respectively.
These are trained with approximately 211 hours
of spoken transcripts of the Wall Street Journal
(WSJ) from over one hundred non-pathological
speakers (Vertanen, 2006).

Table 2 shows, for the small- and large-
vocabulary LMs, the word-level accuracies of the
baseline HTK ASR system, as determined by
the inverse of the Levenshtein edit distance, for
two scenarios (sit-down interviews vs. during
the task), with and without LSAE noise reduc-
tion, for speech from individuals with AD and
for their caregivers. These values are computed
over all complexities of acoustic model and are
consistent with other tasks of this type (i.e., with
the challenges associated with the population and
recording set up), with this type of relatively un-
constrained ASR (Rudzicz et al., 2012). Apply-
ing LSAE results in a significant increase in ac-
curacy for both the small-vocabulary (right-tailed
homoscedastic t(58) = 3.9, p < 0.005, CI =

[6.19,∞]) and large-vocabulary (right-tailed ho-
moscedastic t(58) = 2.4, p < 0.01, CI =
[2.58,∞]) tasks. For the participants with AD,
ASR accuracy is significantly higher in inter-
views (paired t(39) = 8.7, p < 0.0001, CI =
[13.8,∞]), which is expected due in large part
to the closer proximity of the microphone. Sur-
prisingly, ASR accuracy on participants with ASR
was not significantly different than on caregivers
(two-tailed heteroscedastic t(78) = −0.32, p =
0.75, CI = [−5.54, 4.0]).

Figure 3 shows the mean ASR accuracy, with
standard error (σ/

√
n), for each of the small-

vocabulary and large-vocabulary ASR systems.
The exponential function b0 + b1 exp(b2x) is fit
to these data for each set, where bi are coef-
ficients that are iteratively adjustable via mean
squared error. For the small-vocabulary data,
R2 = 0.277 and F8 = 3.06, p = 0.12 ver-
sus the constant model. For the large-vocabulary
data, R2 = 0.445 and F8 = 2.81, p = 0.13
versus the constant model. Clearly, there is an
increasing trend in ASR accuracy with MMSE
scores, however an n-way ANOVA on ASR ac-
curacy scores reveals that this increase is not sig-
nificant (F1 = 47.07, p = 0.164). Furthermore,
neither the age (F1 = 1.39, p = 0.247) nor the sex
(F1 = 0.98, p = 0.33) of the participant had a sig-
nificant effect on ASR accuracy. An additional n-
way ANOVA reveals no strong interaction effects
between age, sex, and MMSE.
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Figure 3: MMSE score versus mean ASR accu-
racy (with std. error bars) and fits of exponential
regression for each of the small-vocabulary and
large-vocabulary ASR systems.
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Scenario Noise reduction AD caregiver

Small vocabulary
Interview

None 25.1 (σ = 9.9) 28.8 (σ = 6.0)
LSAE 40.9 (σ = 5.6) 40.2 (σ = 5.3)

In task
None 13.7 (σ = 3.7) -
LSAE 19.2 (σ = 9.8) -

Large vocabulary
Interview

None 23.7 (σ = 12.9) 27.0 (σ = 10.0)
LSAE 38.2 (σ = 6.3) 35.1 (σ = 11.2)

In task
None 5.8 (σ = 3.7) -
LSAE 14.3 (σ = 12.8) -

Table 2: ASR accuracy (means, and std. dev.) across speakers, scenario (interviews vs. during the task),
and presence of noise reduction for the small and large language models.

5 Discussion

This study examined low-level aspects of speech
recognition among older adults with Alzheimer’s
disease interacting with a robot in a simulated
home environment. The best word-level accura-
cies of 40.9% (σ = 5.6) and 39.2% (σ = 6.3)
achievable with noise reduction and in a quiet in-
terview setting are comparable with the state-of-
the-art in unrestricted large-vocabulary text entry.
These results form the basis for ongoing work in
ASR and interaction design for this domain. The
trigram language model used in this work encap-
sulates the statistics of a large amount of speech
from the general population – it is a speaker-
independent model derived from a combination
of English news agencies that is not necessarily
representative of the type of language used in the
home, or by our target population. The acoustic
models were also derived from newswire data read
by younger adults in quiet environments. We are
currently training and adapting language models
tuned specifically to older adults with Alzheimer’s
disease using data from the Carolina Conversa-
tions database (Pope and Davis, 2011) and the De-
mentiaBank database (Boller and Becker, 1983).

Additionally, to function realistically, a lot of
ambient and background noise will need to be
overcome. We are currently looking into deploy-
ing a sensor network in the HomeLab that will in-
clude microphone arrays. Another method of im-
proving rates of correct word recognition is to aug-
ment the process from redundant information from
a concurrent sensory stream, i.e., in multimodal
interaction (Rudzicz, 2006). Combining gesture
and eye gaze with speech, for example, can be
used to disambiguate speech-only signals.

Although a focus of this paper, verbal infor-
mation is not the only modality in which human-

robot interaction can take place. Indeed, Wil-
son et al. (2012) showed that experienced human
caregivers employed various non-verbal and semi-
verbal strategies to assist older adults with demen-
tia about 1/3 as often as verbal strategies (see sec-
tion 2.2). These non-verbal and semi-verbal strate-
gies included eye contact, sitting face-to-face, us-
ing hand gestures, a calm tone of voice, instru-
mental touch, exaggerated facial expressions, and
moving slowly. Multi-modal communication can
be extremely important for individuals with de-
mentia, who may require redundant channels for
disambiguating communication problems, espe-
cially if they have a language impairment or a sig-
nificant hearing impairment.

It is vital that our current technological ap-
proaches to caring for the elderly in their homes
progresses quickly, given the demographic shift
in many nations worldwide. This paper provides
a baseline assessment for the types of technical
and communicative challenges that will need to be
overcome in the near future to provide caregiving
assistance to a growing number of older adults.
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Abstract

We present in this paper a voice conver-
sion (VC) method for a person with an ar-
ticulation disorder resulting from athetoid
cerebral palsy. The movements of such
speakers are limited by their athetoid
symptoms, and their consonants are of-
ten unstable or unclear, which makes it
difficult for them to communicate. In
this paper, exemplar-based spectral con-
version using Non-negative Matrix Factor-
ization (NMF) is applied to a voice with
an articulation disorder. In order to pre-
serve the speaker’s individuality, we use a
combined dictionary that was constructed
from the source speaker’s vowels and tar-
get speaker’s consonants. However, this
exemplar-based approach needs to hold
all the training exemplars (frames), and
it may cause mismatching of phonemes
between input signals and selected ex-
emplars. In this paper, in order to re-
duce the mismatching of phoneme align-
ment, we propose a phoneme-categorized
sub-dictionary and a dictionary selec-
tion method using NMF. The effective-
ness of this method was confirmed by
comparing its effectiveness with that of
a conventional Gaussian Mixture Model
(GMM)-based and conventional NMF-
based method.

