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Abstract

This paper presents a generic dialogue
state tracker that maintains beliefs over
user goals based on a few simple domain-
independent rules, using basic probability
operations. The rules apply to observed
system actions and partially observable
user acts, without using any knowledge
obtained from external resources (i.e.
without requiring training data). The core
insight is to maximise the amount of in-
formation directly gainable from an error-
prone dialogue itself, so as to better lower-
bound one’s expectations on the perfor-
mance of more advanced statistical tech-
niques for the task. The proposed method
is evaluated in the Dialog State Track-
ing Challenge, where it achieves compara-
ble performance in hypothesis accuracy to
machine learning based systems. Conse-
quently, with respect to different scenarios
for the belief tracking problem, the poten-
tial superiority and weakness of machine
learning approaches in general are investi-
gated.

1 Introduction

Spoken dialogue system (SDS) can be modelled
as a decision process, in which one of the main
problems researchers try to overcome is the un-
certainty in tracking dialogue states due to error-
prone outputs from automatic speech recognition
(ASR) and spoken language understanding (SLU)
components (Williams, 2012). Recent advances
in SDS have demonstrated that maintaining a dis-
tribution over a set of possible (hidden) dialogue
states and optimising dialogue policies with re-
spect to long term expected rewards can signifi-
cantly improve the interaction performance (Roy
et al., 2000; Williams and Young, 2007a). Such

methods are usually developed under a partially
observable Markov decision process (POMDP)
framework (Young et al., 2010; Thomson and
Young, 2010; Williams, 2010), where the distribu-
tion over dialogue states is called a ‘belief’ and is
modelled as a posterior updated every turn given
an observation. Furthermore, instead of simply
taking the most probable (or highest confidence
score) hypothesis of the user act as in ‘traditional’
handcrafted systems, the observation here may
consist of an n-best list of the SLU hypotheses (di-
alogue acts) with (normalised) confidence scores.
See (Henderson and Lemon, 2008; Williams and
Young, 2007b; Thomson et al., 2010; Young et al.,
2013) for more details of POMDP-based SDS.

It is understandable that beliefs more accurately
estimating the true dialogue states will ease the
tuning of dialogue policies, and hence can result
in better overall system performance. The accu-
racy of belief tracking has been studied in depth
by Williams (2012) based on two SDS in public
use. Here the effects of several mechanisms are
analysed, which can alter the ‘most-believed’ dia-
logue state hypothesis (computed using a genera-
tive POMDP model) from the one derived directly
from an observed top SLU hypothesis. Williams’s
work comprehensively explores how and why a
machine learning approach (more specifically the
generative model proposed in (Williams, 2010))
functions in comparison with a naive baseline.
However, we target a missing intermediate anal-
ysis in this work: how much information one
can gain purely from the SLU n-best lists (and
the corresponding confidence scores), without any
prior knowledge either being externally learned
(using data-driven methods) or designed (based on
domain-specific strategies), but beyond only con-
sidering the top SLU hypotheses. We explain this
idea in greater detail as follows.

Firstly, we can view the belief update procedure
in previous models as re-constructing the hidden
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dialogue states (or user goals) based on the previ-
ous belief, a current observation (normally an SLU
n-best list), and some prior knowledge. The prior
knowledge can be observation probabilities given
a hidden state, the previous system action and/or
dialogue histories (Young et al., 2010; Thom-
son and Young, 2010; Williams, 2010), or prob-
abilistic domain-specific ontologies (Mehta et al.,
2010), where the probabilities can be either trained
on a collection of dialogue examples or manually
assigned by human experts. In such models, a
common strategy is to use the confidence scores in
the observed n-best list as immediate information
substituted into the model for belief computation,
which implies that the performance of such belief
tracking methods to a large extent depends on the
reliability of the confidence scores. On the other
hand, since the confidence scores may reflect the
probabilities of the occurrences of corresponding
user acts (SLU hypotheses), a belief can also be
maintained based on basic probability operations
on those events (as introduced in this paper). Such
a belief will advance the estimation obtained from
top SLU hypotheses only, and can serve as a base-
line to justify how much further improvement is
actually contributed by the use of prior knowledge.
Note that the fundamental method in this paper re-
lies on the assumption that confidence scores carry
some useful information, and their informative-
ness will affect the performance of the proposed
method as will be seen in our experiments (Sec-
tion 5).

