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Abstract

In the literature, most prior work on
coreference resolution centered on the
newswire domain. Although a coreference
resolution system trained on the newswire
domain performs well on newswire texts,
there is a huge performance drop whenitis
applied to the biomedical domain. In this
paper, we present an approach integrat-
ing domain adaptation with active learning
to adapt coreference resolution from the
newswire domain to the biomedical do-
main. We explore the effect of domain
adaptation, active learning, and target do-
main instance weighting for coreference
resolution. Experimental results show
that domain adaptation with active learn-
ing and target domain instance weighting
achieves performance on MEDLINE ab-
stracts similar to a system trained on coref-
erence annotation of only target domain
training instances, but with a greatly re-
duced number of target domain training
instances that we need to annotate.
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creasing number of biomedical texts, including re-
search papers, patent documents, etc. This results
in an increasing demand for applying natural lan-
guage processing and information retrieval tech-
niques to efficiently exploit information contained

in these large amounts of texts. However, corefer-
ence resolution, one of the core tasks in NLP, has
only a relatively small body of prior research in
the biomedical domain (Kim et al., 2011a; Kim et
al., 2011b).

A large body of prior research on coreference
resolution focuses on texts in the newswire do-
main. Standardized data sets, such as MUC
(DARPA Message Understanding Conference,
(MUC-6, 1995; MUC-7, 1998)) and ACE (NIST
Automatic Content Extraction Entity Detection
and Tracking task, (NIST, 2002)) data sets are
widely used in the study of coreference resolution.

Traditionally, in order to apply supervised ma-
chine learning approaches to an NLP task in a spe-
cific domain, one needs to collect a text corpus
in the domain and annotate it to serve as training
data. Compared to other NLP tasks, e.g., part-of-
speech (POS) tagging or named entity (NE) tag-
ging, the annotation for coreference resolution is
much more challenging and time-consuming. The

Coreference resolution is the task of determin+eason is that in tasks like POS tagging, an annota-
ing whether two or more noun phrases (NPs) irtor only needs to focus on each markable (a word,
a text refer to the same entity. Successful corefin the case of POS tagging) and a small window
erence resolution benefits many natural languagef its neighboring words. In contrast, to annotate
processing (NLP) tasks, such as information exa coreferential relation, an annotator needs to first
traction and question answering. In the literaturerecognize whether a certain text span is a mark-
most prior work on coreference resolution recasta&ble, and then scan through the text preceding the
the problem as a two-class classification problemmarkable (a potential anaphor) to look for the an-
Machine learning-based classifiers are applied ttecedent. It also requires the annotator to under-
determine whether a candidate anaphor and a patand the text in order to annotate coreferential re-
tential antecedent are coreferential (Soon et allations, which aresemantic in nature. If a mark-
2001; Ng and Cardie, 2002; Stoyanov et al., 2009able is non-anaphoric, the annotator has to scan to
Zhao and Ng, 2010). the beginning of the text to realize that. Cohen
In recent years, with the advances in biologi-et al. (2010) reported that it took an average of 20
cal and life science research, there is a rapidly inhours to annotate coreferential relations in a single
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document with an average length of 6,155 wordstion 7.
while an annotator could annotate 3,000 words per
hour in POS tag annotation (Marcus et al., 1993).2 Related Work

The _S|mp(;eft apprct)atgh t_o avoid tge t'.me.'Not only is there a relatively small body of prior
consuming data annotation In a new domain IS‘research on coreference resolution in the biomed-

to train a coreference resolution system on a .
. . . y . ical domain, there are also fewer annotated cor-
resource-rich domain and apply it to a different

¢ td i without dditional dat pora in this domain. Cadia et al. (2002) were
arget domain without any additional data anno'among the first to annotate coreferential relations

K well test texts in th q M3, the biomedical domain. Their annotation only
work wetl on fest Iexts in the same domain as.,, ered the pronominal and nominal anaphoric
the training texts, there is a huge performanc

eexpressions in 46 biomedical abstracts. Gasperin

irhqp Wh?.n tth ey t:;re tested O? g dlffe_rentddo?q?lnand Briscoe (2007) annotated coreferential rela-
IS motlvates he usage of domain adapta IorEions on 5 full articles in the biomedical domain,

techniques for coreference resolution: adapting But only on noun phrases referring to bio-entities.