1 Introduction

In this study, we focused on a person with an
articulation disorder resulting from the athetoid
type of cerebral palsy. About two babies in 1,000
are born with cerebral palsy (Hollegaard et al.,
2013). Cerebral palsy results from damage to the
central nervous system, and the damage causes
movement disorders. Cerebral palsy is classified

into the following types: 1)spastic, 2)athetoid,
3)ataxic, 4)atonic, 5)rigid, and a mixture of these
types (Canale and Campbell, 2002).

Athetoid symptoms develop in about 10-15% of
cerebral palsy sufferers (Hollegaard et al., 2013).
In the case of a person with this type of articulation
disorder, his/her movements are sometimes more
unstable than usual. That means their utterances
(especially their consonants) are often unstable or
unclear due to the athetoid symptoms. Athetoid
symptoms also restrict the movement of their arms
and legs. Most people suffering from athetoid
cerebral palsy cannot communicate by sign lan-
guage or writing, so there is great need for voice
systems for them.

In this paper, we propose a voice conversion
(VC) method for articulation disorders. Regard-
ing speech recognition for articulation disorders,
the recognition rate using a speaker-independent
model which is trained by well-ordered speech, is
3.5% (Matsumasa et al., 2009). This result im-
plies that the utterance of a person with an artic-
ulation disorder is difficult to understand for peo-
ple who have not communicated with them before.
In recent years, people with an articulation dis-
order may use slideshows and a previously syn-
thesized voice when they give a lecture. How-
ever, because their movement is restricted by their
athetoid symptoms, to make slides or synthesize
their voice in advance is hard for them. Peo-
ple with articulation disorders desire a VC sys-
tem that converts their voice into a clear voice
that preserves their voice’s individuality. Rudz-
icz et al. (Rudzicz, 2011; Rudzicz, 2014) proposed
speech adjustment method for people with articu-
lation disorders based on the observations from the
database.

In (Aihara et al., 2014), we proposed
individuality-preserving VC for articulation
disorders. In our VC, source exemplars and
target exemplars are extracted from the parallel
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training data, having the same texts uttered by
the source and target speakers. The input source
signal is expressed with a sparse representation
of the source exemplars using Non-negative
Matrix Factorization (NMF). By replacing a
source speaker’s exemplar with a target speaker’s
exemplar, the original speech spectrum is replaced
with the target speaker’s spectrum. People with
articulation disorders wish to communicate by
their own voice if they can; therefore, we pro-
posed a combined-dictionary, which consists of
a source speaker’s vowels and target speaker’s
well-ordered consonants. In the voice of a person
with an articulation disorder, their consonants are
often unstable and that makes their voices unclear.
Their vowels are relatively stable compared
to their consonants. Hence, by replacing the
articulation-disordered basis of consonants only,
a voice with an articulation disorder is converted
into a non-disordered voice that preserves the
individuality of the speaker’s voice.

In this paper, we propose advanced
individuality-preserving VC using NMF. In
order to avoid a mixture of the source and target
spectra in a converted phoneme, we applied a
phoneme-categorized dictionary and a dictionary
selection method to our VC using NMF. In
conventional NMF-based VC, the number of
dictionary frames becomes large because the
dictionary holds all the training exemplar frames.
Therefore, it may cause phoneme mismatching
between input signals and selected exemplars and
some frames of converted spectra might be mixed
with the source and target spectra. In this paper,
a training exemplar is divided into a phoneme-
categorized sub-dictionary, and an input signal is
converted by using the selected sub-dictionary.
The effectiveness of this method was confirmed
by comparing it with a conventional NMF-based
method and a conventional Gaussian Mixture
Model (GMM)-based method.

The rest of this paper is organized as follows:
In Section 2, related works are introduced. In Sec-
tion 3, the basic idea of NMF-based VC is de-
scribed. In Section 4, our proposed method is de-
scribed. In Section 5, the experimental data are
evaluated, and the final section is devoted to our
conclusions.

2 Related Works

Voice conversion (VC) is a technique for convert-
ing specific information in speech while maintain-
ing the other information in the utterance. One of
the most popular VC applications is speaker con-
version (Stylianou et al., 1998). In speaker con-
version, a source speaker’s voice individuality is
changed to a specified target speaker’s so that the
input utterance sounds as though a specified target
speaker had spoken it.

There have also been studies on several tasks
that make use of VC. Emotion conversion is a
technique for changing emotional information in
input speech while maintaining linguistic informa-
tion and speaker individuality (Veaux and Robet,
2011). In recent years, VC has been used for auto-
matic speech recognition (ASR) or speaker adap-
tation in text-to-speech (TTS) systems (Kain and
Macon, 1998). These studies show the varied uses
of VC.

Many statistical approaches to VC have been
studied (Valbret et al., 1992). Among these ap-
proaches, the Gaussian mixture model (GMM)-
based mapping approach (Stylianou et al., 1998)
is widely used. In this approach, the conversion
function is interpreted as the expectation value
of the target spectral envelope. The conversion
parameters are evaluated using Minimum Mean-
Square Error (MMSE) on a parallel training set.
A number of improvements in this approach have
been proposed. Toda et al. (Toda et al., 2007)
introduced dynamic features and the global vari-
ance (GV) of the converted spectra over a time
sequence. Helander et al. (Helander et al., 2010)
proposed transforms based on partial least squares
(PLS) in order to prevent the over-fitting problem
associated with standard multivariate regression.
There have also been approaches that do not re-
quire parallel data that make use of GMM adapta-
tion techniques (Lee and Wu, 2006) or eigen-voice
GMM (EV-GMM) (Toda et al., 2006).

In the field of assistive technology, Nakamura
et al. (Nakamura et al., 2012; Nakamura et al.,
2006) proposed GMM-based VC systems that re-
construct a speaker’s individuality in electrolaryn-
geal speech and speech recorded by NAM micro-
phones. These systems are effective for electrola-
ryngeal speech and speech recorded by NAM mi-
crophones however, because these statistical ap-
proaches are mainly proposed for speaker con-
version, the target speaker’s individuality will be
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changed to the source speaker’s individuality. Peo-
ple with articulation disorders wish to communi-
cate by their own voice if they can and there is a
needs for individuality-preserving VC.

