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Abstract 

Learning and improving natural turn-taking 
behaviors for dialogue systems is a topic of 
growing importance. In task-oriented dia-
logue where the user can engage in task ac-
tions in parallel with dialogue, unrestricted 
turn taking may be particularly important for 
dialogue success. This paper presents a novel 
Markov Decision Process (MDP) representa-
tion of dialogue with unrestricted turn taking 
and a parallel task stream in order to automat-
ically learn effective turn-taking policies for a 
tutorial dialogue system from a corpus. It also 
presents and evaluates an approach to auto-
matically selecting features for an MDP state 
representation of this dialogue. The results 
suggest that the MDP formulation and the 
feature selection framework hold promise for 
learning effective turn-taking policies in task-
oriented dialogue systems. 

1 Introduction 

Determining when to make a dialogue move is a 
topic of growing importance in dialogue systems. 
While systems historically relied on explicit turn-
taking cues, more recent work has focused on 
learning and improving on natural turn-taking 
behaviors (Raux and Eskenazi 2012; Selfridge et 
al. 2012). For tutorial dialogue in particular, ef-
fectively timing system moves can substantially 
impact the success of the dialogue. For example, 
failing to provide helpful feedback to a student 
who is confused may lead to decreased learning 
(Shute 2008) or to disengagement (Forbes-Riley 
and Litman 2012), while providing tutorial feed-
back or interventions at inappropriate times 
could also have a negative impact on the out-
come of the dialogue (D’Mello et al. 2010).  

Reinforcement Learning (RL) is a widely used 
approach to constructing effective dialogue poli-

cies using either MDPs or POMDPs (Williams 
and Young 2007). To date, RL has been applied 
to learn the most effective dialogue move to 
make, but has not been applied to learning the 
timings of these moves, although the related con-
cept of when to release a turn has been explored 
(English and Heeman 2005). The domain of tuto-
rial dialogue poses an additional modeling chal-
lenge: the dialogue is task-oriented, but unlike 
many task-oriented dialogues in which all infor-
mation is communicated via dialogue, students 
solve problems within a separate task stream 
which conveys essential information for dialogue 
management decisions.  

This paper addresses dialogue with both unre-
stricted turn taking and a parallel task stream 
with a novel Markov Decision Process represen-
tation. Because turn boundaries are not clearly 
defined or enforced, we apply RL to the problem 
of when to make a dialogue move, rather than 
what type of dialogue move to make. In order to 
determine which criteria are most relevant to 
making this decision, the approach utilizes a fea-
ture selection approach based on a new Separa-
tion Ratio metric and compares the selected fea-
tures against an existing approach based on ex-
pected cumulative reward (Chi et al. 2011). Fi-
nally, the resulting feature spaces are evaluated 
with simulated users acquired in a supervised 
fashion from held-out portions of the corpus. The 
results inform the development of turn-taking 
policies in task-oriented dialogue systems. 

2 Corpus 

The corpus used for this work was collected dur-
ing 2011 and 2012 as part of the JavaTutor tuto-
rial dialogue project. It consists of 66 textual dia-
logues between human tutors and students, with 
an average of 90 tutor dialogue moves and 36 
student dialogue moves. Each pair interacted for 
through a computer-mediated interface to com-
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plete introductory computer programming tasks. 
Students edited their computer programs within a 
parallel task stream also collected as part of the 
corpus (see Appendix A). Tutors viewed the task 
actions synchronously through the interface. The 
success of each dialogue was measured by learn-
ing gain between pretest and posttest. Overall the 
dialogues were effective; the average learning 
gain was 42.3% (statistically > 0; p < .0001). The 
substantial variation in learning gains (min=-
28.6%; max= 100%) will be leveraged within the 
MDP reward structure. 

3 MDP Representation 

A Markov Decision Process (MDP) models a 
system in which a policy can be learned to max-
imize reward (Sutton and Barto 1998). It consists 
of a set of states S, a set of actions A representing 
possible actions by an agent, a set of transition 
probabilities indicating how likely it is for the 
model to transition to each state sʹ ϵ S from each 
state s ϵ S when the agent performs each action a 
ϵ A in state s, and a reward function R that maps 
real values onto transitions and/or states, thus 
signifying their utility.  

