
Proceedings of the 5th International Workshop on Health Text Mining and Information Analysis (Louhi) @ EACL 2014, pages 21–29,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Domain Adaptation with Active Learning for Coreference Resolution

Shanheng Zhao
Elance

441 Logue Ave
Mountain View, CA 94043, USA

szhao@elance.com

Hwee Tou Ng
Department of Computer Science
National University of Singapore

13 Computing Drive, Singapore 117417
nght@comp.nus.edu.sg

Abstract

In the literature, most prior work on
coreference resolution centered on the
newswire domain. Although a coreference
resolution system trained on the newswire
domain performs well on newswire texts,
there is a huge performance drop when it is
applied to the biomedical domain. In this
paper, we present an approach integrat-
ing domain adaptation with active learning
to adapt coreference resolution from the
newswire domain to the biomedical do-
main. We explore the effect of domain
adaptation, active learning, and target do-
main instance weighting for coreference
resolution. Experimental results show
that domain adaptation with active learn-
ing and target domain instance weighting
achieves performance on MEDLINE ab-
stracts similar to a system trained on coref-
erence annotation of only target domain
training instances, but with a greatly re-
duced number of target domain training
instances that we need to annotate.

1 Introduction

Coreference resolution is the task of determin-
ing whether two or more noun phrases (NPs) in
a text refer to the same entity. Successful coref-
erence resolution benefits many natural language
processing (NLP) tasks, such as information ex-
traction and question answering. In the literature,
most prior work on coreference resolution recasts
the problem as a two-class classification problem.
Machine learning-based classifiers are applied to
determine whether a candidate anaphor and a po-
tential antecedent are coreferential (Soon et al.,
2001; Ng and Cardie, 2002; Stoyanov et al., 2009;
Zhao and Ng, 2010).

In recent years, with the advances in biologi-
cal and life science research, there is a rapidly in-

creasing number of biomedical texts, including re-
search papers, patent documents, etc. This results
in an increasing demand for applying natural lan-
guage processing and information retrieval tech-
niques to efficiently exploit information contained
in these large amounts of texts. However, corefer-
ence resolution, one of the core tasks in NLP, has
only a relatively small body of prior research in
the biomedical domain (Kim et al., 2011a; Kim et
al., 2011b).

A large body of prior research on coreference
resolution focuses on texts in the newswire do-
main. Standardized data sets, such as MUC
(DARPA Message Understanding Conference,
(MUC-6, 1995; MUC-7, 1998)) and ACE (NIST
Automatic Content Extraction Entity Detection
and Tracking task, (NIST, 2002)) data sets are
widely used in the study of coreference resolution.

Traditionally, in order to apply supervised ma-
chine learning approaches to an NLP task in a spe-
cific domain, one needs to collect a text corpus
in the domain and annotate it to serve as training
data. Compared to other NLP tasks, e.g., part-of-
speech (POS) tagging or named entity (NE) tag-
ging, the annotation for coreference resolution is
much more challenging and time-consuming. The
reason is that in tasks like POS tagging, an annota-
tor only needs to focus on each markable (a word,
in the case of POS tagging) and a small window
of its neighboring words. In contrast, to annotate
a coreferential relation, an annotator needs to first
recognize whether a certain text span is a mark-
able, and then scan through the text preceding the
markable (a potential anaphor) to look for the an-
tecedent. It also requires the annotator to under-
stand the text in order to annotate coreferential re-
lations, which aresemantic in nature. If a mark-
able is non-anaphoric, the annotator has to scan to
the beginning of the text to realize that. Cohen
et al. (2010) reported that it took an average of 20
hours to annotate coreferential relations in a single
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document with an average length of 6,155 words,
while an annotator could annotate 3,000 words per
hour in POS tag annotation (Marcus et al., 1993).

