
Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language Semantics (TTNLS), pages 80–88,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Probabilistic Type Theory for Incremental Dialogue Processing

Julian Hough and Matthew Purver
Cognitive Science Research Group

School of Electronic Engineering and Computer Science
Queen Mary University of London

{j.hough,m.purver}@qmul.ac.uk

Abstract

We present an adaptation of recent work
on probabilistic Type Theory with Records
(Cooper et al., 2014) for the purposes of
modelling the incremental semantic pro-
cessing of dialogue participants. After
presenting the formalism and dialogue
framework, we show how probabilistic
TTR type judgements can be integrated
into the inference system of an incremen-
tal dialogue system, and discuss how this
could be used to guide parsing and dia-
logue management decisions.

1 Introduction

While classical type theory has been the predomi-
nant mathematical framework in natural language
semantics for many years (Montague, 1974, in-
ter alia), it is only recently that probabilistic type
theory has been discussed for this purpose. Sim-
ilarly, type-theoretic representations have been
used within dialogue models (Ginzburg, 2012);
and probabilistic modelling is common in dia-
logue systems (Williams and Young, 2007, inter
alia), but combinations of the two remain scarce.
Here, we attempt to make this connection, taking
(Cooper et al., 2014)’s probabilistic Type Theory
with Records (TTR) as our principal point of de-
parture, with the aim of modelling incremental in-
ference in dialogue.

To our knowledge there has been no practi-
cal integration of probabilistic type-theoretic in-
ference into a dialogue system so far; here we dis-
cuss computationally efficient methods for imple-
mentation in an extant incremental dialogue sys-
tem. This paper demonstrates their efficacy in sim-
ple referential communication domains, but we ar-
gue the methods could be extended to larger do-
mains and additionally used for on-line learning
in future work.

2 Previous Work

Type Theory with Records (TTR) (Betarte and
Tasistro, 1998; Cooper, 2005) is a rich type the-
ory which has become widely used in dialogue
models, including information state models for
a variety of phenomena such as clarification re-
quests (Ginzburg, 2012; Cooper, 2012) and non-
sentential fragments (Fernández, 2006). It has also
been shown to be useful for incremental semantic
parsing (Purver et al., 2011), incremental genera-
tion (Hough and Purver, 2012), and recently for
grammar induction (Eshghi et al., 2013).

While the technical details will be given in sec-
tion 3, the central judgement in type theorys ∶ T
(that a given objects is of type T) is extended
in TTR so thats can be a (potentially complex)
record andT can be arecord type– e.g. s could
represent a dialogue gameboard state andT could
be a dialogue gameboard state type (Ginzburg,
2012; Cooper, 2012). As TTR is highly flexible
with a rich type system, variants have been con-
sidered with types corresponding to real-number-
valued perceptual judgements used in conjunction
with linguistic context, such as visual perceptual
information (Larsson, 2011; Dobnik et al., 2012),
demonstrating its potential for embodied learning
systems. The possibility of integration of per-
ceptron learning (Larsson, 2011) and naive Bayes
classifiers (Cooper et al., 2014) into TTR show
how linguistic processing and probabilistic con-
ceptual inference can be treated in a uniform way
within the same representation system.

Probabilistic TTR as described by Cooper et al.
(2014) replaces the categoricals ∶ T judgement
with the real number valuedp(s ∶ T) = v where
v ∈ [0,1]. The authors show how standard proba-
bility theoretic and Bayesian equations can be ap-
plied to TTR judgements and how an agent might
learn from experience in a simple classification
game. The agent is presented with instances of

80

a situation and it learns with each round by updat-
ing its set of probabilistic type judgements to best
predict the type of object in focus — in this case
updating the probability judgement that something
is an apple given its observed colour and shape
p(s ∶ Tapple ∣ s ∶ TShp, s ∶ TCol) whereShp ∈{shp1, shp2} and Col ∈ {col1, col2}. From a
cognitive modelling perspective, these judgements
can be viewed as probabilistic perceptual informa-
tion derived from learning. We use similar meth-
ods in our toy domain, but show how prior judge-
ments could be constructed efficiently, and how
classifications can be made without exhaustive it-
eration through individual type classifiers.

There has also been significant experimental
work on simple referential communication games
in psycholinguistics, computational and formal
modelling. In terms of production and genera-
tion, Levelt (1989) discusses speaker strategies
for generating referring expressions in a simple
object naming game. He showed how speakers
use informationally redundant features of the ob-
jects, violating Grice’s Maxim of Quantity. In
natural language generation (NLG), referring ex-
pression generation (REG) has been widely stud-
ied (see (Krahmer and Van Deemter, 2012) for
a comprehensive survey). The incremental algo-
rithm (IA) (Dale and Reiter, 1995) is an iterative
feature selection procedure for descriptions of ob-
jects based on computing the distractor set of ref-
erents that each adjective in a referring expression
could cause to be inferred. More recently Frank
and Goodman (2012) present a Bayesian model
of optimising referring expressions based on sur-
prisal, the information-theoretic measure of how
much descriptions reduce uncertainty about their
intended referent, a measure which they claim cor-
relates strongly to human judgements.