Previous applications of RL to dialogue sys-
tems, using both MDPs and POMDPs, have dealt 
with the decision of what type of dialogue move 
to make (Chi et al. 2011; Williams and Young 
2007). These systems make this decision either at 
predetermined decision points (Tetreault and 
Litman 2008), following the trigger of a silence 
threshold (Raux and Eskenazi 2012), or when the 
system determines it has enough information to 
advance the dialogue (Selfridge et al. 2012). For 
the JavaTutor corpus, however, the tutor could 
choose to make a move at any time. Rather than 
applying handcrafted rules to determine decision 
points, we apply RL to learn when to make a dia-
logue move in order to maximize the success of 
the dialogue. For this MDP, the action set is de-
fined as A = {TutorMove, NoMove}.  

The states for the MDP consist of combina-
tions of features representing the current state of 
the session. The possible features available for 
selection are described in Table 1, and are all 
automatically extracted from system logs. The 
Task Trajectory and Edit Distance features are 
based on computing a token-level edit distance 
from a student’s program with respect to that 
student’s final correct solution. This distance 
measures a student’s progress over the course of 
a dialogue while avoiding the need to manually 
annotate the task stream. In a deployed system, 

this edit distance can be estimated by comparing 
to previously acquired solutions from other stu-
dents.  

 
Feature Description Values 

Current 
Action 

The current action 
being taken by the 
student  

• TASK 
• STUDENTDIAL 
• NOACTION 

Task  
Trajectory 

The effect of the last 
task action on the edit 
distance to the final 
task solution 

• CLOSER 
• FARTHER 
• NOCHANGE 

Last  
Action 

Last turn taken by 
either interlocutor 

• TUTORDIAL 
• STUDENTDIAL 
• TASK 

Number of 
Tutor 
Moves 

Number of tutor turns 
taken thus far in the 
dialogue 

• LOW  (< 30) 
• MID   (30-59) 
• HIGH (> 60) 

Edit  
Distance 

The edit distance to the 
final solution 

• LOW  (< 20) 
• MID   (20-49) 
• HIGH (> 50) 

Elapsed 
Idle Time 

The number of se-
conds since the last 
student action 

• LOW  (< 7) 
• MID   (7-15) 
• HIGH (> 15) 

 

Table 1. Features available to be selected 

Tutor moves are encoded as MDP actions, 
while student actions are encoded as transitions 
to a new state with a NoMove tutor action. To 
account for the possibility that both interlocutors 
could construct messages simultaneously or that 
dialogue and task actions could happen at the 
same time, the following protocol was applied: if 
a tutor was making a dialogue move (i.e., typing 
a message), the state transition accompanying a 
student action was made after the tutor move was 
complete, and the student move was associated 
with that TutorMove action.  

Another important consideration for this rep-
resentation was how to segment the task stream 
into discrete actions. Through empirical investi-
gation the timeout threshold of 1.5 seconds was 
selected as a balance between large numbers of 
successive task events or very few, most of 
which overlapped with tutor turns.  

There were three additional states in the MDP: 
the Initial state and two final states, FinalHigh 
and FinalLow, occurring only at the end of a dia-
logue and providing rewards of +100 and −100, 
respectively. A median split on student learning 
gains was used to assign each dialogue to either 
the FinalHigh state or FinalLow state. 

4 Feature Selection 

While retaining all six features would allow for a 
rich state representation, it would also lead to 
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issues with sparsity (Singh et al. 2002). In fact, 
nearly 90% of states averaged less than one visit 
per dialogue when using all six features, leading 
to inadequate coverage of the state space on 
which to build reliable MDP policies. This sec-
tion compares two methods used to select fea-
tures from among the six available. 

