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Abstract

The SPMRL 2013 shared task was the op-
portunity to develop and test, with promising
results, a simple beam-based shift-reduce de-
pendency parser on top of the tabular logic
programming system DYALOG. The parser
was also extended to handle ambiguous word
lattices, with almost no loss w.r.t. disam-
biguated input, thanks to specific training, use
of oracle segmentation, and large beams. We
believe that this result is an interesting new
one for shift-reduce parsing.

1 Introduction

DYALOG is a tabular-based logic programming en-
vironment, including a language (variant of Prolog),
a bootstrapped compiler, and C-based abstract ma-
chine. It is mostly used for chart-like parsing (de La
Clergerie, 2005b), in particular for a wide coverage
French Tree Adjoining Grammar (de La Clergerie,
2005a). However, DYALOG offers all the power
of a programming language a la Prolog, with some
specific advantages, and it was tempting to try it
on statistical parsing paradigms. The SPMRL 2013
shared task (Seddah et al., 2013) was an interesting
opportunity to develop a simple (non-deterministic)
beam-based shift-reduce dependency parser, called
DYALOG-SR, inspired by (Huang and Sagae, 2010).

The main advantage of logic programming is the
(almost) transparent handling of non-determinism,
useful for instance to handle ambiguous word lat-
tices. DYALOG allows an easy tabulation of items,
and their fast retrieval (thanks to full term indexing),
needed for the dynamic programming part of the al-
gorithm. Thanks to structure sharing and term hash-
ing, it also reduces the costs related to the tabulation
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of multiple items (sharing subparts) and to term uni-
fication. Logic programs tend to be very concise,
with, in our case, around 1500 lines of DYALOG
code. However, one of the disadvantages of (pure)
logic programming, and of DYALOG in particular,
is the handling of mutable structures, which moti-
vated the development of a companion C module
(around 850 lines) to handle statistical models (load-
ing, querying, updating, and saving).

We briefly present the implemented algorithm
(Section 2) and list the preliminary adaptations done
for the 9 languages of the shared task (Section 3).
We analyze in Section 4 the official results for
DYALOG-SR. Recent developments corrected some
weaknesses of DYALOG-SR. In particular, we ex-
plain in Section 5 how we seriously improved the
parsing of ambiguous lattices, an important new re-
sult for shift-reduce parsing. Finally, Section 6 pro-
vides some empirical data about the efficiency and
complexity of the algorithm.

2 A Dynamic Programming Shift-Reduce
parser

We used (Huang and Sagae, 2010) as the starting
point for this work, in particular using the same
simple arc-standard strategy for building projective
dependency trees, defined by the deductive system
of Figure 1. In a configuration m:(j, S):c, m de-
notes the number of transitions applied since the ax-
iom configuration, j the current position in the in-
put string, S the stack of partial dependency trees
built so far, and c the cost. A shift transition pushes
the next input symbol on top of the stack while the
two reduce transitions combine the 2 topmost stack
trees, add a new (labeled) leftmost or rightmost de-
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pendency edge between their roots, and remove the
newly governed subtree from the stack. The delta
cost £, A\, and p denote the cost of each operation
w.r.t. the input configuration.

input:  wg...Wnp_1
axiom 0:(0, €):0
m:(j, S):c
shift :
m+1:(j + 1, S|lwj):c + &
m:(J, S|s1|s0):c
e A -
Uom+ LG, S|s1 pso)ie + A
midj, Slsifso)e
Ten, -
m + 1:(4, S[s1 ™ s0):c+ p
goal 2n — 1:(n,sp):c

Figure 1: Arc-standard deductive system

From the configurations, the deductive system,
and the configuration elements used to determine
the transition costs, it is relatively straightforward to
design items denoting partial configurations stand-
ing for equivalence classes of configurations and al-
lowing computation sharing, following the principle
of Dynamic Programming. The deduction rules are
adapted to work on items and beam search (with size
b) is then achieved by keeping only the b best items
for each step m'. By following backpointers from
items to parents, it is possible to retrieve the best
transition sequence and the best dependency tree.

item{ step => M,
right => 17T,
stack => S0, % topmost trees
stackl => S1, %
prefix => Cost, % max cost
inside => ICost % inside cost

1.
back (Item , Action , Parentl , Parent2 ,C).
tail (Item , Ancestor).