The element of the referring expression do-
main we discuss here is incremental processing.
There is evidence from (Brennan and Schober,
2001)’s experiments that people reason at an in-
credibly time-critical level from linguistic infor-
mation. They demonstratedself-repaircan speed
up semantic processing (or at least object refer-
ence) in such games, where an incorrect object
being partly vocalized and then repaired in the
instructions (e.g. “the yell-, uh, purple square”)
yields quicker response times from the onset of
the target (“purple”) than in the case of the flu-
ent instructions (“the purple square”). This exam-

ple will be addressed in section 5. First we will
set out the framework in which we want to model
such processing.

3 Probabilistic TTR in an incremental
dialogue framework

In TTR (Cooper, 2005; Cooper, 2012), the princi-
pal logical form of interest is therecord type(‘RT’
from here), consisting of sequences offieldsof the
form [l ∶ T] containing a labell and a typeT .1

RTs can be witnessed (i.e. judged as inhabited)
by recordsof that type, where a record is a set of
label-value pairs[l = v]. The central type judge-
ment in TTR that a records is of (record) type
R, i.e. s ∶ R, can be made from the component
type judgements of individual fields; e.g. the one-
field record[l = v] is of type[l ∶ T] just in case
v is of typeT . This is generalisable to records and
RTs with multiple fields: a records is of RT R if
s includes fields with labels matching those occur-
ring in the fields ofR, such that all fields inR are
matched, and all matched fields ins must have a
value belonging to the type of the corresponding
field in R. Thus it is possible fors to have more
fields thanR and fors ∶ R to still hold, but not
vice-versa:s ∶ R cannot hold ifR has more fields
thans.

R1 ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
l1 ∶ T1

l2 ∶ T2

l3 ∶ T3(l1)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

R2 ∶ [l1 ∶ T1

l2 ∶ T2′
] R3 ∶ []

Figure 1: Example TTR record types

Fields can have values representing predicate
types (ptypes), such asT3 in Figure 1, and conse-
quently fields can bedependenton fields preced-
ing them (i.e. higher) in the RT, e.g.l1 is bound in
the predicate type fieldl3, sol3 depends onl1.

Subtypes, meets and joins A relation between
RTs we wish to explore is⊑ (‘is a subtype of’),
which can be defined for RTs in terms of fields as
simply: R1 ⊑ R2 if for all fields [l ∶ T2] in R2,
R1 contains[l ∶ T1] whereT1 ⊑ T2. In Figure 1,
both R1 ⊑ R3 and R2 ⊑ R3; and R1 ⊑ R2 iff
T2 ⊑ T2′ . The transitive nature of this relation (if
R1 ⊑ R2 andR2 ⊑ R3 thenR1 ⊑ R3) can be used
effectively for type-theoretic inference.

1We only introduce the elements of TTR relevant to the
phenomena discussed below. See (Cooper, 2012) for a de-
tailed formal description.

81

We also assume the existence ofmanifest(sin-
gleton) types, e.g.Ta, the type of which onlya is
a member. Here, we write manifest RT fields such
as[l ∶ Ta] whereTa ⊑ T using the syntactic sugar[l=a ∶ T]. The subtype relation effectively allows
progressive instantiation of fields (as addition of
fields toR leads toR

′ whereR
′
⊑ R), which is

practically useful for an incremental dialogue sys-
tem as we will explain.

We can also definemeetand join types of two
or more RTs. The representation of the meet type
of two RTs R1 and R2 is the result of a merge
operation (Larsson, 2010), which in simple terms
here can be seen as union of fields. A meet type
is also equivalent to the extraction of a maxi-
mal common subtype, an operation we will call
MaxSub(Ri..Rn):2

if R1 = [l1 ∶ T1

l2 ∶ T2
] andR2 = [l2 ∶ T2

l3 ∶ T3
]

R1 ∧R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
l1 ∶ T1

l2 ∶ T2

l3 ∶ T3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= MaxSub(R1,R2)

R1 andR2 here are commonsupertypes of the
resultingR1 ∧ R2. On the other hand, the join of
two RTsR1 andR2, the typeR1 ∨ R2 cannot be
represented by field intersection. It is defined in
terms of type checking, in thats ∶ R1 ∨ R2 iff
s ∶ R1 or s ∶ R2. It follows that if R1 ⊑ R2 then
s ∶ R1 ∧R2 iff s ∶ R1, ands ∶ R1 ∨ R2 iff s ∶ R2.

