
Proceedings of the SIGDIAL 2013 Conference, pages 339–343,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Evaluating State Representations for Reinforcement
Learning of Turn-Taking Policies in Tutorial Dialogue

Christopher M. Mitchell Kristy Elizabeth Boyer James C. Lester

Department of Computer Science
North Carolina State University

Raleigh, NC, USA
{cmmitch2, keboyer, lester}@ncsu.edu

Abstract

Learning and improving natural turn-taking
behaviors for dialogue systems is a topic of
growing importance. In task-oriented dia-
logue where the user can engage in task ac-
tions in parallel with dialogue, unrestricted
turn taking may be particularly important for
dialogue success. This paper presents a novel
Markov Decision Process (MDP) representa-
tion of dialogue with unrestricted turn taking
and a parallel task stream in order to automat-
ically learn effective turn-taking policies for a
tutorial dialogue system from a corpus. It also
presents and evaluates an approach to auto-
matically selecting features for an MDP state
representation of this dialogue. The results
suggest that the MDP formulation and the
feature selection framework hold promise for
learning effective turn-taking policies in task-
oriented dialogue systems.

1 Introduction

Determining when to make a dialogue move is a
topic of growing importance in dialogue systems.
While systems historically relied on explicit turn-
taking cues, more recent work has focused on
learning and improving on natural turn-taking
behaviors (Raux and Eskenazi 2012; Selfridge et
al. 2012). For tutorial dialogue in particular, ef-
fectively timing system moves can substantially
impact the success of the dialogue. For example,
failing to provide helpful feedback to a student
who is confused may lead to decreased learning
(Shute 2008) or to disengagement (Forbes-Riley
and Litman 2012), while providing tutorial feed-
back or interventions at inappropriate times
could also have a negative impact on the out-
come of the dialogue (D’Mello et al. 2010).

Reinforcement Learning (RL) is a widely used
approach to constructing effective dialogue poli-

cies using either MDPs or POMDPs (Williams
and Young 2007). To date, RL has been applied
to learn the most effective dialogue move to
make, but has not been applied to learning the
timings of these moves, although the related con-
cept of when to release a turn has been explored
(English and Heeman 2005). The domain of tuto-
rial dialogue poses an additional modeling chal-
lenge: the dialogue is task-oriented, but unlike
many task-oriented dialogues in which all infor-
mation is communicated via dialogue, students
solve problems within a separate task stream
which conveys essential information for dialogue
management decisions.

This paper addresses dialogue with both unre-
stricted turn taking and a parallel task stream
with a novel Markov Decision Process represen-
tation. Because turn boundaries are not clearly
defined or enforced, we apply RL to the problem
of when to make a dialogue move, rather than
what type of dialogue move to make. In order to
determine which criteria are most relevant to
making this decision, the approach utilizes a fea-
ture selection approach based on a new Separa-
tion Ratio metric and compares the selected fea-
tures against an existing approach based on ex-
pected cumulative reward (Chi et al. 2011). Fi-
nally, the resulting feature spaces are evaluated
with simulated users acquired in a supervised
fashion from held-out portions of the corpus. The
results inform the development of turn-taking
policies in task-oriented dialogue systems.

2 Corpus

The corpus used for this work was collected dur-
ing 2011 and 2012 as part of the JavaTutor tuto-
rial dialogue project. It consists of 66 textual dia-
logues between human tutors and students, with
an average of 90 tutor dialogue moves and 36
student dialogue moves. Each pair interacted for
through a computer-mediated interface to com-

339

plete introductory computer programming tasks.
Students edited their computer programs within a
parallel task stream also collected as part of the
corpus (see Appendix A). Tutors viewed the task
actions synchronously through the interface. The
success of each dialogue was measured by learn-
ing gain between pretest and posttest. Overall the
dialogues were effective; the average learning
gain was 42.3% (statistically > 0; p < .0001). The
substantial variation in learning gains (min=-
28.6%; max= 100%) will be leveraged within the
MDP reward structure.

3 MDP Representation

A Markov Decision Process (MDP) models a
system in which a policy can be learned to max-
imize reward (Sutton and Barto 1998). It consists
of a set of states S, a set of actions A representing
possible actions by an agent, a set of transition
probabilities indicating how likely it is for the
model to transition to each state sʹ ϵ S from each
state s ϵ S when the agent performs each action a
ϵ A in state s, and a reward function R that maps
real values onto transitions and/or states, thus
signifying their utility.

Previous applications of RL to dialogue sys-
tems, using both MDPs and POMDPs, have dealt
with the decision of what type of dialogue move
to make (Chi et al. 2011; Williams and Young
2007). These systems make this decision either at
predetermined decision points (Tetreault and
Litman 2008), following the trigger of a silence
threshold (Raux and Eskenazi 2012), or when the
system determines it has enough information to
advance the dialogue (Selfridge et al. 2012). For
the JavaTutor corpus, however, the tutor could
choose to make a move at any time. Rather than
applying handcrafted rules to determine decision
points, we apply RL to learn when to make a dia-
logue move in order to maximize the success of
the dialogue. For this MDP, the action set is de-
fined as A = {TutorMove, NoMove}.