i in which h | llecti ¢ O\?ang et al. (2004) annotated full NP coreferential
m‘?rl[ |g \(;v tlc twe ave ?j ?rge tcg ection o ?}r_]'relations on biomedical abstracts of the GENIA
notated data, 10 a second target domain in whic orpus. The ongoing project of the CRAFT cor-

l/;/]e tneed goo:j ferfor(rjnetnc_e.ﬂl]t 'St alm(t)zt me\{'tib Iepus is expected to annotate all coreferential rela-
at we ahnotateome data In the target domain to ¢ o fyIl text of biomedical articles (Cohen et

achieve good coreference resolution performancea.| 2010)
The question is how to minimize the amount of an- "Unlike 'the work of (Casto et al., 2002)

notation needed. In the literature, active Ieamin(‘:{Gasperin and Briscoe, 2008), and (Gasperin

has been exploited to reduce the amount of anng; . .
. . 009) that resolved coreferential relations on cer-
tation needed (Lewis and Gale, 1994). In contrasy . . . . . :
. : . . tain restricted entities in the biomedical domain,
to annotating the entire data set, active learning se- . .
. . we resolve all NP coreferential relations. Al-
lects only a subset of the data to annotate in an iter- . ;
ative process. How to apply active learning and in-though the GENIA corpus contains 1,999 biomed-
Process. 0 apply ac 'ng ical abstracts, Yang et al. (2004) tested only on 200
tegrate it with domain adaptation remains an open L
roblem for coreference resolution abstracts under 5-fold cross validation. In contrast,
P _ - ~we randomly selected 399 abstracts in the 1,999
In this paper, we explore domain adaptationEDLINE abstracts of the GENIA-MEDCo cor-
for coreference resolution from the resource-ricfbus as the test set, and as such our evaluation was
newswire domain to the biomedical domain. Ourcarried out on a larger scale.
approach comprises domain adaptation, active pomain adaptation has been studied and suc-

learning, and target domain instance weighting:essfu”y applied to many natural language pro-
to leverage the existing annotated corpora fro”bessing tasks (Jiang and Zhai, 2007; Daume IIl,
the newswire domain, so as to reduce the COS}OO?; Dahlmeier and Ng, 2010; Yang et al., 2012).
of developing a coreference resolution system iy, the other hand, active learning has also been
the biomedical domain. Our approach achievegyjied to NLP tasks to reduce the need of data an-
comparable coreference resolution performancggiation in the literature (Tang et al., 2002; Laws
on MEDLINE abstracts, but with a large reduction et al., 2012; Miller et al., 2012). Unlike the afore-
in the number of training instances that we need t¢uentioned work that applied only one of domain
annotate. To the best of our knowledge, Ourworkadaptation or active learning to NLP tasks, we
is the first to combine domain adaptation and actombine both. There is relatively less research
tive learning for coreference resolution. on combining domain adaptation and active learn-
The rest of this paper is organized as follows.ing together for NLP tasks (Chan and Ng, 2007;
We first review the related work in Section 2. ThenZhong et al., 2008; Rai et al., 2010). Chan and
we describe the coreference resolution system ihg (2007) and Zhong et al. (2008) usedunt
Section 3, and the domain adaptation and activenerging and augment, respectively, as their do-
learning techniques in Section 4. Experimental remain adaptation techniques whereas we apply and
sults are presented in Section 5. Finally, we anaecompare multiple state-of-the-art domain adapta-
lyze the results in Section 6 and conclude in Section techniques. Rai et al. (2010) exploited a
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streaming active learning setting whereas ours iss a coreference chain), andsS;) be a partition
pool-based. of S; relative to the response. Recall is the num-

Dahimeier and Ng (2010) evaluated the perfor-ber of correctly identified links over the number of
mance of three previously proposed domain adapinks in the key: Recall = 2 USil=p(S))  pre.
tation algorithms for semantic role labeling. They 2.(5:1-1)

luated th f f domain adaptati cision, on the other hand, is defined in the oppo-
evaluate € periormance of domain adaptatiog;, way by switching the role of key and response.
with different sizes of target domain training data.

