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Abstract

This paper describes the LIGM-Alpage sys-
tem for the SPMRL 2013 Shared Task. We
only participated to the French part of the de-
pendency parsing track, focusing on the real-
istic setting where the system is informed nei-
ther with gold tagging and morphology nor
(more importantly) with gold grouping of to-
kens into multi-word expressions (MWEs).
While the realistic scenario of predicting both
MWEs and syntax has already been investi-
gated for constituency parsing, the SPMRL
2013 shared task datasets offer the possibil-
ity to investigate it in the dependency frame-
work. We obtain the best results for French,
both for overall parsing and for MWE recog-
nition, using a reparsing architecture that com-
bines several parsers, with both pipeline archi-
tecture (MWE recognition followed by pars-
ing), and joint architecture (MWE recognition
performed by the parser).

1 Introduction

As shown by the remarkable permanence over the
years of specialized workshops, multiword expres-
sions (MWEs) identification is still receiving consid-
erable attention. For some languages, such as Ara-
bic, French, English, or German, a large quantity of
MWE resources have been generated (Baldwin and
Nam, 2010). Yet, while special treatment of com-
plex lexical units, such as MWEs, has been shown to
boost performance in tasks such as machine transla-
tion (Pal et al., 2011), there has been relatively little
work exploiting MWE recognition to improve pars-
ing performance.

Indeed, a classical parsing scenario is to pre-
group MWEs using gold MWE annotation (Arun

and Keller, 2005). This non-realistic scenario has
been shown to help parsing (Nivre and Nilsson,
2004; Eryigit et al., 2011), but the situation is quite
different when switching to automatic MWE predic-
tion. In that case, errors in MWE recognition al-
leviate their positive effect on parsing performance
(Constant et al., 2012). While the realistic scenario
of syntactic parsing with automatic MWE recogni-
tion (either done jointly or in a pipeline) has already
been investigated in constituency parsing (Caffer-
key et al., 2007; Green et al., 2011; Constant et al.,
2012; Green et al., 2013), the French dataset of the
SPMRL 2013 Shared Task (Seddah et al., 2013) of-
fers one of the first opportunities to evaluate this sce-
nario within the framework of dependency syntax.

In this paper, we discuss the systems we submit-
ted to the SPMRL 2013 shared task. We focused
our participation on the French dependency parsing
track using the predicted morphology scenario, be-
cause it is the only data set that massively contains
MWEs. Our best system ranked first on that track
(for all training set sizes). It is a reparsing system
that makes use of predicted parses obtained both
with pipeline and joint architectures. We applied it
to the French data set only, as we focused on MWE
analysis for dependency parsing. Section 2 gives its
general description, section 3 describes the handling
of MWEs. We detail the underlying parsers in sec-
tion 4 and their combination in section 5. Experi-
ments are described and discussed in sections 6 and
7.

2 System Overview

Our whole system is made of several single statisti-
cal dependency parsing systems whose outputs are
combined into areparser. We use two types of sin-
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gle parsing architecture: (a) pipeline systems; (b)
”joint” systems.

The pipeline systems first perform MWE analy-
sis before parsing. The MWE analyzer (section 3)
merges recognized MWEs into single tokens and
the parser is then applied on the sentences with this
new tokenization. The parsing model is learned on
a gold training set where all marked MWEs have
been merged into single tokens. For evaluation, the
merged MWEs appearing in the resulting parses are
expanded, so that the tokens are exactly the same in
gold and predicted parses.

The ”joint” systems directly output dependency
trees whose structure comply with the French
dataset annotation scheme. As shown in Figure 1,
such trees contain not only syntactic dependencies,
but also the grouping of tokens into MWEs, since the
first component of an MWE bears dependencies to
the subsequent components of the MWE with a spe-
cific labeldep_cpd. At that stage, the only missing
information is the POS of the MWEs, which we pre-
dict by applying a MWE tagger in a post-processing
step.

la caisse d’ épargne avait fermé la veille
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Figure 1: French dependency tree forLa caisse
d’épargne avait ferḿe la veille (The savings bank had
closed the day before), containing two MWEs (in red).

3 MWE Analyzer and MWE Tagger

The MWE analyzer we used in the pipeline sys-
tems is based on Conditional Random Fields (CRF)
(Lafferty et al., 2001) and on external lexicons fol-
lowing (Constant and Tellier, 2012). Given a tok-
enized text, it jointly performs MWE segmentation
and POS tagging (of simple tokens and of MWEs),
both tasks mutually helping each other1. CRF is a
prominent statistical model for sequence segmenta-

1Note though that we keep only the MWE segmentation, and
use rather the Morfette tagger-lemmatizer, cf. section 4.

tion and labelling. External lexicons used as sources
of features greatly improve POS tagging (Denis
and Sagot, 2009) and MWE segmentation (Constant
and Tellier, 2012). Our lexical resources are com-
posed of two large-coverage general-language lexi-
cons: the Lefff2 lexicon (Sagot, 2010), which con-
tains approx. half a million inflected word forms,
among which approx.25, 000 are MWEs; and the
DELA3 (Courtois, 2009; Courtois et al., 1997) lex-
icon, which contains approx. one million inflected
forms, among which about110, 000 are MWEs.
These resources are completed with specific lexi-
cons freely available in the platform Unitex4: the
toponym dictionary Prolex (Piton et al., 1999) and a
dictionary of first names.