The simplest approach to avoid the time-
consuming data annotation in a new domain is
to train a coreference resolution system on a
resource-rich domain and apply it to a different
target domain without any additional data anno-
tation. Although coreference resolution systems
work well on test texts in the same domain as
the training texts, there is a huge performance
drop when they are tested on a different domain.
This motivates the usage of domain adaptation
techniques for coreference resolution: adapting a
coreference resolution system from one source do-
main in which we have a large collection of an-
notated data, to a second target domain in which
we need good performance. It is almost inevitable
that we annotatesome data in the target domain to
achieve good coreference resolution performance.
The question is how to minimize the amount of an-
notation needed. In the literature, active learning
has been exploited to reduce the amount of anno-
tation needed (Lewis and Gale, 1994). In contrast
to annotating the entire data set, active learning se-
lects only a subset of the data to annotate in an iter-
ative process. How to apply active learning and in-
tegrate it with domain adaptation remains an open
problem for coreference resolution.

In this paper, we explore domain adaptation
for coreference resolution from the resource-rich
newswire domain to the biomedical domain. Our
approach comprises domain adaptation, active
learning, and target domain instance weighting
to leverage the existing annotated corpora from
the newswire domain, so as to reduce the cost
of developing a coreference resolution system in
the biomedical domain. Our approach achieves
comparable coreference resolution performance
on MEDLINE abstracts, but with a large reduction
in the number of training instances that we need to
annotate. To the best of our knowledge, our work
is the first to combine domain adaptation and ac-
tive learning for coreference resolution.

The rest of this paper is organized as follows.
We first review the related work in Section 2. Then
we describe the coreference resolution system in
Section 3, and the domain adaptation and active
learning techniques in Section 4. Experimental re-
sults are presented in Section 5. Finally, we ana-
lyze the results in Section 6 and conclude in Sec-

tion 7.

2 Related Work

Not only is there a relatively small body of prior
research on coreference resolution in the biomed-
ical domain, there are also fewer annotated cor-
pora in this domain. Castaño et al. (2002) were
among the first to annotate coreferential relations
in the biomedical domain. Their annotation only
concerned the pronominal and nominal anaphoric
expressions in 46 biomedical abstracts. Gasperin
and Briscoe (2007) annotated coreferential rela-
tions on 5 full articles in the biomedical domain,
but only on noun phrases referring to bio-entities.
Yang et al. (2004) annotated full NP coreferential
relations on biomedical abstracts of the GENIA
corpus. The ongoing project of the CRAFT cor-
pus is expected to annotate all coreferential rela-
tions on full text of biomedical articles (Cohen et
al., 2010).

Unlike the work of (Castãno et al., 2002),
(Gasperin and Briscoe, 2008), and (Gasperin,
2009) that resolved coreferential relations on cer-
tain restricted entities in the biomedical domain,
we resolve all NP coreferential relations. Al-
though the GENIA corpus contains 1,999 biomed-
ical abstracts, Yang et al. (2004) tested only on 200
abstracts under 5-fold cross validation. In contrast,
we randomly selected 399 abstracts in the 1,999
MEDLINE abstracts of the GENIA-MEDCo cor-
pus as the test set, and as such our evaluation was
carried out on a larger scale.

Domain adaptation has been studied and suc-
cessfully applied to many natural language pro-
cessing tasks (Jiang and Zhai, 2007; Daume III,
2007; Dahlmeier and Ng, 2010; Yang et al., 2012).
On the other hand, active learning has also been
applied to NLP tasks to reduce the need of data an-
notation in the literature (Tang et al., 2002; Laws
et al., 2012; Miller et al., 2012). Unlike the afore-
mentioned work that applied only one of domain
adaptation or active learning to NLP tasks, we
combine both. There is relatively less research
on combining domain adaptation and active learn-
ing together for NLP tasks (Chan and Ng, 2007;
Zhong et al., 2008; Rai et al., 2010). Chan and
Ng (2007) and Zhong et al. (2008) usedcount
merging and augment, respectively, as their do-
main adaptation techniques whereas we apply and
compare multiple state-of-the-art domain adapta-
tion techniques. Rai et al. (2010) exploited a
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streaming active learning setting whereas ours is
pool-based.

