Normalisation of Historical Text Using Context-Sensitive
Weighted Levenshtein Distance and Compound Splitting

Eva Pettersson®?, Bedta Megyesi' and Joakim Nivre'

(1) Department of Linguistics and Philology, Uppsala University
(2) Swedish National Graduate School of Language Technology

firstname.lastname@lingfil.uu.se

ABSTRACT

Natural language processing for historical text imposes a variety of challenges, such as to deal
with a high degree of spelling variation. Furthermore, there is often not enough linguistically
annotated data available for training part-of-speech taggers and other tools aimed at handling
this specific kind of text. In this paper we present a Levenshtein-based approach to normalisation
of historical text to a modern spelling. This enables us to apply standard NLP tools trained
on contemporary corpora on the normalised version of the historical input text. In its basic
version, no annotated historical data is needed, since the only data used for the Levenshtein
comparisons are a contemporary dictionary or corpus. In addition, a (small) corpus of manually
normalised historical text can optionally be included to learn normalisation for frequent words
and weights for edit operations in a supervised fashion, which improves precision. We show
that this method is successful both in terms of normalisation accuracy, and by the performance
of a standard modern tagger applied to the historical text. We also compare our method to a
previously implemented approach using a set of hand-written normalisation rules, and we see
that the Levenshtein-based approach clearly outperforms the hand-crafted rules. Furthermore,
the experiments were carried out on Swedish data with promising results and we believe that
our method could be successfully applicable to analyse historical text for other languages,
including those with less resources.

KEYWORDS: Digital Humanities, Natural Language Processing, Historical Text, Normalisa-
tion, Levenshtein Edit Distance, Compound Splitting, Part-of-Speech Tagging, Underresourced
Languages, Less-Resource Languages.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 163 of 474]

1 Introduction

When working with natural language processing (NLP) for historical text, one problem is that
there are often not large enough amounts of annotated corpus data available for training NLP
tools specifically aimed at handling historical text. Nevertheless, using existing NLP tools as
they are is rarely an option, since these generally rely on dictionaries and/or statistics based on
certain word forms observed in the training data. Spelling in historical texts however differs
from contemporary spelling, and due to the lack of spelling conventions, spelling may also vary
between different authors, genres and time periods, and even within the same text written by
the same author.

Even though there are differences between old and modern text, there are also similarities, and
a native speaker of the language is often able to understand all or part of a historical text in
spite of the odd spelling. Bearing this in mind, one way to get around the lack of NLP tools for
historical text is to first normalise the input text to a more modern spelling, before applying
existing NLP tools trained on contemporary corpora. In this context, the normalisation process
may be viewed as a kind of spelling correction, where the historical word form is treated as a
misspelling, that should be corrected to the most probable modern spelling.

In this paper we describe an approach to normalisation of historical text based on Levenshtein
edit distance, where certain edits can be weighted to reflect common (and thus more likely)
spelling variation in texts from this time period. Apart from handling single edit operations,
we also include operations involving multiple characters. Another innovative feature of our
approach is the use of a compound splitter for normalising parts of a compound word individ-
ually. Finally, we explore the effect of using manually annotated historical data to learn the
normalisation of frequent words in a supervised fashion. We evaluate our results on historical
Swedish data, both regarding normalisation accuracy, and by running a modern tagger on the
historical text, before and after normalisation.

The outline of this paper is as follows. Section 2 describes related work on normalisation of
historical text. In Section 3, we present the data used in our experimental setup, whereas
our approach is described in detail in Section 4. In Section 5, we present the results. Finally,
conclusions and future work are discussed in Section 6.

2 Related Work

The use of NLP tools for analysing historical text is still largely unexplored, even though there is
a rapidly growing interest in this field. The idea of implementing spelling correction techniques
for normalising the input text to a more modern spelling before applying existing NLP tools
is a popular approach, and may be performed using rule-based or data-driven methods, or a
combination of both.

Rayson et al. (2005) tried a rule-based approach based on dictionary lookup. A large mapping
scheme from historical to modern spelling for 16th to 19th century English texts was manually
created. The resulting VARD tool (VARiant Detector) comprises 45,805 entries, and also
includes fuzzy matching techniques and context rules for normalisation of ambiguous words.
The performance of the normalisation tool was evaluated on a set of 17th century texts, and
compared to the performance of modern spell checkers (MS-Word and Aspell) on the same
text. The results showed that between a third and a half of all tokens (depending on which test
text was used) were correctly normalised by both VARD and MS Word, whereas approximately
one third of the tokens were correctly normalised only when using VARD. The comparison

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 164 of 474]

between VARD and Aspell showed similar results. VARD was later further developed into
VARD2, combining the original word list with data-driven techniques in the form of phonetic
matching against a modern dictionary, and letter replacement rules based on common spelling
variation patterns (Baron and Rayson, 2008).

Another rule-based method, based on pattern matching, was developed by Pettersson et al.
(2012). In this experiment, a relatively small set of 29 hand-crafted normalisation rules for
handling spelling variation in Early Modern Swedish texts (1550-1800) was produced, based
on a subset of a 17th century court records text. The resulting rule set was applied to a gold
standard corpus of 600 sentences (33,544 tokens) extracted from 15 documents within two
separate genres (court records and church documents), varying in time from 1527 to 1812.
Even though the rule set had been developed on a single 17th century court records text,
normalisation had a positive effect on texts from all centuries and for both genres within the
scope of the study. In fact, the largest error reduction was achieved for a 16th century church
document. On average, an error reduction of 22% was achieved, meaning that approximately
73% of the tokens were correctly normalised.