Listing 1: Item structure

Instead of the items proposed in (Huang and
Sagae, 2010), we switched to items closer to those
proposed in (Goldberg et al., 2013), corresponding

'Because we use Dynamic Programming techniques, keep-

ing the b-best items at step m actually corresponds to keep more
than the b-best configurations at step m.
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to Tree Structured Stacks (TSS), where stack tails
are shared among items, as defined by Listing 1. The
prefix cost corresponds to the maximal cost attached
to the item, starting from the initial item. The inside
cost is the maximal cost for a derivation from some
ancestor item where sy was shifted on the stack, and
is used to adjust the total cost for different ancestor
items. The items are completed by backpointers (us-
ing asserted facts back/5) and links to the potential
stack tails (using asserted facts tail/2) needed to
retrieve the lower part of a stack when applying a re-
duce action. Figure 2 shows the adaptation for items
of some of the deductive rules.

I= m:<j7 50, 81>:(C7 L)

shift
J=m + 1<] + 1>wja 50>:(C+ gag)
tail(J) +=1
back(J) +=(shift, I, nil, ¢ + &)
I =m:(j4,s0,51):(c,t)
J = _:(_,81,82):(c, ) € tail(])
T@l{\

K =m+ 1:(j, 51 /S0, 82):(¢ + 6,0/ +§)
d=1+A
tail(K) U= tail(J)
back(K) +=(,», 1, J,¢ +9)

Figure 2: Deductive system on items (fragment)

The stack elements for configuration are depen-
dency trees, but approximations can be used for the
item fields stack and stackl, under the con-
dition that sufficient information remains to apply
the transitions and to compute the costs. In prac-
tice, we keep information about the root node, and,
when present, the leftmost and rightmost depen-
dency edges, the numbers of left and right depen-
dencies (valency), and the label sets (domain) for the
left and right dependencies.

The training phase relies on sequences of ac-
tions provided by an oracle and uses a simple av-
eraged structured perceptron algorithm (Daume,
2006). The underlying statistical model is updated
positively for the actions of the oracle and negatively
for the actions of the parser, whenever a point of di-
vergence is found. Several updating strategies may
be considered (Huang et al., 2012), and, in our case,
we update as early (early update) and as often as
possible: after completion of Step m + 1, we update
the model locally (i.e. for the last action) whenever



e the best item BY 11 derived from the oracle
item O,, at Step m differs from the expected
oracle item Oy, 1;

e the oracle item O, is not in the beam, for
intermediary steps m < 2n — 2;

e the oracle item O,,41 is not the best item, for
the last step m = 2n — 2.

We use a relatively standard set of word features
related to the CONLL fields such as 1ex (FORM),
lemma, cat (CPOSTAG), fullcat (POSTAQG),
mstag (morphosyntactic features FEATS). They
apply to the next unread word (xI, say lemmal),
the two next lookahead words (xI2 and =I3),
and (when present) to the 2 stack root nodes (x0
and *1), their leftmost and rightmost child (before
bx [01] and after a*= [01]). We have dependency
features such as the labels of the leftmost and right-
most edges ([ab]label [01]), the left and right
valency and domains ([ab] [vd] [01]). Finally,
we have 3 (discretized) distance features between
the next word and the stack roots (delta[01])
and between the two stack roots (delta01). Most
feature values are atomic (either numerical or sym-
bolic), but they can also be (recursively) a list of
values, for instance for the mstag and domain fea-
tures.