Text-to-speech synthesis (TTS) is a famous
voice application that is widely researched. Veaux
et al. (Veaux et al., 2012) used HMM-based speech
synthesis to reconstruct the voice of individu-
als with degenerative speech disorders resulting
from Amyotrophic Lateral Sclerosis (ALS). Ya-
magishi et al. (Yamagishi et al., 2013) proposed
a project named “Voice Banking and Reconstruc-
tion”. In that project, various types of voices are
collected and they proposed TTS for ALS using
that database. The difference between TTS and
VC is that TTS needs text input to synthesize
speech, whereas VC does not need text input. In
the case of people with articulation disorders re-
sulting from athetoid cerebral palsy, it is difficult
for them to input text because of their athetoid
symptoms.

Our proposed NMF-based VC (Takashima et
al., 2012) is an exemplar-based method using
sparse representation, which is different from the
conventional statistical method. In recent years,
approaches based on sparse representations have
gained interest in a broad range of signal process-
ing. In approaches based on sparse representa-
tions, the observed signal is represented by a lin-
ear combination of a small number of bases. In
some approaches for source separation, the atoms
are grouped for each source, and the mixed sig-
nals are expressed with a sparse representation of
these atoms. By using only the weights of the
atoms related to the target signal, the target sig-
nal can be reconstructed. Gemmeke et al. (Gem-
meke et al., 2011) also propose an exemplar-based
method for noise-robust speech recognition. In
that method, the observed speech is decomposed
into the speech atoms, noise atoms, and their
weights. Then the weights of the speech atoms are
used as phonetic scores (instead of the likelihoods
of hidden Markov models) for speech recognition.

In (Takashima et al., 2012), we proposed noise-
robust VC using NMF. The noise exemplars,
which are extracted from the before- and after-
utterance sections in an observed signal, are used
as the noise-dictionary, and the VC process is
combined with an NMF-based noise-reduction
method. On the other hand, NMF is one of the
clustering methods. In our exemplar-based VC, if

the phoneme label of the source exemplar is given,
we can discriminate the phoneme of the input sig-
nal by using NMF. In this paper, we proposed a
dictionary selection method using this property of
NMF.

3 Voice Conversion Based on
Non-negative Matrix Factorization

3.1 Basic Idea
In the exemplar-based approach, the observed sig-
nal is represented by a linear combination of a
small number of bases.

xl ≈ ∑J
j=1 ajhj,l = Ahl (1)

xl represents the l-th frame of the observation.
aj and hj,l represent the j-th basis and the
weight, respectively. A = [a1 . . .aJ ] and hl =
[h1,l . . . hJ,l]

T are the collection of the bases and
the stack of weights. In this paper, each basis de-
notes the exemplar of the spectrum, and the col-
lection of exemplar A and the weight vector hl are
called the ‘dictionary’ and ‘activity’, respectively.
When the weight vector hl is sparse, the observed
signal can be represented by a linear combination
of a small number of bases that have non-zero
weights. Eq. (1) is expressed as the inner product
of two matrices using the collection of the frames
or bases.

X ≈ AH (2)

X = [x1, . . . ,xL], H = [h1, . . . ,hL]. (3)

L represents the number of the frames.
Fig. 1 shows the basic approach of our

exemplar-based VC, where D, L, and J represent
the numbers of dimensions, frames, and bases,
respectively. Our VC method needs two dictio-
naries that are phonemically parallel. As repre-
sents a source dictionary that consists of the source
speaker’s exemplars and At represents a target
dictionary that consists of the target speaker’s ex-
emplars. These two dictionaries consist of the
same words and are aligned with dynamic time
warping (DTW) just as conventional GMM-based
VC is. Hence, these dictionaries have the same
number of bases.

This method assumes that when the source sig-
nal and the target signal (which are the same words
but spoken by different speakers) are expressed
with sparse representations of the source dictio-
nary and the target dictionary, respectively, the ob-

31



tained activity matrices are approximately equiv-
alent. Fig. 2 shows an example of the activity
matrices estimated from a Japanese word “ikioi”
(“vigor” in English), where one is uttered by a
male, the other is uttered by a female, and each
dictionary is structured from just one word “ikioi”
as the simple example.

As shown in Fig. 2, these activities have high
energies at similar elements. For this reason, we
assume that when there are parallel dictionaries,
the activity of the source features estimated with
the source dictionary may be able to be substi-
tuted with that of the target features. Therefore,
the target speech can be constructed using the tar-
get dictionary and the activity of the source signal
as shown in Fig. 1. In this paper, we use Non-
negative Matrix Factorization (NMF), which is a
sparse coding method in order to estimate the ac-
tivity matrix.
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Figure 2: Activity matrices for parallel utterances

3.2 Individuality-preserving Voice
Conversion Using Combined Dictionary

In order to make a parallel dictionary, some pairs
of parallel utterances are needed, where each pair
consists of the same text. One is spoken by a per-
son with an articulation disorder (source speaker),

and the other is spoken by a physically unim-
paired person (target speaker). Spectrum en-
velopes, which are extracted from parallel utter-
ances, are phonemically aligned by using DTW.
In order to estimate activities of source features
precisely, segment features, which consist of some
consecutive frames, are constructed. Target fea-
tures are constructed from consonant frames of the
target’s aligned spectrum and vowel frames of the
source’s aligned spectrum. Source and target dic-
tionaries are constructed by lining up each of the
features extracted from parallel utterances.

The vowels voiced by a speaker strongly indi-
cate the speaker’s individuality. On the other hand,
consonants of people with articulation disorders
are often unstable. Fig. 3(a) shows an example
of the spectrogram for the word “ikioi” (“vigor”
in English) of a person with an articulation dis-
order. The spectrogram of a physically unim-
paired person speaking the same word is shown in
Fig. 3(b). In Fig. 3(a), the area labeled “k” is not
clear, compared to the same region in to Fig. 3(b).
These figures indicate that consonants of people
with articulation disorders are often unstable and
this deteriorates their voice intelligibility. In or-
der to preserve their voice individuality, we use
a “combined-dictionary” that consists of a source
speaker’s vowels and target speaker’s consonants.

We replace the target dictionary As in Fig. 1
with the “combined-dictionary”. Input source
features Xs, which consist of an articulation-
disordered spectrum and its segment features, are
decomposed into a linear combination of bases
from the source dictionary As by NMF. The
weights of the bases are estimated as an activity
Hs. Therefore, the activity includes the weight in-
formation of input features for each basis. Then,
the activity is multiplied by a combined-dictionary
in order to obtain converted spectral features X̂t,
which are represented by a linear combination of
bases from the source speaker’s vowels and tar-
get speaker’s consonants. Because the source and
target are parallel phonemically, the bases used in
the converted features are phonemically the same
as that of the source features.