A third rule-based technique, referred to as conflation by phonetic form, was explored by
Jurish (2008) for normalisation of historical German text. In this approach, the similarity
between phonetic forms is computed, rather than comparing orthographic forms. The general
assumption is that since there were no orthographic conventions for writers of historical
text, spelling generally reflects the phonetic form of the word. Furthermore, it is assumed
that phonetic properties are less resistant to diachronic change than orthography. For the
grapheme-to-phoneme transition, they used the conversion module of the IMS German Festival
text-to-speech system (Black and Taylor, 1997), with a rule-set adapted to historical word forms.
The method was evaluated on a corpus of historical German verse quotations extracted from
Deutsches Worterbuch, containing 5,491,982 tokens (318,383 types). Without normalisation,
approximately 84% of the tokens were known to their morphological analyser. After conflation
by phonetic form, coverage was extended to 92% of the tokens. When adding lemma-based
heuristics to this method, coverage increased further to 94% of the tokens.

As an extension to the work on conflation by phonetic form, Jurish (2010) further explored
the impact of taking the sentential context into consideration in the normalisation process. For
this purpose, a Hidden Markov Model (HMM) was developed for contextual disambiguation
of a set of normalisation candidates that were originally extracted on a token level using four
different normalisation techniques: string identity, transliteration, phonetization and rewrite
transduction. The resulting HMM produced precision scores of 99.7% and recall scores of
99.1% on a test corpus of 152,776 tokens from the time period 1780-1880, extracted from the
Deutsches Textarchiv.

A data-driven approach based on Levenshtein similarity was presented by Bollmann et al. (2011)
for normalisation of Early New High German (14th to 16th century). Normalisation rules were
automatically derived by means of the Levenshtein edit distance, based on a word-aligned
parallel corpus consisting of the Martin Luther bible in its 1545 edition and its 1892 version,
respectively. Since bible text is rather conservative in spelling and terminology, approximately
65% of the words in the old bible version already had an identical spelling to the one occurring
in the more modern version. For non-identical word forms, only word forms that could be
found in the modern version of the bible were accepted. Other word forms produced by the
Levenshtein-based rules were discarded, leaving the old spelling preserved. Using this method,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 165 of 474]

the proportion of words with an identical spelling in the normalised text as compared to the
“modern” text increased from 65% to 91%. Bollmann (2012) also tried a combination of
dictionary lookup and different modifications to the original Levenshtein distance measure,
improving normalisation accuracy further to 92.6% for the same training and test corpora.

3 Data

In this study, we make use of a 787,122 token corpus consisting of 15 Swedish texts, from the
genres of court records and church documents, ranging from 1527 to 1812. The texts have
been automatically digitized, and only parts of the corpus have been manually reviewed and
corrected with regard to OCR errors. For evaluation we use the same subset of this corpus as
was used for evaluation by Pettersson et al. (2012), i.e. 600 sentences extracted by randomly
selecting 40 sentences from each text in the entire data set. For training, i.e. for estimating
different parameters of our model, we extracted another 600 sentences out of the remaining
sentences in the corpus (40 randomly selected sentences from each text). The resulting token
distribution for training and evaluation is given in Table 1.

Court Records

Name Year Total Training | Evaluation
Ostra Hérad 1602-1605 38,477 1,980 2,069
Vendel 1615-1645 64,977 1,583 2,509
Per Larsson 1638 12,864 2,848 2,987
Hammerdal 1649-1686 75,143 1,508 1,859
Revsund 1649-1689 | 113,395 2,275 2,328
Stora Malm 1728-1741 | 458,548 1,627 1,895
Vendel 1736-1737 61,664 3,032 3,450
Stora Malm 1742-1760 74,487 2,034 2,336
Stora Malm 1761-1783 66,236 1,905 1,825
Stora Malm 1784-1795 58,738 2,036 1,378
Stora Malm 1796-1812 47,671 2,345 1,683

Church Documents

Name Year Total Training | Evaluation
Vasteras 1527 14,149 2,831 3,709
Kyrkoordning 1571 60,354 2,093 2,246
Uppsala Méte 1593 34,877 1,070 1,184
Kyrkolag 1686 35,201 1,660 2,086

| Total | 1527-1812 | 787,122 | 30,827 | 33,544 |

Table 1: Corpus distribution, given in number of tokens in the documents. Total = Number of
tokens in the whole corpus. Training = Number of tokens in the training sample of the corpus.
Evaluation = Number of tokens in the evaluation sample of the corpus.

4 Method

This paper explores an approach to normalisation of historical text using the Levenshtein edit
distance measure for comparing the original word form to word forms listed in an electronically
available dictionary or corpus of contemporary language. Our approach is similar to the one
presented by Bollmann et al. (2011) in that Levenshtein similarity is used in the normalisation

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 166 of 474]

process. In the Bollmann approach, however, the Levenshtein weights are calculated on the
basis of aligned parallel data, consisting of the same text in an old spelling version and a modern
spelling version, respectively. Our approach does not presuppose access to such a corpus, since
the Levenshtein distance is solely computed by comparing the historical word forms to tokens
present in a contemporary dictionary or corpus.