The MWE tagger we used in the joint systems
takes as input a MWE within a dependency tree, and
outputs its POS. It is a pointwise classifier, based
on a MaxEnt model that integrates different features
capturing the MWE local syntactic context, and in
particular the POS at the token level (and not at
the MWE level). The features comprise: the MWE
form, its lemma, the sequence of POS of its compo-
nents, the POS of its first component, its governor’s
POS in the syntactic parse, the POS following the
MWE, the POS preceding the MWE, the bigram of
the POS following and preceding the MWE.

4 Dependency Parsers

For our development, we trained 3 types of parsers,
both for the pipeline and the joint architecture:

• MALT , a pure linear-complexity transition-
based parser (Nivre et al., 2006)

• Mate-tools 1, the graph-based parser available
in Mate-tools5 (Bohnet, 2010)

• Mate-tools 2, the joint POS tagger and
transition-based parser with graph-based com-
pletion available inMate-tools (Bohnet and
Nivre, 2012).

2We use the version available in the POS tagger MElt (Denis
and Sagot, 2009).

3We use the version in the platform Unitex (http://igm.univ-
mlv.fr/˜unitex). We had to convert the DELA POS tagset to the
FTB one.

4http://igm.univ-mlv.fr/˜unitex
5Available at http://code.google.com/p/mate-tools/. We

used theAnna3.3version.
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Such parsers require some preprocessing of the
input text: lemmatization, POS tagging, morphol-
ogy analyzer (except the joint POS tagger and
transition-based parser that does not require prepro-
cessed POS tagging). We competed for the scenario
in which this information is not gold but predicted.
Instead of using the predicted POS, lemma and mor-
phological features provided by the shared task orga-
nizers, we decided to retrain the tagger-lemmatizer
Morfette (Chrupała et al., 2008; Seddah et al., 2010),
in order to apply a jackknifing on the training set, so
that parsers are made less sensitive to tagging errors.
Note that no feature pertaining to MWEs are used at
this stage.

5 Reparser

The reparser is an adaptation to labeled dependency
parsing of the simplest6 system proposed in (Sagae
and Lavie, 2006). The principle is to build an arc-
factored merge of the parses produced byn input
parsers, and then to find the maximum spanning
tree among the resulting merged graph7. We im-
plemented the maximum spanning tree algorithm8

of (Eisner, 1996) devoted to projective dependency
parsing. During the parse merging, each arc is unla-
beled, and is given a weight, which is the frequency
it appears in then input parses. Once the maxi-
mum spanning tree is found, each arc is labeled by
its most voted label among them input parses con-
taining such an arc (with arbitrary choice in case of
ties).

6 Experiments

6.1 Settings

MWE Analysis and Tagging
For the MWE analyzer, we used the toollgtag-

ger9 (version 1.1) with its default set of feature tem-

6The other more complex systems were producing equiva-
lent scores.

7In order to account for labeled MWE recognition, we in-
tegrated in the ”depcpd” arcs the POS of the corresponding
MWE. For instance, if the label ”depcpd” corresponds to an arc
in a multiword preposition (P), the arc is relabeled ”depcpd P”.
At evaluation time, the output parse labels are remapped to the
official annotation scheme.

8More precisely, we based our implementation on the
pseudo-code given in (McDonald, 2006).

9http://igm.univ-mlv.fr/˜mconstan

plates. The MWE tagger model was trained using
the Wapiti software(Lavergne et al., 2010). We used
the default parameters and we forced the MaxEnt
mode.

Parsers
For MALT (version 1.7.2), we used thearceager

algorithm, and theliblinear library for training. As
far as the features are concerned, we started with
the feature templates given in Bonsai10 (Candito et
al., 2010), and we added some templates (essentially
lemma bigrams) during the development tests, that
slightly improved performance. For the twoMate-
tools parsers, we used the default feature sets and
parameters proposed in the documentation.

Morphological prediction
Predicted lemmas, POS and morphology features

are computed with Morfette version 0.3.5 (Chrupała
et al., 2008; Seddah et al., 2010)11, using10 iter-
ations for the tagging perceptron,3 iterations for
the lemmatization perceptron, default beam size for
the decoding of the joint prediction, and the Lefff
(Sagot, 2010) as external lexicon used for out-of-
vocabulary words. We performed a jackknifing on
the training corpus, with 10 folds for the full corpus,
and 20 folds for the 5k track12.

