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Abstract 

Statistical learning has been proposed as one of the 

earliest strategies infants could use to segment 

words out of their native language because it does 

not rely on language-specific cues that must be 

derived from existing knowledge of the words in 

the language. Statistical word segmentation 

strategies using Bayesian inference have been 

shown to be quite successful for English 

(Goldwater et al. 2009), even when cognitively 

inspired processing constraints are integrated into 

the inference process (Pearl et al. 2011, Phillips & 

Pearl 2012). Here we test this kind of strategy on 

child-directed speech from seven languages to 

evaluate its effectiveness cross-linguistically, with 

the idea that a viable strategy should succeed in 

each case. We demonstrate that Bayesian inference 

is indeed a viable cross-linguistic strategy, 

provided the goal is to identify useful units of the 

language, which can range from sub-word 

morphology to whole words to meaningful word 

combinations. 

 

1 Introduction 

Word segmentation is one of the first tasks 

children must complete when learning their 

native language, and infants are able to identify 

words in fluent speech by around 7.5 months 

(Jusczyk & Aslin 1995; Echols et al. 1997; 

Jusczyk et al., 1993)). Proposals for learning 

strategies that can accomplish this (Saffran et al. 

1996) have centered on language-independent cues 

that are not derived from existing knowledge of 

words. Bayesian inference is a statistical strategy 

operating over transitional probability that has been 

shown to be successful for identifying words in 

English, whether the salient perceptual units are 

phonemes (Goldwater et al. 2009 [GGJ], Pearl et al. 

2011 [PGS]) or syllables (Phillips & Pearl 2012 

[P&P]), and whether the inference process is 

optimal (GGJ, PGS) or constrained by cognitive 

limitations that children may share (PGS, P&P). It 

may, however, be the case that these strategies work 

well for English, but not other languages (Fourtassi 

et al. 2013). Therefore, we evaluate this same 

learning strategy on seven languages with different 

linguistic profiles: English, German, Spanish, Italian, 

Farsi, Hungarian, and Japanese. If Bayesian 

inference is a viable strategy for word segmentation, 

it should succeed on all languages. While some 

attempts have been made to evaluate Bayesian word 

segmentation strategies on languages other than 

English (e.g., Sesotho: Johnson 2008, Blanchard et 

al. 2010), this is the first evaluation on a significant 

range of languages that we are aware of. 

   We assume the relevant perceptual units are 

syllables, following previous modeling work 

(Swingly 2005, Gambell & Yang 2006, Lignos & 

Yang 2010, Phillips & Pearl 2012) that draws from 

experimental evidence that infants younger than 7.5 

months are able to perceive syllables but not 

phonemes (Werker & Tees 1984, Juszyck & Derrah 

1987, Eimas 1999). We demonstrate that Bayesian 

word segmentation is a successful cross-linguistic 

learning strategy, provided we define success in a 

more practical way than previous word 

segmentation studies have done. We consider a 

segmentation strategy successful if it identifies units 

useful for subsequent language acquisition 

processes (e.g., meaning learning, structure 

learning). Thus, not only is the orthographic gold 

standard typically used in word segmentation tasks 

acceptable, but also productive morphology and 

coherent chunks made up of multiple words. This 

serves as a general methodological contribution 

about the definition of segmentation success, 

especially when considering that the meaningful 

units across the world’s languages may vary. 

2 The Bayesian learning strategy 

Bayesian models are well suited to questions of 

language acquisition because they distinguish 

between the learner’s pre-existing beliefs (prior) 
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and how the learner evaluates incoming data 

(likelihood), using Bayes’ theorem: 

 ( | )   ( | ) ( ) 

   The Bayesian learners we evaluate are the 

optimal learners of GGJ and the constrained 

learners of PGS. All learners are based on the 

same underlying models from GGJ. The first of 

these models assumes independence between 

words (a unigram assumption) while the second 

assumes that a word depends on the word before 

it (a bigram assumption). To encode these 

assumptions into the model, GGJ use a Dirichlet 

Process (Ferguson, 1973), which supposes that 

the observed sequence of words w1 … wn is 

generated sequentially using a probabilistic 

generative process. In the unigram case, the 

identity of the ith word is chosen according to: 

 (    |       )  
    ( )    ( )

     
  (1) 

where ni-1(w) is the number of times w appears in 

the previous i – 1 words, α is a free parameter of 

the model, and P0 is a base distribution 

specifying the probability that a novel word will 

consist of the perceptual units x1 … xm: 

 (       )  ∏  (  )
 
      (2) 

In the bigram case, a hierarchical Dirichlet 

Process (Teh et al. 2006) is used. This model 

additionally tracks the frequencies of two-word 

sequences and is defined as: 
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    ( 

   )    ( )

    ( 
 )  

    (3) 

   (    )  
    ( )    ( )
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where ni-1(w’,w) is the number of times the 

bigram (w’,w) has occurred in the first i – 1 

words, bi-1(w) is the number of times w has 

occurred as the second word of a bigram, bi-1 is 

the total number of bigrams, and β and γ are free 

model parameters.
1
  

                                                           

1
 Parameters for the unigram and bigram models underlying 

all learners were chosen to maximize the performance of the 

BatchOpt learner, discussed below. English: α=1, β=1, 

γ=90; German: α=1, β=1, γ=100; Spanish: α=1, β=200, 

γ=50; Italian: α=1, β=20, γ=200; Farsi: α=1, β=200, γ=500; 

Hungarian: α=1, β=300, γ=500; Japanese: α=1, β=300, 

γ=100 

   In both the unigram and bigram case, the 

model implicitly incorporates preferences for 

smaller lexicons by preferring words that appear 

frequently (due to (1) and (3)) and preferring 

shorter words in the lexicon (due to (2) and (4)). 