Dahlmeier and Ng (2010) evaluated the perfor-
mance of three previously proposed domain adap-
tation algorithms for semantic role labeling. They
evaluated the performance of domain adaptation
with different sizes of target domain training data.
In each of their experiments with a certain target
domain training data size, the target domain train-
ing data were added all at once. In contrast, we add
the target domain training instances selectively in
an iterative process. Different from (Dahlmeier
and Ng, 2010), we weight the target domain in-
stances to further boost the performance of do-
main adaptation. Our work is the first system-
atic study of domain adaptation with active learn-
ing for coreference resolution. Although Gasperin
(2009) tried to apply active learning for anaphora
resolution, her results were negative: using ac-
tive learning was not better than randomly select-
ing instances in her work. Miwa et al. (2012)
incorporated a rule-based coreference resolution
system for automatic biomedical event extraction,
and showed that by adding training data from other
domains as supplementary training data and us-
ing domain adaptation, one can achieve a higher
F-measure in event extraction.

3 Coreference Resolution

The gold standard annotation and the output by a
coreference resolution system are called the key
and the response, respectively. In both the key and
the response, a coreference chain is formed by a
set of coreferential markables. Amarkable is a
noun phrase which satisfies the markable defini-
tion in an individual corpus. Here is an example:

When the same MTHC lines are ex-
posed to TNF-alpha in combination with
IFN-gamma,the cells instead become
DC.

In the above sentence,the same MTHC lines
and the cells are referring to the same entity and
hence are coreferential. It is possible that more
than two markables are coreferential in a text. The
task of coreference resolution is to determine these
relations in a given text.

To evaluate the performance of coreference res-
olution, we follow the MUC evaluation metric in-
troduced by (Vilain et al., 1995). LetSi be an
equivalence class generated by the key (i.e.,Si

is a coreference chain), andp(Si) be a partition
of Si relative to the response. Recall is the num-
ber of correctly identified links over the number of

links in the key: Recall =
∑

(|Si|−|p(Si)|)∑
(|Si|−1)

. Pre-

cision, on the other hand, is defined in the oppo-
site way by switching the role of key and response.
F-measure is a trade-off between recall and preci-
sion:F = 2·Recall·Precision

Recall+Precision .

4 Domain Adaptation with Active
Learning

4.1 Domain Adaptation

Domain adaptation is applicable when one has
a large amount of annotated training data in the
source domain and a small amount or none of
the annotated training data in the target domain.
We evaluate the AUGMENT technique introduced
by (Daume III, 2007), as well as the INSTANCE

WEIGHTING (IW) and the INSTANCE PRUNING

(IP) techniques introduced by (Jiang and Zhai,
2007).

4.1.1 AUGMENT

Daume III (2007) introduced a simple domain
adaptation technique by feature space augmenta-
tion. It maps the feature space of each instance
into a feature space of higher dimension. Suppose
x is the feature vector of an instance. DefineΦs

and Φt to be the mappings of an instance from
the original feature space to an augmented feature
space in the source and the target domain, respec-
tively:

Φs(x) = 〈x, x,0〉 (1)

Φt(x) = 〈x,0, x〉 (2)

where0 = 〈0, 0, . . . , 0〉 is a zero vector of length
|x|. The mapping can be treated as taking each
feature in the original feature space and making
three versions of it: a general version, a source-
specific version, and a target-specific version. The
augmented source domain data will contain only
the general and the source-specific versions, while
the augmented target domain data will contain
only the general and the target-specific versions.

4.1.2 INSTANCE WEIGHTING and INSTANCE

PRUNING

Let x andy be the feature vector and the corre-
sponding true label of an instance, respectively.

23



Jiang and Zhai (2007) pointed out that when ap-
plying a classifier trained on a source domain to
a target domain, the joint probabilityPt(x, y) in
the target domain may be different from the joint
probability Ps(x, y) in the source domain. They
proposed a general framework to usePs(x, y) to
estimatePt(x, y). The joint probabilityP (x, y)
can be factored intoP (x, y) = P (y|x)P (x). The
adaptation of the first component is labeling adap-
tation, while the adaptation of the second compo-
nent is instance adaptation. We explore only label-
ing adaptation.

To calibrate the conditional probabilityP (y|x)
from the source domain to the target domain, ide-
ally each source domain training instance(xi, yi)
should be given a weightPt(ys

i |xs
i )

Ps(ys
i |xs

i )
. Although

Ps(ys
i |xs

i ) can be estimated from the source do-
main training data, the estimation ofPt(ys

i |xs
i )

is much harder. Jiang and Zhai(2007) proposed
two methods to estimatePt(ys

i |xs
i ): INSTANCE

WEIGHTING and INSTANCE PRUNING. Both
methods first train a classifier with a small amount
of target domain training data. Then, INSTANCE

WEIGHTING directly estimatesPt(ys
i |xs

i ) using
the trained classifier. INSTANCEPRUNING, on the
other hand, removes the topN source domain in-
stances that are predicted wrongly, ranked by the
prediction confidence.