: ) _ _ F-measure is a trade-off between recall and preci-
In each of their experiments with a certain targetsion_F _ 9.Recall-Precision

domain training data size, the target domain train- Recall+Precision *

ing data were added all atonce. Incontrast, weadd Domain Adaptation with Active

the target domain training instances selectively in Learning

an iterative process. Different from (Dahlmeier

and Ng, 2010), we weight the target domain in-4.1 Domain Adaptation

stances to further boost the performance of dobomain adaptation is applicable when one has
main adaptation. Our work is the first system-a |large amount of annotated training data in the
atic study of domain adaptation with active |earn-source domain and a small amount or none of
ing for coreference resolution. Although Gasperinthe annotated training data in the target domain.
(20009) tried to apply active learning for anaphorawe evaluate the BGMENT technique introduced
resolution, her results were negative: using achy (Daume Ill, 2007), as well as thei$ TANCE
tive learning was not better than randomly select\we|cHTING (IW) and the NSTANCE PRUNING

ing instances in her work. Miwa et al. (2012) (|P) techniques introduced by (Jiang and Zhai,
incorporated a rule-based coreference resolutiopoQ7).

system for automatic biomedical event extraction,

and showed that by adding training data from otheft-1-1  AUGMENT

domains as supplementary training data and ud2aume Il (2007) introduced a simple domain
ing domain adaptation, one can achieve a higheadaptation technique by feature space augmenta-

F-measure in event extraction. tion. It maps the feature space of each instance
. into a feature space of higher dimension. Suppose
3 Coreference Resolution z is the feature vector of an instance. Defibe

nd ®' to be the mappings of an instance from
e original feature space to an augmented feature
ace in the source and the target domain, respec-

The gold standard annotation and the output by
coreference resolution system are called the ke
and the response, respectively. In both the key an

the response, a coreference chain is formed by vely:
set of coreferential markables. warkable is a .
noun phrase which satisfies the markable defini- ®*(2) = (z,2,0) @)
tion in an individual corpus. Here is an example:
t
When the same MTHC lines are ex- (@) = (2, 0,2) 2)
posed to TNF-alpha in combination with where0 = (0,0, ...,0) is a zero vector of length
IFN-gamma, the cells instead become |x|. The mapping can be treated as taking each
DC. feature in the original feature space and making

. three versions of it: a general version, a source-
In the above sentencéhe same MTHC lines  specific version, and a target-specific version. The
andthe cells are referring to the same entity and gugmented source domain data will contain only

hence are coreferential. It is possible that morghe general and the source-specific versions, while
than two markables are coreferential in a text. Th@he augmented target domain data will contain

task of coreference resolution is to determine thesgn|y the general and the target-specific versions.
relations in a given text.

To evaluate the performance of coreference res#-1.2  INSTANCE WEIGHTING and I NSTANCE
olution, we follow the MUC evaluation metric in- PRUNING
troduced by (Vilain et al., 1995). Le%; be an Let x andy be the feature vector and the corre-
equivalence class generated by the key (i%., sponding true label of an instance, respectively.
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Jia_ng and Zh&_li_ (2007_) pointed out that wheh aPr D, — the set of source domain training instances
plying a classifier trained on a source domain t@ D, « the set of target domain training instances
a target domaln_, the joint p!’obabllltl;?t(a:, y) ”.1 . I' — coreference resolution system trainedion
the target domain may be different from the jointl 7 _ number of iterations

probability P;(x,y) in the source domain. They | forifrom1to Tdo

proposed a general framework to UBgx, ) to forfa"hdir;izfiodnoofd_ -
estimateP,(x,y). The joint probability P(z,y) p: nge diction Conlﬁ denge of.

can be factored int®(x,y) = P(y|z)P(x). The end for

adaptation of the first component is labeling adap Dy — top N instances with the lowest

tation, while the adaptation of the second compo Da = Da+ D,

.. . Dt — Dt — D;
nentis instance adaptation. We explore only label provide correct labels to the unlabeled instance®jn

ing adaptation. I' — coreference resolution system trained/@nand

To calibrate the conditional probabilit@(y\x) D,, using the chosen domain adaptation technique
from the source domain to the target domain, ide
ally each source domain training instar(eg, v;)

should be given a We'ghgtif,ﬁ)) Although ~ Figure 1. An algorithm for domain adaptation