Therefore, this paper presents a generic belief
tracker that maintains beliefs over user goals only
using information directly observable from the di-
alogue itself, including SLU n-best list confidence
scores and user and system behaviours, such as
a user not disconfirming an implicit confirma-
tion of the system, or the system explicitly re-
jecting a query (since no matching item exists),
etc. The belief update is based on simple proba-
bility operations and a few very general domain-
independent rules. The proposed method was
evaluated in the Dialog State Tracking Challenge
(DSTC) (Williams et al., 2013). A systematic
analysis is then conducted to investigate the ex-
tent to which machine learning can advance this
naive strategy. Moreover, the results show the per-
formance of the proposed method to be compara-
ble to other machine learning based approaches,
which, in consideration of the simplicity of its im-

plementation, suggests that another practical use
of the proposed method could be as a module
in an initial system installation to collect training
data for machine learning techniques, in addition
to functioning as a baseline for further analysing
them.

The remainder of this paper is organised as fol-
lows. Section 2 reviews some basic mathematical
background, based on which Section 3 introduces
the proposed belief tracker. Section 4 briefly de-
scribes the DSTC task. The evaluation results and
detailed analysis are illustrated in Section 5. Fi-
nally, we further discuss in Section 6 and conclude
in Section 7.

2 Basic Mathematics

We first review some basic mathematics, which
provide the fundamental principles for our be-
lief tracker. Let P (X) denote the probability of
the occurrence of an event X , then the proba-
bility of X not occurring is simply P (¬X) =
1 − P (X). Accordingly, if X occurs at a time
with probability P1(X), and at a second time, it
occurs with probability P2(X) independently of
the first time, then the overall probability of its
occurrence is P (X) = 1 − P1(¬X)P2(¬X) =
1 − (1 − P1(X))(1 − P2(X)). To generalise,
we can say that in a sequence of k independent
events, if the probability of X occurring at the ith
time is Pi(X), the overall probability of X hav-
ing occurred at least once among the k chances
is P (X) = 1 −∏k

i=1 Pi(¬X) = 1 −∏k
i=1(1 −

Pi(X)). This quantity can also be computed re-
cursively as:

P t(X) = 1− (1− P t−1(X))(1− Pt(X)) (1)

where P t(X) denotes the value of P (X) after t
event occurring chances, and we let P 0(X) = 0.

Now we consider another situation. Let A be
a binary random variable. Suppose that we know
the prior probability of A being true is Pr(A). If
there is a chance where with probability P (B) we
will observe an event B independent of A, and we
assume that if B happens, we must set A to false,
then after this, the probability of A still being true
will become P (A = true) = Pr(A) ∗ P (¬B) =
Pr(A)(1− P (B)).

3 A Generic Belief Tracker

In this section, we will take the semantics defined
in the bus information systems of DSTC as
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examples to explain our belief tracker. Without
losing generality, the principle applies to other
domains and/or semantic representations. The
SDS we are interested in here is a turn-based
slot-filling task. In each turn, the system executes
an action and receives an observation. The
observation is an SLU n-best list, in which each
element could be either a dialogue act without
taking any slot-value arguments (e.g. affirm()
or negate()) or an act presenting one or more
slot-value pairs (e.g. deny(route=64a) or
inform(date.day=today, time.ampm=
am)), and normalised confidence scores are
assigned to those dialogue act hypotheses. In
addition, we follow a commonly used assumption
that the user’s goal does not change during a
dialogue unless an explicit restart action is
performed.

3.1 Tracking Marginal Beliefs

Since a confidence score reflects the probability
of the corresponding dialogue act occurring in the
current turn, we can apply the probability opera-
tions described in Section 2 plus some ‘common
sense’ rules to track the marginal probability of a
certain goal being stated by the user during a di-
alogue trajectory, which is then used to construct
our beliefs over user goals. Concretely, we start
from an initial belief b0 with zero probabilities for
all the slot-value hypotheses and track the beliefs
over individual slot-value pairs as follows.

