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Abstract

We propose the use of the word categories and
embeddings induced from raw text as auxil-
iary features in dependency parsing. To in-
duce word features, we make use of contex-
tual, morphologic and orthographic properties
of the words. To exploit the contextual infor-
mation, we make use of substitute words, the
most likely substitutes for target words, gen-
erated by using a statistical language model.
We generate morphologic and orthographic
properties of word types in an unsupervised
manner. We use a co-occurrence model with
these properties to embed words onto a 25-
dimensional unit sphere. The AI-KU sys-
tem shows improvements for some of the lan-
guages it is trained on for the first Shared Task
of Statistical Parsing of Morphologically Rich
Languages.

1 Introduction

For the first shared task of Workshop on Statistical
Parsing of Morphologically Rich Languages (Sed-
dah et al., 2013), we propose to use unsupervised
features as auxillary features for dependency pars-
ing.

We induce the unsupervised features using con-
textual, morphological and orthographic properties
of the words. We use possible substitutes of the tar-
get word which are generated by a statistical lan-
guage model to exploit the contextual information.
We induce morphological features with a HMM-
based model (Creutz and Lagus, 2005). We combine
contextual, morphological and orthographic features
of co-occurring words within the co-occurrence
data embedding framework (Maron et al., 2010).
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The framework embeds word types sharing simi-
lar context, morphological and orthographic prop-
erties closely on a 25-dimensional sphere. Thus, it
provides the word embeddings on a 25 dimensional
sphere. We conduct experiments using these word
embeddings with MaltParser (Nivre et al., 2007) and
MaltOptimizer (Ballesteros and Nivre, 2012). In
addition to CONLL features (Buchholz and Marsi,
2006a), they are added as additional features and the
parsers are configured such that they are able to ex-
ploit these additional features. As a first step we use
real valued word embeddings as they are. Secondly,
we discretize the real valued word embeddings. Fi-
nally, we cluster them and find fine-grained word
categories for word types.

Our experiments show that, the AI-KU system
leads to better results than the baseline experiments
for some languages. We claim that with the cor-
rect parameter settings, these unsupervised features
could be useful for dependency parsing.

In the following sections, we introduce the related
work, the algorithm, experiments, results and pro-
vide a conclusion.

2 Related Work

The features extracted from unlabeled corpora are
already used for all major NLP tasks. Early stud-
ies mainly use clustering based representations (es-
pecially Brown clustering (Brown et al., 1992)) to
obtain those features. Miller et al. (2004; Freitag
(2004) utilized Brown Clusters to improve Named
Entity Recognition (NER) performance whereas
Biemann et al. (2007) used them for NER, Word
Sense Disambiguation(WSD), and chunking. Ush-
ioda (1996) extended Brown Clustering to cluster
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not only words but also phrases using hierarcical
clustering and uses them to improve supervised part-
of-speech (PoS) tagging. More recently, Brown
Clusters are used for Chinese word segmentation
and NER (Liang, 2005).

Just like other tasks, clustering based representa-
tions are used to improve parser performance. Koo
et al. (2008; Suzuki et al. (2009) improved depen-
dency parsing by using Brown clusters. While Can-
dito and Seddah (2010; Candito and Crabbé (2009)
improved PCFG parsing by using them and Gold-
berg et al. (2009) improved PCFG parser for He-
brew by using HMM generated features. More re-
cently Socher et al. (2010) used word embeddings
computed using method explained in (Collobert and
Weston, 2008) for syntactic parsing.

3 Algorithm

In this section, the general flow of the algorithm will
be presented. First, we explain how we generate
the substitute vectors. Then, we explain the induc-
tion procedure of morphological features. In the fol-
lowing subsection, we explain how we use substi-
tute vectors and morphological features and gener-
ate word embeddings. The same flow is followed
for all languages we work on.

3.1 Substitute Vectors

A target word’s substitute vector is represented by
the vocabulary of words and their corresponding
probabilities of occurring in the position of the target
word.

(1) “ Nobody thought you could just in-
ject DNA into someone ’s body and they
would just suck it up.”

Probability Substitute Word
0.123 thought
0.091 knew
0.064 felt
0.062 said
0.052 believed
0.037 wish

Table 1: Substitute Vector for “thought” in above sen-
tence.

79

Table 1 illustrates the substitute vector of
“thought” in (1). There is a row for each word in
the vocabulary. For instance, probability of “knew”
occurring in the position of “thought” is 9.1% in this
context.