Py(yf|z7) can be estimated from the source do-With active learning

main training data, the estimation &% (y;|z?)
is much harder. Jiang and Zhai(2007) proposed.3 Domain Adaptation with Active Learning
two methods to estimat®;(y;|z;): INSTANCE
WEIGHTING and INSTANCE PRUNING. Both
methods first train a classifier with a small amoun
of target domain training data. TherNdTANCE
WEIGHTING directly estimatesP;(y;|z;) using

end for

Combining domain adaptation and active learning
ttogether, the algorithm we use is shown in Figure

In our domain adaptation setting, there is a pa-
the trained classifierNSTANCE PRUNING, on the rameter), for target domain mstancc_e Welghtlng. .
L Because the number of target domain instances is
other hand, removes the tdp source domain in- . . . . .
. differentin each iteration, the weight should be ad-
stances that are predicted wrongly, ranked by the . . . . .
o : Justed in each iteration. We give all target domain
prediction confidence. . .
training instances an equal weight'of= N /N,
4.1.3 Target Domain Instance Weighting where N, and N; are the numbers of instances in
Both INSTANCE WEIGHTING and INSTANCE the source domain and the target domain in the
PRUNING set the weights of the source domaincurrent iteration, respectively. We st = 10 to
instances. In domain adaptation, there are typiadd 10 instances in each iteration to speed up the
cally many more source domain training instancegctive learning process.
than target domain training instances. Target do- To provide the correct labels, the labeling pro-
main instance weighting can effectively reduce thecess shows the text on the screen, highlights the
imbalance. Unlike NSTANCE WEIGHTING and two NPs, and asks the annotator to decide if they
INSTANCE PRUNING in which each source do- are coreferential. In our experiments, this is simu-
main instance is weighted individually, we give lated by providing the gold standard coreferential
all target domain instances the same weight. Thigrformation on this NP pair to the active learning
target domain instance weighting scheme is noprocess.
only complementary toNSTANCE WEIGHTING .
and INSTANCE PRUNING, but is also applicable S Experiments

t0 AUGMENT. 5.1 TheCorpora

4.2 ActiveLearning We explore domain adaptation from the newswire
Active learning iteratively selects the most infor- domain to the biomedical domain. The newswire
mative instances to label, adds them to the trainand biomedical domain data that we use are the
ing data pool, and trains a new classifier with theACE Phase-2 corpora and the GENIA-MEDCo
enlarged data pool. We follow (Lewis and Gale,corpus, respectively. The ACE corpora con-
1994) and use the uncertainty sampling strategy itain 422 and 92 training and test texts, re-
our active learning setting. spectively (NIST, 2002). The texts come from
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three newswire sources: BNEWS, NPAPER, and NPAPER ~ NPAPER  GENIA  GENIA

NWIRE. The GENIA-MEDCo corpus contains TRAIN__TEST __TRAN _ TEST

1,999 MEDLINE abstracts We randomly split | 76 17 1,600 399

i ini Number of Words
the GENIA corpus into a training set and a test Total | 68,463 17 350 301380 95,405
set, containing 1,600 and 399 texts, respectively. ayq. 900.8 1,020.6 244.6 239.1

Number of Markables

- Total | 21,492 5153 99,408 24,397
5.2 The Coreference Resolution System Avg. 282 8 3031 691 611
In this study, we use Reconcile, a state-of-the- Number of Instances

. . Total | 3,365,680 871,314 3,335,640 798,844
art coreference resolution system implemented by avg. | 44,2853 51,2538 20848  2,002.1