3.1.1 Splitting-Merging Hypotheses
Firstly, in each turn, we split those dialogue acts
with more than one slot-value pairs into single
slot-value statements and merge those identical
statements among the n-best list by summing over
their confidence scores, to yield marginal confi-
dence scores for individual slot-value representa-
tions. For example, an n-best list observation:

inform(date.day=today, time.ampm=am) 0.7

inform(date.day=today) 0.3

after the splitting-merging procedure will become:

inform(date.day=today) 1

inform(time.ampm=am) 0.7

3.1.2 Applying Rules
Let Pt(u, s, v) denote the marginal confidence
score for a user dialogue act u(s = v) at turn

t. Then the belief bt(s, v) for the slot-value pair
(s, v) is updated as:

• Rule 1: If u = inform, then bt(s, v) =
1− (1− bt−1(s, v))(1− Pt(u, s, v)).

• Rule 2: If u = deny, then bt(s, v) =
bt−1(s, v)(1− Pt(u, s, v)).

In addition, motivated by some strategies com-
monly used in rule-based systems (Bohus and
Rudnicky, 2005), we consider the effects of cer-
tain system actions on the beliefs as well. Let a(h)
be one of the system actions performed in turn t,
where h stands for a set of n slot-value arguments
taken by a, i.e. h = {(s1, v1), . . . , (sn, vn)}. We
check:

• Rule 3: If a is an implicit or explicit confir-
mation action (denoted by impl-conf and
expl-conf, respectively) and an affirm
or negate user act u is observed with con-
fidence score Pt(u):

– Rule 3.1: If u = affirm, then
bt(si, vi) = 1 − (1 − bt−1(si, vi))(1 −
Pt(u)), ∀(si, vi) ∈ h.

– Rule 3.2: If u = negate, then
bt(si, vi) = bt−1(si, vi)(1 − Pt(u)),
∀(si, vi) ∈ h.

• Rule 4: Otherwise, if a is an impl-conf
action, and there are no affirm/negate
user acts observed, and no information pre-
sented in a is re-informed or denied in the
current turn, then we take all (si, vi) ∈ h as
being affirmed by the user with probability 1.

However, note that, the marginal probabilities
b(s, v) computed using the above rules do not nec-
essarily yield valid beliefs, because sometimes we
may have

∑
v b(s, v) > 1 for a given slot s. When

this occurs, a reasonable solution is to seek a
multinomial vector b̄(s, ·) that minimises the sym-
metrised Kullback-Leibler (KL) divergence be-
tween b(s, ·) and itself. It can be checked that
solving such an optimisation problem is actually
equivalent to simply normalising b(s, ·), for which
the proof is omitted here but can be found in Ap-
pendix B.

Finally, we consider an extra fact that normally
a user will not insist on a goal if he/she has been
notified by the system that it is impossible to sat-
isfy. (In the DSTC case, such notifications cor-
respond to those canthelp.* system actions.)
Therefore, we have:
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• Rule 5: If the system has explicitly disabled
a hypothesis h, we will block the generation
of any hypotheses containing h in the be-
lief tracking procedure, until the dialogue fin-
ishes.

Note here, if h is a marginal hypothesis, elimi-
nating it from our marginal belief will result in
joint hypotheses (see Section 3.2) containing h
also being blocked, but if h is a joint representa-
tion, we will only block the generation of those
joint hypothesis containing h, without affecting
any marginal belief.

3.2 Constructing Joint Representations
Beliefs over joint hypotheses can then be con-
structed by probabilistic disjunctions of those
marginal representations. For example, given two
marginal hypotheses (s1, v1) and (s2, v2) (s1 6=
s2) with beliefs b(s1, v1) and b(s2, v2) respec-
tively, one can compute the beliefs of their joint
representations as:

bjoint(s1 = v1, s2 = v2) = b(s1, v1)b(s2, v2)

bjoint(s1 = v1, s2 = null) = b(s1, v1)b(s2,null)

bjoint(s1 = null, s2 = v2) = b(s1,null)b(s2, v2)

where null represents that none of the current
hypotheses for the corresponding slot is correct,
i.e. b(s,null) stands for the belief that the in-
formation for slot s has never been presented by
the user, and can be computed as b(s,null) =
1−∑v b(s, v).