   The BatchOpt learner for this model is taken 

from GGJ and uses Gibbs sampling (Geman & 

Geman 1984) to run over the entire input in a 

single batch, sampling every potential word 

boundary 20,000 times. We consider this learner 

“optimal” in that it is unconstrained by cognitive 

considerations. We also evaluate the constrained 

learners developed by PGS that incorporate 

processing and memory constraints into the 

learning process. 

   The OnlineOpt learner incorporates a basic 

processing limitation: linguistic processing 

occurs online rather than in batch after a period 

of data collection. Thus, the OnlineOpt learner 

processes one utterance at a time, rather than 

processing the entire input at once. This learner 

uses the Viterbi algorithm to converge on the 

local optimal word segmentation for the current 

utterance, conditioned on all utterances seen so 

far. 

   The OnlineSubOpt learner is similar to the 

OnlineOpt learner in processing utterances 

incrementally, but is motivated by the idea that 

infants are not optimal decision-makers. Infants 

may not always select the best segmentation, and 

instead sample segmentations based on their 

perceived probabilities. The OnlineSubOpt 

learners will often choose the best segmentation 

but will occasionally choose less likely 

alternatives, based on the probability associated 

with each segmentation. The Forward algorithm 

is used to compute the likelihood of all possible 

segmentations and then a segmentation is chosen 

based on the resulting distribution. 

   The OnlineMem learner also processes data 

incrementally, but uses a Decayed Markov Chain 

Monte Carlo algorithm (Marthi et al. 2002) to 

implement a kind of limited short-term memory. 

This learner is similar to the original GGJ ideal 

(BatchOpt) learner in that it uses something like 

Gibbs sampling. However, the OnlineMem 

learner does not sample all potential boundaries; 

instead, it samples some number s of previous 

boundaries using the decay function b
-d

 to select 

the boundary to sample; b is the number of 

potential boundary locations between the 

boundary under consideration bc and the end of 
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the current utterance while d is the decay rate. 

Thus, the further bc is from the end of the current 

utterance, the less likely it is to be sampled. 

Larger values of d indicate a stricter memory 

constraint. All our results here use a set, non-

optimized value for d of 1.5, which was chosen 

to implement a heavy memory constraint (e.g., 

90% of samples come from the current utterance, 

while 96% are in the current or previous 

utterances). Having sampled a set of boundaries
2
, 

the learner can then update its beliefs about those 

boundaries and subsequently update its lexicon.
 
 

3 Cross-linguistic input 

We evaluate the Bayesian learner on input 

derived from child-directed speech corpora in 

seven languages: English, German, Spanish, 

Italian, Farsi, Hungarian and Japanese. All 

corpora were taken from the CHILDES database 

(MacWhinney, 2000). When corpora were 

available only in orthographic form, they were 

first converted into the appropriate phonemic 

form. Afterwards, the corpora were syllabified. 

Where possible, we utilized adult syllabification 

judgments. All other words were syllabified 

using the Maximum-Onset principle, which 

states that the beginning of a syllable should be 

as large as possible, without violating the 

language’s phonotactic constraints. 

   Our corpora vary in a number of important 

ways. Although we attempt to limit our corpora 

to early child-directed speech, some of our 

corpora contain speech directed to children as 

old as age five (e.g. Farsi). Many of our corpora 

do, however, consist entirely of early child-

directed speech (e.g., English, Japanese). 

Similarly, the same amount of data is not always 

easily available for each language. Our shortest 

corpus (German) consists of 9,378 utterances, 

while the longest (Farsi) consists of 31,657.  

   The languages themselves also contain many 

differences that potentially affect syllable-based 

word segmentation. While our English and 

Hungarian corpora contain 2,330 and 3,029 

unique syllables, respectively, Japanese and 

Spanish contain only 526 and 524, respectively. 

Some languages may be easier to segment than 

others based on distributional factors. Fourtassi 

                                                           

2  All OnlineMem learners sample s=20,000 boundaries 

per utterance. For a syllable-based learner, this works out to 

approximately 74% less processing than the BatchOpt 

learner (P&P). 

et al. (2013) show, for example, that English has 

less ambiguous segmentation than Japanese. In 

addition, the languages also have differences in 

their syntax and morphology. For example, 

Hungarian and Japanese are both agglutinative 

languages that have more regular morphological 

systems, while English, German, Spanish, Italian 

and Farsi are all fusional languages to varying 

degrees. If a language has regular morphology, 

an infant might reasonably segment out 

morphemes rather than words. This highlights 

the need for a more flexible metric of 

segmentation performance: A segmentation 

strategy which identifies units useful for later 

linguistic analysis should not be penalized. 