(Stoyanov et al., 2009). The input to the corefer-
ence resolution system is raw text, and we apply dable 1. Statistics of the NPAPER and GENIA
sequence of preprocessing components to procedata sets

it. Following Reconcile, the individual prepro-

cessing steps include: 1) sentence segmentatigiu$. We do not use any texts from the test set
(using the OpenNLP toolKi}; 2) tokenization (us- when training these models. Also, we do not use
ing the OpenNLP toolkit); 3) POS tagging (using any NLP toolkits from the biomedical domain, but
the OpenNLP toolkit); 4) syntactic parsing (usingonly use general toolkits trained with biomedical
the Berkeley Parséy, and 5) named entity recog- training data. These re-trained preprocessing com-
nition (using the Stanford NEf}. Markables are ponents are then applied to process the entire GE-

extracted as defined in each individual corpus. AllNjA corpus, including both the training and test
possible markable pairs in the training and test setets.

are extracted to form training and test instances, |nstead of using the entire ACE corpora, we

respectively. The learning algorithm we use ischoose the NPAPER portion of the ACE corpora
maximum entropy modeling, implemented in theas the source domain in the experiments, because
DALR packagé (Jiang and Zhai, 2007). The it js the best performing one among the three por-
coreference resolution system employs a comprajons. Under these preprocessing settings, the
hensive set of 62 features to represent each traifecall percentages of markable extraction on the
ing and test instance, including lexical, proximity, training and test set of the NPAPER corpus are
grammatical, and semantic features (Stoyanov &j4.59 and 95.5% respectively, while the recall
al., 2009). We do not introduce additional featuregyercentages of markable extraction on the training
motivated from the biomedical domain, but use theynd test set of the GENIA corpus are 87.6% and
same feature set for both the source and target d@g 694 respectively. The statistics of the NPAPER
mains. and the GENIA corpora are listed in Table 1.

5.3 Preprocessing 54 BasdineResults

For the ACE corpora, all preprocessing compo-Under our experimental settings, a coreference
nents use the original models (provided by theresolution system that is trained on the NPA-
OpenNLP toolkit, the Berkeley Parser, and thePER training set and tested on the NPAPER test
Stanford NER). For the GENIA corpus, since it isset achieves recall, precision, and F-measure of
from a very different domain, the original models 59.0%, 70.6%, and 64.3%, respectively. This
do not perform well. However, the GENIA cor- is comparable to the state-of-the-art performance
pus contains multiple layers of annotations. We(Stoyanov et al., 2009). Table 2 compares the per-
use these annotations to re-train each of the prdermance of testing on the GENIA test set, but
processing components (except tokenization) ug¥aining with the GENIA training set or the NPA-
ing the 1,600 training texts of the GENIA cor- PER training set. Training with in-domain data
achieves an F-measure that is 9.1% higher than

Ihttp://nip.i2r.a-star.edu.sg/medco.html training with out-of-domain data. Training with

2http://opennlp.sourceforge.net/

*http://code.google.com/p/berkeleyparser/ ®It turned out that the re-trained tokenization model gave

“http://nlp.stanford.edu/ner/ poorer performance and produced many errors on punctua-

Shttp://www.mysmu.edu/faculty/jingjiang/software/ tion symbols. Thus, we stuck to using the original tokeniza-
DALR.html tion model.
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Training Set Recall Precision F-measure g different set of 40 texts.
GENIA Training Set | 37.7 71.9 49.5
NPAPER Training Sef 30.3 60.7 40.4 In the previous section, we have presented the

domain adaptation techniques, the active learning
Table 2: MUC F-measures on the GENIA test sety|gorithm, as well as the target domain instance

weighting scheme. In the rest of this section, we

in-domain data is better than training with out-of- present the experimental results to show how do-
domain data for both recall and precision. Thismain adaptation, active learning, and target do-
confirms the impact of domain difference betweermain instance weighting help coreference resolu-
the newswire and the biomedical domain. tion in a new domain. We useugment, IW, and

IP to denote the three domain adaptation tech-
5.5 Domain Adaptation with Active Learning  niques: AJGMENT, INSTANCE WEIGHTING, and
INSTANCE PRUNING, respectively. For a further

In the experiments on domain adaptation with ac-

tive learning for coreference resolution, we as-COMParison, we explore another baseline method,

sume that the source domain training data are arf!Nich is simply a concatenation of the source and
notated. The target domain training data moe  {a9et domain data together, call@ambinein the

annotated but are used as a data pool for instan¢gSt Of this paper. In all the experiments with ac-
selection. The algorithm selects the instances iffV€ €aming, we run 100 iterations, which result
the data pool to annotate and add them to the trair? the selection of 1,000 target domain instances.

