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ABSTRACT

In this paper, we experiment with using Stagger, an open-source implementation of an Averaged
Perceptron tagger, to tag Icelandic, a morphologically complex language. By adding language-
specific linguistic features and using IceMorphy, an unknown word guesser, we obtain state-
of-the-art tagging accuracy of 92.82%. Furthermore, by adding data from a morphological
database, and word embeddings induced from an unannotated corpus, the accuracy increases
to 93.84%. This is equivalent to an error reduction of 5.5%, compared to the previously best
tagger for Icelandic, consisting of linguistic rules and a Hidden Markov Model.

KEYWORDS: Averaged Perceptron, Part-of-Speech Tagging, Morphological Database, Linguistic
Features, Word Embeddings.
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1 Introduction

Part-of-Speech (PoS) tagging is the task of assigning labels, denoting word classes and mor-
phosyntactic features, to words in running text.

The state-of-the-art tagging accuracy for English, using supervised methods, is above 97%,
e.g. (Collins, 2002; Toutanova et al., 2003; Giménez and Marquez, 2004; Shen et al., 2007),
and newest results using semi-supervised methods are close to 97.5% (Spoustova et al., 2009;
Sggaard, 2011).

English is a morphologically simple language and most work on tagging English has used the
48 tags in the Penn TreeBank tagset (Marcus et al., 1993). Many morphologically complex
languages use much larger tagsets, which encode detailed morphosyntactic features, in addition
to the basic PoS categories. For example, 1100 tags appear in the Prague Dependency Treebank
2.0 (Spoustova et al., 2009), over 1000 tags appear in a Polish tagset (Radziszewski, 2013),
a tagset for Bulgarian contains 680 tags (Georgiev et al., 2012), and a reduced version of an
Icelandic tagset contains 565 tags (Loftsson et al., 2011).

The state-of-the-art for many morphologically complex languages is well below the 97+% figures
for English (Spoustova et al., 2009; Loftsson et al., 2011; Radziszewski, 2013). A notable
exception is the work of Georgiev et al. (2012) for Bulgarian, in which about 98% accuracy
was achieved, using bidirectional sequence classification (Shen et al., 2007), in combination
with linguistic rules and a morphological lexicon (which included all the words in the test set,
resulting in 0% unknown word rate).

In this paper, we experiment with using Stagger (Ostling, 2012), an open-source implementation
of the Averaged Perceptron tagger by Collins (2002), to tag Icelandic. Our motivation for
applying Stagger to Icelandic is threefold. First, the training time in Stagger is relatively short
compared to other data-driven methods like (Lafferty et al., 2001; Giménez and Marquez,
2004; Shen et al., 2007), when using a large tagset. Second, Stagger has been shown to obtain
state-of-the-art results for Swedish (Ostling, 2012), a closely related language to Icelandic.
Third, Stagger is implemented in Java and thus allows easy integration to components in the
Java-based IceNLP toolkit (Loftsson and Régnvaldsson, 2007).

By training and testing on the Icelandic Frequency Dictionary (IFD) corpus (Pind et al., 1991),
using a tagset of 565 tags, we obtain state-of-the-art tagging accuracy for Icelandic: i) 92.82%
by adding language-specific linguistic features to the base feature set of Stagger, and using
IceMorphy (Loftsson, 2008) as an unknown word guesser; and ii) 93.84%, by adding data
from a full form database of Icelandic inflections (Bjarnadéttir, 2012), and word embeddings
generated with a neural network language model (Collobert and Weston, 2008).

It is notable that our best tagging results using Stagger (93.84%) beat the previous best results
for Icelandic (93.48%), obtained by using a hybrid tagger based on a linguistic rule-based
method and a Hidden Markov Model (Loftsson et al., 2011). The increase in accuracy is
equivalent to an error reduction of 5.5%.