To calculate these probabilities, as described in
(Yatbaz et al., 2012), a 4-gram language model is
built with SRILM (Stolcke, 2002) on the corpora of
the target languages. For French, Hungarian, Pol-
ish and Swedish we used Europarl Corpus' (Koehn,
2005). For German, CONLL-X German Corpus
is used (Buchholz and Marsi, 2006b). For He-
brew, we combined HaAretz and Arutz 7 corpora of
MILA?Z(Itai and Wintner, 2008). For the tokens seen
less than 5 times we replace them with an unknown
tag to handle unseen words in training and test data.
We should note that these corpora are not provided
to the other participants.

To estimate probabilities of lexical substitutes, for
every token in our datasets, we use three tokens each
on the left and the right side of the token as a con-
text. Using Fastsubs (Yuret, 2012) we generated top
100 most likely substitute words. Top 100 substi-
tute probabilities are then normalized to represent a
proper probability distribution.

We should emphasize that a substitute vector is a
function of the context and does not depend on the
target word.

3.2 Morphological Features

In order to generate unsupervised word features, the
second set of features that we use are morphological
and orthographic features.

The orthographic feature set used is similar to the

one defined in (Berg-Kirkpatrick et al.,2010)
INITIAL-CAP Capitalized words with the

exception of sentence initial

words.

The token starts with a

digit.

Lowercase words with an

internal hyphen.

Tokens that start with an

apostrophe.

NUMBER
CONTAINS-HYPHEN

INITIAL-APOSTROPHE

The morpological features are obtained using the
unlabeled corpora that are used for the generation

"http://www.statmt.org/europarl/
“http://www.mila.cs.technion.ac.il
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Figure 1: The Flow of The Modification for Handling New Features

of substitute vectors, using Morfessor defined in
(Creutz and Lagus, 2005). We will only give a
brief sketch of the model used. Morfessor splits
each word into morphemes (word itself may also be
a morpheme) which can be categorized under four
groups, namely prefix, stem, suffix, non-morpheme.
The model is defined as a maximum a posteriori
(MAP) estimate which maximizes the lexicon (set
of morphemes) over the corpus.

The maximization problem is solved by using a
greedy algorithm that iteratively splits and merges
morphemes, then re-segments corpus using Viterbi
algorithm and reestimates probabilities until conver-
gence. Finally, a final merge step takes place to re-
move all non-morphemes.

3.3 Co-occurence Embedding

For a pair of categorical variables, the Spherical Co-
occurrence Data Embedding (S-CODE) framework
(Maron et al., 2010) represents each of their values
on a sphere such that frequently co-occurring values
are positioned closely on this sphere.

The input of S-CODE are tuples of values of cate-
gorical variables. In our case, these are word tokens,
their substitutes, morphological and orthograpic fea-
tures. We construct the tuples by sampling substitute
words using substitute vectors, their corresponding
morphological and orthographic features of the to-
kens. On each row of the co-occurrence input, there
are the target token, its substitute sampled from its
substitute vector, morphological and orthographic
features. Tokens having the similar substitutes, mor-
phological and orthographic features will be closely
located on the sphere at the end of this process. As
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in (Yatbaz et al., 2012), the dimension of the sphere
is 25, in other words for each word type seen in the
corpora we have a 25 dimensional vector?.

4 Experiments

We conduct experiments using MaltParser (Nivre
et al., 2007) and MaltOptimizer (Ballesteros and
Nivre, 2012) with features provided in CONLL for-
mat and the additional unsupervised features that we
generated with default settings of the parsers. To
make use of additional features, we need to modify
MaltParser accordingly. Figure 1 shows that how
we use MaltOptimizer and MaltParser with new fea-
tures. In order to handle auxiliary features, the fea-
ture model file is modified in two different ways. We
handle new features with feature functions Input[0]
and Stack[0]*. We should note that other feature
functions should also be experimented as a future
work.

The following subsections explain the details of
the experiments.