4.1.3 Target Domain Instance Weighting

Both INSTANCE WEIGHTING and INSTANCE

PRUNING set the weights of the source domain
instances. In domain adaptation, there are typi-
cally many more source domain training instances
than target domain training instances. Target do-
main instance weighting can effectively reduce the
imbalance. Unlike INSTANCE WEIGHTING and
INSTANCE PRUNING in which each source do-
main instance is weighted individually, we give
all target domain instances the same weight. This
target domain instance weighting scheme is not
only complementary to INSTANCE WEIGHTING

and INSTANCE PRUNING, but is also applicable
to AUGMENT.

4.2 Active Learning

Active learning iteratively selects the most infor-
mative instances to label, adds them to the train-
ing data pool, and trains a new classifier with the
enlarged data pool. We follow (Lewis and Gale,
1994) and use the uncertainty sampling strategy in
our active learning setting.

Ds ← the set of source domain training instances
Dt ← the set of target domain training instances
Da ← ∅
Γ← coreference resolution system trained onDs

T ← number of iterations
for i from 1 to T do

for eachdi ∈ Dt do
d̂i ← prediction ofdi usingΓ

pi ← prediction confidence of̂di

end for
D′

a ← topN instances with the lowestpi

Da ← Da + D′
a

Dt ← Dt −D′
a

provide correct labels to the unlabeled instances inD′
a

Γ ← coreference resolution system trained onDs and
Da using the chosen domain adaptation technique

end for

Figure 1: An algorithm for domain adaptation
with active learning

4.3 Domain Adaptation with Active Learning

Combining domain adaptation and active learning
together, the algorithm we use is shown in Figure
1.

In our domain adaptation setting, there is a pa-
rameterλt for target domain instance weighting.
Because the number of target domain instances is
different in each iteration, the weight should be ad-
justed in each iteration. We give all target domain
training instances an equal weight ofλt = Ns/Nt,
whereNs andNt are the numbers of instances in
the source domain and the target domain in the
current iteration, respectively. We setN = 10 to
add 10 instances in each iteration to speed up the
active learning process.

To provide the correct labels, the labeling pro-
cess shows the text on the screen, highlights the
two NPs, and asks the annotator to decide if they
are coreferential. In our experiments, this is simu-
lated by providing the gold standard coreferential
information on this NP pair to the active learning
process.

5 Experiments

5.1 The Corpora

We explore domain adaptation from the newswire
domain to the biomedical domain. The newswire
and biomedical domain data that we use are the
ACE Phase-2 corpora and the GENIA-MEDCo
corpus, respectively. The ACE corpora con-
tain 422 and 92 training and test texts, re-
spectively (NIST, 2002). The texts come from
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three newswire sources: BNEWS, NPAPER, and
NWIRE. The GENIA-MEDCo corpus contains
1,999 MEDLINE abstracts1. We randomly split
the GENIA corpus into a training set and a test
set, containing 1,600 and 399 texts, respectively.

5.2 The Coreference Resolution System

In this study, we use Reconcile, a state-of-the-
art coreference resolution system implemented by
(Stoyanov et al., 2009). The input to the corefer-
ence resolution system is raw text, and we apply a
sequence of preprocessing components to process
it. Following Reconcile, the individual prepro-
cessing steps include: 1) sentence segmentation
(using the OpenNLP toolkit2); 2) tokenization (us-
ing the OpenNLP toolkit); 3) POS tagging (using
the OpenNLP toolkit); 4) syntactic parsing (using
the Berkeley Parser3); and 5) named entity recog-
nition (using the Stanford NER4). Markables are
extracted as defined in each individual corpus. All
possible markable pairs in the training and test set
are extracted to form training and test instances,
respectively. The learning algorithm we use is
maximum entropy modeling, implemented in the
DALR package5 (Jiang and Zhai, 2007). The
coreference resolution system employs a compre-
hensive set of 62 features to represent each train-
ing and test instance, including lexical, proximity,
grammatical, and semantic features (Stoyanov et
al., 2009). We do not introduce additional features
motivated from the biomedical domain, but use the
same feature set for both the source and target do-
mains.

