
Proceedings of the SIGDIAL 2013 Conference, pages 452–456,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Comparison of Bayesian Discriminative and Generative Models for
Dialogue State Tracking
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Abstract

In this paper, we describe two dialogue
state tracking models competing in the
2012 Dialogue State Tracking Challenge
(DSTC). First, we detail a novel discrim-
inative dialogue state tracker which di-
rectly estimates slot-level beliefs using de-
terministic state transition probability dis-
tribution. Second, we present a gener-
ative model employing a simple depen-
dency structure to achieve fast inference.
The models are evaluated on the DSTC
data, and both significantly outperform the
baseline DSTC tracker.

1 Introduction

The core component of virtually any dialogue sys-
tem is a dialogue state tracker. Its purpose is to
monitor dialogue progress and provide compact
representation of the past user input and system
output in the form of a dialogue state. In previ-
ous works on this topics, Williams (2007) used
particle filters to perform inference in a complex
Bayesian network modelling the dialogue state,
Williams (2008) presented a generative tracker
and showed how to train an observation model
from transcribed data, Young et al. (2010) grouped
indistinguishable dialogue states into partitions
and consequently performed dialogue state track-
ing on these partitions instead of the individual
states, Thomson and Young (2010) used a dy-
namic Bayesian network to represent the dialogue
model in an approximate form, and Mehta et al.
(2010) used probabilistic ontology trees.

In this paper, we describe two probabilistic di-
alogue state trackers: (1) a discriminative dia-
logue state tracker (DT) – a model using a sim-
ple deterministic state transition probability, re-
sulting in significant computational savings, and
(2), a generative dialogue state tracker (GT) – a

model using simple conditional dependency struc-
ture with tied and handcrafted model parameters.
Both trackers were evaluated in the DSTC. The
aim of the DSTC was to provide a common testbed
for different dialogue state tracking methods and
to evaluate these methods in a unified way. Be-
cause of limited space, the interested reader is re-
ferred to Williams et al. (2013) for information
about the data and evaluation metrics used in the
challenge.

This paper is structured as follows. The de-
terministic and generative trackers are detailed in
Section 2 and the presented models are evaluated
on the DSTC data in Section 3. Section 4 discusses
the obtained results, and Section 5 concludes the
paper.

2 Bayesian Dialogue State Tracking

The goal of dialogue state tracking is to moni-
tor progress in the dialogue and provide a com-
pact representation of the dialogue history in the
form of a dialogue state. Because of the uncer-
tainty in the user input, statistical dialogue sys-
tems maintain a probability distribution over all di-
alogue states called the belief state and every turn,
as the dialogue progresses, updates this distribu-
tion in the light of the new observations in a pro-
cess called belief monitoring.

Since the true observations are hidden, the
belief state depends on the past and current
observation probabilities, p(o1), . . . , p(ot), and
system actions, a0, . . . , at−1, which are re-
ferred to as the observed history: ht =
{a0, p(o1), . . . , at−1, p(ot)}. If the system is
Markovian, the belief state bt depends only on the
previous belief state bt−1, the observation distribu-
tion p(ot), and the last system action at−1. There
are two ways to derive the belief state update using
the Bayes theorem, resulting either in discrimina-
tive or generative probabilistic models.

The discriminative update can be represented as
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follows:

bt = b(st|ht)
=

∑

st−1,ot

p(st|at−1, st−1,ot)b(st−1|ht−1)p(ot) (1)

where the probability p(st|at−1, st−1,ot) repre-
sents the discriminative dialogue model. By fur-
ther factorisation of (1), we can derive the genera-
tive update formula:

bt ∝
∑

st−1,ot

p(st|at−1, st−1)p(ot|st)·

· b(st−1|ht−1)p(ot) (2)

where the transition probability p(st|at−1, st−1)
and the observation probability p(ot|st) represent
the generative dialogue model.

In our approach, we define the dialogue state
as a vector s = [s1, . . . , sN ] where si are val-
ues for slots in the dialogue domain, e.g. to.desc
or from.monument. The observations are factored
similarly to o = [o1, . . . , oN ], where oi are indi-
vidual slot-level observations, e. g. inform(to.desc
= downtown)⇔ oto.desc = downtown. The prob-
ability of the slot-level observations p(oi) can be
easily obtained by marginalising the observation
probability p(o). Because of limited space, only
the processing of the inform dialogue acts is de-
scribed in detail.