4.1 ExperimentI

Our first approach was trying to use word embed-
dings as they are with the MaltParser. For each token
in the training and the test set, we added the corre-
sponding 25-dimensional word vector from the word
embeddings file to the training and test sets. If the
word type is not present in the word embeddings,

then, we use the unknown word vector.
3The  vectors can be downloaded here

https://github.com/wolet/sprml13-word-embeddings
“Thanks for Joakim Nivre for his suggestions on this



Stack[0] Input[0]
LAS | UAS | LaA | LAS | UAS | Labeled Accuracy
Real Valued Vectors | 80.56 | 84.33 | 85.78 | 80.63 | 84.38 | 85.92
Binning, b=5 80.25 | 84.07 | 85.58 | 80.45 | 84.20 | 85.79
Binning, b=2 80.41 | 84.19 | 85.79 | 80.47 | 84.26 | 85.77
Clustering, k = 50 80.48 | 84.29 | 85.79 | 80.50 | 84.24 | 85.78
Clustering k =300 | 80.49 | 84.23 | 85.83 | 80.58 | 84.31 | 85.82
LAS | UAS | LaS
Baseline 80.36 | 84.11 | 85.72

Table 2: Results on German with MaltParser of Development Set with Default Settings

Stack[0] Input[0]
LAS | UAS | LaS LAS | UAS | LaS
Real Valued Vectors | 87.30 | 89.33 | 93.35 | 87.29 | 89.30 | 93.32
Binning, b =2 87.12 | 89.20 | 93.20 | 87.04 | 89.11 | 93.16
Clustering, k =300 | 90.30 | 91.80 | 95.09 | 90.49 | 91.94 | 95.19
LAS | UAS | LaS
Baseline 90.38 | 91.88 | 95.14
Table 3: Results on German with MaltOptimizer of Development Set
Gold Predicted
LAS | UAS | LaS LAS | UAS | LaS Predicted (Unofficial)
Best System | 90.29 | 91.92 | 95.95 | 85.86 | 89.19 | 92.20 LAS | UAS | LaS
AI-KU 1 86.39 | 88.21 | 94.07 | 72.57 | 78.54 | 82.39 AI-KU 1 | 79.92 | 83.94 | 88.51
AI-KU 2 86.31 | 88.14 | 94.05 | 72.55 | 78.55 | 82.36 AI-KU 2 | 79.84 | 83.85 | 88.45
Baseline 85.71 | 87.50 | 93.70 | 79.00 | 83.35 | 87.73
Table 4: Results on French
Gold Predicted
LAS | UAS | LaS LAS | UAS | LaS Predicted (Unofficial)
Best System | 91.83 | 93.20 | 96.06 | 86.95 | 91.64 | 94.38 LAS | UAS | LaS
AI-KU 1 86.98 | 88.71 | 93.70 | 82.32 | 85.31 | 89.95 AI-KU 1 | 84.08 | 86.71 | 91.13
AI-KU 2 86.95 | 88.67 | 93.67 | 82.29 | 85.30 | 89.95 AI-KU 2 | 83.93 | 86.54 | 91.05
Baseline 86.96 | 87.67 | 93.67 | 82.75 | 85.38 | 90.15
Table 5: Results on German
Gold Predicted
LAS | UAS | LaS LAS | UAS | LaS
Best System | 83.87 | 88.95 | 89.19 | 80.89 | 86.7 86.93
AI-KU 1 79.42 | 84.48 | 86.52 | 69.01 | 75.84 | 79.01
AI-KU 2 78.73 | 83.79 | 85.98 | 62.27 | 75.84 | 79.01
Baseline 80.03 | 84.9 | 86.97 | 73.01 | 79.89 | 81.28

Table 6: Results on Hebrew
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Gold Predicted

LAS | UAS | LaS LAS | UAS | LaS Predicted (Unofficial)
Best System | 88.06 | 91.14 | 92.58 | 86.13 | 89.81 | 90.92 LAS | UAS | LaS
AI-KU 1 83.67 | 87.08 | 89.64 | 78.92 | 83.77 | 85.98 AI-KU 1 | 7998 | 84.42 | 87.12
AI-KU 2 83.63 | 87.06 | 89.58 | 78.76 | 83.60 | 85.95 AI-KU 2 | 79.74 | 84.12 | 86.93
Baseline 83.14 | 86.56 | 89.20 | 79.63 | 83.71 | 85.89

Table 7: Results on Hungarian
Gold Predicted
LAS | UAS | LaS LAS | UAS | LaS
Best System | 89.58 | 93.24 | 93.42 | 87.07 | 91.75 | 91.24
AI-KU 1 85.16 | 88.86 | 90.87 | 81.86 | 86.96 | 88.06
AI-KU 2 85.12 | 88.79 | 90.84 | 78.31 | 84.18 | 85.64
Baseline 80.49 | 86.41 | 86.94 | 79.89 | 85.80 | 86.24
Table 8: Results on Polish