This paper is structured as follows. In Section 2, we describe Stagger. We discuss previous
work in tagging Icelandic in Section 3. Our development and evaluation work is described in
Section 4. Error analysis is carried out in Section 5, and we conclude in Section 6.
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2 Stagger

Stagger was originally developed for Swedish, where it achieves the state-of-the-art accuracy
of 96.57%, using a tagset of size 150 (Ostling, 2012). In this section, we give an overview of
Stagger, i.e. the underlying Averaged Perceptron algorithm, the base feature set, PoS filters, and
word embeddings.

2.1 Averaged Perceptron

The Averaged Perceptron algorithm of Collins (2002) uses a discriminative, feature-rich model
that can be trained efficiently. Recent research also shows that the algorithm, given a good
search method, can be used for PoS tagging with state-of-the-art accuracy (Shen et al., 2007;
Tsuruoka et al., 2011).

Features are modeled using feature functions of the form ¢ (h;, t;) for a history h; and a tag t;, in
the way pioneered by Maximum Entropy models (Berger et al., 1996; Ratnaparkhi, 1996). The
history h; is a complex object modeling different aspects of the sequence being tagged. It may
contain previously assigned tags in the sequence to be annotated, as well as other contextual
features such as the form of the current word, or whether the current sentence ends with a
question mark. Intuitively, the job of the training algorithm is to find out which feature functions
are good indicators that a certain tag t; is associated with a certain history h;.

A model consists of feature functions ¢,, each paired with a feature weight a, which is to be
estimated during training. The scoring function is defined over entire sequences, which in a
PoS tagging task typically means sentences. For a sequence of words w of length n in a model
with d feature functions, the scoring function is defined as:

score(w, t) = Zn:zd: a,p,(h;, t;)

i=1 s=1

The highest scoring sequence of tags:
t = argmax, score(w, t)

can be computed, for example, using the Viterbi algorithm or (as in in our case) a beam search
of width 8.

Training the model is done in an error-driven fashion: tagging each sequence in the training
data with the current model, and adding to the feature weights the difference between the
corresponding feature function for the correct tagging, and the model’s tagging.

Algorithm 1 shows one iteration of the perceptron training algorithm over the training set T of
sequences. The model is initialized to a, = 0 for all s. Collins (2002) shows that rather than
using the estimated model parameters o, directly when tagging data outside the training set,
both tagging accuracy and the speed of convergence can be improved by using values of a;
averaged during the training process. In our case, we average the weights after every 4096
training instances (sentences), which seems to strike a good balance between efficiency and
accuracy.
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Algorithm 1 Perceptron training iteration.

forallh,f € T do
t < argmax, score(w, t)
fori < 1..ndo
fors — 1..d do
Qs < Qs + ql)s(ili’ El) - ¢S(Fli’ El)
end for
end for
end for

2.2 Features

Stagger uses a basic feature set similar to that of Ratnaparkhi (1996). All of the basic features
are binary, i.e. with the value 0 or 1.

Table 1 shows the templates on which the basic features used in Stagger are based. One instance
of the first template may be:

1 ift=cAw;=0gAi#n
0 otherwise

¢s(h,t) = {

or in other words, 1 if the current tag is “c” (conjunction), the current word (w;) is “og” ‘and’,
and the current word is not the last in the sentence.

History-independent features

t;=x,w;=y,i=n
t;=x,w;=y,i=1,c(i)

L=X,Wi_  =Y,W; =2

L=XW; =Y, Wi =2

L=XWi =YW =2, Wi =U
L=X,W,_9g=Y,Wi_1=2,W;=1U
L=XW; =Y, Wit =2, Wip =U

=X Wip—2,-1120 =Y

t; = x,prefixg o3 4 (W) = y,1=1,c(i)
t; =X, suffixg 5545(w)) = y,0=1,¢(i)

t; = x,k(@),“” ew,;