Two steps are included in the normalisation process: generation of normalisation candidates and
candidate selection. As stated above, the generation of normalisation candidates is performed by
comparing the historical word form to the tokens present in a contemporary language resource.
In our experiments we use the SALDO dictionary (version 2.0) for this purpose. SALDO is an
electronically available lexical resource developed for present-day written Swedish, comprising
approximately 100,000 lexical entries (Borin et al., 2008). The dictionary entry/entries with the
smallest edit distance as compared to the original word form are stored as possible normalisation
candidates, given that certain requirements are met concerning string length and edit distance,
as further discussed in Section 4.1.

The generation of candidates may optionally be refined, to improve precision further. For
example, if there is a set of manually normalised historical tokens available, this corpus could
be included as a validated cache, mapping historical word forms to a manually validated
modern spelling. The validated cache is consulted before possible normalisation candidates
are generated based on Levenshtein distance. If the token is present in the validated cache,
the normalised form found in the cache is chosen, and no Levenshtein-based candidates are
generated.! Such a corpus could also be used for optimisation of the Levenshtein calculations, as
described further in Section 4.1. Another optional refinement that we have experimented with
is the addition of a compound splitter (Stymne, 2008). In this case, the token is first matched
against the contemporary language resource as usual. If no normalisation candidates are found
by the Levenshtein comparisons, the word is split into its compound parts (provided that the
splitter regards the token as a compound) and each compound part is matched separately
against the contemporary language resource by means of Levenshtein calculations. Finally, the
resulting normalised parts are merged into a compound normalisation candidate.

When possible normalisation candidates have been extracted, one candidate is to be selected
as the final choice. In the default setting, a final candidate is randomly chosen from the list of
highest-ranked candidates. The candidate selection step can however be further refined, if there
is a corpus of modern language available. In this case, the candidate with the highest frequency
in the corpus is chosen. Only if none of the highest-ranked normalisation candidates are present
in the corpus, or if there are several candidates with the same frequency distribution, a final
candidate is randomly chosen. In our experiments, we use the Stockholm-Ume& corpus (SUC)
(Ejerhed and Kallgren, 1997) for frequency calculations. SUC is a balanced corpus consisting of
approximately one million tokens extracted from a number of different text types representative
of the Swedish language in the 1990s.

The whole normalisation process, as described above, is illustrated in Figure 1, where optional
resources are marked by dotted lines and arrows.

We also include unvalidated items in the cache, solely for reasons of efficiency. This means that normalisations
previously performed by the algorithm, as well as tokens present in the modern dictionary, are stored in the cache and
consulted as a first step in the normalisation process.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 167 of 474]

P ™) '\I
@ — — @)
y Y - Y
|8 - 1
Original G o . Normalised
. . eneration o . andidate | .
Spellin v - : v . = Spellin
P g Candidates Selection P g
N 4 - 4
] - —— P
& J E— S— C)

_____ meemeeey - I ¥ Frequency ,
. alidated ' Compan.so.n to . CCI[T]PCI_LIHd :i Distribution in !
' Cache ! Medern Dictionary ! Splitting 1 ! Modern Dictionary

Figure 1: Overview of the normalisation workflow. Optional resources are dotted.

4.1 Parameter Optimisation

The Levenshtein distance gives an indication of the similarity between two strings (Levenshtein,
1966). Still, in the context of normalisation, it is not a trivial decision what string similarity
to regard as close enough for considering a normalisation candidate as valid. In a traditional
spelling correction context, it has been shown that for the majority of the human-generated
spelling errors, the misspelled word form is within one letter in length of the intended word
form, and that most errors constitute single instances of insertion, deletion, substitution or
transposition (Kukich, 1992). If no empirical data on the correlation between historical and
modern spelling is available, one could thus assume that a valid normalisation candidate should
be maximally one character shorter or longer than the original word form, with a maximum
Levenshtein distance of 1. In the following we explore the characteristics of our manually
normalised training data as regards edit distances and differences in string length between the
original word forms and their normalised counterparts. The aim is to find out whether the
traditional spelling correction assumptions hold also in the context of normalisation, or (if not)
what the optimal configuration would be. We also explore the inclusion of context-sensitive,
weighted edit operations, compound handling and supervised learning by means of manually
validated normalisations.

4.1.1 Observed String Length Differences

To decide what string length differences to consider in the normalisation process, we investi-
gated the differences in string length between the original word forms and their normalised
counterparts in the training corpus. As previously stated, the training corpus comprises in total
30,827 tokens (see further Section 3). Approximately 35% of these tokens (10,735) differ from
the manually normalised spelling. As shown in Table 2, the assumption that most errors do not
influence string length by more than one character may still be regarded as appropriate even in
the context of normalisation. However, the proportion of tokens meeting this requirement is
limited to approximately 86.9%. Instead, if we consider all cases where the normalised word
form is at most one character longer down to four characters shorter than the original word
form, approximately 99.5% of the tokens observed in the training corpus will be covered. We
will therefore focus on varying the valid difference in string length within this interval.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 168 of 474]