3.3 Problems

In the NMF-based approach described in Sec. 3.2,
the parallel dictionary consists of the parallel train-
ing data themselves. Therefore, as the number
of the bases in the dictionary increases, the input
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signal comes to be represented by a linear com-
bination of a large number of bases rather than a
small number of bases. When the number of bases
that represent the input signal becomes large, the
assumption of similarity between source and tar-
get activities may be weak due to the influence of
the mismatch between the input signal and the se-
lected bases. Moreover, in the case of a combined-
dictionary, the input articulation-disordered spec-
trum may come to be represented by a combi-
nation of vowels and consonants. We assume
that this problem degrades the performance of our
exemplar-based VC. Hence, we use a phoneme-
categorized sub-dictionary in place of the large
dictionary in order to reduce the number of the
bases that represent the input signal and avoid the
mixture of vowels and consonants.
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Figure 3: Examples of spectrogram //i k i oi

4 Non-negative Matrix Factorization
Using a Phoneme-categorized
Dictionary

4.1 Phoneme-categorized Dictionary

Fig. 4 shows how to construct the sub-dictionary.
As and At imply the source and target dictionary
which hold all the bases from training data. These
dictionaries are divided into K dictionaries. In
this paper, the dictionaries are divided into 10 cat-
egories according to the Japanese phoneme cate-
gories shown in Table 1.

In order to select the sub-dictionary, a
“categorizing-dictionary”, which consists of the
representative vector from each sub-dictionary, is
constructed. The representative vectors for each
phoneme category consist of the mean vectors of
the Gaussian Mixture Model (GMM).

p(x(k)
n ) =

Mk∑

m=1

α(k)
m N(x(k)

n , µ(k)
m ,Σ(k)

m ) (4)

Mk, α
(k)
m , µ

(k)
m and Σ

(k)
m represent the number

of the Gaussian mixture, the weights of mixture,
mean and variance of the m-th mixture of the
Gaussian, in the k-th sub-dictionary, respectively.
Each parameter is estimated by using an EM algo-
rithm.

The basis of the categorizing-dictionary, which
corresponds to the k-th sub-dictionary Φs

k, is rep-
resented using the estimated phoneme GMM as
follows:

θk = [µ
(k)
1 , . . . , µ

(k)
Mk

] (5)

Φs
k = [x

(k)
1 , . . . ,x

(k)
Nk

] (6)

Nk represents the number of frames of the k-th
sub-dictionary. The categorizing-dictionary Θ is
given as follows:

Θ = [θ1, . . . , θK ] (7)

4.2 Dictionary Selection and Voice
Conversion

Fig. 5 shows the flow of the dictionary selection
and VC. The input spectral features Xs are rep-
resented by a linear combination of bases from
the categorizing-dictionary Θ. The weights of the

33



...

...

Source

training speech

Target

training speech

Spectral

envelope

s
A

t
A

Parallel Dictionaries

s

1Φ
s

kΦ

DP-matching

...

...Θ

Categorizing

Dictionary

STRAIGHT

STRAIGHT

Categorization

phoneme categorized 

sub-dictionaries

t

k 1+
Φ

s

k 1+
Φ

t

KΦ

s

KΦ

s

1Φ
s

kΦ

Vowel sub-dictionaries Consonant sub-dictionaries
Representative 

vectors

Articulation-

disordered spectrum

Well-ordered 

spectrum

Vowels are replaced with 

source speaker’s spectrum

Figure 4: Making a sub-dictionary

bases are represented as activities Hs
Θ.

Xs ≈ ΘHs
Θ s.t. Hs

Θ ≥ 0 (8)

Xs = [xs
1, . . . ,x

s
L] (9)

Hs
Θ = [hs

Θ1, . . . ,h
s
ΘL] (10)

hs
Θl = [hs

θ1l, . . . ,h
s
θK l]

T (11)

hs
θkl = [hs

θ1l, . . . , h
s
θMkl]

T (12)

Then, the l-th frame of input feature xs
l is rep-

resented by a linear combination of bases from the
sub-dictionary of the source speaker. The sub-
dictionary Φs

k̂
, which corresponds to xl, is se-

lected as follows:

k̂ = arg max
k

11×Mkhs
θkl

= arg max
k

Mk∑

m=1

hs
θml (13)

xl = Φs
k̂
hk̂,l (14)

The activity hl,k̂ in Eq. (14) is estimated from the
selected source speaker sub-dictionary.

If the selected sub-dictionary Φs
k̂

is related to
consonants, the l-th frame of the converted spec-
tral feature ŷl is constructed by using the activity
and the sub-dictionary of the target speaker Φt

k̂
.

ŷl = Φt
k̂
hk̂,l (15)

On the other hand, if the selected sub-dictionary
Φs

k̂
is related to vowels, the l-th frame of the con-

verted spectral feature ŷl is constructed by using
the activity and the sub-dictionary of the source
speaker Φs

k̂
.

ŷl = Φs
k̂
hk̂,l (16)

Table 1: Japanese phoneme categories

Category phoneme
a a
e e

vowels i i
o o
u u
plosives Q, b, d, dy, g, gy, k, ky, p, t
fricatives ch, f, h, hy, j, s, sh, ts, z

consonants nasals m, my ny, N
semivowels w,y
liquid r, ry

s

lΘh

s

1Φ

Categorizing

Dictionary

l
x

Select the sub-dictionary

Copy

l-th frame of 

input spectral features

l-th frame of converted 

spectral features

Θ

l
ŷ
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egorized dictionary

5 Experimental Results

5.1 Experimental Conditions
The proposed VC technique was evaluated by
comparing it with the conventional NMF-based
method (Aihara et al., 2014) (referred to as the
“sample-based method” in this paper) and the
conventional GMM-based method (Stylianou et
al., 1998) using clean speech data. We recorded
432 utterances (216 words, each repeated two
times) included in the ATR Japanese speech
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database (Kurematsu et al., 1990). The speech sig-
nals were sampled at 12 kHz and windowed with
a 25-msec Hamming window every 10 msec. A
physically unimpaired Japanese male in the ATR
Japanese speech database, was chosen as a target
speaker.