ing data to update the classifier. The target domain The first experiment is to measure the effective-

test set s strictly separated from this data pool, i.e pess of target domain instance weighting. We fix

none of the target domain test data are used in then the use of uncertainty-based active learning,

instance selection process of active learning. and compare weighting and without weighting of
From Table 1, one can see that both training setgrget domain instances (denotedvésghted and

in the NPAPER and the GENIA corpora containUnweighted). The learning curves are shown in

large numbers of training instances. Instead of usFigure 2. FoiCombine, Augment, andIP, it can be

ing the entire training sets in the experiments, weeen thaWeighted is a clear winner. As fofW, at

use a smaller subset due to several reasons. Firsie beginning of active learninginweighted out-

to train a coreference resolution classifier, we d@erformsWeighted, though it is unstable. At the

not need so much training data (Soon et al., 2001knd of 100 iterations\\eighted outperformsuUn-
Second, a large number of training instances willveighted.

slow the active learning process. Third, a smaller _. , :

source domain training corpus suggests a mor?XSmceV\thted outperformsUnweighted, we

modest annotation effort even on the source do.x °" the use oMeighted and explore the effec-

main. Lastly, a smaller target domain training Cor_tlveness of active learning. For comparison, we try

pus means that fewer words need to be read b n?ther |t§rat|vehptrocei§s th\f\l} r?nd%rrtlrI]y tselelzct? 10
human annotators to label the data. nfs_ ar][ces n eac_ ! era;_lonl. € _oun h_a sz T;C t',:)n
We randomly choose 10 NPAPER texts as the INSTANCES USIng active fearning achieved better
. g performance than random selection in all cases.
source domain training set. A coreference resolu: . ~. . .
. ) ) Jhls is because random selection may select in-
tion system that is trained on these 10 texts an o ) )
. . stances that the classifier has very high confidence
tested on the entire NPAPER test set achieves r?ﬁ which will not helo in imorovina the classifier
call, precision, and F-measure of 60.3%, 70.6%, "’ P P g '
and 65.0%, respectively. This is comparable to In the third experiment, we fix on the use of
(actually slightly better than) a system trained onWeighted and Uncertainty since they perform the
the entire NPAPER training set. As for the GE-best, and evaluate the effect of different domain
NIA training set, we randomly choose 40 texts asadaptation techniques. The learning curves are
the target domain training data. To avoid selecshown in Figure 3. It can be seen thaigment
tion bias, we perform 5 random trials, i.e., choos-is the best performing system. For a closer look,
ing 5 sets, each containing 40 randomly selectedve tabulate the results in Table 3, with the statisti-
GENIA training texts. In the rest of this paper, all cal significance levels indicated. Statistical signif-
performances of usirdp GENIAtrainingtextsare icance tests were conducted following (Chinchor,

the average scores over 5 runs, each of which us@911).
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Figure 2: Learning curves of comparing target domain irstamweighted vs. unweighted. All systems
use uncertainty-based active learning.

lteration 0 10 20 30 40 60 80 700
Combine+Unweighted 39.8 | 40.7 409 11 414 404 416 21
Combine+Weighted | 39.8 | 40.9 44.0% | 44.8% | 452% | 48.0% | 47.7% | 47.6%
Augment+Weighted | 39.8 | 44.07 {1 | 46.07 {1 | 47.07 1T | 4787 {1 | 49.0% {1 | 49.0% {1 | 49.07 {7

IW+Weighted 39.8 | 24.3 33.1 36.8 38.1 45.0% | 48.2%*11 | 48.3% 1t

IP+Weighted 39.8 | 34.4 40.7 43.4% | 46.2%%1f | 48.0% | 48.5%*f | 48.5%*t1

Table 3: MUC F-measures of different active learning sgttion the GENIA test set. All systems use
Uncertainty. Statistical significance is compared agai@sinbine+ Unweighted, where * and ** stand
for p < 0.05 andp < 0.01, respectively, and compared agai@simbine+Weighted, wheretandffstand
for p < 0.05 andp < 0.01, respectively.