3.3 Limitations
The insight of the proposed approach is to explore
the upper limit of the observability one can ex-
pect from an error-prone dialogue itself. Never-
theless, this method has two obvious deficiencies.
Firstly, the dialogue acts in an SLU n-best list
are assumed to be independent events, hence er-
ror correlations cannot be handled in this method
(which is also a common drawback of most ex-
isting models as discussed by Williams (2012)).
Modelling error correlations requires statistics on
a certain amount of data, which implies a poten-
tial space of improvement left for machine learn-
ing techniques. Secondly, the model is designed
to be biased on the accuracy of marginal be-
liefs rather than that of joint beliefs. The be-
liefs for joint hypotheses in this method can only
lower-bound the true probability, as the observ-
able dependencies among some slot-value pairs

are eliminated by the splitting-merging and re-
joining procedures described above. For exam-
ple, in the worst case, a multi-slot SLU hypoth-
esis inform(s1 = v1, s2 = v2) with a confi-
dence score p < 1 may yield two marginal be-
liefs b(s1, v1) = p and b(s2, v2) = p,1 then the
re-constructed joint hypothesis will have its belief
bjoint(s1 = v1, s2 = v2) = p2, which is exponen-
tially reduced compared to the originally observed
confidence score. However, the priority between
the marginal hypotheses and the joint representa-
tions to a greater extent depends on the action se-
lection strategy employed by the system.

4 Description of DSTC

DSTC (Williams et al., 2013) is a public eval-
uation of belief tracking (a.k.a. dialogue state
tracking) models based on the data collected
from different dialogue systems that provide bus
timetables for Pittsburgh, Pennsylvania, USA.
The dialogue systems here were fielded by three
anonymised groups (denoted as Group A, B, and
C).

There are 4 training sets (train1a,
train1b, train2 and train3) and 4
test sets (test1. . .4) provided, where all the
data logs are transcribed and labelled, except
train1b which is transcribed but not labelled
(and contains a much larger number of dialogues
than others). It is known in advance to partici-
pants that test1 was collected using the same
dialogue system from Group A as train1* and
train2, test2 was collected using a different
version of Group A’s dialogue manager but is
to a certain extent similar to the previous ones,
train3 and test3 were collected using the
same dialogue system from Group B (but the
training set for this scenario is relatively smaller
than that for test1), and test4 was collected
using Group C’s system totally different from any
of the training sets.

The evaluation is based on several different met-
rics2, but considering the nature of our system, we
will mainly focus on the hypothesis accuracy, i.e.

1The worst case happens when (s1, v1) and (s2, v2) are
stated for the first time in the dialogue and cannot merge with
any other marginal hypotheses in the current turn, as their
marginal beliefs will remain p without being either propa-
gated by the belief update rules, or increased by the merging
procedure.

2Detailed descriptions of these metrics can be found in the
DSTC handbook at http://research.microsoft.
com/en-us/events/dstc/
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Figure 1: Hypothesis accuracy on the four test sets: the columns in each schedule, from left to right,
stand for the ensemble, mixed-domain, in-domain and out-of-domain system groups, except for test4
where the last three groups are merged into the right-hand side column.

percentage of turns in which the tracker’s 1-best
hypothesis is correct, but with the receiver operat-
ing characteristic (ROC) performance briefly dis-
cussed as well. In addition, there are 3 ‘sched-
ules’ for determining which turns to include when
measuring a metric: schedule 1 – including
all turns, schedule 2 – including a turn for a
given concept only if that concept either appears
on the SLU n-best list in that turn, or if the sys-
tem action references that concept in that turn, and
schedule 3 – including only the turn before the
restart system action (if there is one), and the
last turn of the dialogue.