t; =x,k(),k(i+1)
History-dependent features
L=Xt1=Y

tipg=X,t; 1 =), ;=2
ti=X,ti_1=Y,W; =2
L=X60=)Y,Wi=3,Wi =U

Table 1: Templates for the basic features of Stagger. t; is the tag at position i in the sequence (of
length n). w; is the lower-cased word at position i. k(i) is the type of token i (e.g. digits, Latin
letters, symbol). ¢(i) is the capitalization of token i (upper, lower, N/A). prefix/suffix,(w;) is
the k-letter prefix/suffix of word w;. x, y,,u are constants, which in any given feature function
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The features can be divided into two categories: those who describe previously assigned tags in
the sequence (history-dependent features), and those who do not. Making this distinction can
lead to a large speed increase, since the history-independent feature functions only have to be
evaluated once for each tag and word sequence, while the history-dependent ones must also be
evaluated for every history.

In addition to the basic feature set detailed above, we also performed an experiment adding
Collobert and Weston (2008) embeddings through feature functions of the following form:

¢y j(h,t) = {O if ¢, # x

where CW(w;); is the j:th dimension of word w;’s Collobert and Weston embedding. The
embeddings are described in Section 2.4.

2.3 PosS filter

Ratnaparkhi (1996) observed that both accuracy and speed can be improved by not considering
all tags for every word. We use the following basic method for determining which tags to
consider for a given word. If the word w is known, i.e. occurs in the training data, only the
tags found during training for w are considered (we refer to this set of possible tags as the tag
profile for w). Other words are limited to manually created tags from the set of open word
classes.

There is, however, one complication: during training, all words are known. Using the tag
filtering approach exactly as described above during training would give unrealistically good
accuracy on the training data, but since the perceptron algorithm learns from its errors, this
tends to lead to decreased accuracy on other data. To prevent this, words occurring between 1
and 3 times in the training data may be assigned tags from the union of the set of tags they
occur with in the training data, and the set of open word class tags.

In Section 4.3.1, we show how the PoS filter can be further improved using a morphological
analyzer, and in Section 4.3.2 using a lexicon.

2.4 Collobert and Weston embeddings

Neural network language models have been used to create word embeddings, vectors in R that
represent syntactic and semantic properties of words based on their distributional properties
(Collobert and Weston, 2008; Collobert et al., 2011). Collobert and Weston (C&W) embeddings
have been shown to improve accuracy when used as features in named entity recognition and
shallow parsing (Turian et al., 2010) as well as PoS tagging (Ostling, 2012). This amounts to
a type of semi-supervised learning, since properties of words learned from an unannotated
text corpus are used to benefit a supervised learning task. In the case of PoS tagging, C&W
embeddings are useful because words of the same word class tend to receive similar embeddings
due to the similar syntactic contexts in which they occur.

Stagger can optionally be provided with word embeddings, for use during training.
3 Icelandic and Previous Tagging Work

The Icelandic language is morphologically rich, mainly due to inflectional complexity. Nouns
can appear in 16 inflectional forms, depending on number, case and the presence or absence of
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a suffixed definite article. Adjectives can have as many as 120 inflectional forms, depending
on gender, number, case, strong or weak declension, and degree. Verbs conjugate in person,
number, tense, mood and voice, and can have as many as 107 inflectional forms (Bjarnadattir,
2012).

From a syntactic point of view, Icelandic has a basic subject-verb-object (SVO) word order, but,
in fact, the word order is fairly flexible, because morphological endings carry a substantial
amount of syntactic information. However, the word order in Icelandic is not as flexible as is
allowed in some Slavic languages. As pointed out by Dredze and Wallenberg (2008a), this
combination of morphological complexity and syntactic constraints makes Icelandic a good test
case for data-driven tagging methods.