6.2 Results

We first provide the results on the development cor-
pus. Table 1 shows the general parsing accuracy of
our different systems. Results are displayed in three
different groups corresponding to each kind of sys-
tems: the two single parser architectures ones (joint
and pipeline) and the reparsing one. Each system
was tested both when learned on the full training
data set and on the 5k one. The joint and pipeline
systems were evaluated with the three parsers de-
scribed in section 4. For the reparser, we tested dif-
ferent combinations of parsers in the full training
data set mode. We found that the best combination
includes all parsers but MALT in joint mode. We did
not tune our reparsing system in the 5k training data
set mode. We assumed that the best combination in
this mode was the same as with full training.

10http://alpage.inria.fr/statgram/frdep/frstatdepparsing.html
11Available at https://sites.google.com/site/morfetteweb/
12Note that for the 5k track, we retrained Morfette using the

5k training corpus only, whereas the official 5k training set con-
tains predicted morphology trained on the full training set.
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full 5k
type parser LAS UAS LaS LAS UAS LaS

Joint
MALT 80.91 84.74 89.18 78.61 83.16 87.51

Mate-tools 1 84.60 88.21 91.43 82.02 86.23 90.02
Mate-tools 2 84.40 88.08 91.02 81.66 85.97 89.38

Pipeline
MALT 82.56 86.22 90.22 80.79 84.71 89.19

Mate-tools 1 85.28 88.73 91.85 83.23 86.97 90.67
Mate-tools 2 84.82 88.31 91.45 82.79 86.56 90.26

Reparser

joint only 85.28 88.77 91.70 - - -
pipeline only 85.79 89.17 91.94 - - -

all 86.12 89.36 92.22 - - -
best ensemble 86.23 89.55 92.21 84.25 87.88 91.17

Table 1: Parsing results on development corpus (38820 tokens)

COMP MWE MWE+POS
R P F R P F R P F

joint Mate-tools 1 76.3 82.4 79.2 74.3 80.6 77.3 70.7 76.7 73.6
pipeline Mate-tools 1 80.8 82.7 81.7 79.0 83.6 81.2 75.6 80.1 77.8
best reparser 81.1 82.5 81.8 79.2 83.0 81.0 76.1 79.8 77.9

Table 2: MWE Results on the development corpus (2119 MWEs) with full training.

Table 2 contains the MWE results on the devel-
opment data set with full training, for three systems:
the best single-parser joint and pipeline systems (i.e.
with Mate-tools 1) and the best reparser. We do not
provide results for the 5k training because they show
similar trends. We provide the 9 MWE-related mea-
sures defined in the shared task. The symbolsR, P
and F respectively correspond torecall, precision
and F-measure. COMP corresponds to evaluation
of the non-head MWE components (i.e. the non-first
MWE components, cf. Figure 1).MWEcorresponds
to the recognition of a complete MWE.MWE+POS
stands for the recognition of a complete MWE asso-
ciated with its correct POS.

We submitted to the shared task our best
(reparser) system according to the tuning described
above. We also sent the two best pipeline systems
(Mate-tools 1 and Mate-tools 2) and the best joint
system (Mate-tools 1), in order to compare our sin-
gle systems to the other competitors. The official re-
sults of our systems are provided in table 3 for gen-
eral parsing and in table 4 for MWE recognition. We
also show the ranking of each of these systems in the
competition.

7 Discussion

In table 3, we can note that for the5k training set
scenario, there is a general drop of parsing perfor-
mance (approximately 2 points), but the trends are
exactly the same as for the full training set sce-
nario. Concerning the performance on MWE analy-
sis (table 4), the pipeline Mate-tools-1 system very
slightly outperforms the best reparser system in the
5k scenario, contrary to the full training set scenario,
but the difference is not significant. In the following,
we focus on the full training set scenario.

Let us first discuss the overall parsing perfor-
mance, by looking at the results on the develop-
ment corpus (table 1). As far as the single-parser
systems are concerned, we can note that for both
the joint and pipeline systems, MALT achieves
lower performance than the graph-based (Mate-
tools-1) and the joint tagger-parser (Mate-tools-2),
which have comparable performance. Moreover,
the pipeline systems achieve overall better than their
joint counterpart, though the increase between joint
and pipeline architecture is much bigger for MALT
than for the Mate parsers (for MALT, compare
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training type parser LAS UAS LaS Rank

Full

Reparser best 85.86 89.19 92.20 1
Pipeline Mate-tools 1 84.91 88.35 91.73 3
Pipeline Mate-tools 2 84.87 88.40 91.51 4