5.3 Preprocessing

For the ACE corpora, all preprocessing compo-
nents use the original models (provided by the
OpenNLP toolkit, the Berkeley Parser, and the
Stanford NER). For the GENIA corpus, since it is
from a very different domain, the original models
do not perform well. However, the GENIA cor-
pus contains multiple layers of annotations. We
use these annotations to re-train each of the pre-
processing components (except tokenization) us-
ing the 1,600 training texts of the GENIA cor-

1http://nlp.i2r.a-star.edu.sg/medco.html
2http://opennlp.sourceforge.net/
3http://code.google.com/p/berkeleyparser/
4http://nlp.stanford.edu/ner/
5http://www.mysmu.edu/faculty/jingjiang/software/

DALR.html

NPAPER NPAPER GENIA GENIA
TRAIN TEST TRAIN TEST

Number of Docs
76 17 1,600 399

Number of Words
Total 68,463 17,350 391,380 95,405
Avg. 900.8 1,020.6 244.6 239.1

Number of Markables
Total 21,492 5,153 99,408 24,397
Avg. 282.8 303.1 62.1 61.1

Number of Instances
Total 3,365,680 871,314 3,335,640 798,844
Avg. 44,285.3 51,253.8 2,084.8 2,002.1

Table 1: Statistics of the NPAPER and GENIA
data sets

pus6. We do not use any texts from the test set
when training these models. Also, we do not use
any NLP toolkits from the biomedical domain, but
only use general toolkits trained with biomedical
training data. These re-trained preprocessing com-
ponents are then applied to process the entire GE-
NIA corpus, including both the training and test
sets.

Instead of using the entire ACE corpora, we
choose the NPAPER portion of the ACE corpora
as the source domain in the experiments, because
it is the best performing one among the three por-
tions. Under these preprocessing settings, the
recall percentages of markable extraction on the
training and test set of the NPAPER corpus are
94.5% and 95.5% respectively, while the recall
percentages of markable extraction on the training
and test set of the GENIA corpus are 87.6% and
86.6% respectively. The statistics of the NPAPER
and the GENIA corpora are listed in Table 1.

5.4 Baseline Results

Under our experimental settings, a coreference
resolution system that is trained on the NPA-
PER training set and tested on the NPAPER test
set achieves recall, precision, and F-measure of
59.0%, 70.6%, and 64.3%, respectively. This
is comparable to the state-of-the-art performance
(Stoyanov et al., 2009). Table 2 compares the per-
formance of testing on the GENIA test set, but
training with the GENIA training set or the NPA-
PER training set. Training with in-domain data
achieves an F-measure that is 9.1% higher than
training with out-of-domain data. Training with

6It turned out that the re-trained tokenization model gave
poorer performance and produced many errors on punctua-
tion symbols. Thus, we stuck to using the original tokeniza-
tion model.
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Training Set Recall Precision F-measure
GENIA Training Set 37.7 71.9 49.5

NPAPER Training Set 30.3 60.7 40.4

Table 2: MUC F-measures on the GENIA test set

in-domain data is better than training with out-of-
domain data for both recall and precision. This
confirms the impact of domain difference between
the newswire and the biomedical domain.

5.5 Domain Adaptation with Active Learning

In the experiments on domain adaptation with ac-
tive learning for coreference resolution, we as-
sume that the source domain training data are an-
notated. The target domain training data arenot
annotated but are used as a data pool for instance
selection. The algorithm selects the instances in
the data pool to annotate and add them to the train-
ing data to update the classifier. The target domain
test set is strictly separated from this data pool, i.e.,
none of the target domain test data are used in the
instance selection process of active learning.

From Table 1, one can see that both training sets
in the NPAPER and the GENIA corpora contain
large numbers of training instances. Instead of us-
ing the entire training sets in the experiments, we
use a smaller subset due to several reasons. First,
to train a coreference resolution classifier, we do
not need so much training data (Soon et al., 2001).
Second, a large number of training instances will
slow the active learning process. Third, a smaller
source domain training corpus suggests a more
modest annotation effort even on the source do-
main. Lastly, a smaller target domain training cor-
pus means that fewer words need to be read by
human annotators to label the data.