3.1 Resources

All PoS taggers for Icelandic (see Section 3.2) have been trained/developed and tested using
the 10 pairs of training and test sets of the Icelandic Frequency Dictionary (IFD)! (Pind et al.,
1991), a balanced corpus of about 590,000 tokens. All 100 text fragments in the IFD were
published for the first time in 1980-1989. The corpus comprises five categories of texts, i.e.
Icelandic fiction, translated fiction, biographies and memoirs, non-fiction and books for children
and youngsters. The tagset used in the compilation of the IFD has become the standard tagset
for tagging Icelandic. It contains about 700 possible tags, of which 639 appear in the IFD. Thus,
the tagset mirrors the morphological complexity of the language.

The PoS tags are character strings, in which each character has a particular function. The first
character denotes the word class. For each word class there is a predefined number of additional
characters (at most six), which describe morphological features. To illustrate, consider the word
form “fiskur” ‘fish’. The corresponding tag is nken, denoting noun (n), masculine (k), singular
(e), and nominative (n) case. Table 2 shows an example of the declension for the lemma “fiskur”
‘fish’, in singular and plural (without the definite article) and the corresponding PoS tags.

Singular Plural
Case Form Tag Form Tag
Nominative | fiskur nken | fiskar  nkfn
Accusative | fisk nkeo | fiska nkfo
Dative fiski nkep | fiskum nkfp
Genitive fisks nkee | fiska nkfe

Table 2: The declension for the noun lemma “fiskur” ‘fish’.
The other main resource used in the development of Icelandic taggers is the Database of
Icelandic Inflection® (Bjarnadéttir, 2012). Its Icelandic abbreviation is BIN and henceforth we
use that term. BIN contains about 270,000 paradigms, with about 5.8 million inflectional forms.

3.2 Previous tagging work

A few years ago, no PoS tagger existed for tagging Icelandic. Now, however, various PoS
taggers have been developed, in particular data-driven taggers (Helgadéttir, 2005; Dredze and
Wallenberg, 2008b; Rognvaldsson and Helgadéttir, 2011), a rule-based tagger (Loftsson, 2008),
and a hybrid tagger (Loftsson et al., 2009).

! Available at http://www.malfong.is
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In recent work on tagging Icelandic, the tagset has been reduced, by removing named-entity
classification for proper nouns and labeling all number constants with a single tag — resulting
in 565 tags appearing in the changed version of the IFD. Moreover, the newest evaluation has
been carried out on a corrected version of the IFD corpus (Loftsson et al., 2011). Nevertheless,
the PoS (morphosyntactic) tagging of Icelandic texts has turned out to be a challenging task.
The reason is, for example, that the tagset is large in relation to the size of the available training
corpus, and the tagset makes very fine distinctions.

Table 3 shows the accuracy of three taggers, TriTagger, IceTagger, and HMM-+Ice+HMM?, used
by Loftsson et al. (2011), when tagging the (corrected version of the) IFD corpus (565 tags)
using 10-fold cross-validation. Tagging accuracy is shown both with and without using data
from BIN. Loftsson et al. (2011) used the 10" fold of the IFD for development, and the figures
are thus based on the average of the first nine folds. Data from BIN was used to extend the
dictionaries used by the taggers, thereby reducing the unknown word rate (UWR) from 6.8%
(when not using data from BIN) down to 1.1%. According to Loftsson et al. (2011), when
adding data from BIN, only “hard” unknown words remain — mostly proper nouns and foreign
words.

Without data from BIN
Tagger Unknown Known All
TriTagger 72.98 92.18 90.86
IceTagger 77.02 93.07 91.98

HMM+Ice+HMM 77.47 93.84 92.73
With data from BIN

Tagger Unknown Known All
TriTagger 65.84 92.22 91.93
IceTagger 63.47 93.11 92.78

HMM-+tIce+HMM 60.50 93.85 93.48

Table 3: Average tagging accuracy (%) of three taggers when tagging the IFD corpus using
10-fold cross-validation. Average unknown word rate (UWR) in testing is 6.8% when not using
data from BIN, compared to 1.1% when using data from BIN.