5 Evaluation and Analysis

The method proposed in this paper corresponds to
Team 2, Entry 1 in the DSTC submissions. In
the following analysis, we will compare it with
the 26 machine learning models submitted by the
other 8 anonymised participant teams plus a base-

line system (Team 0, Entry 1) that only con-
siders the top SLU result.

Each team can submit up to 5 systems, whilst
the systems from a same team may differ from
each other in either the statistical model or the
training data selection (or both of them). There is
a brief description of each system available after
the challenge. For the convenience of analysis and
illustration, on each test set we categorise these
systems into the following groups: in-domain –
systems trained only using the data sets which
are similar (including the ‘to-some-extent-similar’
ones) to the particular test set, out-of-domain –
systems trained on the data sets which are to-
tally different from the particular test set, mixed-
domain – systems trained on a mixture of the in-
domain and out-of-domain data, and ensemble –
systems combining multiple models to generate
their final output. (The ensemble systems here are
all trained on the mixed-domain data.) Note that,
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Figure 2: Distributions of SLU confidence scores on the four test sets: The x-axis stands for the confi-
dence score interval, and the y-axis stands for the occurrence rate.

for test4 there are no in-domain data available,
so all those non-ensemble systems are merged into
one group. Detailed system categorisation on each
test set can be found in Appendix A.

5.1 Hypothesis Accuracy
We plot the hypothesis accuracy of our method
(red dashed line) on the 4 test sets in compari-
son with the baseline system (blue dotted line) and
other systems in Figure 1, where different mark-
ers are used to identify the systems from different
teams. Here we use the overall accuracy of the
marginal hypotheses (all) and the accuracy of
the joint hypotheses (joint) to sketch the gen-
eral performance of the systems, without looking
into the result for each individual slot.

It can be seen that the proposed method pro-
duces more accurate marginal and joint hypothe-
ses than the baseline on all the test sets and in
all the schedules. Moreover, generally speak-
ing, further improvement can be achieved by prop-
erly designed machine learning techniques. For
example, some systems from Team 6, especially
their in-domain and ensemble ones, almost consis-

tently outperform our approach (as well as most of
the models from the other teams) in all the above
tasks. In addition, the following detailed trends
can be found.

Firstly, and surprisingly, our method tends
to be more competitive when measured using
schedule 1 and schedule 3 than using
schedule 2. As schedule 2 is supposed to
measure system performance on the concepts that
are in focus, and to prevent a belief tracker receiv-
ing credit for new guesses about those concepts
not in focus, the results disagree with our origi-
nal expectation of the proposed method. A possi-
ble explanation here is that some machine learning
models tend to give a better belief estimation when
a concept is in focus, however their correct top hy-
potheses might more easily be replaced by other
incorrect ones when the focus on the concepts in
those correct hypotheses are lost (possibly due to
improperly assigned correlations among the con-
cepts). In this sense, our method is more robust,
as the beliefs will not change if their correspond-
ing concepts are not in focus.

428



all joint all joint all joint
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SCHEDULE 1 SCHEDULE 2 SCHEDULE 3

TEST 1

all joint all joint all joint
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SCHEDULE 1 SCHEDULE 2 SCHEDULE 3

TEST 2

all joint all joint all joint
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCHEDULE 1 SCHEDULE 2 SCHEDULE 3

TEST 3

all joint all joint all joint
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SCHEDULE 1 SCHEDULE 2 SCHEDULE 3

TEST 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

2

3

4

5

6

7

8

9

10

 

 

Baseline Our system Team 1 Team 3 Team 4 Team 5 Team 6 Team 7 Team 8 Team 9

Figure 3: ROC equal error rate on the four test sets: The columns in each schedule, from left to right,
stand for the ensemble, mixed-domain, in-domain and out-of-domain system groups, except for test4
where the last three groups are merged into the right-hand side column.