In the proposed and sample-based methods,
the number of dimensions of the spectral fea-
ture is 2,565. It consists of a 513-dimensional
STRAIGHT spectrum (Kawahara et al., 1999)
and its consecutive frames (the 2 frames com-
ing before and the 2 frames coming after). The
Gaussian mixture, which is used to construct
a categorizing-dictionary, is 1/500 of the num-
ber of bases of each sub-dictionary. The num-
ber of iterations for estimating the activity in
the proposed and sample-based methods was
300. In the conventional GMM-based method,
MFCC+∆MFCC+∆∆MFCC is used as a spectral
feature. Its number of dimensions is 74. The num-
ber of Gaussian mixtures is set to 64, which is ex-
perimentally selected.

In this paper, F0 information is converted using
a conventional linear regression based on the mean
and standard deviation (Toda et al., 2007). The
other information such as aperiodic components,
is synthesized without any conversion.

We conducted a subjective evaluation of 3 top-
ics. A total of 10 Japanese speakers took part
in the test using headphones. For the “listening
intelligibility” evaluation, we performed a MOS
(Mean Opinion Score) test (”INTERNATIONAL
TELECOMMUNICATION UNION”, 2003). The
opinion score was set to a 5-point scale (5: excel-
lent, 4: good, 3: fair, 2: poor, 1: bad). Twenty-two
words that are difficult for a person with an artic-
ulation disorder to utter were evaluated. The sub-
jects were asked about the listening intelligibility
in the articulation-disordered voice, the voice con-
verted by our proposed method, and the GMM-
based converted voice.

On the “similarity” evaluation, the XAB test
was carried out. In the XAB test, each subject lis-
tened to the articulation-disordered voice. Then
the subject listened to the voice converted by the
two methods and selected which sample sounded
most similar to the articulation-disordered voice.
On the “naturalness” evaluation, a paired com-
parison test was carried out, where each subject
listened to pairs of speech converted by the two
methods and selected which sample sounded more

natural.
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(a) Converted by proposed method
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(b) Converted by GMM-based VC

Figure 6: Examples of converted spectrogram //i k
i oi

5.2 Results and Discussion
Fig. 6(a) and 6(b) show examples of converted
spectrograms using our proposed method and the
conventional GMM-based method, respectively.
In Fig. 6(a), there are fewer misconversions in the
vowel part compared to Fig. 3(c). Moreover, by
using GMM-based conversion, the area labeled
“oi” becomes unclear compared to NMF-based
conversion.

Fig. 7 shows the results of the MOS test for lis-
tening intelligibility. The error bars show a 95%
confidence score; thus, our proposed VC method
is shown to be able to improve the listening intel-
ligibility and clarity of consonants. On the other
hand, GMM-based conversion can improve the
clarity of consonants, but it deteriorates the lis-
tening intelligibility. This is because GMM-based
conversion has the effect of noise resulting from
measurement error. Our proposed VC method also
has the effect of noise, but it is less than that cre-
ated by GMM-based conversion.

Fig. 8 shows the results of the XAB test on
the similarity to the source speaker and natural-
ness of the converted voice. The error bars show a
95% confidence score. Our proposed VC method
obtained a higher score than Sample-based and
GMM-based conversion on similarity. Fig. 9
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shows the preference score on the naturalness. The
error bars show a 95% confidence score. Our pro-
posed VC also method obtained a higher score
than Sample-based and GMM-based conversion
methods in regard to naturalness.
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Figure 7: Results of MOS test on listening intelli-
gibility
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Figure 9: Preference scores for the naturalness

6 Conclusion

We proposed a spectral conversion method based
on NMF for a voice with an articulation disorder.
Our proposed method introduced a dictionary-
selection method for conventional NMF-based
VC. Experimental results demonstrated that our
VC method can improve the listening intelligibil-
ity of words uttered by a person with an articu-
lation disorder. Moreover, compared to conven-
tional GMM-based VC and conventional NMF-
based VC, our proposed VC method can preserve
the individuality of the source speaker’s voice and

the naturalness of the voice. In this study, there
was only one subject person, so in future experi-
ments, we will increase the number of subjects and
further examine the effectiveness of our method.
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Abstract 

A silent speech interface (SSI) maps articula-
tory movement data to speech output. Alt-
hough still in experimental stages, silent 
speech interfaces hold significant potential 
for facilitating oral communication in persons 
after laryngectomy or with other severe voice 
impairments. Despite the recent efforts on si-
lent speech recognition algorithm develop-
ment using offline data analysis, online test 
of SSIs have rarely been conducted. In this 
paper, we present a preliminary, online test of 
a real-time, interactive SSI based on electro-
magnetic motion tracking. The SSI played 
back synthesized speech sounds in response 
to the user’s tongue and lip movements. 
Three English talkers participated in this test, 
where they mouthed (silently articulated) 
phrases using the device to complete a 
phrase-reading task. Among the three partici-
pants, 96.67% to 100% of the mouthed 
phrases were correctly recognized and corre-
sponding synthesized sounds were played af-
ter a short delay. Furthermore, one participant 
demonstrated the feasibility of using the SSI 
for a short conversation. The experimental re-
sults demonstrated the feasibility and poten-
tial of silent speech interfaces based on elec-
tromagnetic articulograph for future clinical 
applications. 

1 Introduction 

Daily communication is often a struggle for per-
sons who have undergone a laryngectomy, a sur-
gical removal of the larynx due to the treatment 
of cancer (Bailey et al., 2006). In 2013, about 
12,260 new cases of laryngeal cancer were esti-
mated in the United States (American Cancer 
Society, 2013). Currently, there are only limited 

treatment options for these individuals including 
(1) esophageal speech, which involves oscillation 
of the esophagus and is difficult to learn; (2) tra-
cheo-esophageal speech, in which a voice pros-
thesis is placed in a tracheo-esophageal puncture; 
and (3) electrolarynx, an external device held on 
the neck during articulation, which produces a 
robotic voice quality (Liu and Ng, 2007). Per-
haps the greatest disadvantage of these ap-
proaches is that they produce abnormal sounding 
speech with a fundamental frequency that is low 
and limited in range. The abnormal voice quality 
output severely affects the social life of people 
after laryngectomy (Liu and Ng, 2007). In addi-
tion, the tracheo-esophageal option requires an 
additional surgery, which is not suitable for eve-
ry patient (Bailey et al., 2006). Although re-
search is being conducted on improving the 
voice quality of esophageal or electrolarynx 
speech (Doi et al., 2010; Toda et al., 2012), new 
assistive technologies based on non-audio infor-
mation (e.g., visual or articulatory information) 
may be a good alternative approach for providing 
natural sounding speech output for persons after 
laryngectomy. 