Joint Mate-tools 1 84.14 87.67 91.24 7

5k

Reparser best 83.60 87.40 90.76 1
Pipeline Mate-tools 1 82.53 86.51 90.14 4
Pipeline Mate-tools 2 82.15 86.18 89.79 6

Joint Mate-tools 1 81.63 85.76 89.56 7

Table 3: Official parsing results on the evaluation corpus (75216 tokens)

training type parser COMP MWE MWE+POS Rank

Full

Reparser best ensemble 81.3 80.7 77.5 1
Pipeline Mate-tools 1 81.2 80.8 77.4 2
Pipeline Mate-tools 2 81.2 80.8 76.6 3

Joint Mate-tools 1 79.6 77.4 74.1 6

5k

Pipeline Mate-tools 1 78.7 77.7 74.0 1
Reparser best ensemble 78.9 77.2 73.8 2
Pipeline Mate-tools 2 78.7 77.7 73.3 5

Joint Mate-tools 1 75.9 72.2 75.9 10

Table 4: Official MWE results on the evaluation corpus (4043 MWEs). The scores correspond to the F-measure.

LAS=80.91 for the joint system, and LAS=82.56
for the pipeline architecture, while for Mate-tools-
1, compare LAS=84.60 with LAS=85.28). The best
reparser system provides a performance increase of
approximately one point over the best single-parser
system (Mate-tools-1), both for LAS and UAS,
which suggests that the parsers have complementary
strengths.

When looking at performance on MWE recog-
nition and tagging (2), we can note greater varia-
tion between the F-measures obtained by the single-
parser systems, but this is due to the much lower
number of MWEs with respect to the number of
tokens (there are 38820 tokens and 2119 MWEs
in the dev set). The MWE analyzer used in the
pipeline systems leads to better MWE recognition
(F − measure = 81.2 on dev set) than when the
analysis is left to the bare “joint” parsers (joint Mate-
tools 1 achieves F-measure=77.3).

Contrary to the situation for overall parsing per-
formance, the reparser system does not lead to better
MWE recognition with respect to the MWE analyzer
of the pipeline systems. Indeed the performance on

MWEs are quite similar between the reparser sys-
tem and the MWE analyzer (for the MWE metric,
on the dev set we get F=81.0 versus81.2 for best
reparser and pipeline systems respectively, whereas
we get80.7 and80.8 on the test set. These differ-
ences are not significant). This is because the MWEs
predicted by the MWE analyzer are present in three
of the single-parser systems taken into account in the
reparsing process, and are thus much favored in the
voting.

In order to understand better our parsing systems’
performance on MWE recognition, we provide in ta-
ble 5 the MWE+POS results broken down by MWE
part-of-speech, for the dev set. Not surprisingly,
we can note that performance varies greatly de-
pending on the POS, with better performance on
closed classes (conjunctions, determiners, preposi-
tions, pronouns) than on open classes. The lowest
performance is on adjectives and verbs, but given the
raw numbers of gold MWEs, the major impact on
overall performance is given by the results on nom-
inal MWEs (either common or proper nouns). A lit-
tle less than one third of the nominal gold MWEs
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R P F Nb gold Nb predicted Nb correct
adjectives 46.9 75.0 57.7 32 20 15
adverbs 74.7 83.0 78.7 360 324 269
conjunctions 90.1 83.7 86.8 91 98 82
clitics - 0.00 - 0 1 0
determiners 96.0 96.8 96.4 252 250 242
nouns 72.7 76.2 74.4 973 928 707
prepositions 84.6 84.9 84.8 345 344 292
pronouns 75.0 87.5 80.8 28 24 21
verbs 66.7 66.7 66.67 33 33 22
unknown 0 0 0 5 0 0

ALL 77.9 81.6 79.7 2119 2022 1650

Table 5: MWE+POS results on the development corpus, broken down by POS (recall, precision, F-measure, number
of gold MWEs, predicted MWEs, correct MWEs with such POS.

is not recognized (R =72.7), and about one quar-
ter of the predicted nominal MWEs are wrong (P =
76.2). Though these results can be partly explained
by some inconsistencies in MWE annotation in the
French Treebank (Constant et al., 2012), there re-
mains room for improvement for open class MWE
recognition.

8 Conclusion

We have described the LIGM-Alpage system for the
SPMRL 2013 shared task, restricted to the French
track. We provide the best results for the realistic
scenario of predicting both MWEs and dependency
syntax, using a reparsing architecture that combines
several parsers, both pipeline (MWE recognition
followed by parsing) and joint (MWE recognition
performed by the parser). In the future, we plan to
integrate features specific to MWEs into the joint
system, so that the reparser outperforms both the
joint and pipeline systems, not only on parsing (as
it is currently the case) but also on MWE recogni-
tion.
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