Secondly, the proposed method had been sup-
posed to be more preferable when there are no (or
not sufficient amount of) in-domain training data
available for those statistical methods. Initial evi-
dence to support this point of view can be observed
from the results on test1, test2 and test3.
More concretely, when the test data distribution
becomes less identical to the training data distri-
bution on test2, out system outperforms most
of the other systems except those from Team 6
(and a few others in the schedule 2/all task
only), compared to its middle-level performance
on test1. Similarly, on test3when the amount
of available in-domain training data is small, our
approach gives more accurate beliefs than most of
the others with only a few exceptions in each sce-
nario, even if extra out-of-domain data are used to
enlarge the training set for many systems. How-
ever, the results on test4 entirely contradicts the
previous trend, where a significant number of ma-
chine learning techniques perform better than our
domain-independent rules without using any in-

domain training data at all. We analyse such re-
sults in detail as follows.

To explain the unexpected outcome on test4,
our first concern is the influence of Rule 4, which
is relatively ‘stronger’ and more artificial than
the other rules. Hence, for the four test sets,
we compute the percentage of dialogues where a
impl-conf system action occurs. The statistics
show that the occurrence rates of the implicit con-
firmation system actions in test1. . .4 are 0.01,
0, 0.94 and 0.67, respectively. This means that
the two very extreme cases happen in test3 and
test2 (the situation in test1 is very similar to
test2), and the result for test4 is roughly right
in the middle of them, which suggests that Rule
4 will not be the main factor to affect our per-
formance on test4. Therefore, we further look
into the distributions of the SLU confidence scores
across these different test sets. A normalised his-
togram of the confidence scores for correct and
incorrect SLU hypotheses observed in each test
set is plotted in Figure 2. Here we only consider
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the SLU hypotheses that will actually contribute
during our belief tracking processes, i.e. only the
inform, deny, affirm and negate user dia-
logue acts. It can be found that the dialogue sys-
tem used to collect the data in test4 tends to
produce significantly more ‘very confident’ SLU
hypotheses (those with confidence scores greater
than 0.8) than the dialogue systems used for col-
lecting the other test sets, where, however, a con-
siderable proportion of its highly confident hy-
potheses are incorrect. In such a case, our system
would be less capable in revising those incorrect
hypotheses with high confidence scores than many
machine learning techniques, since it to a greater
extent relies on the confidence scores to update the
beliefs. This finding indicates that statistical ap-
proaches will be helpful when observed informa-
tion is less reliable.

5.2 Discussions on the ROC Performance

Besides the hypothesis accuracy, another impor-
tant issue will be the ability of the beliefs to dis-
criminate between correct and incorrect hypothe-
ses. Williams (2012) suggests that a metric to
measure such performance of a system is the ROC
curve. Note that, in the DSTC task, most of the
systems from the other teams are based on dis-
criminative models (except two systems, a simple
generative model from Team 3 and a deep neural
network method from Team 1), which are opti-
mised specifically for discrimination. Unsurpris-
ingly, our approach becomes much less competi-
tive when evaluated based on the ROC curve met-
rics, as illustrated in Figure 3 using the ROC equal
error rate (EER) for the all and joint scenar-
ios. (ERR stands for the intersection of the ROC
curve with the diagonal, i.e. where the false ac-
cept rate equals the false reject rate. The smaller
the ERR value, the better a system’s performance
is.) However, our argument on this point is that
since an optimised POMDP policy is not a linear
classifier but has a manifold decision surface (Cas-
sandra, 1998), the ROC curves may not be able to
accurately reflect the influence of beliefs on a sys-
tem’s decision quality, for which further investiga-
tions will be needed in our future work.

6 Further Discussions

In this paper, we made the rules for our belief
tracker as generic as possible, in order to ensure
the generality of the proposed mechanism. How-

ever, in practice, it is extendable by using more
detailed rules to address additional phenomena if
those phenomena are deterministically identifiable
in a particular system. For example, when the sys-
tem confirms a joint hypothesis (s1 = v1, s2 =
v2) and the user negates it and only re-informs one
of the two slot-values (e.g. inform(s1 = v′1)),
one may consider that it is more reasonable to only
degrade the belief on s1 = v1 instead of reducing
the beliefs on both s1 = v1 and s2 = v2 syn-
chronously as we currently do in Rule 3.2. How-
ever, the applicability of this strategy will depend
on whether it is possible to effectively determine
such a compact user intention from an observed
SLU n-best list without ambiguities.