Below, we briefly describe the three taggers used by Loftsson et al. (2011). The first tagger,
TriTagger, is a Hidden Markov Model (HMM) tagger, a re-implementation of the well-known
TnT tagger (Brants, 2000).

The second tagger, IceTagger (Loftsson, 2008), is a linguistic rule-based tagger, but it derives its
dictionaries from a training corpus. It is reductionistic in nature, i.e. it removes inappropriate
tags from the tag profile for a specific word in a given context. An important part of IceTagger is
its unknown word guesser, IceMorphy. It guesses the tag profile for unknown words by applying
morphological analysis and ending analysis. In addition, IceMorphy can fill in the tag profile
gaps® in the dictionary for words belonging to certain morphological classes (Loftsson, 2008).

The third tagger, HMM+Ice4+HMM (Loftsson et al., 2009), is a hybrid tagger, comprising both
IceTagger and TriTagger. It works as follows. First, TriTaggger (the HMM) performs initial

2These taggers are part of the open-source IceNLP toolkit, available at http://icenlp. sourceforge.net
3A tag profile gap for a word occurs when a tag is missing from the tag profile. This occurs, for example, if not all
possible tags for a given word are encountered during training.
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disambiguation only with regard to the word class. Then, the rules of IceTagger are run. Finally,
the HMM disambiguates words that IceTagger is not able to fully disambiguate.

Before the work described in this paper (see Section 4), the HMM+Ice+HMM tagger was the
state-of-the-art tagger for Icelandic, obtaining an overall accuracy of 93.48% and 92.73%, with
and without using data from BIN, respectively (see Table 3).

One additional tagger, Bidir (Dredze and Wallenberg, 2008b,a), is relevant to our work. It is
based on the bidirectional sequence classification method by Shen et al. (2007). In Bidir, the
learning phase is divided into separate learning problems. First, a word class (WC) tagger
classifies a word according to the word class. Then the tagger only considers and evaluates
tags that are consistent with the predicted word class. Secondly, a case tagger (CT) retags the
case of nouns, adjectives and pronouns, given the predicted tags from the WC tagger. This
combination resulted in an accuracy of 92.06%, when using the uncorrected version of the IFD
corpus and the full 639 tags. For comparison, the HMM+Ice+HMM tagger obtains an accuracy
of 92.31% when tagging the IFD corpus under these same settings (Loftsson et al., 2009).

4 Development and Evaluation

In this section, we describe various experiments carried out with the goal of obtaining state-
of-the-art tagging accuracy for Icelandic using Stagger.* Following previous work, in all the
experiments we trained and tested on folds 1-9 of the IFD, whereas fold 10 was used for
development. Furthermore, following Loftsson et al. (2011), we used the corrected version
of the IFD corpus and the reduced tagset of 565 tags appearing in the IFD (see Section 3.2).
During training, we used 12 iterations.’

4.1 Generic Stagger

In the first experiment, we evaluated the generic version of Stagger, with only the addition of a
list of open word class tags from the IFD tagset.

When comparing the results of experiment no. 1, shown in Table 4, to the results without BIN
data in Table 3, we can see that Stagger performs better than a pure HMM model (TriTagger).
Stagger obtains an accuracy of 91.29% for all words, whereas TriTagger obtains 90.86%.

On the other hand, Stagger’s accuracy is lower than both IceTagger (91.98%) and
HMM-+Ice+HMM (92.73%). It is notable, however, that Stagger’s accuracy for known words
(93.11%) is higher than the corresponding accuracy in both TriTagger (92.18%) and IceTagger
(93.07%). This is already a promising result, given the fact that IceTagger is developed using
linguistic knowledge.

In contrast, Stagger’s accuracy for unknown words (66.29%) is much lower compared to the
other three taggers. In Section 4.3, we experiment with increasing the accuracy of unknown
words, and with reducing the UWR.