While technically the maximally common su-
pertype ofR1 andR2 is the join typeR1 ∨ R2,
here we introduce the maximally commonsimple
(non disjunctive) supertype of two RTsR1 andR2

as field intersection:

if R1 = [l1 ∶ T1

l2 ∶ T2
] andR2 = [l2 ∶ T2

l3 ∶ T3
]

MaxSuper(R1, R2) = [l2 ∶ T2]
We will explore the usefulness of this new op-

eration in terms of RT lattices in sec. 4.

3.1 Probabilistic TTR

We follow Cooper et al. (2014)’s recent extension
of TTR to include probabilistic type judgements of
the formp(s ∶ R) = v wherev ∈ [0,1], i.e. the real
valued judgement that a records is of RTR. Here

2Here we concern ourselves with simple examples that
avoid label-type clashes between two RTs (i.e. whereR1 con-
tainsl1 ∶ T1 andR2 containsl1 ∶ T2); in these cases the op-
erations are more complex than field concatenation/sharing.

we use probabilistic TTR to model a common psy-
cholinguistic experimental set up in section 5. We
repeat some of Cooper et al.’s calculations here
for exposition, but demonstrate efficient graphical
methods for generating and incrementally retriev-
ing probabilities in section 4.

Cooper et al. (2014) define the probability of the
meet and join types of two RTs as follows:

p(s ∶ R1 ∧R2) = p(s ∶ R1)p(s ∶ R2 ∣ s ∶ R1)
p(s ∶ R1 ∨R2) = p(s ∶ R1) + p(s ∶ R2) − p(s ∶ R1 ∧R2)

(1)

It is practically useful, as we will describe be-
low, that the join probability can be computed in
terms of the meet. Also, there are equivalences be-
tween meets, joins and subtypes in terms of type
judgements as described above, in that assuming
if R1 ⊑ R2 thenp(s ∶ R2 ∣ s ∶ R1) = 1, we have:

if R1 ⊑ R2

p(s ∶ R1 ∧R2) = p(s ∶ R1)
p(s ∶ R1 ∨R2) = p(s ∶ R2)

p(s ∶ R1) ≤ p(s ∶ R2)
(2)

The conditional probability of a record being of
typeR2 given it is of typeR1 is:

p(s ∶ R2 ∣ s ∶ R1) = p(s ∶ R1 ∧ s ∶ R2)
p(s ∶ R1) (3)

We return to an explanation for these classical
probability equations holding within probabilistic
TTR in section 4.

Learning and storing probabilistic judgements
When dealing with referring expression games, or
indeed any language game, we need a way of stor-
ing perceptual experience. In probabilistic TTR
this can be achieved by positing a judgement setJ
in which an agent stores probabilistic type judge-
ments.3 We refer to the sum of the value of proba-
bilistic judgements that a situation has been judged
to be of typeRi within J as∥Ri∥J and the sum of
all probabilistic judgements inJ simply asP (J);
thus the prior probability that anything is of type

Ri under the set of judgementsJ is ∥Ri∥J

P (J) . The

conditional probabilityp(s ∶ R1 ∣ s ∶ R2) un-
der J can be reformulated in terms of these sets
of judgements:

pJ (s ∶ R1 ∣ s ∶ R2) = { ∥R1∧R2∥J∥R2∥J
iff ∥R2∥J ≠ 0

0 otherwise
(4)

3(Cooper et al., 2014) characterise a type judgement as an
Austinian proposition that a situation is of a given type with
a given probability, encoded in a TTR record.

82

where the sample spaces∥R1 ∧ R2∥J and∥R2∥J

constitute the observations of the agent so far.J
can have new judgements added to it during learn-
ing. We return to this after introducing the incre-
mental semantics needed to interface therewith.

3.2 DS-TTR and the DyLan dialogue system

In order to permit type-theoretic inference in a
dialogue system, we need to provide suitable
TTR representations for utterances and the cur-
rent pragmatic situation from a parser, dialogue
manager and generator as instantaneously and ac-
curately as possible. For this purpose we use
an incremental framework DS-TTR (Eshghi et
al., 2013; Purver et al., 2011) which integrates
TTR representations with the inherently incre-
mental grammar formalism Dynamic Syntax (DS)
(Kempson et al., 2001).

♢, T y(t),
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x=john ∶ e
e=arrive ∶ es

p=subj(e,x) ∶ t
head=p ∶ t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ty(e),
[x=john ∶ e

head=x ∶ e]
Ty(e → t),

λr ∶ [head ∶ e] .⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x=r.head ∶ e
e=arrive ∶ es

p=subj(e,x) ∶ t
head=p ∶ t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 2: DS-TTR tree

DS produces an incrementally specified, partial
logical tree as words are parsed/generated; follow-
ing Purver et al. (2011), DS tree nodes are dec-
orated not with simple atomic formulae but with
RTs, and corresponding lambda abstracts repre-
senting functions of typeRT → RT (e.g. λr ∶[l1 ∶ T1].[l2=r.l1 ∶ T1] where r.l1 is a path ex-
pression referring to the labell1 in r) – see Fig-
ure 2. Using the idea of manifestness of fields
as mentioned above, we have a natural represen-
tation for underspecification of leaf node content,
e.g. [x ∶ e] is unmanifest whereas[x=john ∶ e]4
is manifest and the latter is a subtype of the for-
mer. Functional application can apply incremen-
tally, allowing a RT at the root node to be com-
piled for any partial tree, which is incrementally
further specified as parsing proceeds (Hough and
Purver, 2012). Within a given parse path, due to

4This is syntactic sugar for[x ∶ ejohn] and the = sign is
not the same semantically as that in a record.