We randomly choose 10 NPAPER texts as the
source domain training set. A coreference resolu-
tion system that is trained on these 10 texts and
tested on the entire NPAPER test set achieves re-
call, precision, and F-measure of 60.3%, 70.6%,
and 65.0%, respectively. This is comparable to
(actually slightly better than) a system trained on
the entire NPAPER training set. As for the GE-
NIA training set, we randomly choose 40 texts as
the target domain training data. To avoid selec-
tion bias, we perform 5 random trials, i.e., choos-
ing 5 sets, each containing 40 randomly selected
GENIA training texts. In the rest of this paper, all
performances of using40 GENIA training texts are
the average scores over 5 runs, each of which uses

a different set of 40 texts.

In the previous section, we have presented the
domain adaptation techniques, the active learning
algorithm, as well as the target domain instance
weighting scheme. In the rest of this section, we
present the experimental results to show how do-
main adaptation, active learning, and target do-
main instance weighting help coreference resolu-
tion in a new domain. We useAugment, IW, and
IP to denote the three domain adaptation tech-
niques: AUGMENT, INSTANCE WEIGHTING, and
INSTANCE PRUNING, respectively. For a further
comparison, we explore another baseline method,
which is simply a concatenation of the source and
target domain data together, calledCombine in the
rest of this paper. In all the experiments with ac-
tive learning, we run 100 iterations, which result
in the selection of 1,000 target domain instances.

The first experiment is to measure the effective-
ness of target domain instance weighting. We fix
on the use of uncertainty-based active learning,
and compare weighting and without weighting of
target domain instances (denoted asWeighted and
Unweighted). The learning curves are shown in
Figure 2. ForCombine, Augment, andIP, it can be
seen thatWeighted is a clear winner. As forIW, at
the beginning of active learning,Unweighted out-
performsWeighted, though it is unstable. At the
end of 100 iterations,Weighted outperformsUn-
weighted.

Since Weighted outperformsUnweighted, we
fix on the use ofWeighted and explore the effec-
tiveness of active learning. For comparison, we try
another iterative process that randomly selects 10
instances in each iteration. We found that selection
of instances using active learning achieved better
performance than random selection in all cases.
This is because random selection may select in-
stances that the classifier has very high confidence
in, which will not help in improving the classifier.

In the third experiment, we fix on the use of
Weighted andUncertainty since they perform the
best, and evaluate the effect of different domain
adaptation techniques. The learning curves are
shown in Figure 3. It can be seen thatAugment
is the best performing system. For a closer look,
we tabulate the results in Table 3, with the statisti-
cal significance levels indicated. Statistical signif-
icance tests were conducted following (Chinchor,
2011).
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Figure 2: Learning curves of comparing target domain instances weighted vs. unweighted. All systems
use uncertainty-based active learning.

Iteration 0 10 20 30 40 60 80 100
Combine+Unweighted 39.8 40.7 40.9 41.1 41.4 40.4 41.6 42.1
Combine+Weighted 39.8 40.9 44.0** 44.8** 45.2** 48.0** 47.7** 47.6**
Augment+Weighted 39.8 44.1** †† 46.0** †† 47.0** †† 47.8** †† 49.1** †† 49.1** †† 49.0** ††

IW+Weighted 39.8 24.3 33.1 36.8 38.1 45.0** 48.2**†† 48.3**††
IP+Weighted 39.8 34.4 40.7 43.4** 46.2**†† 48.0** 48.5**†† 48.5**††

Table 3: MUC F-measures of different active learning settings on the GENIA test set. All systems use
Uncertainty. Statistical significance is compared againstCombine+Unweighted, where * and ** stand
for p < 0.05 andp < 0.01, respectively, and compared againstCombine+Weighted, where†and††stand
for p < 0.05 andp < 0.01, respectively.