4.2 Adding linguistic features

The base features of Stagger are language-independent. In the second experiment, we added
language-specific linguistic features (LF), that use particular properties of Icelandic.

“The additions we made to the generic version of Stagger are available at http://www.ling.su.se/stagger
5For each fold of about 530,000 tokens, training time on an Intel i5, 2.50GHz system, with 8G RAM, is 45-90
minutes, depending on the type of experiment carried out in the subsections below.
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Exp. Tagger Unknown Known All  Error Error

words  words words A Ab
1 Stagger 66.29  93.11 91.29
2 Stagger+LF 66.06 93.26 91.42 1.5 1.5
3 Stagger+LF+IceMorphy 77.03 93.97 92.82 163 17.7
4 Stagger+LF+IceMorphy+BfN 61.45 94.02 93.70 123 27.7
5 Stagger+LF+IceMorphy+BIN+WE 61.99 94.15 93.84 22 293

%Error reduction with regard to the previous experiment.
bError reduction with regard to the 1°¢ experiment.

Table 4: Average tagging accuracy (%) of Stagger, for different experiments, when tagging the
IFD corpus using 10-fold cross-validation. Error reduction is shown for all words. State-of-the-
art results are shown in bold font. Average UWR in testing is 6.8% without using data from BIN,
compared to 1.0% when using BIN. LF=Linguistic features; WE=Word embeddings. Differences
in all-word accuracy are significant at p < 0.001, using McNemar’s test.

Previous research on tagging Icelandic has revealed that many tagging errors are due to case
confusion for nominals (Helgadoéttir, 2005; Dredze and Wallenberg, 2008a; Loftsson et al.,
2009). In order to more accurately select the case of nominals, Dredze and Wallenberg (2008a),
in their Bidir tagger (see Section 3.2), use a separate case tagger which is essentially a second-
pass PoS tagger that is only permitted to change the case and gender selections of the first-pass
tagger, whose output the case tagger has access to.

We first implemented a separate case tagger following Dredze and Wallenberg (2008a), although
using only their Feature Group 1 (which they reported to be by far the most useful one), and
could confirm their finding that the overall tagging accuracy is improved by the case tagger.

However, since their Feature Group 1 only uses previously assigned tags to the left of the current
tag, and we use a left-to-right beam search, we were able to add the case tagger features to
the PoS tagger and perform the tagging in only one pass. This led to a small improvement in
accuracy over the separate case tagger, but, perhaps more importantly, eliminated much of the
overhead in performance and code complexity caused by re-tagging all sentences with the case
tagger.

The result of this experiment no. 2, with Stagger+LE is shown in Table 4. We obtain an accuracy
of 91.42% for all words, which corresponds to a 1.5% error reduction compared to the basic
feature set. Dredze and Wallenberg (2008a) obtained an error reduction of 4.6% when adding
their case tagger to their base tagger. It is not clear to us why we do not achieve similar gains,
even though we use very similar features.

4.3 Handling unknown words

As mentioned in Section 4.1, Stagger’s accuracy for unknown words (66.06% in experiment no.
2) is significantly lower than the corresponding accuracy of the three taggers shown in Table 3
(e.g. 77.47% by the HMM+Ice+HMM tagger). The competition in this category is indeed tough.
First, TriTagger uses an effective suffix algorithm, based on probability distributions for suffixes
of various lengths (Brants, 2000), which has worked well for various languages. Second, both
IceTagger and HMM+Ice+HMM use IceMorphy for guessing the tag profile for unknown words.
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Nevertheless, Stagger’s accuracy for unknown words is higher than the corresponding accuracy
in various other data-driven taggers tested by Helgadéttir (2005).

The next logical step was thus trying to increase the accuracy for unknown words and minimizing
the UWR. We carried this out in two ways. First, in Section 4.3.1, by integrating IceMorphy
with Stagger, and, second, in Section 4.3.2, by providing Stagger with data from BIN.