A tagset (for a given language and/or treebank)
contains a set of feature templates, each tem-
plate being a sequence of features (for instance
fullcatO:fullcatl:blabelO).

Model management is a key factor for the effi-
ciency of the algorithm, both for querying or updat-
ing the costs attached to a configuration. Therefore,
we developed a specialized C companion module. A
model is represented by a hash trie to factor the pre-
fixes of the templates. Costs are stored in the leaves
(for selecting the labels) and their immediate par-
ent (for selecting between the shift and reduce
base actions), ensuring join learning with smoothing
of an action and a label. Querying is done by pro-
viding a tree-structured argument representing the
feature values for all templates”, with the possibil-

2The tree structure of the argument mirrors the tree structure
of the templates and getting the argument tree for a configura-
tion is actually a fast and very low memory operation, thanks to
unification and structure sharing.
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ity to leave underspecified the action and the label.
By traversing in a synchronous way the model trie
and the argument tree, and accumulating costs for
all possible actions and labels, a single query returns
in order the cost for the b best actions. Furthermore,
when a feature value is a list, the traversal is run
for all its components (with summation of all found
costs).

3 Preparing the shared task

We trained the parser on the training and dev de-
pendency treebanks kindly provided by the organiz-
ers for the 9 languages of the task, namely Ara-
bic?, Basque (Aduriz et al., 2003), French (Abeillé
et al., 2003), German (Brants et al., 2002; Seeker
and Kuhn, 2012), Hebrew (Sima’an et al., 2001;
Tsarfaty, 2013; Goldberg, 2011), Hungarian (Vincze
et al., 2010; Csendes et al., 2005), Korean (Choi
et al., 1994; Choi, 2013) , Polish (Swidziﬁski and
Wolinski, 2010), Swedish (Nivre et al., 2006).

Being very short in time, we essentially used the
same set of around 110 templates for all languages.
Nevertheless, minimal tuning was performed for
some languages and for the pred data mode (when
using predicted data), as summarized below.

For French, the main problem was to retrieve
MWEs (Multi Word Expression) in pred data
mode. Predicted features mwehead and pred were
added, thanks to a list of MWEs collected in the gold
treebank and in the French lexicon LEFFF (Sagot
et al., 2006). We also added the predicted feature
is_number to help detecting numerical MWEs
such as 720 000, and also a is_capitalized
feature. For all data modes, we added a sub-
categorization feature for verbs (with a list value),
again extracted from LEFFF.

For Arabic, Hebrew, and Swedish, the lemma
feature is removed because of the absence of lemma
in the treebanks. Similarly, for Polish and German,
with identical CPOS and POS tagsets, we remove
the cat feature.

For Hungarian, the SubPOS morphosyntactic
feature is appended to the fullcat feature, to get a

3We used the shared task Arabic data set, originally provided
by the LDC (Maamouri et al., 2004), specifically its SPMRL
2013 dependency instance, derived from the Columbia Catib
Treebank (Habash and Roth, 2009; Habash et al., 2009)



richer set of POS. The set of dependency labels be-
ing large (450 labels), we split the labels into lists of
more elementary ones for the 1abel features.

Similarly, the Korean POS tags are also split into
lists, because of their large number (2743 tags) and
of their compound structure.

For French, Hebrew, and Korean, in order to com-
pensate initially large differences in performance
between the gold and pred modes, we added, for
the pred mode, dict features filled by predicted
information about the possible tags for a given
form, thanks to the dict lexicons provided by the
IMS_SZEGED team.

Finally, we discovered very late that the depen-
dency trees were not necessarily projective for a few
languages. A last-second solution was to use the
MALT projectivization / deprojectivization wrap-
pers (Nivre and Nilsson, 2005) to be able to train
on projectivized versions of the treebanks for Ger-
man, Hungarian, and Swedish, while returning non
projective trees.

