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Abstract

We describe the annotation of a multi-
modal corpus that includes pointing ges-
tures and haptic actions (force exchanges).
Haptic actions are rarely analyzed as full-
fledged components of dialogue, but our
data shows haptic actions are used to ad-
vance the state of the interaction. We re-
port our experiments on recognizing Di-
alogue Acts in both offline and online
modes. Our results show that multimodal
features and the dialogue game aid in DA
classification.

1 Introduction

When people collaborate on physical or virtual
tasks that involve manipulation of objects, dia-
logues become rich in gestures of different kinds;
the actions themselves that collaborators engage
in also perform a communicative function. Col-
laborators gesture while speaking, e.g. saying
“Try there?” while pointing to a faraway location;
they perform actions to reply to their partner’s ut-
terances, e.g. opening a cabinet to comply with
“please check cabinet number two”. Conversely,
they use utterances to reply to their partner’s ges-
tures and actions, e.g. saying ‘“not there, try the
other one” after their partner opens a cabinet. Ges-
tures and actions are an important part of such di-
alogues; while the role of pointing gestures has
been explored, the role that haptic actions (force
exchanges) play in an interaction has not.

In this paper, we present our corpus of multi-
modal dialogues in a home care setting: a helper
is helping an elderly person perform activities of
daily living (ADLSs) such as preparing dinner. We
investigate how to apply Dialogue Act (DA) clas-
sification to these multimodal dialogues. Many
challenges arise. First, an utterance may not di-
rectly follow a spoken utterance, but a gesture or a
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haptic action. Likewise, the next move is not nec-
essarily an utterance, it can be a gesture (pointing
or haptics) only, or a multimodal utterance. Third,
when people use gestures and actions together
with utterances, the utterances become shorter,
hence the textual context that has been used to ad-
vantage in many previous models is impoverished.
Our contributions concern: exploring the dialogue
functions of what we call Haptic-Ostensive (H-O)
actions (Foster et al., 2008), namely haptics ac-
tions that often perform a referential function; ex-
perimenting with both offline and online DA clas-
sification, whereas most previous work only fo-
cuses on offline classification (Stolcke et al., 2000;
Hastie et al., 2002; Di Eugenio et al., 2010a); high-
lighting the role played by multimodal features
and dialogue structure (in the form of dialogue
games) as concerns DA classification.

Our work is part of the RoboHelper project (Di
Eugenio et al., 2010b) whose ultimate goal is to
deploy robotic assistants for the elderly so that
they can safely remain living in their home. The
models we derive from our experiments are the
building blocks of a multimodal information-state
based dialogue manager, whose architecture is
shown in Figure 1. The dialogue manager per-
forms reference resolution, specifically resolving
third person pronouns and deictics in utterances;
classifies utterances to DAs; infers the dialogue
games for utterances; updates the dialogue state,
and finally decides what the next step is in the in-
teraction. We have discussed our approach to mul-
timodal reference resolution in (Chen et al., 2011;
Chen and Di Eugenio, 2012). In this paper, we fo-
cus on the Dialogue Act classification component.
We will also touch on Dialogue Game inference.
Our collaborators are developing the speech pro-
cessing, vision and haptic recognition components
(Franzini and Ben-Arie, 2012; Ma and Ben-Arie,
2012; Javaid and Zefran, 2012), that, when inte-
grated with the dialogue manager we are building,
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Figure 1: System Architecture

will make the interface situated in and able to deal
with a real environment.

After discussing related work in Section 2, we
present our multimodal corpus and the multidi-
mensional annotation scheme we devised in Sec-
tion 3. In Section 4 we discuss all the features we
used to build machine learning models to classify
DAs. Sections 5 is devoted to our experiments and
the results we obtained. We conclude and discuss
future work in Section 6.