DS-TTR’s monotonicity, each maximal RT of the
tree’s root node is a subtype of the parser’s previ-
ous maximal output.

Following (Eshghi et al., 2013), DS-TTR tree
nodes include a fieldhead in all RTs which cor-
responds to the DS tree node type. We also as-
sume a neo-Davidsonian representation of predi-
cates, with fields corresponding to an event term
and to each semantic role; this allows all available
semantic information to be specified incrementally
in a strict subtyping relation (e.g. providing the
subj() field when subject but not object has been
parsed) – see Figure 2.

We implement DS-TTR parsing and genera-
tion mechanisms in theDyLan dialogue system5

within Jindigo (Skantze and Hjalmarsson, 2010),
a Java-based implementation of the incremental
unit (IU) framework of (Schlangen and Skantze,
2009). In this framework, each module has input
and output IUs which can beadded as edges be-
tween vertices in module buffer graphs, and be-
comecommitted should the appropriate condi-
tions be fulfilled, a notion which becomes im-
portant in light of hypothesis change and repair
situations. Dependency relations between differ-
ent graphs within and between modules can be
specified bygroundedInlinks (see (Schlangen and
Skantze, 2009) for details).

The DyLan interpreter module (Purver et al.,
2011) uses Sato (2011)’s insight that the context of
DS parsing can be characterized in terms of a Di-
rected Acyclic Graph (DAG) with trees for nodes
and DS actions for edges. The module’s state is
characterized by three linked graphs as shown in
Figure 3:

• input: a time-linear word graph posted by the
ASR module, consisting of word hypothesis
edge IUs between verticesWn

• processing: the internal DS parsing DAG,
which adds parse state edge IUs between ver-
ticesSn groundedInthe corresponding word
hypothesis edge IU

• output: a concept graph consisting of domain
concept IUs (RTs) as edges between vertices
Cn, groundedInthe corresponding path in the
DS parsing DAG

Here, our interest is principally in the parser out-
put, to support incremental inference; a DS-TTR
generator is also included which uses RTs as goal
concepts (Hough and Purver, 2012) and uses the

5Available from http://dylan.sourceforge.net/

83

same parse graph as the interpreter to allow self-
monitoring and compound contributions, but we
omit the details here.

Figure 3: Normal incremental parsing in Dylan

4 Order theoretic and graphical methods
for probabilistic TTR

RT lattices to encode domain knowledge To
support efficient inference inDyLan, we represent
dialogue domain concepts via partially ordered
sets (posets) of RT judgements, following similar
insights used in inducing DS-TTR actions (Eshghi
et al., 2013). A poset has several advantages over
an unordered list of un-decomposed record types:
the possibility of incremental type-checking; in-
creased speed of type-checking, particularly for
pairs of/multiple type judgements; immediate use
of type judgements to guide system decisions; in-
ference from negation; and the inclusion of learn-
ing within a domain. We leave the final challenge
for future work, but discuss the others here.

We can construct a poset of type judgements
for any single RT by decomposing it into its con-
stituent supertype judgements in arecord type lat-
tice. Representationally, as per set-theoretic lat-
tices, this can be visualised as a Hasse diagram
such as Figure 4, however here the ordering arrows
show⊑ (‘subtype of’) relations from descendant to
ancestor nodes.

To characterize an RT latticeG ordered by⊑,
we adapt Knuth (2005)’s description of lattices in
line with standard order theory: for a pair of RT
elementsRx andRy, their lower bound is the set
of all Rz ∈ G such thatRz ⊑ Rx andRz ⊑ Ry.
In the event that a unique greatest lower bound ex-
ists, this is their meet, which inG happily corre-
sponds to the TTR meet typeRx ∧ Ry. Dually, if
their unique least upper bound exists, this is their

R1200 = [] = ⊤

R120 = [a ∶ b] R121 = [c ∶ d] R110 = [e ∶ f]

R10 = [a ∶ b
c ∶ d] R11 = [a ∶ b

e ∶ f] R12 = [c ∶ d
e ∶ f]

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a ∶ b
c ∶ d
e ∶ f

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = ⊥

Figure 4: Record Type lattice ordered by the sub-
type relation

join and in TTR terms isMaxSuper(Rx, Ry) but
not necessarily their join typeRx ∨ Ry as here
we concern ourselves with simple RTs. One el-
ementcoversanother if it is a direct successor to
it in the subtype ordering relation hierarchy.G
has a greatest element (⊤) and least element (⊥),
with the atomsbeing the elements that cover⊥;
in Figure 4 if R1 is viewed as⊥ , the atoms are
R{10,11,12}. An RT elementRx has acomple-
ment if there is a unique element¬Rx such that
MaxSuper(Rx,¬Rx) = ⊤ andRx ∧ ¬Rx = ⊥

(the lattice in Figure 4 iscomplementedas this
holds for every element).