Note that unknown word guessers (like IceMorphy) exist for various languages (Mikheev,
1997; Nakov et al., 2003; Nakagawa and Yuji, 2006), whereas large comprehensive inflectional
databases like BIN are rare.

4.3.1 Stagger with IceMorphy

As mentioned in Section 3.2, IceMorphy is an unknown word guesser and a “filler” for tag profile
gaps for known words. Since both IceMorphy and Stagger are open-source, and implemented
in Java, we could easily integrate the two components.

We did so, in the following manner. During testing, we look up a word w in the dictionary
derived by Stagger during training. If w is known, then the tag gap filling method of IceMorphy
is used to guess missing tags in the profile for w.® If w is unknown, then IceMorphy is used
to guess the whole tag profile for w. The dictionaries used by IceMorphy are generated from
the IFD corpus (Loftsson, 2008). When we evaluate each test fold F, using the integration of
Stagger and IceMorphy, we thus only make IceMorphy have access to the dictionaries generated
from fold F.

The results for this tagger, Stagger+LF+IceMorphy (generic Stagger, in addition to linguistic
features and IceMorphy), are shown as experiment no. 3 in Table 4. We obtain a large increase
in tagging accuracy for all words, from 91.42% to 92.82%, which is equivalent to an error
reduction of 16.3%. By integrating IceMorphy with Stagger, accuracy for unknown words
increases from 66.06% to 77.03% (error reduction of 32.3%), and for known words from
93.26% to 93.97% (error reduction of 10.5%).

4.3.2 Adding data from BIN

As discussed in Section 3.1, BIN is a large morphological database. It has been used by Loftsson
et al. (2011) to extend the dictionaries of PoS taggers, thereby minimizing the UWR.

In our fourth experiment, we added data from BIN to Stagger, which during training can be
provided with an optional lexicon. We used exactly the same data as used by Loftsson et al.
(2011), i.e. a file of about 5.3 million entries from BfN, in which the PoS tags used in BIN have
been mapped to the IFD tags (see Loftsson et al. (2011) for details on how the file is generated).
From this file, we generated the entries for the optional lexicon, i.e. a 4-tuple: <word, lemma,
tag, frequency>. The first three elements of this tuple come from BIN, whereas the last element
is 0, in our case. During training, the provided lexicon is automatically extended by the training
set.

Since BIN contains a very large amount of word forms, there is no need to use IceMorphy to fill
in tag profile gaps — adding the data from BIN indeed means that most such gaps disappear.
Hence, in this experiment, we tested only using IceMorphy to guess the tag profile for unknown
words.

5We do not use tag profile gap filling for verbs, because IceMorphy overgenerates (recall is higher than precision
(Loftsson, 2008)) and testing on the development set resulted in higher accuracy by excluding the verbs.
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The result of this experiment no. 4 is shown as the tagger Stagger+LF+IceMorphy+BiN in
Table 4. For all words, we obtain a state-of-the-art accuracy of 93.70%, which is equivalent
to 3.4% error reduction compared to the previously best result of 93.48%, obtained by the
HMM-+Ice+HMM tagger (see Table 3). Stagger’s accuracy for known words (94.02%) is
somewhat higher than the corresponding accuracy of the HMM+Ice+HMM tagger (93.85%),
and for unknown words Stagger’s accuracy (61.45%) also surpasses that of HMM+Ice+HMM
(60.50%).

4.4 Adding word embeddings

In our final experiment, no. 5, we added C&W word embeddings (WE), discussed in Section 2.4,
as features during training. We induced 48-dimensional C&W embeddings using the tool of
Robert f)stling7 and 10 million sentences (ca. 170 million words) of Icelandic web texts from
the Wortschatz project.® We limited the vocabulary to words occurring at least 100 times in
the data, in total 65 426 words. The embeddings were trained for 25 billion updates, or about
150 iterations through the entire corpus, which took about ten days on a 2.66 GHz Intel Core2
system.