In the next two sections, we present the discrim-
inative and generative models of belief update em-
ployed in the DSTC challenge by using the factori-
sation of the full belief state into independent fac-
tors to obtain computationally efficient updates.

2.1 Discriminative Belief Update

In this work, the belief state bt is defined as a
product of marginal probabilities of the individual
slots, b(st) =

∏
i b(s

i
t), where sit is the i-th slot at

the turn t and the slot belief b(sit) is a probability
distribution over all values for the slot i. To keep
the notation uncluttered, the slot index, i, will be
omitted in the following text. To further simplify
the belief updates, similarly to the full belief mon-
itoring represented by (1), the slot belief depends
only on the previous slot belief bt−1, the observa-
tion distribution p(ot), and the last system action
at−1. This results in update rules for individual
slots s as follows:

b(st) =
∑

st−1,ot

p(st|at−1, st−1, ot)b(st−1)p(ot) (3)

where the conditional probability distribution
p(st|at−1, st−1, ot) represents the slot-level dia-
logue model.

There are two aspects which have to be taken
into account when we consider the presented be-
lief update: (1) the computational complexity and
(2) the parameters of the dialogue model. First,
the complexity of the belief update is given by the
number of slot values and observations because
the sum must be evaluated for all their combina-
tions. This suggests that even this update may be
computationally too expensive for slots where ob-
servations have a large number of values. Second,
the slot-level dialogue model describes probabilis-
tically how the value of a slot changes according
to the context and the observations. Parameters
of this conditional distribution would ideally be
estimated from annotated data. Because of data
sparsity, however, such estimates tend to be rather
poor and either they must be smoothed or the pa-
rameters must be tied. To overcome this problem,
we decided to set the parameters manually on the
basis of two simple assumptions leading to very
computationally efficient updates. First, we as-
sume that our dialogue model should completely
trust what the user says. Second, we assume that
the user goal does not change when the user is
silent. For example, if the user says: “I want to
go downtown”, oto.desct = downtown, then the
state should be sto.desct = downtown; and when
the user says nothing in the next turn, oto.desct+1 = �
(where the symbol � is a special slot value repre-
senting that the user was silent), the state remains
sto.desct+1 = downtown. This is captured by the fol-
lowing definition of the slot-level dialogue model:

p(st|at−1, st−1, ot) =




1 (st = ot ∧ ot 6= �)∨

(st = st−1 ∧ ot = �)
0 otherwise

(4)

When (4) is substituted into (3), the belief up-
date greatly simplifies and appears into the follow-
ing form:

b(st) =





st = � : p(st−1 = �)p(ot = �)

st 6= � :
p(ot = st)
+ p(ot = �)p(st−1 = st)

(5)

Note that this model effectively accumulates
probability from multiple hypotheses and from
multiple turns. For example, its ability to “remem-
ber” the belief from the previous turn is propor-
tional to the probability mass assigned to the SLU
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hypothesis that the user was silent about the slot in
question. In the special case when the user is silent
with probability 1.0, the current belief is equal to
the previous belief.

This belief update is very computationally effi-
cient. First, instead of summing over all combi-
nations of the slot and observation values (3), the
belief can be computed by means of a simple for-
mula (5). Second, if the user does not mention a
particular slot value during the dialogue, this value
will always have a probability of zero. Therefore,
only the probability for values suggested by the
SLU component has to be maintained.

2.2 Generative model for belief update

Similarly to the discriminative belief update, the
generative model relies on factorisation of the full
belief state into a product of marginal slot be-
liefs and a simple dependency structure where a
slot belief depends only on the previous slot be-
lief, the slot observation distribution p(oit), and
the last system action at−1. The dialogue model
p(st|at−1, st−1, ot) is further factored, however,
into the transition model p(st|at−1, st−1) and the
observation model p(ot|st) as given in (2).