The states for the MDP consist of combina-
tions of features representing the current state of
the session. The possible features available for
selection are described in Table 1, and are all
automatically extracted from system logs. The
Task Trajectory and Edit Distance features are
based on computing a token-level edit distance
from a student’s program with respect to that
student’s final correct solution. This distance
measures a student’s progress over the course of
a dialogue while avoiding the need to manually
annotate the task stream. In a deployed system,

this edit distance can be estimated by comparing
to previously acquired solutions from other stu-
dents.

Feature Description Values

Current
Action

The current action
being taken by the
student

• TASK
• STUDENTDIAL
• NOACTION

Task
Trajectory

The effect of the last
task action on the edit
distance to the final
task solution

• CLOSER
• FARTHER
• NOCHANGE

Last
Action

Last turn taken by
either interlocutor

• TUTORDIAL
• STUDENTDIAL
• TASK

Number of
Tutor
Moves

Number of tutor turns
taken thus far in the
dialogue

• LOW (< 30)
• MID (30-59)
• HIGH (> 60)

Edit
Distance

The edit distance to the
final solution

• LOW (< 20)
• MID (20-49)
• HIGH (> 50)

Elapsed
Idle Time

The number of se-
conds since the last
student action

• LOW (< 7)
• MID (7-15)
• HIGH (> 15)

Table 1. Features available to be selected

Tutor moves are encoded as MDP actions,
while student actions are encoded as transitions
to a new state with a NoMove tutor action. To
account for the possibility that both interlocutors
could construct messages simultaneously or that
dialogue and task actions could happen at the
same time, the following protocol was applied: if
a tutor was making a dialogue move (i.e., typing
a message), the state transition accompanying a
student action was made after the tutor move was
complete, and the student move was associated
with that TutorMove action.

Another important consideration for this rep-
resentation was how to segment the task stream
into discrete actions. Through empirical investi-
gation the timeout threshold of 1.5 seconds was
selected as a balance between large numbers of
successive task events or very few, most of
which overlapped with tutor turns.

There were three additional states in the MDP:
the Initial state and two final states, FinalHigh
and FinalLow, occurring only at the end of a dia-
logue and providing rewards of +100 and −100,
respectively. A median split on student learning
gains was used to assign each dialogue to either
the FinalHigh state or FinalLow state.

4 Feature Selection

While retaining all six features would allow for a
rich state representation, it would also lead to

340

issues with sparsity (Singh et al. 2002). In fact,
nearly 90% of states averaged less than one visit
per dialogue when using all six features, leading
to inadequate coverage of the state space on
which to build reliable MDP policies. This sec-
tion compares two methods used to select fea-
tures from among the six available.

The first approach is based on the Expected
Cumulative Reward (ECR) in the initial state, a
metric previously used to evaluate state represen-
tations for a tutorial dialogue system using RL
(Chi et al. 2011; Tetreault and Litman 2008). A
higher initial-state ECR indicates a higher proba-
bility of achieving a favorable outcome when
following a reward-maximizing policy. Maxim-
izing ECR has also been the focus of other fea-
ture selection approaches for RL (Misu and
Kashioka 2012, Li et al. 2009).

While initial-state ECR provides a measure of
the likelihood of a favorable outcome, it does not
address how well a particular state representation
captures key decision points. That is, it does not
directly represent the extent to which each deci-
sion along the path to a successful outcome con-
tributed to that outcome, or whether the second-
best decision in a particular state would have
been equally useful. In order to measure this dif-
ference, we introduce the Separation Ratio (SR),
which represents how much better a particular
policy is compared to its alternatives. SR for a
state is calculated by taking the absolute differ-
ence between the estimated values of two actions
in that state and dividing by the mean of the two
values. SR for a policy is the mean of the SRs
across all states.

An SR near zero for a state indicates that the
decision to take one action over another in that
state is likely to have little effect on the final out-
come of the dialogue. On the other hand, a high
SR indicates a crucial decision point, where tak-
ing an off-policy action leads to a much lower
probability of a successful outcome. The intui-
tion behind this metric is that a state representa-
tion that supports policies with high SR high-
lights features that are useful in executing an ef-
fective turn-taking policy, while a state represen-
tation that produces policies with low SR fails to
capture this information.