Graphically, the join of two elements can be
found by following the connecting edges upward
until they first converge on a single RT, giving us
MaxSuper(R10, R12) = R121 in Figure 4, and the
meet can be found by following the lines down-
ward until they connect to give their meet type,
i.e. R10 ∧R12 = R1.

If we considerR1 to be a domain concept in
a dialogue system, we can see how its RT lattice
G can be used for incremental inference. As in-
crementally specified RTs become available from
the interpreter they are matched to those inG to
determine how far down towards the final domain
conceptR1 our current state allows us to be. Dif-
ferent sequences of words/utterances lead to dif-
ferent paths. However, any practical dialogue sys-
tem must entertain more than one possible domain
concept as an outcome;G must therefore contain
multiple possible final concepts, constituting its
atoms, each with several possible dialogue move
sequences, which correspond to possible down-
ward paths – e.g. see the structure of Figure 5.
Our aim here is to associate each RT inG with a
probabilistic judgement.

Initial lattice construction We define a simple
bottom-up procedure in Algorithm 1 to build a RT

84

lattice G of all possible simple domain RTs and
their prior probabilistic judgements, initialised by
the disjunction of possible final state judgements
(the priors),6 along with the absurdity⊥, stipu-
lated a priori as the least element with probability
0 and the meet type of the atomic priors. The al-
gorithm recursively removes one field from the RT
being processed at a time (except fields referenced
in a remaining dependentptypefield), then orders
the new supertype RT inG appropriately.

Each node inG contains its RTRi and a sum
of probability judgements{∥Rk∥J + .. + ∥Rn∥J}
corresponding to the probabilities of the priors it
stands in a supertype relation to. These sums are
propagated up from child to parent node as it is
constructed. It terminates when all simple maxi-
mal supertypes7 have been processed, leaving the
maximally common supertype as⊤ (possibly the
empty type []), associated with the entire proba-
bility massP (J), which constitutes the denomina-
tor to all judgements- given this, only the numer-

ator of equation∥Ri∥J

P (J) needs to be stored at each
node.

Algorithm 1 Probabilistic TTR record type lattice
construction algorithm

INPUT: priors ▷ use the initial prior judgements for G’s atoms
OUTPUT: G
G = newGraph(priors) ▷ P(J) set to equal sum of prior probs
agenda = priors ▷ Initialise agenda
while not agenda is emptydo

RT = agenda.pop()
for field ∈ RT do

if field ∈ RT.pathsthen ▷ Do not remove bound fields
continue

superRT = RT - field
if superRT∈ G then ▷ not new? order w.r.t. RT and inherit RT’s priors

G.order(RT.address,G.getNode(superRT),⊑)
else ▷ new?

superNode = G.newNode(superRT) ▷ create new node w. empty priors
for node∈ G do ▷ order superNode w.r.t. other nodes in G

if superRT.fields⊂ node.fieldsthen
G.order(node,superNode,⊑) ▷ superNode inherits node’s priors

agenda.append(superRT) ▷ add to agenda for further supertyping

Direct inference from the lattice To explain
how our approach models incremental inference,
we assume Brennan and Schober (2001)’s experi-
mental referring game domain described in section
2: three distinct domain situation RTsR1, R2 and
R3 correspond to a purple square, a yellow square
and a yellow circle, respectively.

The RT latticeG constructed initially upon ob-
servation of the game (by instructor or instructee)
shown in Figure 5 uses a uniform distribution for

6Although the priors’ disjunctive probability sums to 1 af-
terG is constructed, i.e. in Figure 5∥R1∥J+∥R2∥J+∥R3∥J

P (J) = 1,
the real values initially assigned to them need not sum to
unity, as they form the atoms ofG (see (Knuth, 2005)).

7Note that it does not generate the join types but maximal
common supertypes defined by field intersection.

the three disjunctive final situations. Each node
shows an RTRi on the left and the derivation of
its prior probabilitypJ (Ri) that any game situa-
tion record will be of typeRi on the right, purely
in terms of the relevant priors and the global de-
nominatorP (J).