The transition model describes the probability
that the user will change his/her goal, given the
previous goal and the last system action. For ex-
ample, if the system asks the user about a specific
slot, then it is reasonable to have a larger prob-
ability of this slot changing its value. As noted
for the discriminative model, estimation of the di-
alogue model parameters requires a large amount
of data, which was not available in the challenge.
Therefore, we used parameter tying as described
by Thomson and Young (2010), and set the tied
parameters manually:

p(st|at−1, st−1) =

{
θt if st = st−1

1−θt
|values|−1

otherwise (6)

where θt describes the probability of a slot value
staying the same and |values| denotes the number
of values for the slot. In other words, the probabil-
ity θt sets a tradeoff between the system’s ability
to remember everything that was said in the past
and accepting new information from the user. If θt
is too high, the system will put a strong emphasis
on the previous states and will largely ignore what
the user is saying. When testing different values of
θt on heldout data, we observed that if they are se-
lected reasonably, the overall performance of the

system does not change much. Therefore, the θt
value was fixed at 0.8 for all slots and all datasets.

The observation model p(ot|st) describes the
dependency between the observed values and the
slot values. Similarly to the transition model, pa-
rameters of the observation probability distribu-
tion were tied and set manually:

p(ot|st) =
{
θo if ot = st

1−θo
|values|−1

otherwise. (7)

where θo defines the probability of the agreement
between the observation and the slot value. The
probability of agreement describes how the model
is robust to noise and systematic errors in SLU.
When θo is set high, the model assumes that the
SLU component makes perfect predictions, and
therefore the SLU output must agree with the slot
values. Based on manual tuning on held-out data,
θo was set to 0.8.

Inference in the presented model is performed
with Loopy Belief Propagation (LBP) (Pearl,
1988). LBP is an approximate message passing
inference algorithm for Bayesian networks (BN).
LBP can be computationally intensive if there are
nodes with many parents in the network. There-
fore, as previously described, our model uses a
simple dependency structure where slots depend
only on the same slot from the previous turn, and
slot-level observations depend on the correspond-
ing slot from the same turn. To make the inference
even more efficient, one can take advantage of the
tied observation and transition probabilities. We
group all unobserved values in the nodes of BN
together and maintain only a probability for the
group as a whole, as suggested by Thomson and
Young (2010).

3 Evaluation

The discriminative (DT) and generative dialogue
(GT) trackers described in Sections 2.1 and 2.2
were evaluated on the DSTC data.

The input of DT and GT were the SLU n-best
lists either with original probabilities or the scores
mapped into the probability space. The track-
ers were evaluated on both live and batch data.
The metrics were computed with Schedule 1 (see
Williams et al. (2013)). In addition, we include
into the evaluation the DSTC baseline tracker. The
results on the live and batch data are shown in Ta-
ble 1 in the Appendix. Please note that the results
for GT differ from the results submitted for DSTC.
Only after the submission deadline, did we find
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that some of the parameters in the transition model
were set incorrectly. After the setting was fixed,
the results improved.

The results show that the DT consistently out-
performs the baseline tracker and the DT achieves
comparable or better results than the GT. The DT
clearly provides better estimates of the dialogue
states because of the incorporation of the context
and the processing of multiple hypotheses. To
assess the statistical significance of the accuracy
metric, 95% confidence scores for all measure-
ments were computed. Overall, the confidence in-
tervals were between 0.1% and 0.4% on the indi-
vidual tests. On this basis, all differences larger
than 1.0% can be considered statistically signifi-
cant.

The GT outperforms the baseline tracker on all
but the batch data. Manual inspection of the re-
sults revealed that the generative model is very
sensitive to the probabilities assigned to the obser-
vations. For the batch data, presumably due to the
score normalisation, the probabilities of hypothe-
ses in the n-best lists were very similar to each
other. As a result, the generative model had dif-
ficulties discriminating between the observed val-
ues.

In comparison with all trackers submitted for
DSTC, the DT achieves second-best accuracy
among the submitted trackers and the GT is among
the average trackers. For more details see Table 2
in the Appendix, where the average scores were
computed from the accuracy and the Brier score
on test sets 1, 2, 3, and 4.

Regarding the Brier score, the results show that
the DT outperforms the baseline tracker and esti-
mates the belief state as well as the best tracker
in the DSTC. This can prove especially important
when the tracker is used within a complete dia-
logue system where the policy decisions do not
depend on the best dialogue state but on the belief
state.

4 Discussion

The presented discriminative and generative mod-
els differ in two main areas: (1) how they incorpo-
rate observations into the belief state and (2) com-
putational efficiency.