Gold Predicted

LAS | UAS | LaS LAS | UAS | LaS
Best System | 83.97 | 89.11 | 87.63 | 82.13 | 88.06 | 85.93
AI-KU 1 78.87 | 85.19 | 83.44 | 76.35 | 83.30 | 81.37
AI-KU 2 78.57 | 85.12 | 83.25 | 76.35 | 83.24 | 81.35
Baseline 77.67 | 84.6 | 82.36 | 75.82 | 83.20 | 80.88

Table 9: Results on Swedish
Gold Predicted
Precision | Recall | F1 Precision | Recal | F1

Best System 99.41 99.38 | 99.39 | 81.68 79.97 | 80.81
AI-KU 1 99.41 99.38 | 99.39 | 74.47 71.51 | 72.96
AI-KU 2 99.38 99.36 | 99.37 | 74.34 71.51 | 72.89
MaltOptimizer Baseline | 98.77 99.18 | 99.26 | 72.64 68.09 | 70.29

Table 10: Results of Multi Word Expressions on French

82




4.2 Experiment II

The second approach is discretizing the real valued
vectors. For each dimension of word embeddings,
we separate b equal sized bins. Then, for each vec-
tor’s dimensions, we assign their corresponding bin
numbers.

4.3 Experiment III

The third approach is clustering the word embed-
dings. We use a modified k-means algorithm (Arthur
and Vassilvitskii, 2007). We experiment with vary-
ing number of clusters k.

For each token in training and test file, we use
word type’s cluster id as an auxiliary feature. Again,
if the token is not in the word embeddings file, we
used the unknown word’s cluster id.

5 Results

In Table 2, the experiments on German with Malt-
Parser without the optimization step are demon-
strated. We use the default settings of the MaltParser
as our baseline. We use training data consisting of
5000 sentences with gold tags as training set and the
provided development data as test set.

When we use real valued word embeddings as
an auxiliary feature, we observe slight improvement
compared to MaltParser baseline. The large bin-
ning size results in worse results compared to base-
line due to sparsity. Clustering again leads to some
improvement compared to MaltParser baseline. We
also observe that increasing the number of clusters
result in better scores compared to smaller k.

In Table 3, the results on German with MaltOp-
timizer can be seen. As a baseline, again, we use
training data consisting of 5000 sentences with gold
tags as training set and the provided development
data as test set. We use the baseline experiment’s
parsing algorithm, feature model and learning algo-
rithm to experiment with word embedding, binning
and clustering on MaltParser.

Unlike in Table 2, in Table 3 we observe that only
the clustering experiment outperforms the baseline
but not significantly. Since clustering is leads to
best results, for all other languages, we apply the
same optimization and clustering pipeline. The only
difference is that when the MaltOptimizer suggests
Stack Projective as the best algorithm, instead of In-
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put[0] ve use Stack[0], Stack[1], Stack[2] as feature
functions. The two systems of AI-KU only differ in
these feature functions.

In Table 3-7, the results of the best system, base-
line MaltOptimizer result and our two submitted
systems can be seen. For Polish, our system outper-
foms the MaltOptimizer baseline significantly. For
the rest of the languages, our systems are not signif-
icantly better or worse than the baseline. We make
an assumption that we need to find the optimum set-
tings, for instance the number of clusters, for each
language separately, instead of using the fixed set-
tings for all languages.

For French, German, Hungarian the model trained
on the data with gold features is mistakenly used for
testing on the data with predicted features. To cor-
rect these, for those languages, we report the unoffi-
cial results that are obtained by training on predicted
features.

For French, there is also another evaluation met-
ric. It is about capturing the Multi Word Expres-
sions(MWE). Table 10 reports the results of MWE
and it shows that our system is significantly better
than MaltOptimizer baseline.

6 Conclusion

We can speculate on these results in couple of ways.
First, for all languages we used the same number
of clusters. The optimum number of clusters may
vary with the syntactic properties of these languages.
Similarly, the optimum dimension of the word em-
beddings may vary with the languages. In addition,
for co-occurence embedding and morphological in-
duction we use the parameter settings of (Yatbaz et
al., 2012) which is optimized for Part-of-Speech in-
duction on Penn Treebank data. We suggest to find
the optimum parameter settings for co-occurrence
embedding and morphological induction as a future
work.

We only experimented with simple feature func-
tions, namely Input and Stack functions. Other con-
figuration of these functions may lead to better re-
sults. Lastly, as a future direction, we propose to
use real valued word embeddings and unsupervised
word categories as auxiliary features in the training
phase of the MaltOptimizer.
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