4 First results

Under the team label ALPAGE-DYALOG, we have
returned parsed data for the 9 languages of the
shared task, for the full and 5k training size modes,
and for the gold and pred data modes. For each
configuration, we provided 3 runs, for beam sizes
8, 6, and 4. The results are synthesized in Tables 2,
with LAS* on the test and dev files, contrasted
with the LAS for the best system, the baseline, and
the mean LAS of all systems. The tables show that
DYALOG-SR cannot compete with the best system
(like most other participants !), but performs reason-
ably well w.r.t. the baseline and the mean LAS of
the participants, at least in the gold/full case.

The system is proportionally less accurate on
smaller training treebanks (5k case), lacking good
smoothing mechanisms to deal with data sparseness.
The pred case is also more difficult, possibly again
because of data sparseness (less reliable information
not compensated by bigger treebanks) but also be-
cause we exploited no extra information for some
languages (such as Basque or Swedish).

The big drop for German in pred/5k case

“Labeled Attachment Score, with punctuation being taking
into account.
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comes from the fact we were unable to de-
projectivize the parsed test file with Malt®> and re-
turned data built using an old model not relying on
Malt proj/deproj wrappers.

For Hungarian, a possible reason is the high level
of multiple roots in sentences, not compatible with
our initial assumption of a single root per sentence.
New experiments, after modifying slightly the al-
gorithm to accept multiple roots®, confirm this hy-
pothesis for Hungarian, and for other languages with
multiple roots, as shown in Table 1.

language #roots/sent  single multiple
Hungarian 2.00 79.22 82.90
Arabic 1.21 87.17 87.71
Basque 1.21 81.09 82.28
German 1.09 90.95 91.29

Table 1: Taking into account multiple roots (on gold/full)

Finally, the Korean case, where we are below the
baseline, remains to be explained. For the pred case,
it could come from the use of the KAIST tagset in-
stead of the alternative Seijong tagset. For the gold
case, the results for all participants are actually rela-
tively close.

5 Handling ambiguous lattices

One of the important and innovative sub-tasks of the
SPMRL campaign was to parse ambiguous lattices
using statistical methods. A word lattice is just a Di-
rected Acyclic Graph (DAG) whose edges are deco-
rated by words with their features and whose nodes
denote positions in the sentence, as represented in
Figure 3 for an Hebrew sentence. A valid analysis
for a sentence should follow a path in the DAG from
its root node at position 0 till its final node at posi-
tion n. Each edge may be associated with an unique
identifier to be able to refer it.

Lattice parsing is rather standard in chart-parsing’
and since the beginning, thanks to DYALOG’s sup-
port, DYALOG-SR was designed to parse ambigu-
ous word lattices as input, but originally using

Sbecause of non-termination on at least one sentence.

®Essentially, the initial configuration becomes 0:(0, 0):0
and the final one 2n:(n,0 ~ *):c using O as a virtual root
node.

"being formalized as computing the intersection of a gram-
mar with a regular language.



DYALOG-SR other systems DYALOG-SR other systems
language test dev b best baseline  mean language test dev b best baseline  mean
Arabic 85.87 86.99 4 89.83 82.28 86.11 Arabic 83.25 84.24 8 87.35 80.36 83.79
Basque 80.39 81.09 6 86.68 69.19 79.58 Basque 7911 79.03 8 85.69 67.13 78.33
French 87.69 87.94 8 90.29 79.86 85.99 French 85.66 0.00 8 88.73 78.16 84.49
German 8825 9089 6 91.83 79.98 86.80 German 8388 8721 6 87.70 76.64 83.06
Hebrew 80.70 81.31 8 83.87 76.61 80.13 Hebrew 80.70 81.31 8 83.87 76.61 80.13
Hungarian  79.60 79.09 4 88.06 72.34 81.36 Hungarian 78.42 79.09 4 87.21 71.27 80.42
Korean 88.23 89.24 6 89.59 88.43 88.91 Korean 81.91 8450 6 83.74 81.93 82.74
Polish 86.00 86.94 8 89.58 77.70 83.79 Polish 85.67 0.00 8 89.16 76.64 83.13
Swedish 7980 7594 6 83.97 75.73 79.21 Swedish 79.80 0.00 6 83.97 75.73 79.21