4 Learning results & discussion 

We analyze our results in terms of word token F-

scores, which is the harmonic mean of token 

precision and recall, where precision is the 

probability that a word segmented by the model 

is a true word (# identified true / # identified) and 

recall measures the probability that any true 

word was correctly identified (# identified true / 

total # true). F-scores range from 0 to 100, with 

higher values indicating better performance. 

Performance on all languages is presented in 

Table 1. An error analysis was conducted where 

we systematically counted the following 

“reasonable errors” as successful segmentation: 

(i) Mis-segmentations resulting in real words. 

For example, the word “alright” might be 

oversegmented as “all right”, resulting in two 

actual English words. Most languages show 

errors of this type, with more occurring for the 

bigram model, with the least in English 

(BatchOpt: 4.52%) and most in Spanish 

(BatchOpt: 23.97%). We restrict these errors to 

words which occur minimally ten times in the 

corpus in order to avoid accepting errors in the 

corpora or nonsense syllables as real words. 

(ii) Productive morphology. Given the syllabic 

nature of our corpora, only syllabic morphology 

can be identified. Languages like English, 

Spanish and Italian have relatively few errors 

that produce morphemes (e.g., BatchOpt: 0.13%, 

0.05%, and 1.13% respectively), while Japanese, 

with more syllabic morphology has many such 

errors (e.g., BatchOpt: 4.69%). 
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  English German Spanish Italian Farsi Hungarian Japanese 

Unigram 

BatchOpt 55.70 73.43 64.28 70.48 72.48 64.01 69.11 

OnlineOpt 60.71 58.41 74.98 65.05 75.66 56.77 71.56 

OnlineSubOpt 65.76 70.95 77.15 66.48 74.89 60.21 71.73 

OnlineMem 58.68 73.85 67.78 66.77 67.31 60.07 70.49 

Bigram 

BatchOpt 80.19 84.15 80.34 79.36 76.01 70.87 73.11 

OnlineOpt 78.09 82.08 82.71 75.78 79.23 69.67 73.36 

OnlineSubOpt 80.44 82.03 80.75 73.59 67.54 65.48 66.14 

OnlineMem 89.58 88.83 83.27 74.08 73.98 69.48 73.24 

Table 1. Token F-scores (presented as percents, from 0 to 100) for each learner across every language. 

Higher Token F-scores indicate better performance. 

 (iii) Common sequences of function words. 

For example, a learner might identify “is that a” 

as a single word, “isthata”. These errors tend to 

be more common for unigram learners than 

bigram learners, which makes sense from a 

statistical standpoint since the unigram learner 

is unable to account for commonly occurring 

sequences of words and must do so by positing 

the collocation as a single word. Still, function 

word sequence errors are relatively uncommon 

in every language except German (e.g., 

BatchOpt: 21.73%) 

   Table 2 presents common examples of each 

type of acceptable error in English. 

 True Word(s) Model Output 

Real words  something some   thing 

alright all   right 

Morphology  going go   ing 

really rea   lly 

Function 

word  

you   can youcan 

are   you areyou 

Table 2. Example reasonable errors of each 

type from English that result in real words, 

morphology, or function word collocations. 

   Generally speaking, the bigram learners tend 

to outperform the unigram learners, suggesting 

that the knowledge that words depend on 

previous words continues to be a useful one (as 

GGJ, PGS, and P&P found for English), 

though this difference may be small for some 

languages (e.g., Farsi, Japanese). Overall, 

performance for English and German is very 

high (best score: ~90%), while for other 

languages the learners tend to fare less well 

(best score: 70-83%), though still quite good. 

These results match previous work which 

indicated that English is particularly easy to 

segment compared to other languages (Johnson 

2008; Blanchard et al. 2010; Fourtassi et al. 

2013)  

   Importantly, the goal of early word 

segmentation is not for the infant to entirely 

solve word segmentation, but to get the word 

segmentation process started. Given this goal, 

Bayesian word segmentation seems effective 

for all these languages. Moreover, because our 

learners are looking for useful units, which can 

be realized in different ways across languages, 

they can identify foundational aspects of a 

language that are both smaller and larger than 

orthographic words. 

5 Conclusion 

We have demonstrated that Bayesian word 

segmentation performs quite well as an initial 

learning strategy for many different languages, 

so long as the learner is measured by how 

useful the units are that it identifies. This not 

only supports Bayesian word segmentation as 

a viable cross-linguistic strategy, but also 

suggests that a useful methodological norm for 

word segmentation research should be how 

well it identifies units that can scaffold future 

language acquisition. By taking into account 

reasonable errors that identify such units, we 

bring our model evaluation into alignment with 

the actual goal of early word segmentation.   
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