Using these two metrics, we evaluated the util-
ity of each of the six features. Starting with two
empty state representations, one for each metric,
a greedy algorithm added one feature at a time to
each. That is, at each step for each metric, the
feature was added that led to the highest value on
the metric when combined with the features al-

ready chosen. For each of the two metrics, we
built a state representation and used it as the ba-
sis for an MDP. This MDP was then trained with
policy iteration (Sutton and Barto 1998), and the
two state representations that led to the highest
value on each metric were carried over to the
next iteration. The goal here is to evaluate the
relative utility of each feature, so we continued
adding features until they were exhausted, lead-
ing to a full ordering of features for each condi-
tion (Table 2).

Iteration Initial-State ECR
Feature Ordering

Mean SR
Feature Ordering

1 Last Action Number of Tutor
Moves

2 Task Trajectory Edit Distance
3 Current Action Last Action
4 Elapsed Idle Time Current Action

5 Number of Tutor
Moves Elapsed Idle Time

6 Edit Distance Task Trajectory

Table 2. Feature selection using Expected Cumu-
lative Reward (ECR) and Separation Ratio (SR)

Given the orderings in Table 2, the next step in
building a RL system is to decide which iteration
of the feature spaces to use. That is, how does a
system designer determine when to stop adding
features? Previous work (Chi et al. 2011;
Tetreault and Litman 2008) viewed an absolute
increase in the value of initial-state ECR as a
signal for the quality of a newly added feature.
So, one could say that feature addition should
stop if initial-state ECR does not increase be-
tween iterations. In the current analysis, howev-
er, this would result in termination at the second
iteration for the mean SR ordering and termina-
tion at the first iteration for the initial-state ECR
ordering. These undesirably early terminations
most likely occur because the first features se-
lected in both orderings represent tutor actions: a
tutor can always choose to make a move, thus
setting the Last Action feature to TUTORDIAL,
and a tutor has direct control over the value of
Number of Tutor Moves. This control of features
leads to deterministic control of state if the con-
text provided by student-driven features is ab-
sent. This can allow a policy to remain in the
state that maximizes the transition probability to
the end state, thus increasing ECR for all states
due to deterministic transitions. Therefore, a dif-
ferent type of stopping criterion is required.

341

A stopping criterion must balance two com-
peting goals. On the one hand, the size of the
state space must be limited to avoid issues with
sparsity, as state-action pairs that are not well
explored during training might not be assigned
values proportional to their expected rewards in a
deployed system. On the other hand, a feature
space that is too small may not sufficiently repre-
sent the possible states of the world, and might
fail to capture the criteria most relevant to mak-
ing decisions. These competing goals of com-
pactness and descriptive power must both be
considered when choosing an appropriate feature
space for a RL model.

In an attempt to balance these goals, we pro-
pose a stopping criterion based on the ratio of
states that are sparse states. A sparse state is de-
fined as any state that occurs less than once per
dialogue on average. A sharp increase in sparse
states was observed between the third and fourth
iterations for both metrics (15% to 56% for ECR
and 26% to 47% for SR), so feature addition
stopped at the third iteration. This resulted in
only one of the three selected features being
shared among the two conditions: the Last Action
made by either person (Table 2). In addition,
both feature sets include a feature related to the
task progress of the student: Task Trajectory for
ECR and Edit Distance for SR. The next section
reports on an experiment to evaluate these two
feature spaces.

5 Evaluation

A series of simulated dialogues was used to
evaluate the two resulting feature spaces via the
policies derived using them. These simulations
were based on five-fold cross-validation, as in
prior work (Henderson et al. 2008), with policies
trained on four of the five folds and simulated
users learned from the remaining fold.

As noted above, the rewards in the MDP were
based on student learning gain, but learning gain
(like user satisfaction in other dialogue domains)
is not directly observable during the dialogues.
However, we found that students in the high
learning gain group had fewer non-zero task ac-
tions (actions that changed the edit distance to
the final task solution) than students in the low
learning gain group (p < 0.05). Therefore, num-
ber of non-zero task actions is used as a measure
of dialogue success, with lower numbers being
better. We derived the average change in edit
distance on each state transition from the testing
folds, and defined that a simulated dialogue

would end when the edit distance reached zero
(i.e., the student arrived at the correct solution).

Table 3 shows the results of running 5,000
simulations in each fold for both the learned pol-
icy and for an anti-policy where each decision
was reversed. The anti-policy is included to pro-
vide a point of comparison for the policies
learned in each feature space, and offers insight
into the quality of the learned policies, similar to
the inverse policies learned in prior work (Chi et
al. 2011). The table shows that the learned poli-
cies in the ECR feature space had slightly better
results overall (lower number of non-zero task
actions), while the SR feature space had larger
separation between the learned policies and anti-
policies. These results suggest that feature selec-
tion based on SR was able to identify important
decision criteria with only a minor decrease in
reward compared to ECR.