G can be searched to make inferences in light
of partial information from an ongoing utterance.
We model inference as predicting the likelihood
of relevant type judgementsRy ∈ G of a situa-
tion s, given the judgements ∶ Rx we have so far.
To do this we use conditional probability judge-
ments following Knuth’s work on distributive lat-
tices, using the⊑ relation to give a choice function:

pJ (s ∶ Ry ∣ s ∶ Rx) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if Rx ⊑ Ry

0 if Rx ∧Ry = ⊥

p otherwise, where0 ≤ p ≤ 1

(5)

The third case is the degree of inclusion ofRy

in Rx, and can be calculated using the conditional
probability calculation (4) in sec. 3. For nega-
tive RTs, a lattice generated from Algorithm 1 will
be distributive but not guaranteed to be comple-
mented, however we can still derivepJ (s ∶ Ry ∣
s ∶ ¬Rx) by obtainingpJ (s ∶ Ry) in G modulo the
probability mass ofRx and that of its subtypes:

pJ (s ∶ Ry ∣ s ∶ ¬Rx) = {0 if Ry ⊑ Rx
pJ (s∶Ry)−pJ (s∶Rx∧Ry)

pJ (s∶⊤)−pJ (s∶Rx) otherwise
(6)

The subtype relations and atomic, join and meet
types’ probabilities required for (1) - (6) can be
calculated efficiently through graphical search al-
gorithms by characterisingG as a DAG: the re-
verse direction of the subtype ordering edges can
be viewed as reachability edges, making⊤ the
source and⊥ the sink. With this characterisation,
if Rx is reachable fromRy thenRx ⊑ Ry.

In DAG terms, the probability of the meet of
two RTsRx andRy can be found at their highest
common descendant node – e.g.pJ (R4 ∧ R5) in
Figure 5 can be found as1

3
directly atR1. Note if

Rx is reachable fromRy, i.e. Rx ⊑ Ry, then due
to the equivalences listed in (2),pJ (Rx ∧ Ry) can
be found directly atRx. If the meet of two nodes
is ⊥ (e.g.R4 andR3 in Figure 5), then their meet
probability is 0 aspJ (⊥)=0.

While the lattice does not have direct access to
the join types of its elements, a join type prob-
ability pJ (Rx ∨ Ry) can be calculated in terms
of pJ (Rx ∧ Ry) by the join equation in (1),
which holds for all probabilistic distributive lat-

85

PRIORS:∥R1∥J =
1
3∥R2∥J =
1
3∥R3∥J =
1
3

R8 = [x ∶ind] ∥R1∥J +∥R2∥J +∥R3∥J
P (J) = ⊤ = 1

R4 = [x ∶ ind
shpsq ∶ square(x)] ∥R1∥J +∥R2∥J

P (J) R5 = [x ∶ ind
colp ∶ purple(x)] ∥R1∥J

P (J) R6 = [x ∶ ind
coly ∶ yellow(x)] ∥R2∥J +∥R3∥J

P (J) R7 = [x ∶ ind
shpc ∶ circle(x)] ∥R3∥J

P (J)

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x ∶ ind
colp ∶ purple(x)
shpsq ∶ square(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∥R1∥J
P (J) R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x ∶ ind
coly ∶ yellow(x)
shpsq ∶ square(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∥R2∥J
P (J) R3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x ∶ ind
coly ∶ yellow(x)
shpc ∶ circle(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∥R3∥J
P (J)

R0 = ⊥ = 0

Figure 5: Record type lattice with initial uniform prior probablities

tices (Knuth, 2005).8 As regards efficiency, worst
case complexity for finding the meet probability at
the common descendant ofRx andRy is a linear
O(m+ n) wherem andn are the number of edges
in the downward (possibly forked) pathsRx → ⊥

andRy → ⊥.9

5 Simulating incremental inference and
self-repair processing

Interpretation inDyLan and its interface to the
RT latticeG follows evidence that dialogue agents
parse self-repairs efficiently and that repaired di-
alogue content (reparanda) is given special sta-
tus but not removed from the discourse context.
To model Brennan and Schober (2001)’s findings
of disfluent spoken instructions speeding up ob-
ject recognition (see section 2), we demonstrate
a self-repair parse in Figure 6 for “The yell-, uh,
purple square” in the simple game of predicting
the final situation from{R1, R2, R3} continuously
given the type judgements made so far. We de-
scribe the stages T1-T4 in terms of the current
word being processed- see Figure 6:

At T1:‘the’ the interpreter will not yield a sub-
type checkable inG so we can only condition on
R8 (⊤), giving uspJ (s ∶ Ri ∣ s ∶ R8) =

1
3

for
i ∈ {1, 2, 3}, equivalent to the priors. AtT2:

8The search for the meet probability is generalisable to
conjunctive types by searching for the conjuncts’ highest
common descendant. The join probability is generalisable to
the disjunctive probability of multiple types, used, albeit pro-
gramatically, in Algorithm 1 for calculating a node’s proba-
bility from its child nodes.

9While we do not give details here, simple graphical
search algorithms for conjunctive and disjunctive multiple
types are linear in the number of conjuncts and disjuncts, sav-
ing considerable time in comparison to the algebraic calcula-
tions of the sum and product rules for distributive lattices.