The first approach is based on the Expected 
Cumulative Reward (ECR) in the initial state, a 
metric previously used to evaluate state represen-
tations for a tutorial dialogue system using RL 
(Chi et al. 2011; Tetreault and  Litman 2008). A 
higher initial-state ECR indicates a higher proba-
bility of achieving a favorable outcome when 
following a reward-maximizing policy. Maxim-
izing ECR has also been the focus of other fea-
ture selection approaches for RL (Misu and 
Kashioka 2012,  Li et al. 2009). 

While initial-state ECR provides a measure of 
the likelihood of a favorable outcome, it does not 
address how well a particular state representation 
captures key decision points. That is, it does not 
directly represent the extent to which each deci-
sion along the path to a successful outcome con-
tributed to that outcome, or whether the second-
best decision in a particular state would have 
been equally useful. In order to measure this dif-
ference, we introduce the Separation Ratio (SR), 
which represents how much better a particular 
policy is compared to its alternatives. SR for a 
state is calculated by taking the absolute differ-
ence between the estimated values of two actions 
in that state and dividing by the mean of the two 
values. SR for a policy is the mean of the SRs 
across all states.  

An SR near zero for a state indicates that the 
decision to take one action over another in that 
state is likely to have little effect on the final out-
come of the dialogue. On the other hand, a high 
SR indicates a crucial decision point, where tak-
ing an off-policy action leads to a much lower 
probability of a successful outcome. The intui-
tion behind this metric is that a state representa-
tion that supports policies with high SR high-
lights features that are useful in executing an ef-
fective turn-taking policy, while a state represen-
tation that produces policies with low SR fails to 
capture this information. 

Using these two metrics, we evaluated the util-
ity of each of the six features. Starting with two 
empty state representations, one for each metric, 
a greedy algorithm added one feature at a time to 
each. That is, at each step for each metric, the 
feature was added that led to the highest value on 
the metric when combined with the features al-

ready chosen. For each of the two metrics, we 
built a state representation and used it as the ba-
sis for an MDP. This MDP was then trained with 
policy iteration (Sutton and Barto 1998), and the 
two state representations that led to the highest 
value on each metric were carried over to the 
next iteration. The goal here is to evaluate the 
relative utility of each feature, so we continued 
adding features until they were exhausted, lead-
ing to a full ordering of features for each condi-
tion (Table 2).  
 

Iteration Initial-State ECR 
Feature Ordering 

Mean SR  
Feature Ordering 

1 Last Action Number of Tutor 
Moves 

2 Task Trajectory Edit Distance 
3 Current Action Last Action 
4 Elapsed Idle Time Current Action 

5 Number of Tutor 
Moves Elapsed Idle Time 

6 Edit Distance Task Trajectory 
 

Table 2. Feature selection using Expected Cumu-
lative Reward (ECR) and Separation Ratio (SR) 

Given the orderings in Table 2, the next step in 
building a RL system is to decide which iteration 
of the feature spaces to use. That is, how does a 
system designer determine when to stop adding 
features? Previous work (Chi et al. 2011; 
Tetreault and Litman 2008) viewed an absolute 
increase in the value of initial-state ECR as a 
signal for the quality of a newly added feature. 
So, one could say that feature addition should 
stop if initial-state ECR does not increase be-
tween iterations. In the current analysis, howev-
er, this would result in termination at the second 
iteration for the mean SR ordering and termina-
tion at the first iteration for the initial-state ECR 
ordering. These undesirably early terminations 
most likely occur because the first features se-
lected in both orderings represent tutor actions: a 
tutor can always choose to make a move, thus 
setting the Last Action feature to TUTORDIAL, 
and a tutor has direct control over the value of 
Number of Tutor Moves. This control of features 
leads to deterministic control of state if the con-
text provided by student-driven features is ab-
sent. This can allow a policy to remain in the 
state that maximizes the transition probability to 
the end state, thus increasing ECR for all states 
due to deterministic transitions. Therefore, a dif-
ferent type of stopping criterion is required. 
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A stopping criterion must balance two com-
peting goals. On the one hand, the size of the 
state space must be limited to avoid issues with 
sparsity, as state-action pairs that are not well 
explored during training might not be assigned 
values proportional to their expected rewards in a 
deployed system. On the other hand, a feature 
space that is too small may not sufficiently repre-
sent the possible states of the world, and might 
fail to capture the criteria most relevant to mak-
ing decisions. These competing goals of com-
pactness and descriptive power must both be 
considered when choosing an appropriate feature 
space for a RL model.  