As shown in Table 4, we obtain an overall accuracy of 93.84% for the Stag-
ger+LF+IceMorphy+BIN+WE tagger, which is equivalent to 29.3% error reduction compared
to the first experiment (see Table 4), and 5.5% error reduction compared to the previous best
results.

5 Error analysis

We performed preliminary error analysis on the output of the Stagger+LF+IceMorphy+BIN-+WE
tagger. We combined the tagging errors made on the test sets of the first nine folds.

We define an error type as a pair (x, y), where x is the predicted tag and y is the gold tag.
Stagger makes 4,108 different error types. 1,796 of those, or 43.72%, appear only once. The 10
most frequent errors account for 14.60% of the total errors, as shown in Table 5. It is notable
that 6 of the 10 most frequent errors are due to mistakes in case assignments (errors no. 1-4
and 9-10 in Table 5).

The two most frequent error types (ap,ao) and (ao,ap) differentiate between a preposition
governing the accusative (ao) or dative case (ap). The case marking in these tags “[...] do not
reflect any morphological distinctions in the words they are attached to, but only indicate the
effect (case government) that these words have on their complements” (Loftsson et al., 2009).

For example, for the prepositional phrase “med bok” ‘with book’, tagged as “ao nveo”, the fourth
letter (o) in the tag for the noun “bok” denotes accusative case and the corresponding case
marking on the preposition “med” is really redundant. In a way, a tagger is penalized twice for
such case tagging errors, because of the wrong case in the preposition in addition to the error
in the complement. If we do not make a distinction between the tags “ao” and “ap”, the tagging
accuracy of the Stagger+LF+IceMorphy+BIN+WE tagger increases from 93.84% to 94.17%.

6 Conclusion

We have applied Stagger, an open-source implementation of an Averaged Perceptron tagger, to
the morphologically complex Icelandic language, obtaining state-of-the-art tagging accuracy

"http://www.ling.su.se/english/nlp/tools/svek
Shttp://corpora.uni-leipzig.de/
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No. Error type Rate Cumulative rate
1 (ap,a0) 2.97 2.97
2 (ao,ap) 2.35 5.32
3 (nvep,nveo) 1.49 6.81
4 (nveo,nvep) 1.33 8.14
5 (sng,sfg3fn) 1.24 9.37
6 (ao,aa) 1.21 10.58
7 (sfg3ep,sfglep) 1.18 11.76
8 (aa,ao0) 1.01 12.77
9 (nheo,nhen) 0.93 13.70

10 (nhen,nheo) 0.90 14.60

Table 5: The 10 most frequent error types and their rate of occurrence in % in the output of the
Stagger+LF+IceMorphy+BIN+WE tagger. An error type is a pair (x, y): x is the predicted tag
and y is the gold tag.

when using a version of the IFD corpus in which 565 different tags appear. Our best result, the
accuracy of 93.84%, is equivalent to 5.5% error reduction compared to the previous best results
on the same data.

Our largest gain in accuracy was obtained by integrating Stagger with IceMorphy, an open-
source unknown word guesser for Icelandic, for the purpose of guessing the tag profile for
unknown words, and to fill in gaps in the tag profile for known words. Nearly as much was
gained when we used data from a large morphological database to reduce the UWR. Small
increases in accuracy were obtained by adding some language-specific features, and by using
word embeddings induced from a large unannotated corpus.

For a morphologically complex language, where unknown word forms are particularly frequent,
we conclude that simple suffix features (as used in the generic version of Stagger) can not
compare to a good morphological analyzer (unknown word guesser) or a large morphological
database, and that the analyzer probably represents the best time investment when improving
a PoS tagger.

In future work, we would like to experiment further with semi-supervised training, and apply
the lessons learned from the Icelandic case to other morphologically complex languages. For
Icelandic in particular, we want to explore ways to reduce the most frequent errors based on
incorrect case assignments.
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