‘yell-’, the best partial word hypothesis is now
“yellow”; 10 the interpreter therefore outputs an RT
which matches the type judgements ∶ R6 (i.e. that
the object is a yellow object). Taking this judge-
ment as the conditioning evidence using function
(5) we getpJ (s ∶ R1 ∣ s ∶ R6) = 0 and us-
ing (4) we getpJ (s ∶ R2 ∣ s ∶ R6) = 0.5 and
pJ (s ∶ R3 ∣ s ∶ R6) = 0.5 (see the schematic
probability distribution at stage T2 in Figure 6 for
the three objects). The meet type probabilities
required for the conditional probabilities can be
found graphically as described above.

At T3:‘uh purple’, low probability in the in-
terpreter output causes a self-repair to be recog-
nised, enforcing backtracking on the parse graph
which informally operates as follows (see Hough
and Purver (2012)) :

Self-repair:
IF from parsing wordW the edgeSEn is in-
sufficiently likely to be constructed from ver-
tex Sn OR IF there is no sufficiently likely
judgementp(s ∶ Rx) for Rx ∈ G
THEN parse wordW from vertexSn−1. IF
successfuladd a new edge to the top path,
without removing anycommitted edges be-
ginning atSn−1; ELSE setn=n−1 and repeat.

This algorithm is consistent with a local model
for self-repair backtracking found in corpora
(Shriberg and Stolcke, 1998; Hough and Purver,
2013). As regards inference inG, upon detection
of a self-repair that revokess ∶ R6, the type judge-
ments ∶ ¬R6, i.e. that this is not a yellow object,

10In practice, ASR modules yielding partial results are less
reliable than their non-incremental counterparts, but progress
is being made here (Schlangen and Skantze, 2009).

86

Figure 6: Incremental DS-TTR self-repair parsing. Inter-graphgroundedInlinks go top to bottom.

is immediately available as conditioning evidence.
Using (6) our distribution of RT judgements now
shifts: pJ (s ∶ R1 ∣ s ∶ ¬R6) = 1, pJ (s ∶ R2 ∣
s ∶ ¬R6) = 0 andpJ (s ∶ R3 ∣ s ∶ ¬R6) = 0 be-
fore “purple” has been parsed – thus providing a
probabilistic explanation for increased subsequent
processing speed. Finally atT4: ‘square’ given
pJ (s ∶ R1 ∣ s ∶ R1) = 1 andR1∧R2 = R1∧R3 = ⊥,
the distribution remains unchanged.

The system’s processing models how listen-
ers reason about the revocation itself rather than
predicting the outcome through positive evidence
alone, in line with (Brennan and Schober, 2001)’s
results.

6 Extensions

Dialogue and self-repair in the wild To move
towards domain-generality, generating the lattice
of all possible dialogue situations for interesting
domains is computationally intractable. We in-
tend instead to consider incrementally occurring
issuesthat can be modelled as questions (Lars-
son, 2002). Given one or more issues manifest in
the dialogue at any time, it is plausible to gener-
ate small lattices dynamically to estimate possible
answers, and also assign a real-valued relevance
measure to questions that can be asked to resolve
the issues. We are exploring how this could be
implemented using the inquiry calculus (Knuth,
2005), which defines information theoretic rele-
vance in terms of a probabilistic question lattice,
and furthermore how this could be used to model
the cause of self-repair as a time critical trade-off
between relevance and accuracy.

Learning in a dialogue While not our focus
here, latticeG’s probabilities can be updated
through observations after its initial construction.
If a reference game is played over several rounds,
the choice of referring expression can change
based on mutually salient functions from words
to situations- see e.g. (DeVault and Stone, 2009).
Our currently frequentist approach to learning is:
given an observation of an existing RTRi is made
with probabilityv, then∥Ri∥J , the overall denom-
inator P (J) , and the nodes in the upward path
from Ri to ⊤ are incremented byv. The approach
could be converted to Bayesian update learning by
using the prior probabilities inG for calculatingv
before it is added. Furthermore, observations can
be added toG that include novel RTs: due to the
DAG structure ofG, their subtype ordering and
probability effects can be integrated efficiently.

7 Conclusion

We have discussed efficient methods for construct-
ing probabilistic TTR domain concept lattices or-
dered by the subtype relation and their use in
incremental dialogue frameworks, demonstrating
their efficacy for realistic self-repair processing.
We wish to explore inclusion of join types, the
scalability of RT lattices to other domains and
their learning capacity in future work.

Acknowledgements

We thank the two TTNLS reviewers for their com-
ments. Purver is supported in part by the European
Community’s Seventh Framework Programme un-
der grant agreement no 611733 (ConCreTe).

87

References

G. Betarte and A. Tasistro. 1998. Extension of Martin-
Löf type theory with record types and subtyping. In
G. Sambin and J. Smith, editors,25 Years of Con-
structive Type Theory. Oxford University Press.