In an attempt to balance these goals, we pro-
pose a stopping criterion based on the ratio of 
states that are sparse states. A sparse state is de-
fined as any state that occurs less than once per 
dialogue on average. A sharp increase in sparse 
states was observed between the third and fourth 
iterations for both metrics (15% to 56% for ECR 
and 26% to 47% for SR), so feature addition 
stopped at the third iteration. This resulted in 
only one of the three selected features being 
shared among the two conditions: the Last Action 
made by either person (Table 2). In addition, 
both feature sets include a feature related to the 
task progress of the student: Task Trajectory for 
ECR and Edit Distance for SR. The next section 
reports on an experiment to evaluate these two 
feature spaces. 

5 Evaluation 

A series of simulated dialogues was used to 
evaluate the two resulting feature spaces via the 
policies derived using them. These simulations 
were based on five-fold cross-validation, as in 
prior work (Henderson et al. 2008), with policies 
trained on four of the five folds and simulated 
users learned from the remaining fold. 

As noted above, the rewards in the MDP were 
based on student learning gain, but learning gain 
(like user satisfaction in other dialogue domains) 
is not directly observable during the dialogues. 
However, we found that students in the high 
learning gain group had fewer non-zero task ac-
tions (actions that changed the edit distance to 
the final task solution) than students in the low 
learning gain group (p < 0.05). Therefore, num-
ber of non-zero task actions is used as a measure 
of dialogue success, with lower numbers being 
better. We derived the average change in edit 
distance on each state transition from the testing 
folds, and defined that a simulated dialogue 

would end when the edit distance reached zero 
(i.e., the student arrived at the correct solution).  

Table 3 shows the results of running 5,000 
simulations in each fold for both the learned pol-
icy and for an anti-policy where each decision 
was reversed. The anti-policy is included to pro-
vide a point of comparison for the policies 
learned in each feature space, and offers insight 
into the quality of the learned policies, similar to 
the inverse policies learned in prior work (Chi et 
al. 2011). The table shows that the learned poli-
cies in the ECR feature space had slightly better 
results overall (lower number of non-zero task 
actions), while the SR feature space had larger 
separation between the learned policies and anti-
policies. These results suggest that feature selec-
tion based on SR was able to identify important 
decision criteria with only a minor decrease in 
reward compared to ECR.   

 
Feature 
Space Policy Average non-zero 

task action count 

ECR Learned policy 43.2 
Anti-policy 49.6 

SR Learned policy 47.3 
Anti-policy 97.4 

 

Table 3. Results of simulated dialogues (lower 
non-zero task action count is better) 

6 Conclusion 

Modeling unrestricted turn taking within an RL 
framework, particularly for task-oriented dia-
logue with both a dialogue and a parallel task 
stream, presents numerous challenges. This pa-
per has presented a novel representation of such 
dialogue with a tutoring domain, and has pre-
sented and evaluated a feature selection method 
based on a new Separation Ratio metric, which 
can inform the development of turn-taking poli-
cies in dialogue systems. Future work includes a 
more fine-grained analysis of the timing of dia-
logue moves as well as an evaluation of these 
results in a deployed system.  
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Appendix A. Corpus excerpt 
1. Student begins declaring a String variable. 
2. Student starts typing a message. 
3. Student message: Could I type in String The 

Adventure Quest; ? or would I need to put in 
quotes or something? 

4. Student resumes working on task. 
5. Tutor starts typing a message. 
6. Tutor message: TheAdventureQuest is fine 
7. Student declares variable called The Adven-
ture Quest (Incorrect Java syntax) 

8. Tutor starts typing a message. 
9. Student catches mistake and renames variable to 
TheAdventureQuest 

10. Tutor message: Can't have spaces :) 
11. Tutor starts typing a message 
12. Tutor message: Good job 
 

 

Appendix B. Dialogue interface 343