Length Difference | Frequency || Example Translation
-7 1 || besluthninger /beslut ‘decisions’
-6 3 || fadherbrodher /farbror ‘uncle’

-5 7 || noghsambligha/nogsamma | ‘careful’
—4 127 || ndrvarellse/ndrvaro ‘presence’
-3 308 || slechttenn/sldkten ‘the relatives’
=2 918 || kyrckian/kyrkan ‘the church’
-1 4804 || aff/av ‘of /off’
0 3326 || wara/vara ‘be’
I 1201 || til/dll ‘to’
+2 35 || sokn/socken ‘parish’
+3 2 || tilbragte /tillbringade ‘spent’
+5 3 || forsambhs /forsamlingens ‘the congregation’s’

Table 2: Observed differences in string length between the historical word form and the manually
normalised version in the training corpus. Grey rows illustrate string length differences with a
special focus in our experimental setup.

4.1.2 Observed Edit Distances

As illustrated in Table 3, we see that if we consider only normalisation candidates with a
maximum Levenshtein distance of 1 as compared to the original word form, we merely cover
approximately 55.8% of the tokens in the training corpus. Furthermore, we see that all edit
distances up to and including 4 have a high frequency in the training corpus. If we consider an
edit distance span where 4 is the maximum value, we cover 98.8% of the observed entities in
the training corpus. Hence, to broaden normalisation coverage, we will focus our experiments
on considering edit distances up to and including 4.

Edit Distance | Frequency | Example Translation
1 5986 | sigh/sig ‘oneself/himself/herself/itself’
2 3008 | dher/dar ‘there’
3 1161 | blefwe/blev ‘became’
4 455 | afwachta/avvakta ‘await’
5 86 | ofwertalter /6vertalad ‘persuaded’
6 28 | sollfuermynthe/silvermynt | ‘silver coin’
7 10 | sielffuer/sjdlv ‘himself/herself/itself’
8 1 | oOffuergiffua/overge ‘abandon’

Table 3: Observed edit distance between the historical word form and the manually normalised
version in the training corpus. Grey rows illustrate edit distances with a special focus in our
experimental setup.

4.1.3 Weighted Edit Operations

When computing a traditional Levenshtein distance, all edit operations have a cost of one.
However, in the context of normalisation of historical text, some edits seem more likely than
others. For example, as historical texts to some degree are written in a spoken-language fashion,
substituting the letter ¢ for a k is more likely than substituting for example a ¢ for an r. For this

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 169 of 474]

reason, we have experimented on assigning weights lower than 1 for frequently occurring edits
in the training corpus.

Out of the 8,881 edits observed in the training corpus, we have assigned special weights to
edits occurring at least 50 times. The weights have been calculated by comparing the frequency
of each edit occurring in the training corpus to the frequency with which the specific source
characters are left unchanged, in accordance with the formula below:

_ FrequencyOfEdit
FrequencyOfEdit+FrequencyOfSourceCharacterLeftUnchanged

which could be further simplified into:

FrequencyOfSourceCharacterLeftUnchanged
FrequencyOfEdit+FrequencyOfSourceCharacterLeftUnchanged

To illustrate, the deletion of the letter h happens in 2,382 cases in the training corpus, when
comparing the historical spelling to the modernised spelling. In the rest of the 3,912 cases
where the letter h occurs, it is preserved in the modernised spelling. Thus, the weight for the

. . . 3912
deletion of the letter h is calculated as: 38213013 0.6215.

In some cases, the observed edits involve more than one character, for example when comparing
the historical spelling oférsichtigt to the modernised version oférsiktigt (“carelessly”). This
would intuitively be regarded as a substitution of ch for k, rather than first substituting the ¢ for
a k, and then deleting the h. To deal with cases like this, we therefore included the following
context-sensitive edit operations, in addition to the standard single-character operations:

e double deletion
example: -fv, gifvvett — givet
e double insertion
example: +es, orkldose — orkeslése

e single-to-double substitution
example: 1/11, tilbytt — tillbytt

e double-to-single substitution
example: ss/s, frdlsse — frdlse

For all strings in the training corpus that are not identical in the historical and the modern
spelling, all possible single-character edits as well as multi-character edits are counted. Hence,
the token pair oforsichtigt-oforsiktigt will yield weights for (i) single deletion of c, single
substitution of h—k; (ii) single deletion of h, single substitution of c—k; and (iii) double-to-
single substitution of ch—k.

4.1.4 Compound Handling

The Levenshtein method described in this paper is based on comparison of a historical word
form to similar word forms found in a modern dictionary. Since the Swedish language has a
high degree of compounds, some of the intended words will inevitably not be found in the
dictionary, even if the word could perfectly well be used in contemporary Swedish. Stymne and
Holmgqvist (2008) showed that in their Swedish evaluation corpus, approximately 37% of all
the words with a length of 12 characters or longer were compounds (and approximately 5%
of the shorter words). This was calculated on modern Swedish European Parliament text, but
might still be indicative of the frequencies in historical Swedish texts as well. To deal with the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 170 of 474]

compounding issue, we included a compound splitter developed by Stymne (2008). When the
compound splitter is included, any word form for which no appropriate normalisation candidate
is found by the ordinary Levenshtein calculations, is run through the compound splitter. If the
splitter is able to split the word into compound parts, each part is processed separately by the
normalisation program, and the resulting normalisation candidates are merged into a final
normalisation candidate. For example a word like krigztienst will be split into krigz (normalised
as krigs “war”) and tienst (normalised as tjdnst “duty”). The two normalised versions krigs and
tjdnst will then be merged into the final normalisation candidate krigstjdnst.