S. Brennan and M. Schober. 2001. How listeners
compensate for disfluencies in spontaneous speech.
Journal of Memory and Language, 44(2):274–296.

R. Cooper, S. Dobnik, S. Lappin, and S. Larsson. 2014.
A probabilistic rich type theory for semantic inter-
pretation. InProceedings of the EACL Workshop
on Type Theory and Natural Language Semantics
(TTNLS).

R. Cooper. 2005. Records and record types in se-
mantic theory.Journal of Logic and Computation,
15(2):99–112.

R. Cooper. 2012. Type theory and semantics in flux.
In R. Kempson, N. Asher, and T. Fernando, edi-
tors, Handbook of the Philosophy of Science, vol-
ume 14: Philosophy of Linguistics, pages 271–323.
North Holland.

R. Dale and E. Reiter. 1995. Computational interpreta-
tions of the gricean maxims in the generation of re-
ferring expressions.Cognitive Science, 19(2):233–
263.

D. DeVault and M. Stone. 2009. Learning to interpret
utterances using dialogue history. InProceedings of
the 12th Conference of the European Chapter of the
Association for Computational Linguistics (EACL).

S. Dobnik, R. Cooper, and S. Larsson. 2012. Mod-
elling language, action, and perception in type the-
ory with records. InProceedings of the 7th Inter-
national Workshop on Constraint Solving and Lan-
guage Processing (CSLP12).

A. Eshghi, J. Hough, and M. Purver. 2013. Incre-
mental grammar induction from child-directed di-
alogue utterances. InProceedings of the 4th An-
nual Workshop on Cognitive Modeling and Compu-
tational Linguistics (CMCL).

R. Fernández. 2006.Non-Sentential Utterances in Di-
alogue: Classification, Resolution and Use. Ph.D.
thesis, King’s College London, University of Lon-
don.

M. C. Frank and N. D. Goodman. 2012. Predicting
pragmatic reasoning in language games.Science,
336(6084):998–998.

J. Ginzburg. 2012.The Interactive Stance: Meaning
for Conversation. Oxford University Press.

J. Hough and M. Purver. 2012. Processing self-repairs
in an incremental type-theoretic dialogue system. In
Proceedings of the 16th SemDial Workshop on the
Semantics and Pragmatics of Dialogue (SeineDial).

J. Hough and M. Purver. 2013. Modelling expectation
in the self-repair processing of annotat-, um, listen-
ers. InProceedings of the 17th SemDial Workshop
on the Semantics and Pragmatics of Dialogue (Di-
alDam).

R. Kempson, W. Meyer-Viol, and D. Gabbay. 2001.
Dynamic Syntax: The Flow of Language Under-
standing. Blackwell.

K. H. Knuth. 2005. Lattice duality: The origin of prob-
ability and entropy.Neurocomputing, 67:245–274.

E. Krahmer and K. Van Deemter. 2012. Computa-
tional generation of referring expressions: A survey.
Computational Linguistics, 38(1):173–218.

S. Larsson. 2002.Issue-based Dialogue Management.
Ph.D. thesis, Göteborg University. Also published
as Gothenburg Monographs in Linguistics 21.

S. Larsson. 2010. Accommodating innovative mean-
ing in dialogue. Proc. of Londial, SemDial Work-
shop, pages 83–90.

S. Larsson. 2011. The TTR perceptron: Dynamic
perceptual meanings and semantic coordination. In
Proceedings of the 15th Workshop on the Semantics
and Pragmatics of Dialogue (SemDial 2011 - Los
Angelogue).

W. Levelt. 1989.Speaking: From Intention to Articu-
lation. MIT Press.

R. Montague. 1974.Formal Philosophy: Selected Pa-
pers of Richard Montague. Yale University Press.

M. Purver, A. Eshghi, and J. Hough. 2011. Incremen-
tal semantic construction in a dialogue system. In
J. Bos and S. Pulman, editors,Proceedings of the
9th International Conference on Computational Se-
mantics.

Y. Sato. 2011. Local ambiguity, search strate-
gies and parsing in Dynamic Syntax. In E. Gre-
goromichelaki, R. Kempson, and C. Howes, editors,
The Dynamics of Lexical Interfaces. CSLI Publica-
tions.

D. Schlangen and G. Skantze. 2009. A general, ab-
stract model of incremental dialogue processing. In
Proceedings of the 12th Conference of the European
Chapter of the ACL (EACL 2009).

E. Shriberg and A. Stolcke. 1998. How far do speakers
back up in repairs? A quantitative model. InPro-
ceedings of the International Conference on Spoken
Language Processing.

G. Skantze and A. Hjalmarsson. 2010. Towards incre-
mental speech generation in dialogue systems. In
Proceedings of the SIGDIAL 2010 Conference.

J. Williams and S. Young. 2007. Scaling POMDPs
for spoken dialog management.IEEE Transac-
tions on Audio, Speech, and Language Processing,
15(7):2116–2129.

88