(1) Both the DT and GT models can accumulate
information from multiple hypotheses and from
multiple turns. The GT, however, tends to “forget”
the dialogue history because the generative model

indiscriminately distributes some of the probabil-
ity mass from a slot value that was not recently
mentioned to all other slot values each turn. This
behaviour (see Table 3 for an example) is not easy
to control because “forgetting” is a consequence
of the model being able to represent the dynamics
of a user changing his/her goal. The DT does not
have this problem because the change in the goal
is directly conditioned on the observations. If the
user is silent, then the DT “copies” the past belief
state and no probability in the belief state is dis-
tributed as described in (5).

(2) The DT tracker is significantly faster com-
pared with the GT tracker while offering compa-
rable or better performance. The slot level belief
update in the discriminative model has a complex-
ity of O(n) whereas in the generative model it has
a complexity of O(n2), where n is the number of
values in the slot. When tested on a regular per-
sonal computer, the DT processed all four DSTC
test sets, 4254 dialogues in total, in 2.5 minutes
whereas the GT tracker needed 51 minutes. There-
fore, the DT tracker is about 20 times more com-
putationally efficient on the DSTC data. Although
GT achieved performance allowing real-time use
(it needed 0.1 seconds per turn) in the Let’s Go do-
main, for more complex applications the GT could
simply be too slow. In this case, the proposed dis-
criminative tracker offers a very interesting alter-
native.

5 Conclusion
This paper described two dialogue state tracking
models submitted for the DSTC challenge: (1)
the discriminative tracker and (2) the generative
tracker. The discriminative tracker is based on
a conceptually very simple dialogue model with
deterministic transition probability. Interestingly,
this discriminative model gives performance com-
parable to the more complex generative tracker;
yet it is significantly more computationally effi-
cient. An extended description of this work can be
found in the technical report (Žilka et al., 2013).
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A Comparison of the BT, DT, and GT
trackers

live data metric BT DT GT
test1 accuracy 0.77 0.88 0.88

Brier score 0.29 0.21 0.21
test2 accuracy 0.79 0.89 0.85

Brier score 0.27 0.20 0.23
test3 accuracy 0.92 0.94 0.93

Brier score 0.14 0.11 0.16
test4 accuracy 0.82 0.86 0.87

Brier score 0.24 0.21 0.20
ALL accuracy 0.83 0.89 0.88

Brier score 0.24 0.18 0.20
batch data metric BT DT GT
test1 accuracy 0.75 0.88 0.74

Brier score 0.35 0.27 0.39
test2 accuracy 0.79 0.88 0.77

Brier score 0.30 0.26 0.33
ALL accuracy 0.77 0.88 0.76

Brier score 0.32 0.27 0.36

Table 1: Accuracy of the trackers on the live and
batch test sets, where BT stands for the DSTC
baseline tracker, DT denotes the discriminative
tracker, and GT denotes the generative tracker.
ALL denotes the average scores over the live and
batch test sets.

B Comparison with the DSTC trackers

team/system accuracy Brier score
BT - C 0.81 0.27
BT 0.83 0.24
DT 0.89 0.18
GT 0.88 0.20
team1 0.88 0.23
team2 0.88 0.21
team4 0.81 0.28
team5 0.88 0.21
team6 0.91 0.18
team7 0.85 0.23
team8 0.83 0.24
team9 0.89 0.20

Table 2: Accuracy of the trackers submitted for
the DSTC, where BT - C denotes the DSTC base-
line tracker without removing the systematically
erroneous SLU hypotheses, BT denotes the DSTC
baseline tracker, DT denotes the discriminative
tracker, GT denotes the generative tracker, and
team* denote the best trackers submitted by other
teams. The scores are averaged scores obtained on
the four DSTC test sets.

C The problem of “forgetting” of the
observed values in the GT tracker

# P SLU hyp. slot value GS DS
1 1.0 centre centre 0.8 1.0

0.0 null null 0.2 0.0
2 1.0 null centre 0.68 1.0

null 0.32 0.0
3 1.0 null centre 0.608 1.0

null 0.392 0.0

Table 3: Example of three turns in which the gen-
erative system “forgets” the observed value. # de-
notes the turn number, P denotes the probability
of the observation, SLU hyp. denotes the observed
hypothesis, GS denotes the belief of the generative
system, and DS denotes the belief of the discrimi-
native system.
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