4.1.5 Manually Validated Normalisations

Even though historical texts present a high degree of spelling variation, some word forms
are frequently occurring in many of these texts. Incorrect normalisation of a few frequently
occurring word forms might result in poor NLP performance, even when a high proportion of
the remaining word forms has been normalised correctly. Therefore we will explore the effect of
adding a set of manually validated normalisation candidates for the most frequently occurring
word forms in the training corpus. When such a word form is encountered in a text, only the
manually validated set of normalisation candidates will be considered, and no Levenshtein
distance is computed for finding alternative candidates.

Since each token in the training corpus has been manually assigned its normalised counterpart,
we use this annotation for providing a cache with information on what manual normalisation(s)
that have been assigned for the word form in question. In order to avoid incorrect attempts at
normalisation, the caching procedure also involves word forms where the original spelling has
been preserved in the manual validation, as illustrated by the first entry in Table 4, where the
historical word form och is mapped to its identical modern spelling och (“and”). Furthermore,
if one word form has been manually normalised in several ways in the training corpus, all
candidates are stored in the cache, as illustrated by the second entry, where the historical
word form i is mapped both to the modern spelling i (“in”) and to ni (“you”). A sample from
the manually validated normalisations is given in Table 4. In order to explore the impact of
caching manually validated normalisations, we will consider different frequency thresholds in
our experimental setup.

Frequency | Original form | Normalised Form(s) | Translation(s)
1,144 | och och ‘and’
634 | i i or ni ‘in’ or ‘you’
242 | at att ‘to/that’
229 | pa pd ‘on’
219 | of av ‘of’
121 | effter efter ‘after’
109 | thet det it
92 | ther ddar ‘there’
45 | j i ‘an’
35 | meth med ‘with’

Table 4: A sample from the manually validated normalisations observed in the training corpus.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 171 of 474]

5 Results

Evaluation of our proposed Levenshtein-based normalisation algorithm has been performed
on the basis of the evaluation corpus (see further Section 3). The results are presented below,
both in terms of actual normalisation accuracy and by measuring the performance of a modern
tagger on the historical text, before and after normalisation.

5.1 Normalisation

Normalisation results are evaluated using two different measures: normalisation accuracy and
error reduction. By normalisation accuracy we mean the percentage of tokens in the normalised
version of the text that are identical to the manually reviewed tokens in the gold standard,
whereas error reduction refers to the percentage of correctly normalised tokens that were not
originally identical to the gold standard spelling. Error reduction has been calculated by the

following formula:
CorrectAfterNormalisation—CorrectBeforeNormalisation

IncorrectBeforeNormalisation

where CorrectAfterNormalisation is the percentage of tokens with an identical spelling to
the gold standard version after normalisation, CorrectBeforeNormalisation is the percentage
of tokens with an identical spelling to the gold standard version before normalisation, and
IncorrectBeforeNormalisation is the percentage of tokens differing in spelling from the gold
standard version before normalisation.

Furthermore, we have experimented on different restrictions for the algorithm, regarding 1)
valid string length difference between the original word form and its normalisation candidate
(as described in Section 4.1.1), 2) valid edit distance between the original word form and
its normalisation candidate (as described in Section 4.1.2), 3) special weights for frequently
occurring edits (as described in Section 4.1.3), compound handling (see further Section 4.1.4,
and 4) a frequency threshold for inclusion of manually validated normalisation candidates in a
cache (as described in Section 4.1.5).

It could also be noted that in the following, normalisation accuracy and error reduction are
calculated on the evaluation corpus as a whole, without taking differences between genres
and age of the subtexts into account. For an investigation of the impact of age and genre on
normalisation performance, see further Pettersson et al. (2012).

5.1.1 String Length Restrictions

Table 5 shows the normalisation results when varying the threshold for valid difference in string
length between the original word form and its normalisation candidate. As shown in Section
4.1.1, 99.5% of the manually normalised word forms in the training corpus are within the
range of one character longer to four characters shorter compared to the original historical
word form. We experimented with different settings within this range. No manually validated
cache entries nor compound handling or weighted edits are included at this stage, and the
accepted edit distance for a normalisation candidate to be regarded as valid is set to 4, i.e. the
value needed to capture the majority of the instances in the training corpus.? The results are
also compared to the baseline, i.e. the unnormalised version of the evaluation corpus, and to

2It would of course have been preferable to have no limit on the accepted edit distance in these experiments.
However, due to computational complexity, a threshold had to be included.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 172 of 474]

the approach of Pettersson et al. (2012) using hand-crafted rules. We see that approximately
64.6% of the original tokens already have a spelling identical to the manually normalised gold
standard spelling. The hand-written rules have a positive impact, improving accuracy to 72.7%.
This is however outperformed by the Levenshtein approach, for which accuracy is higher in all
settings. Furthermore, we see that the general spelling correction assumption that the original
string should not differ in length with more than one character from the intended word form
does not hold in this context, since we get better results if we increase the valid difference in
string length so that the normalised word form may be two or three characters shorter than the
original form. Increasing this range to four characters however does not have a noticeable effect
on the results. In the following we will therefore regard the +1 to —3 setting as the setting to
be used as a basis for further experiments.