Visual speech recognition (or automatic lip 
reading) typically uses an optical camera to ob-
tain lip and/or facial features during speech (in-
cluding lip contour, color, opening, movement, 
etc.) and then classify these features to speech 
units (Meier et al., 2000; Oviatt, 2003). Howev-
er, due to the lack of information from tongue, 
the primary articulator, visual speech recognition 
(i.e., using visual information only, without 
tongue and audio information) may obtain a low 
accuracy (e.g., 30% - 40% for phoneme classifi-
cation, Livescu et al., 2007). Furthermore, Wang 
and colleagues (2013b) have showed any single 
tongue sensor (from tongue tip to tongue body 
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Figure 1. Design of the real-time silent speech interface. 

back on the midsagittal line) encodes significant-
ly more information in distinguishing phonemes 
than do lips. However, visual speech recognition 
is well suited for applications with small-
vocabulary (e.g., a lip-reading based command-
and-control system for home appliance) or using 
visual information as an additional source for 
acoustic speech recognition, referred to as audio-
visual speech recognition (Potamianos et al., 
2003), because such a system based on portable 
camera is convenient in practical use. In contrast, 
SSIs, with tongue information, have potential to 
obtain a high level of silent speech recognition 
accuracy (without audio information). Currently, 
two major obstacles for SSI development are 
lack of (a) fast and accurate recognition algo-
rithms and (b) portable tongue motion tracking 
devices for daily use. 

SSIs convert articulatory information into text 
that drives a text-to-speech synthesizer. Although 
still in developmental stages (e.g., speaker-
dependent recognition, small-vocabulary), SSIs 
even have potential to provide speech output 
based on prerecorded samples of the patient’s 
own voice (Denby et al., 2010; Green et al., 
2011; Wang et al., 2009). Potential articulatory 
data acquisition methods for SSIs include ultra-
sound (Denby et al., 2011; Hueber et al., 2010), 
surface electromyography electrodes (Heaton et 
al., 2011; Jorgensen and Dusan, 2010), and elec-
tromagnetic articulograph (EMA) (Fagan et al., 
2008; Wang et al., 2009, 2012a). 

Despite the recent effort on silent speech in-
terface research, online test of SSIs has rarely 
been studied. So far, most of the published work 
on SSIs has focused on development of silent 
speech recognition algorithm through offline 
analysis (i.e., using prerecorded data) (Fagan et 
al., 2008;  Heaton et al., 2011; Hofe et al., 2013; 
Hueber et al., 2010; Jorgenson et al., 2010; Wang 
et al., 2009a, 2012a, 2012b, 2013c). Ultrasound-

based SSIs have been tested online with multiple 
subjects and encouraging results were obtained 
in a phrase reading task where the subjects were 
asked to silently articulate sixty phrases (Denby 
et al., 2011). SSI based on electromagnetic sens-
ing has been only tested using offline analysis 
(using pre-recorded data) collected from single 
subjects (Fagan et al., 2008; Hofe et al., 2013), 
although some work simulated online testing 
using prerecorded data (Wang et al., 2012a, 
2012b, 2013c). Online tests of SSIs using elec-
tromagnetic articulograph with multiple subjects 
are needed to show the feasibility and potential 
of the SSIs for future clinical applications. 

In this paper, we report a preliminary, online 
test of a newly-developed, real-time, and interac-
tive SSI based on a commercial EMA. EMA 
tracks articulatory motion by placing small sen-
sors on the surface of tongue and other articula-
tors (e.g., lips and jaw). EMA is well suited for 
the early state of SSI development because it (1) 
is non-invasive, (2) has a high spatial resolution  
in motion tracking, (3) has a high sampling rate, 
and (4) is affordable. In this experiment, partici-
pants used the real-time SSI to complete an 
online phrase-reading task and one of them had a 
short conversation with another person. The re-
sults demonstrated the feasibility and potential of 
SSIs based on electromagnetic sensing for future 
clinical applications. 

2 Design 

2.1 Major design 

Figure 1 illustrates the three-component design 
of the SSI: (a) real-time articulatory motion 
tracking using a commercial EMA, (b) online 
silent speech recognition (converting articulation 
information to text), and (c) text-to-speech syn-
thesis for speech output.  

The EMA system (Wave Speech Research 
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Figure 2. Demo of a participant using the silent speech interface. The left picture illustrates the 
coordinate system and sensor locations (sensor labels are described in text); in the right picture, a 
participant is using the silent speech interface to finish the online test. 

system, Northern Digital Inc., Waterloo, Canada) 
was used to track the tongue and lip movement 
in real-time. The sampling rate of the Wave sys-
tem was 100 Hz, which is adequate for this ap-
plication (Wang et al., 2012a, 2012b, 2013c). 
The spatial accuracy of motion tracking using 
Wave is 0.5 mm (Berry, 2011). 

The online recognition component recognized 
functional phrases from articulatory movements 
in real-time. The recognition component is mod-
ular such that alternative classifiers can easily 
replace and be integrated into the SSI. In this 
preliminary test, recognition was speaker-
dependent, where training and testing data were 
from the same speakers. 

The third component played back either pre-
recorded or synthesized sounds using a text-to-
speech synthesizer (Huang et al., 1997). 

2.2 Other designs 

A graphical user interface (GUI) is integrated 
into the silent speech interface for ease of opera-
tion. Using the GUI, users can instantly re-train 
the recognition engine (classifier) when new 
training samples are available. Users can also 
switch output voice (e.g., male or female). 

Data transfer through TCP/IP. Data transfer 
from the Wave system to the recognition unit 
(software) is accomplished through TCP/IP, the 
standard data transfer protocols on Internet. Be-
cause data bandwidth requirement is low (multi-
ple sensors, multiple spatial coordinates for each 
sensor, at 100 Hz sampling rate), any 3G or fast-
er network connection will be sufficient for fu-
ture use with wireless data transfer.  

Extensible (closed) vocabulary. In the early 
stage of this development, closed-vocabulary 
silent speech recognition was used; however, the 
vocabulary is extensible. Users can add new 

phrases into the system through the GUI. Adding 
a new phrase in the vocabulary is done in two 
steps. The user (the patient) first enters the 
phrase using a keyboard (keyboard input can also 
be done by an assistant or speech pathologist), 
and then produces a few training samples for the 
phrase (a training sample is articulatory data la-
beled with a phrase). The system automatically 
re-trains the recognition model integrating the 
newly-added training samples. Users can delete 
invalid training samples using the GUI as well. 

2.3 Real-time data processing 

The tongue and lip movement positional data 
obtained from the Wave system were processed 
in real-time prior to being used for recognition. 
This included the calculation of head-
independent positions of the tongue and lip sen-
sors and low pass filtering for removing noise.  