6 Analysis

Using only the source domain training data,
a coreference resolution system achieves an F-
measure of 39.8% on the GENIA test set (the col-
umn of “Iteration 0” in Table 3). From Figure 3
and Table 3, we can see that in the first few iter-
ations of active learning, domain adaptation does
not perform as well as using only the source do-
main training data. This is because when there
are very limited target domain data, the estima-
tion of the target domain is unreliable. Dahlmeier
and Ng (2010) reported similar findings though
they did not use active learning. With more iter-
ations, i.e., more target domain training data, do-
main adaptation is clearly superior. Among the
three domain adaptation techniques,Augment is

better thanIW andIP. It not only achieves a higher
F-measure, but also a faster speed to adapt to a
new domain in active learning. Also, similar to
(Dahlmeier and Ng, 2010), we find thatIP is gen-
erally better thanIW. All systems (exceptIW)
with Weighted performs much better thanCom-
bine+Unweighted. This shows the effectiveness
of target domain instance weighting. The aver-
age recall, precision, and F-measure of our best
model, Augment+Weighted, after 100 iterations
are 37.3%, 71.5%, and 49.0%, respectively. Com-
pared to training with only the NPAPER training
data, not only the F-measure, but also both the re-
call and precision are greatly improved (cf Table
2).

Among all the target domain instances that were
selected inAugment+Weighted, the average dis-
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Figure 3: Learning curves of different domain
adaptation methods. All systems useWeighted and
Uncertainty.

tance of the two markables in an instance (mea-
sured in sentence) is 3.4 (averaged over the 5
runs), which means an annotator needs to read 4
sentences on average to annotate an instance.

We also investigate the difference of corefer-
ence resolution between the newswire domain and
the biomedical domain, and the instances that
were selected in active learning which represent
this difference. One of the reasons that corefer-
ence resolution differs in the two domains is that
scientific writing in biomedical texts frequently
compares entities. For example,

In Cushing’s syndrome, the CR of GR
was normal in spite of the fact that the
CR of plasma cortisol was disturbed.

The twoCRs refer to different entities and hence
are not coreferential. However, a system trained
on NPAPER predicts them as coreferential. In
the newswire domain, comparisons are less likely,
especially for named entities. For example, in
the newswire domain,London in most cases is
coreferential to otherLondons. However, in the
biomedical domain,DNAs as inDNA of human
beings and DNA of monkeys are different enti-
ties. A coreference resolution system trained on
the newswire domain is unable to capture the dif-
ference between these two named entities, hence
predicting them as coreferential. This also jus-
tifies the need for domain adaptation for corefer-
ence resolution. For the above sentence, after ap-
plying our method, the adapted coreference res-
olution system is able to predict the twoCRs as
non-coreferential.

Next, we show the effectiveness of our sys-
tem using domain adaptation with active learning
compared to a system trained with full corefer-
ence annotations. Averaged over 5 runs, a system

trained on a single GENIA training text achieves
an F-measure of 25.9%, which is significantly
lower than that achieved by our method. With
more GENIA training texts added, the F-measure
increases. After 80 texts are used, the system
trained on full annotations finally achieves an F-
measure of 49.2%, which is 0.2% higher thanAug-
ment+Weighted after 100 iterations. However, af-
ter 100 iterations, only 1,000 target domain in-
stances are annotated under our framework. Con-
sidering that one single text in the GENIA corpus
contains an average of over 2,000 instances (cf Ta-
ble 1), effectively we annotate only half of a text.
Compared to the 80 training texts needed, this is a
huge reduction. In order to achieve similar perfor-
mance, we only need to annotate 1/160 or 0.63%
of the complete set of training instances under our
framework of domain adaptation with active learn-
ing.

Lastly, although in this paper we reported exper-
imental results with the MUC evaluation metric,
we also evaluated our approach with other evalu-
ation metrics for coreference resolution, e.g., the
B-CUBED metric, and obtained similar findings.

7 Conclusion

In this paper, we presented an approach using
domain adaptation with active learning to adapt
coreference resolution from the newswire domain
to the biomedical domain. We explored the ef-
fect of domain adaptation, active learning, and
target domain instance weighting for coreference
resolution. Experimental results showed that do-
main adaptation with active learning and the tar-
get instance weighting scheme achieved a simi-
lar performance on MEDLINE abstracts but with
a greatly reduced number of annotated training
instances, compared to a system trained on full
coreference annotations.
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