Approach Accuracy | Error Reduction
Baseline 64.6% n/a
Hand-written 72.7% 22.9%
Levenshtein stringdiff +1 to —1 76.2% 32.7%
Levenshtein stringdiff +1 to —2 76.9% 34.9%
Levenshtein stringdiff +1 to —3 77.0% 35.0%
Levenshtein stringdiff +1 to —4 77.0% 35.0%

Table 5: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein = The
normalisation approach described in this paper. Stringdiff = Valid difference in string length
between the original word form and its normalisation candidate(s).

5.1.2 Edit Distance Restrictions

As presented in the previous section, normalisation results are influenced by what string length
differences we accept for a normalisation candidate to be considered valid. Another important
factor to take into consideration is the maximum edit distance allowed. We have experimented
on varying the accepted edit distance between 1 and 4. However, if we statically accept an edit
distance of for example 3, a three-letter word that is to be normalised may be transformed into
a completely different word, where each character in the original word has been substituted
by another character. To avoid such cases, we also experimented on a stringlength-based
measure for deciding the maximum edit distance allowed for a certain source word. First, we
calculated the average number of edits per character for all historical words in the training
corpus that were not identical to the modern spelling. This showed an average edit distance of
0.27/character. With a standard deviation of approximately 0.18, the valid edit distance is then
calculated as follows (where 1.96 times the standard deviation is added to cover 95% of the
cases):

distance < 1 OR distance < ((0.27 * wordlength) + (1.96 * 0.18))

The first condition is included to assure that one edit is always allowed, also in short words
consisting of only one or two characters. The above formula could be further simplified into:

distance < max(1, ((0.27 * wordlength) + (1.96 * 0.18)))

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 173 of 474]

Table 6 presents our findings on varying the accepted edit distance between 1 and 4, as well as
including the stringlength-based method. For all settings in this experiment, the string length
restrictions are set to the best-performing settings as presented in the previous section, i.e.
letting the normalisation candidates differ in string length from the original word form by at
most +1 to —3 characters. Again, the results show that we may not rely on findings from
general spelling correction observations, stating that edit distance should not exceed a value
of 1. In our data, we get better results when increasing this threshold to 2, 3 or 4. We can
also see that the stringlength-based method is slightly less successful than the approach where
we always allow for an edit distance of 3 or 4. In the following we will therefore regard a
Levenshtein distance threshold of 4 as the setting to be used for further experiments.

A closer look at the results of the stringlength-based method as compared to the static Leven-
shtein method, shows that the stringlength-based method has a higher precision, but a lower
recall. The cases where a word form has been normalised in an incorrect way is substantially
lower in the stringlength-based method, whereas the proportion of word forms that have
incorrectly been left unnormalised is higher. This is particularly striking for words consisting
of 4-9 characters. Both shorter and longer words are more or less equally well handled by
both methods. Thus, in cases where precision is considerably more important than recall, the
stringlength-based method could be preferred.

Approach Accuracy | Error Reduction
Baseline 64.6% n/a
Hand-written 72.7% 22.9%
Levenshtein max distance 1 74.7% 28.5%
Levenshtein max distance 2 76.7% 34.1%
Levenshtein max distance 3 77.0% 34.9%
Levenshtein max distance 4 77.0% 35.0%
Levenshtein stringlength-based 76.2% 32.9%

Table 6: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein = The
normalisation approach described in this paper. Max distance = Maximum valid edit distance
between the original word form and its normalisation candidate(s).

5.1.3 Introducing Lower Weights for Frequently Occurring Edits

As stated in Section 4.1.3, some edits are more likely to occur than others. Table 7 presents
the results of adding weights lower than 1 to frequently occurring differences when comparing
the spelling of the original historical word form to the spelling of the corresponding manually
normalised form in the training corpus. For this experiment, the string length and edit distance
restrictions are set to the best-performing settings as presented in the previous sections, i.e.
letting the normalisation candidates differ in string length from the original word form by at
most +1 to —3 characters, with an allowed edit distance of maximally 4.

As seen from the results, the inclusion of context-free weights lower than 1 means that normali-
sation accuracy increases from 77.0% to 78.7% as compared to normalisation without special
weights. Including context-sensitive weights as well, the normalisation accuracy increases
further to 79.1%. The training corpus used in this experiment is however rather small (10,735

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 174 of 474]

tokens with a spelling that is different from the manually normalised spelling). It is likely that
the inclusion of weights would have a larger impact on normalisation accuracy if more training
data was available.

Approach Accuracy | Error Reduction
Baseline 64.6% n/a
Hand-written 72.7% 22.9%
Levenshtein no weights 77.0% 35.0%
Levenshtein context-free weights 78.7% 39.9%
Levenshtein context-sensitive weights 79.1% 40.9%

Table 7: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein no
weights = The normalisation approach described in this paper, with no special weights included.
Levenshtein weights = The normalisation approach described in this paper, with weights lower
than 1 for frequently occurring edits.