The movements of the 6 DOF head sensor 
were used to calculate the head-independent 
movements of other sensors. The Wave system 
represents object orientation or rotation (denoted 
by yaw, pitch, and roll in Euler angles) in qua-
ternions, a four-dimensional vector. Quaternion 
has its advantages over Euler angles. For exam-
ple, quaternion avoids the issue of gimbal lock 
(one degree of freedom may be lost in a series of 
rotation), and it is simpler to achieve smooth in-
terpolation using quaternion than using Euler 
angles (Dam et al., 1998). Thus, quaternion has 
been widely used in computer graphics, comput-
er vision, robotics, virtual reality, and flight dy-
namics (Kuipers, 1999). Given the unit quaterni-
on  

q = (a, b, c, d)                        (1) 

where a2 + b2 + c2 + d2 = 1, a 3 × 3 rotation ma-
trix R can be derived using Equation (2): 
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For details of how the quaternion is used in 
Wave system, please refer to the Wave Real-
Time API manual and sample application 
(Northern Digital Inc., Waterloo, Canada). 

3 A Preliminary Online Test  

3.1 Participants & Stimuli 

Three American English talkers participated in 
this experiment (two males and one female with 
average age 25 and SD 3.5 years). No history of 
speech, language, hearing, or any cognitive prob-
lems were reported. 

Sixty phrases that are frequently used in daily 
life by healthy people and AAC (augmentative 
and alternative communication) users were used 
in this experiment. Those phrases were selected 
from the lists in Wang et al., 2012a and Beukel-
man and Gutmann, 1999. 

3.2 Procedure 

Setup 
 
The Wave system tracks the motion of sensors 
attached on the articulators by establishing an 
electromagnetic field by a textbook-sized genera-
tor. Participants were seated with their head 
within the calibrated magnetic field (Figure 2, 
the right picture), facing a computer monitor that 
displays the GUI of the SSI. The sensors were 
attached to the surface of each articulator using 
dental glue (PeriAcryl Oral Tissue Adhesive). 
Prior to the experiment, each subject participated 
in a three-minute training session (on how to use 
the SSI), which also helped them adapt to the 
oral sensors. Previous studies have shown those 
sensors do not significantly affect their speech 
output after a short practice (Katz et al., 2006; 
Weismer and Bunton, 1999). 

Figure 2 (left) shows the positions of the five 
sensors attached to a participant’s forehead, 
tongue, and lips (Green et al., 2003; 2013; Wang 
et al., 2013a). One 6 DOF (spatial and rotational) 
head sensor was attached to a nose bridge on a 
pair of glasses (rather than on forehead skin di-
rectly), to avoid the skin artifact (Green et al., 
2007). Two 5 DOF sensors - TT (Tongue Tip) 
and TB (Tongue Body Back) - were attached on 
the midsagittal of the tongue. TT was located 
approximately 10 mm from the tongue apex 
(Wang et al., 2011, 2013a). TB was placed as far 

back as possible, depending on the participant’s 
tongue length (Wang et al., 2013b). Lip move-
ments were captured by attaching two 5 DOF 
sensors to the vermilion borders of the upper 
(UL) and lower (LL) lips at midline. The four 
sensors (i.e., TT, TB, UL, and LL) placements 
were selected based on literature showing that 
they are able to achieve as high recognition accu-
racy as that obtained using more tongue sensors 
for this application (Wang et al., 2013b). 

As mentioned previously, real-time prepro-
cessing of the positional time series was con-
ducted, including subtraction of head movements 
from tongue and lip data and noise reduction us-
ing a 20 Hz low pass filter (Green et al., 2003; 
Wang et al., 2013a). Although the tongue and lip 
sensors are 5D, only the 3D spatial data (i.e., x, y, 
and z) were used in this experiment. 
 
Training 
 
The training step was conducted to obtain a few 
samples for each phrase. The participants were 
asked to silently articulate all sixty phrases twice 
at their comfortable speaking rate, while the 
tongue and lip motion was recorded. Thus, each 
phrase has at least two samples for training. Dy-
namic Time Warping (DTW) was used as the 
classifier in this preliminary test, because of its 
rapid execution (Denby et al., 2011), although 
Gaussian mixture models may perform well too 
when the number of training samples is small 
(Broekx et al., 2013). DTW is typically used to 
compare two single-dimensional time-series, 

Training_Algorithm 
Let T1… Tn  be the sets of training samples for n 
phrases, where 
Ti = {Ti,1, … Ti,j, … Ti,mi} are mi samples for 
phrase i. 
1    for i = 1 to n     // n is the number of phrases 
2 Li = sum(length(Ti,j)) / mi,  j = 1 to mi; 
3 T = Ti,1;       // first sample of phrase i 
3 for j = 2 to mi 
4                (T', T'i,j) = MDTW(T, Ti,j); 
5         T  =  (T' + T'i,j) / 2;//amplitude mean 
6         T  =  time_normalize(T, Li); 
7 end 
8 Ri = T;   // representative sample for phrase i 
9     end   
10   Output(R); 

Figure 3. Training algorithm using DTW. The 
function call MDTW() returns the average 
DTW distances between the corresponding 
sensors and dimensions of two data samples. 
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Subject Accuracy 
(%) 

Latency 
(s) 

# of Train-
ing Samples 

S01 100 3.086 2.0 
S02 96.67 1.403 2.4 
S03 96.67 1.524 3.1 

Table 1.  Phrase classification accuracy and 
latency for all three participants. 

 

thus we calculated the average DTW distance 
across the corresponding sensors and dimensions 
of two data samples. DTW was adapted as fol-
lows for training. 

The training algorithm generated a repre-
sentative sample based on all available training 
samples for each phrase. Pseudo-code of the 
training algorithm is provided in Figure 3, for the 
convenience of description. For each phrase i, 
first, MDTW was applied to the first two training 
samples, Ti,1 and Ti,2. Sample T is the amplitude-
mean of the warped samples T'i,1 and T'i,2 (time-
series) (Line 5). Next, T was time-normalized 
(stretched) to the average length of all training 
samples for this phrase (Li), which was to reduce 
the effects of duration change caused by DTW 
warping (Line 6). The procedure continued until 
the last training sample Ti, mi (mi is the number of 
training samples for phrase i). The final T was 
the representative sample for phrase i. 

The training procedure can be initiated by 
pressing a button on the GUI anytime during the 
use of the SSI. 