Feature
Space Policy Average non-zero

task action count

ECR Learned policy 43.2
Anti-policy 49.6

SR Learned policy 47.3
Anti-policy 97.4

Table 3. Results of simulated dialogues (lower
non-zero task action count is better)

6 Conclusion

Modeling unrestricted turn taking within an RL
framework, particularly for task-oriented dia-
logue with both a dialogue and a parallel task
stream, presents numerous challenges. This pa-
per has presented a novel representation of such
dialogue with a tutoring domain, and has pre-
sented and evaluated a feature selection method
based on a new Separation Ratio metric, which
can inform the development of turn-taking poli-
cies in dialogue systems. Future work includes a
more fine-grained analysis of the timing of dia-
logue moves as well as an evaluation of these
results in a deployed system.

Acknowledgements

This work is supported in part by the National
Science Foundation through Grants DRL-
1007962 and CNS-1042468. Any opinions,
findings, conclusions, or recommendations
expressed in this report are those of the
participants, and do not necessarily represent the
official views, opinions, or policy of the National
Science Foundation.

342

References
Chi, M., VanLehn, K., Litman, D., and Jordan, P.

(2011). An Evaluation of Pedagogical Tutorial
Tactics for a Natural Language Tutoring System: a
Reinforcement Learning Approach. International
Journal of Artificial Intelligence in Educa-
tion, 21(1), 83–113.

D’Mello, S.K., Olney, A., and Person, N. (2010).
Mining Collaborative Patterns in Tutorial Dia-
logues. Journal of Educational Data Mining, 2(1),
1–37.

English, M.S. and Heeman, P.A. (2005). Learning
Mixed Initiative Dialog Strategies By Using Rein-
forcement Learning On Both Conversants. In Pro-
ceedings of the Conference on Human Language
Technology and Empirical Methods in Natural
Language Processing, 1011–1018.

Forbes-Riley, K. and Litman, D.J. (2012). Adapting to
Multiple Affective States in Spoken Dialogue. In
Proceedings of the 13th Annual SIGDIAL Meeting
on Discourse and Dialogue, 217–226.

Henderson, J., Lemon, O., and Georgila, K. (2008).
Hybrid Reinforcement/Supervised Learning of
Dialogue Policies from Fixed Data Sets. Computa-
tional Linguistics, 34(4), 487–511.

Li, L., Williams, J. D., and Balakrishnan, S. (2009).
Reinforcement Learning for Dialog Management
Using Least-Squares Policy Iteration and Fast Fea-
ture Selection. In Proceedings of the Conference of
the International Speech Communication Associa-
tion. 2475–2478.

Misu, T., and Kashioka, H. (2012). Simultaneous Fea-
ture Selection and Parameter Optimization for
Training of Dialog Policy by Reinforcement Learn-
ing. In Proceedings of the IEEE Workshop on Spo-
ken Language Technology, 1–6.

Raux, A. and Eskenazi, M. (2012). Optimizing the
Turn-Taking Behavior of Task-Oriented Spoken
Dialog Systems. Transactions on Speech and Lan-
guage Processing, 9(1), 1–23.

Selfridge, E.O., Arizmendi, I., Heeman, P.A., and
Williams, J.D. (2012). Integrating Incremental
Speech Recognition and POMDP-based Dialogue
Systems. In Proceedings of the 13th Annual SIG-
DIAL Meeting on Discourse and Dialogue, 275–
279.

Shute, V.J. (2008). Focus on Formative Feedback.
Review of Educational Research, 78(1), 153–189.

Singh, S., Litman, D., Kearns, M., and Walker, M.
(2002). Optimizing Dialogue Management with
Reinforcement Learning: Experiments with the
NJFun System. Journal of Artificial Intelligence
Research, 16, 105–133.

Sutton, R. and Barto, A. (1998). Reinforcement
Learning. MIT Press, Cambridge, MA, 1998.

Tetreault, J.R. and Litman, D.J. (2008). A Reinforce-
ment Learning Approach to Evaluating State Rep-
resentations in Spoken Dialogue Systems. Speech
Communication, 50(8), 683–696.

Williams, J.D. and Young, S. (2007). Partially Ob-
servable Markov Decision Processes for Spoken
Dialog Systems. Computer Speech & Language,
21(2), 393–422.

Appendix A. Corpus excerpt
1. Student begins declaring a String variable.
2. Student starts typing a message.
3. Student message: Could I type in String The

Adventure Quest; ? or would I need to put in
quotes or something?

4. Student resumes working on task.
5. Tutor starts typing a message.
6. Tutor message: TheAdventureQuest is fine
7. Student declares variable called The Adven-
ture Quest (Incorrect Java syntax)

8. Tutor starts typing a message.
9. Student catches mistake and renames variable to
TheAdventureQuest

10. Tutor message: Can't have spaces :)
11. Tutor starts typing a message
12. Tutor message: Good job

Appendix B. Dialogue interface 343