5.1.4 Compound Handling

For compound handling, we experimented on adding a compound splitter to the normalisation
process. In this setting, words that are not found in the modern dictionary by the ordinary
normalisation approach, are split into their compound parts, and Levenshtein distance is
calculated for each compound part separately. This feature has a small but positive effect on the
normalisation process. The normalisation accuracy is still 79.1%, as for the best Levenshtein
setting presented in the previous section. At a token level however, 26,997 tokens in the
normalised text are identical to the manually modernised spelling when no compound handling
is performed, as compared to 27,013 identically spelled tokens in the compound setting.

5.1.5 Varying the Threshold for Manually Validated Normalisations

As argued in Section 4.1.5, a small number of frequently occurring incorrectly normalised word
forms may have a large negative impact on the result of contemporary NLP tools when applied
to the normalised text. To avoid this, we created a cache function for manually validated
normalisations observed in the training corpus. As could be expected, the manually validated
cache boosts normalisation performance further. Table 8 summarises the results of varying the
frequency threshold for what words to include in the cache. In this table, cache100 means
that only word forms that occur 100 times or more in the training corpus are included in the
cache. Based on our training corpus, this means that the cache of manually validated word
forms holds 28 entries. In this setting, accuracy improves from 79.1% to 80.9%, increasing
error reduction from 40.9% to 46.0%. If the word forms in the training corpus are sorted by
frequency before manual normalisation is performed, this improvement is achieved by a rather
modest manual annotation effort, since only 28 word forms need to be normalised. Including
less frequent words in the cache improves accuracy as well as error reduction in all cases. When
including all tokens in the validated corpus, regardless of frequency, an overall accuracy of
86.9% is achieved, corresponding to an error reduction of 63.0%.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linkdping Electronic Conference Proceedings #85 [page 175 of 474]

Approach Cache Entries | Accuracy | Error Reduction
Baseline n/a 64.6% n/a
Hand-written n/a 72.7% 22.9%
Levenshtein, no cache n/a 79.1% 40.9%
Levenshtein, cache100 28 80.9% 46.0%
Levenshtein, cache50 51 81.5% 47.7%
Levenshtein, cache40 71 81.8% 48.6%
Levenshtein, cache30 107 82.1% 49.4%
Levenshtein, cache20 156 82.5% 50.6%
Levenshtein, cachel0 319 83.5% 53.4%
Levenshtein, cachel 8272 86.9% 63.0%

Table 8: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein = The
normalisation approach described in this paper. Cache Entries = Number of entries in the
manually validated cache.

5.2 Tagging

The ultimate goal of the normalisation process is to improve the performance of contemporary
NLP tools when applied to historical texts. In the scope of this study, we do not have access to a
fully linguistically annotated data set for assessing for example tagger performance before and
after normalisation. However, the corpus used in our experiments has been created within the
Gender and Work project (Agren et al., 2011), where there is a specific interest in the verbs
included in the text. Therefore, all verbs in the evaluation corpus have been manually annotated
as verbs, and we may indirectly evaluate the performance of the tagger based on precision and
recall measures regarding verb identification. In these experiments, part-of-speech tagging is
performed using HunPOS (Halacsy et al., 2007), a free and open source reimplementation of
the HMM-based TnT-tagger by Brants (2000). The tagger is used with a pre-trained language
model based on the Stockholm-Umed Corpus (SUC).

Table 9 presents precision and recall measures for verb extraction, based on the best settings for
our Levenshtein approach as regards normalisation accuracy, i.e. 1) allowing for the normali-
sation candidates to differ in string length from the original word form by at most +1 to —3
characters, 2) with a valid edit distance of maximally 4, 3) with weights lower than 1 for fre-
quently occurring edits, 4) with compound handling, and 5) with a threshold of 1 for manually
validated normalisations in the cache. The results are also compared to verb extraction from
unnormalised text, as well as verb extraction based on normalisation using manually written
rules. The hand-crafted normalisation rules have a positive impact on the results, increasing
recall from 64.2% for unnormalised text to 78.0%. With the Levenshtein approach this figure is
increased further to 86.2%. At the same time, precision increases from 77.9% to 80.0% with
the rule-based approach, and increases further to 83.3% using the Levenshtein method. To get
an idea of the optimal performance on historical text, we also tried verb extraction based on
the manually normalised gold standard version of the test text. This resulted in a precision of
90.1% and a recall of 92.3%. This could be compared to the evaluation scores achieved for verb
extraction for contemporary text, in this case the SUC corpus, with a 99.1% precision and recall.
This indicates that even with perfect spelling normalisation, some differences in language such

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 176 of 474]

as vocabulary, morphology and syntax, still need to be handled to achieve the same results as
for modern language.

Approach Precision | Recall | F-score
Baseline 77.9% | 64.2% 70.4%
Hand-written 80.0% | 78.0% 79.0%
Levenshtein 83.3% | 86.2% 84.7%
Gold Standard Normalisation 90.1% | 92.3% 91.2%
Contemporary text (SUC) 99.1% | 99.1% 99.1%

Table 9: Precision and recall measures for verb identification based on the approach of hand-
written rules (Pettersson et al., 2012) versus Levenshtein distance calculations. Baseline = Verb
identification results when no normalisation is performed.