(a) gold/full (b) gold/5k

DYALOG-SR other systems DYALOG-SR other systems
language test dev b best baseline  mean language test dev b best baseline  mean
Arabic 81.20 8218 8 86.21 80.36 82.57 Arabic 78.65 79.25 8 83.66 78.48 80.19
Basque 77.55 7847 4 85.14 70.11 79.13 Basque 76.06 76.11 6 83.84 68.12 71.76
French 82.06 8283 8 85.86 77.98 81.03 French 80.11 0.00 4 83.60 76.54 79.31
German 84.80 88.38 8 89.65 77.81 84.33 German 73.07 84.69 8 85.08 74.81 79.34
Hebrew 73.63 7474 6 80.89 69.97 73.30 Hebrew 73.63 7474 6 80.89 69.97 73.30
Hungarian 75.58 75.74 6 86.13 70.15 79.23 Hungarian 74.48 75.55 6 85.24 69.08 78.31
Korean 81.02 8245 6 86.62 82.06 83.09 Korean 73.79 76.66 6 80.80 74.87 76.34
Polish 8256 8387 8 87.07 75.63 81.40 Polish 82.04 0.00 8 86.69 75.29 80.96
Swedish 77.54 73.37 8 82.13 73.21 77.65 Swedish 77.54 7244 8 82.13 73.21 77.65

(c) pred/full

(d) pred/Sk

Table 2: Official results

1:AIF/NN 5:NISH/VB

7:L/PREP 9:HSTIR/VB

2:AIF/VB 4:LA/RB i : 10:ZAT/PRP

3:AIF/NNT 6:NISH/NN

8:LHSTIR/VB

Figure 3: An ambiguous Hebrew word lattice (with gold segmentation path AIF LA NISH LHSTIR ZAT)

models trained on standard CONLL non ambigu-
ous sentences. However, the initial experiments
with Hebrew lattices (Table 3, using TED metric)
have shown an important drop of 11 points between
non ambiguous lattices (similar to standard CONLL
files) and ambiguous ones.

Hebrew Arabic
disamb nodisamb disamb
no training 87.34 76.35 87.32
spec. training 86.75

Table 3: Results on dev lattices (TED accuracy * 100)

The main reason for that situation is that multi-
ple paths of various lengths are now possible when
traversing a lattice. Final items are no longer associ-
ated with the same number of steps (2n—1) and final
items with a large number of steps (corresponding to
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longest paths in the lattice) tend to be favored over
those with a small number of steps (corresponding
to shortest paths), because the transition costs tend
to be positive in our models.

A first attempt to compensate this bias was to
“normalize” path lengths by adding (incrementally)
some extra cost to the shortest paths, proportional
to the number of missing steps. Again using models
trained on non-ambiguous segmentations, we gained
around 3 points (TED accuracy around 79) using
this approach, still largely below the non-ambiguous
case.

Finally, we opted for specific training on lattice,
with the idea of introducing the new 1ength word
feature, whose value is defined, for a word, as
the difference between its right and left position
in the lattice. To exploit this feature, we added
the following 9 templates: length[I,I2,0],



fullcat[I,I2,0]:1length[I,I2,0],
lengthI:lengthI2, lengthO:lengthI,
and lengthO:lengthI:lengthI2.

Then, to ensure that we follow valid lattice paths,
the configurations and items were completed with
three extra lookahead fields 1a[123] to remem-
ber the edge identifiers of the lookahead words that
were consulted. Obviously, adding this extra infor-
mation increases the number of items, only differing
on their lookahead sequences, but it is an important
element for the coherence of the algorithm.