 
Testing 

 
During testing, each participant silently articulat-
ed the same list of phrases while the SSI recog-
nized each phrase and played corresponding syn-
thesized sounds. DTW was used to compare the 
test sample with the representative training sam-
ple for each phrase (Ri, Figure 3). The phrase that 
had the shortest DTW distance to the test sample 
was recognized. The testing was triggered by 
pressing a button on the GUI. If the phrase was 
incorrectly predicted, the participant was allowed 
to add at most two additional training samples 
for that phrase.  

Figure 2 (right) demonstrates a participant is 
using the SSI during the test. After the partici-
pant silently articulated “Good afternoon”, the 
SSI displayed the phrase on the screen, and 
played the corresponding synthesized sound 
simultaneously. 

Finally, one participant used the SSI for a bidi-
rectional conversation with an investigator. Since 
this prototype SSI has a closed-vocabulary 
recognition component, the participant had to 
choose the phrases that have been trained. This 
task was intended to provide a demo of how the 
SSI is used for daily communication. The script 
of the conversation is as below: 

Investigator: Hi DJ, How are you? 
Subject: I’m fine. How are you doing? 
Investigator: I’m good. Thanks. 

Subject: I use a silent speech interface to talk. 
Investigator: That’s cool. 
Subject: Do you understand me? 
Investigator: Oh, yes. 
Subject: That’s good. 

4 Results and Discussion 

Table 1 lists the performance using the SSI for 
all three participants in the online, phrase-
reading task. The three subjects obtained a 
phrase recognition accuracy from 96.67% to 
100.00%, with a latency from 1.403 second to 
3.086 seconds, respectively. The high accuracy 
and relatively short delay demonstrated the fea-
sibility and potential of SSIs based on electro-
magnetic articulograph.  

The order of the participants in the experiment 
was S01, S02, and then S03. After the experi-
ment of S01, where all three dimensional data (x, 
y, and z) were used, we decided to use only y and 
z for S02 and S03 to reduce the latency. As listed 
in Table 1, the latencies of S02 and S03 did sig-
nificantly reduce, because less data was used for 
online recognition. 

Surprisingly, phrase recognition without using 
x dimension (left-right) data led to a decrease of 
accuracy and more training samples were re-
quired; prior research suggests that tongue 
movement in this dimension is not significant 
during speech in healthy talkers (Westbury, 
1994). This observation is supported by partici-
pant S01, who had the highest accuracy and 
needed fewer training samples for each phrase 
(column 3 in Table 1). S02 and S03 used data of 
only y and z dimensions. Of course, data from 
more subjects are needed to confirm the potential 
significance of the x dimension movement of the 
tongue to silent speech recognition accuracy.  

Data transfer between the Wave machine and 
the SSI recognition component was done through 
TCP/IP protocols and in real-time. In the future, 
this design feature will allow the recognition 
component to run on a smart phone or any wear-
able devices with an Internet connection (Cellu-
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lar or Wi-Fi). In this preliminary test, the indi-
vidual delays caused by TCP/IP data transfer, 
online data preprocessing, and classification 
were not measured and thus unknown. The delay 
information may be useful for our future devel-
opment that the recognition component is de-
ployed on a smart-phone. A further study is 
needed to obtain and analyze the delay infor-
mation.  

The bidirectional dialogue by one of the par-
ticipants demonstrated how the SSI can be used 
in daily conversation. To our best knowledge, 
this is the first conversational demo using a SSI. 
An informal survey to a few colleagues provided 
positive feedback. The conversation was smooth, 
although it is noticeably slower than a conversa-
tion between two healthy talkers. Importantly, 
the voice output quality (determined by the text-
to-speech synthesizer) was natural, which strong-
ly supports the major motivation of SSI research: 
to produce speech with natural voice quality that 
current treatments cannot provide. A video demo 
is available online (Wang, 2014). 

The participants in this experiment were 
young and healthy. It is, however, unknown if 
the recognition accuracy may decrease or not for 
users after laryngectomy, although a single pa-
tient study showed the accuracy may decrease 
15-20% compared to healthy talkers using an 
ultrasound-based SSI (Denby et al., 2011). Theo-
retically, the tongue motion patterns in (silent) 
speech after the surgery should be no difference 
with that of healthy talkers. In practice, however, 
some patients after the surgery may be under 
treatment for swallowing using radioactive de-
vices, which may affect their tongue motion pat-
terns in articulation. Thus, the performance of 
SSIs may vary and depend on the condition of 
the patients after laryngectomy. A test of the SSI 
using multiple participants after laryngectomy is 
needed to understand the performance of SSIs 
for those patients under different conditions.  

Although a demonstration of daily conversa-
tion using the SSI is provided, SSI based on the 
non-portable Wave system is currently not ready 
for practical use. Fortunately, more affordable 
and portable electromagnetic devices are being 
developed as are small handheld or wearable de-
vices (Fagan et al., 2008). Researchers are also 
testing the efficacy of permanently implantable 
and wireless sensors (Chen et al., 2012; Park et 
al., 2012). In the future, those more portable, and 
wireless articulatory motion tracking devices, 
when they are ready, will be used to develop a 
portable SSI for practice use. 

In this experiment, a simple DTW algorithm 
was used to compare the training and testing 
phrases, which is known to be slower than most 
machine learning classifiers. Thus, in the future, 
the latency can be significantly reduced by using 
faster classifiers such as support vector machines 
(Wang et al., 2013c) or hidden Markov models 
(Heracleous and Hagita, 2011; King et al., 2007; 
Rudzicz et al., 2012; Uraga and Hain, 2006). 

Furthermore, in this proof-of-concept design, 
the vocabulary was limited to a small set of 
phrases, because our design required the whole 
experiment (including training and testing) to be 
done in about one hour. Additional work is need-
ed to test the feasibility of open-vocabulary 
recognition, which will be much more usable for 
people after laryngectomy or with other severe 
voice impairments. 

5 Conclusion and Future Work 

A preliminary, online test of a SSI based on elec-
tromagnetic articulograph was conducted. The 
results were encouraging revealing high phrase 
recognition accuracy and short playback laten-
cies among three participants in a phrase-reading 
task. In addition, a proof-of-concept demo of 
bidirectional conversation using the SSI was 
provided, which shows how the SSI can be used 
for daily communication. 

Future work includes: (1) testing the SSI with 
patients after laryngectomy or with severe voice 
impairment, (2) integrating a phoneme- or word-
level recognition (open-vocabulary) using faster 
machine learning classifiers (e.g., support vector 
machines or hidden Markov models), and (3) 
exploring speaker-independent silent speech 
recognition algorithms by normalizing the articu-
latory movement across speakers (e.g., due to the 
anatomical difference of their tongues). 
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