6 Conclusion

In this paper, we have proposed an approach to normalisation of historical text based on string
similarity, using context-sensitive, weighted Levenshtein edit distance combined with compound
splitting. We have evaluated our method both with respect to normalisation accuracy and
regarding verb identification performance using a contemporary part-of-speech tagger on the
normalised version of the input text.

With the presented approach, the proportion of tokens with an identical spelling to the gold
standard spelling increased from a baseline of 64.6% (for unnormalised text) to 77.0%, using
no manually annotated data for training. When including Levenshtein weights and a validated
cache created on the basis of a small, manually normalised historical training corpus, normali-
sation accuracy increased further to 86.9% in the best setting. Furthermore, it is encouraging
that both precision and recall increase for verb identification based on tagging, since the ulti-
mate goal of the normalisation procedure is to enable the use of contemporary NLP tools for
analysing historical data. The results are indeed promising, since our approach requires little or
no manually annotated historical data, and is generalisable to similar (or somewhat distant)
normalisation tasks for historical or other low density languages.

Future work includes refinement of the Levenshtein approach to normalisation, as well as
exploring alternative techniques. One refinement could be to make the choice of normalisation
candidates context-sensitive. Currently, the final normalisation candidate is solely chosen on
a word-by-word basis, meaning that the same candidate will be chosen regardless of context.
As for alternative techniques, it would be interesting to experiment with a phonetically based
similarity measure for generating normalisation candidates. This seems reasonable since the
lack of spelling conventions probably made the texts more alike spoken language than today.

Finally, it would also be interesting to try our normalisation approach in a different setting, such
as other time periods and languages. This is enabled by the modularity and generalisability of
the appoach, only requiring access to an electronically available dictionary of contemporary
language. Modules such as the cache of manually validated normalisations could then be
discarded in case of limited resources.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 177 of 474]

References

f\gren, M., Fiebranz, R., Lindberg, E., and Lindstrém, J. (2011). Making verbs count. The
research project 'Gender and Work’ and its methodology. Scandinavian Economic History
Review, 59(3):271-291. Forthcoming.

Baron, A. and Rayson, P (2008). Vard2: A tool for dealing with spelling variation in historical
corpora. In Postgraduate Conference in Corpus Linguistics, Aston University, Birmingham.

Black, A. W. and Taylor, P (1997). Festival speech synthesis system: system documentation.
Technical report, University of Edinburgh, Centre for Speech Technology Research.

Bollmann, M. (2012). (semi-)Automatic Normalization of Historical Texts using Distance
Measures and the norma tool. In Proceedings of the Second Workshop on Annotation of Corpora
for Research in the Humanitites (ACRH-2).

Bollmann, M., Petran, E, and Dipper, S. (2011). Rule-based normalization of historical texts.
In Proceedings of the Workshop on Language Technologies for Digital Humanities and Cultural
Heritage, pages 34-42, Hissar, Bulgaria.

Borin, L., Forsberg, M., and Lonngren, L. (2008). Saldo 1.0 (svenskt associationslexikon
version 2). Sprakbanken, University of Gothenburg.

Brants, T. (2000). TnT - a statistical part-of-speech tagger. In Proceedings of the 6th Applied
Natural Language Processing Conference (ANLP), Seattle, Washington, USA.

Ejerhed, E. and Kéllgren, G. (1997). Stockholm Ume& Corpus. Version 1.0. Produced
by Department of Linguistics, Ume& University and Department of Linguistics, Stockholm
University. ISBN 91-7191-348-3.

Halacsy, P, Kornai, A., and Oravecz, C. (2007). HunPos - an open source trigram tagger. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, pages
209-212, Prague, Czech Republic.

Jurish, B. (2008). Finding canonical forms for historical German text. In Storrer, A., Geyken,
A., Siebert, A., and Wiirzner, K.-M., editors, Text Resources and Lexical Knowledge: Selected
Papers from the 9th Conference on Natural Language Processing (KONVENS 2008), pages 27-37.
Mouton de Gruyter, Berlin.

Jurish, B. (2010). More Than Words: Using Token Context to Improve Canonicalization of
Historical German. Journal for Language Technology and Computational Linguistics, 25(1):23—
39.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Computing
Surveys (CSUR), 24(4):377-439.

Levenshtein, V. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10(8):707-710.

Pettersson, E., Megyesi, B., and Nivre, J. (2012). Rule-based normalisation of historical text -
a diachronic study. In Proceedings of the First International Workshop on Language Technology
for Historical Text(s), Vienna, Austria.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linksping Electronic Conference Proceedings #85 [page 178 of 474]

Rayson, P, Archer, D., and Nicholas, S. (2005). VARD versus Word — A comparison of the
UCREL variant detector and modern spell checkers on English historical corpora. In Proceedings
from the Corpus Linguistics Conference Series on-line e-journal, volume 1, Birmingham, UK.

Stymne, S. (2008). German compounds in factored statistical machine translation. In
Ranta, A. and Nordstrom, B., editors, Proceedings of GoTAL, 6th International Conference on
Natural Language Processing, volume 5221, pages 464-475, Gothenburg, Sweden. Springer
LNCS/LNAL

Stymne, S. and Holmqvist, M. (2008). Processing of Swedish Compounds for Phrase-Based
Statistical Machine Translation. In Proceedings of the 12th EAMT conference, Hamburg, Ger-
many.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linképing Electronic Conference Proceedings #85 [page 179 of 474]