The reduce actions are kept unchanged, modulo
the propagation without change of the lookahead
identifiers, as shown below:

m :< 7, S|s1]s0,la1,lag, lag >: ¢
m+1:< 7,881 ,.80,la1,1as,lag >:c+ A

reln

m :< 7, S|s1]s0,la1,lag, lag >: ¢

Ten -
" m+1:< 4,881 nv so,lag, lag,lag >ic+p

On the other hand, the shift action consumes its
first lookahead identifier la; (for a word between po-
sition j and k) and selects a new lookahead identifier
lay (which must be a valid choice for continuing the
path la, lag, lag):

m :< j,S,la,lag,lag >: ¢

shift
m+1:< k, S|lay,lag,lag,lag >:c+ ¢

It should be noted that for a given position j in
the lattice, we may have several items only differ-
ing by their lookahead sequences laj, lag, lag, and
each of them will produce at least one new item by
shifting la;, and possibly more than one because of
multiple lay. However, several of these new shifted
items are discarded because of the beam. Learning
good estimations for the shift actions becomes a key
point, more important than for usual shift-reduce al-
gorithms.

In order to do that, we modified the oracle to pro-
vide information about the oracle segmentation path
in the lattice, essentially by mentioning which edge
identifier should be used for each oracle shift action.
It should be noted that this information is also suffi-
cient to determine the lookahead sequence for each
oracle item, and in particular, the new edge identifier
lay to be retrieved for the shift actions.

58

An issue was however to align the predicted lat-
tices with the gold sentences (implementing a stan-
dard dynamic programming algorithm) in order to
find the oracle segmentation paths. Unfortunately,
we found that the segmentation path was missing
for 1,055 sentences in the provided Hebrew lattices
(around 20% of all sentences). Rather than discard-
ing these sentences from an already small training
set, we decided to keep them with incomplete prefix
segmentation paths and oracles.

Figure 4 shows the strong impact of a specific
training and of using large beams, with a TED accu-
racy climbing up to 86.75 (for beam size 16), close
to the 87.34 reached on non-ambiguous lattices (for
beam 6). Increasing beam size (around 3 times)
seems necessary, probably for compensating the lat-
tice ambiguities (2.76 transitions per token on aver-
age). However, even at beam=6, we get much better
results (TED=83.47) than without specific training
for the same beam size (TED=76.35).

100 * TED accuracy
oo (0]
ot D

o
e

6 8 10 12 14 16
beam size

Figure 4: Score on Hebrew lattices w.r.t. beam size

To test the pertinence of the length features,
we did some training experiments without these fea-
tures. Against our expectations, we observed only a
very low drop in performance (TED 86.50, loss =
0.25). It is possible that the 1ex features are suffi-
cient, because only a relatively restricted set of (fre-
quent) words have segmentations with length > 1.
In practice, for the Hebrew 5k training lattices, we
have 4,141 words with length > 1 for 44,722 oc-
currences (22.21% of all forms, and 12.65% of all
occurrences), with around 80% of these occurrences
covered by only 1,000 words. It is also possible that
we under-employ the 1ength features in too few
templates, and that larger gains could be obtained.



6 Empirical analysis

The diversity and amount of data provided for the
shared task was the opportunity to investigate more
closely the properties of DYALOG-SR, to identify its
weaknesses, and to try to improve it.

The usefulness of beams has been already proved
in the case of Hebrew ambiguous lattices, and Fig-
ure 5 confirms that, in general, we get serious im-
provements using a beam, but in practice, beam sizes
above 8 are not worth it. However, we observe al-
most no gain for Korean, a situation to be investi-
gated.