6 Analysis better tharnW andIP. It not only achieves a higher
F-measure, but also a faster speed to adapt to a

Using only the source domain training data,New domain in active learning. Also, similar to
a coreference resolution system achieves an KDahimeier and Ng, 2010), we find thid is gen-

measure of 39.8% on the GENIA test set (the col€rally better thanlW. All systems (except\W)
umn of “Iteration 0" in Table 3). From Figure 3 With Weighted performs much better thaGom-

and Table 3, we can see that in the first few iterbinetUnweighted. This shows the effectiveness

ations of active learning, domain adaptation doe®f target domain instance weighting. The aver-
not perform as well as using only the source do2ge recall, precision, and F-measure of our best
main training data. This is because when therénodel, Augment+Weighted, after 100 iterations
are very limited target domain data, the estimaare 37.3%, 71.5%, and 49.0%, respectively. Com-
tion of the target domain is unreliable. DahlmeierPared to training with only the NPAPER training
and Ng (2010) reported similar findings thoughdata, not only the F-measure, but also both the re-
they did not use active learning. With more iter-call and precision are greatly improved (cf Table
ations, i.e., more target domain training data, do2)-

main adaptation is clearly superior. Among the Among all the target domain instances that were
three domain adaptation techniquégsigment is  selected inAugment+Weighted, the average dis-
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trained on a single GENIA training text achieves
an F-measure of 25.9%, which is significantly
lower than that achieved by our method. With
more GENIA training texts added, the F-measure
increases. After 80 texts are used, the system
trained on full annotations finally achieves an F-
measure of 49.2%, which is 0.2% higher thamg-
ment+Weighted after 100 iterations. However, af-
ter 100 iterations, only 1,000 target domain in-
Figure 3: Learning curves of different domain Stances are annotated under our framework. Con-
adaptation methods. All systems Wseightedand ~ Sidering that one single text in the GENIA corpus
Uncertainty. contains an average of over 2,000 instances (cf Ta-
ble 1), effectively we annotate only half of a text.

. ) Compared to the 80 training texts needed, this is a
tance of the two markables in an instance (Meapge reduction. In order to achieve similar perfor-

sured in sentence) is 3.4 (averaged over the jance. we only need to annotate 1/160 or 0.63%
runs), which means an annotator needs to read & e complete set of training instances under our

sentences on average to annotate an instance.  famework of domain adaptation with active learn-
We also investigate the difference of corefer-;,

ence resolution between the newswire domain and Lastly although in this paper we reported exper-

the biomedical domain, and the instances thaj,antal results with the MUC evaluation metric,

were selected in active learning which represenf,e 515 evaluated our approach with other evalu-

this difference. One of the reasons that coreferyyion metrics for coreference resolution, e.g., the

ence resolution differs in the two domains is thatg_~BED metric. and obtained similar findings.
scientific writing in biomedical texts frequently ’

MUC F-measure

compares entities. For example, 7 Conclusion
In Cushing’s syndrome, the CR of GR In this paper, we presented an approach using
was normal in spite of the fact that the domain adaptation with active learning to adapt
CR of plasma cortisol was disturbed. coreference resolution from the newswire domain

_ . to the biomedical domain. We explored the ef-
The twoCRs refer to different entities and hencefeCt of domain adaptation, active learning, and
are not coreferer:jt!al. I—Lowever, a S);stem _trla'ne(iiarget domain instance weighting for coreference
on NPAPE_R pre |c_ts them as core erentla: Inresolution. Experimental results showed that do-
the newswire domain, comparisons are less l'ke_lymain adaptation with active learning and the tar-
ehspeC|aIIy for game_d enttljtles_. For examplez Inget instance weighting scheme achieved a simi-
the newswire domainlondon in most cases is lar performance on MEDLINE abstracts but with

c_orefert_antlal to o'_theI’_ondons._ However, in the 5 greatly reduced number of annotated training
biomedical domainDNAs as inDNA of human instances, compared to a system trained on full

pemgs and DNA of monkeys_ are different _entl- coreference annotations.
ties. A coreference resolution system trained on

the newswire domain is unable to capture the dif-Acknowledgments
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