7 Conclusions

This paper introduces a simple rule-based belief
tracker for dialogue systems, which can maintain
beliefs over both marginal and joint representa-
tions of user goals using only the information ob-
served within the dialogue itself (i.e. without need-
ing training data). Based on its performance in
the DSTC task, potential advantages and disad-
vantages of machine learning techniques are anal-
ysed. The analysis here is more focused on general
performance of those statistical approaches, where
our concerns include the similarity of distributions
between the training and test data, the adequacy of
available training corpus, as well as the SLU confi-
dence score distributions. Model-specific features
for different machine learning systems are not ad-
dressed at this stage. Considering its competitive-
ness and simplicity of implementation, we suggest
that the proposed method can serve either as a rea-
sonable baseline for future research on dialogue
state tracking problems, or a module in an ini-
tial system installation to collect training data for
those machine learning techniques.
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A System Categorisation

Table 1 shows detailed categorisation of the sys-
tems submitted to DSTC, where TiEj stands for
Team i, Entry j.

ensemble
T6E3, T6E4, T9E1, T9E2, T9E3
T9E4, T9E5

mixed-domain non-ensem
ble

for
t
e
s
t
4

T1E1, T3E1, T3E2, T3E3, T4E1
T5E2, T5E4, T5E5, T8E4, T8E5

in-domain
test1 T5E1
test2

T6E1, T8E1, T8E2
T5E3

test3 T6E2, T6E5, T8E3 T7E1
out-of-domain

test1
test2

T6E2, T6E5, T8E3

test3 T6E1, T8E1, T8E2

Table 1: Categorisation of the systems submitted
to DSTC.

B Symmetrised KL-divergence
Minimisation

We prove the following proposition to support our
discussions in the end of Section 3.1.
Proposition 1 Let p ∈ RN be an arbitrary N -
dimensional non-negative vector (i.e. p ≥ 0).
Let p̄ = p

‖p‖1 , where ‖ · ‖1 stands for the `1-
norm of a vector. Then p̄ is the solution of the
optimisation problem. minq≥0,‖q‖1=1DSKL(p‖q),
where DSKL(p‖q) denotes the symmetrised KL-
divergence between p and q, defined as:

DSKL(p‖q) = DKL(p‖q) + DKL(q‖p) (2)

=
∑

i

pi log
pi
qi

+
∑

i

qi log
qi
pi
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and pi and qi denote the ith element in p and q
respectively.

Proof Let q∗ = arg minq≥0,‖q‖1=1DSKL(p‖q).
Firstly, using the facts that limx→0 x log x

y → 0

and limx→0 y log y
x → +∞, ∀y > 0, one can eas-

ily prove that if pi = 0 then q∗i = 0, and pi 6= 0
then q∗i 6= 0, because otherwise the objective value
of Eq. (2) will become unbounded.

Therefore, we only consider the case p > 0 and
q > 0. By substituting pi = p̄i‖p‖1 into Eq. (2),
we obtain:

DSKL(p‖q) = ‖p‖1
∑

i

p̄i log
‖p‖1p̄i
qi

+
∑

i

qi log
qi
‖p‖1p̄i

= ‖p‖1
(∑

i

p̄i log
p̄i
qi

+
∑

i

p̄i log ‖p‖1
)

+
∑

i

qi log
qi
p̄i
−
∑

i

qi log ‖p‖1

= ‖p‖1
∑

i

p̄i log
p̄i
qi

+
∑

i

qi log
qi
p̄i

+(‖p‖1 − 1) log ‖p‖1
= ‖p‖1DKL(p̄‖q) + DKL(q‖p̄)

+(‖p‖1 − 1) log ‖p‖1
≥ (‖p‖1 − 1) log ‖p‖1

where we use the facts that
∑

i p̄i = 1,
∑

i qi = 1,
DKL(p̄‖q) ≥ 0 and DKL(q‖p̄) ≥ 0, since p̄ and
q are valid distributions. It can be found that the
minimum (‖p‖1 − 1) log ‖p‖1 is only achievable
when DKL(p̄‖q) = 0 and DKL(q‖p̄) = 0, i.e. q =
p̄, which proves Proposition 1.
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