89
88
v 87
5
86
—e— Arabic
85 —=— French
84 —e— Korean
S 4 6 8
beam size

Figure 5: Accuracy evolution w.r.t. beam size

Efficiency was not the main motivation for this
work and for the shared task. However, it is worth-
while to examine the empirical complexity of the al-
gorithm w.r.t. beam size and w.r.t. sentence length.
As shown in Figure 6, the average speed at beam=1
is around 740 tokens by second. At best, we ex-
pect a linear decreasing of the speed w.r.t. to beam
size, motivating the use of a normalized speed by
multiplying by the size. Surprisingly, we observe
a faster normalized speed than expected for small
beam sizes, maybe arising from computation shar-
ing. However, for larger beam sizes, we observe
a strong decrease, maybe related to beam manage-
ment through (longer) sorted DYALOG lists, but also
to some limits of term indexing®. The same experi-
ence carried for large beam sizes on the Hebrew lat-
tices does not exhibit the same degradation, a point
to be investigated but which suggests some kind of

8Even with efficient term indexing, checking the presence of
an item in DYALOG table is not a constant time operation.
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equivalence between beam=4 on non ambiguous in-
put string and beam=12 on ambiguous lattices (also
reflected in accuracy evolution).

—_
[\
)
@)

1,000

800

600

(tokens per second) * beam

beam size

Figure 6: Normalized speed w.r.t. beam size (dev)

340 +
320 |
300 |
280
260 +

(tokens per second) * beam

6 8 10 12 14 16
beam size

Figure 7: Normalized speed w.r.t. beam size (lattices)

Collecting parsing times for the sentences under
length 80 from all training files and for all training
iterations, Figure 8 confirms that parsing time (di-
vided by beam size) is linear w.r.t. sentence length
both for beam=1 and beam=8. On the other hand,
we observe, Figure 9, that the number of updates
increases with beam size (confirming that larger
beams offer more possibilities of updates), but also
non linearly with sentence length.

7 Conclusion

We have presented DYALOG-SR, a new implemen-
tation on top of DYALOG system of a beam-based
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Figure 8: Parsing time w.r.t. sentence length (train)

100 | o
80 _."_
§ 60 | e
2 -~ L e
ﬁ 40 T _—'..-. N ..-..-w -
- ..-"- °
20 + ..:_-,f:"" -b=1
=b=8
0 ; ; ;
20 40 60 30

sentence length

Figure 9: Number of updates w.r.t. sentence length (train)

shift-reduce parser with some preliminary support
for training on ambiguous lattices. Although devel-
oped and tuned in less than a month, the participa-
tion of this very young system to the SPMRL 2013
shared task has shown its potential, even if far from
the results of the best participants. As far as we
know, DYALOG-SR is also the first system to show
that shift-parsing techniques can be applied on am-
biguous lattices, with almost no accuracy loss and
with only minimal modifications (but large beams).

Several options are currently under considera-
tion for improving the performances of DYALOG-SR.
The first one is the (relatively straightforward) evo-
lution of the parsing strategy for handling directly
non-projective dependency trees, through the addi-
tion of some kind of SWAP transition (Nivre, 2009).
Our preliminary experiments have shown the impor-
tance of larger beam sizes to cover the increased
level of ambiguity due to lattices. However, it seems
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possible to adjust locally the beam size in function
of the topology of the lattice, for improved accu-
racy and faster parsing. It also seems necessary to
explore feature filtering, possibly using a tool like
MALTOPTIMIZER (Ballesteros and Nivre, 2012), to
determine the most discriminating ones.

The current implementation scales correctly w.r.t.
sentence length and, to a lesser extent, beam size.
Nevertheless, for efficiency reasons, we plan to im-
plement a simple C module for beam management to
avoid the manipulation in DYALOG of sorted lists.
Interestingly, such a module, plus the already im-
plemented model manager, should also be usable to
speed up the disambiguation process of DYALOG-
based TAG parser FRMG (de La Clergerie, 2005a).
Actually, these components could be integrated in a
slow but on-going effort to add first-class probabili-
ties (or weights) in DYALOG, following the ideas of
(Eisner and Filardo, 2011) or (Sato, 2008).

Clearly, DYALOG-SR is still at beta stage. How-
ever, for interested people, the sources are freely
available’, to be packaged in a near future.
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