2 Related Work

Due to its importance in dialogue research, DA
classification has been the focus of a large body
of research (Stolcke et al., 2000; Sridhar et
al., 2009; Di Eugenio et al., 2010a; Boyer
et al., 2011). Some of this work has been
made possible by several available corpora tagged
with DAs, including HCRC Map Task (Ander-
son et al., 1991), CallHome (Levin et al., 1998),
Switchboard (Graff et al., 1998), ICSI Meeting
Recorder (MRDA) (Shriberg et al., 2004), and the
AMI multimodal corpus (Carletta, 2007).
Researchers have applied various approaches
to this task. Initially only simple textual fea-
tures were used, e.g. n-grams were used to
model the constraints for DA sequences in an
HMM model (Stolcke et al., 2000). Zimmermann
et al. (2006) investigated the joint segmentation
and classification of DAs using prosodic features.
Sridhar et al. (2009) showed that prosodic cues
can improve DA classification for a Maximum En-
tropy based model. Di Eugenio et al. (2010a)
extended Latent Semantic Analysis with linguis-
tic features, including dialogue game information.
Boyer et al. (2011) integrates facial expressions
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to significantly improve the recognition of several
DAs, whereas Ha et al. (2012) shows that auto-
matically recognized postural features may help to
disambiguate DAs.

It should be pointed out that most of this work
focuses on offline DA classification — namely, DA
classification is performed on the corpus using
the gold-standard classification for the previous
DA(s). Since some sort of history of previous
DAs is used by all systems, using online classi-
fication for the previous DAs will unavoidably im-
pact performance (Sridhar et al., 2009; Kim et al.,
2012). Additionally, for models such as HMMs
and CREF that approach the problem as sequence
labeling, online processing means that only a par-
tial sequence is available.

3 The ELDERLY-AT-HOME Corpus

This work is based on the ELDERLY-AT-HOME
corpus, a multimodal corpus in the domain of el-
derly care (Chen and Di Eugenio, 2012). The
corpus contains 20 human-human dialogues. In
each dialogue, a helper (HEL) and an elderly
person (ELD) perform Activities of Daily Liv-
ing (ADL) (Krapp, 2002), such as getting up from
chairs, finding pots, cooking pasta. The setting
is a fully equipped studio apartment used for
teaching and research in a partner university (see
Figure 2). The corpus contains 482 minutes of
recorded videos, which comprise 301 minutes of
what we call effective video, obtained by eliminat-
ing irrelevant content such as explanations of the
tasks and interruptions by the person who accom-
panied the elderly subject (who is not playing the
part of the helper). This 301 minutes contain 4782
spoken turns. The corpus includes video and au-
dio data in .avi and .wav format, haptics data col-
lected via instrumented gloves in .csv format, and
the transcribed utterances in xml format.

The Find subcorpus of our corpus comprises
only Find tasks, where subjects look for and re-
trieve various kitchen objects such as pots, silver-
ware, pasta, etc. from various locations in the
apartment. We define a Find task as a continuous
time span during which the two subjects are col-
laborating on finding objects. Find tasks naturally
arise while performing an ADL such as preparing
dinner. Figure 3 shows a Find task example.



Figure 2: Data Collection Experiment

ELD And there is a spoon down there, in the second drawer?
[Point(ELD,Drawerl)]

Down there?/Point(HEL,Drawerl)]

Yes.

This? [Touch(HEL,Drawerl)]

Uh-huh.

[Open(HEL,Drawerl)]

A spoon.

Is this the spoon? [Takeout(HEL,spoonl)]
No, the second drawer.
[Close(HEL,Drawer1),Open(HEL,Drawer2)]
Yes, there it is.

This one?/Takeout(HEL,spoon2)]

Yes, uh-huh.

OK.
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Figure 3: Find Task Example

3.1 Annotation

We devised a multidimensional annotation scheme
since we are interested in investigating the role
played in the interaction by modalities different
from speech. Our annotation scheme comprises
three main components: the multimodal event an-
notation, which includes annotating for pointing
gestures, haptic-ostensive actions, their features,
and their relationships to utterances; the dialogue
act annotation; and the referential expression an-
notations already described in (Chen et al., 2011;
Chen and Di Eugenio, 2012).

3.1.1 Multimodal Event Annotation

To study the roles played by different sorts of mul-
timodal actions, and how they contribute to the
flow of the dialogue, pointing gestures, Haptic-
Ostensive (H-O) actions, and the relations among
them have been annotated on the Find subcorpus.
The Find subcorpus contains 137 Find tasks, col-
lected from the dialogues of 19 pairs of subjects
from the larger corpus. ! The multimodal annota-

'One pair of subjects was excluded, because ELD ap-
peared confused. Our goal was to recruit elderly subjects with
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tion tool Anvil (Kipp, 2001) was used to transcribe
all the utterances, and to annotate for all categories
described in this paper. Each annotation category
is an annotation group in Anvil. For each subject,
one track is defined for each annotation group, for
a total of 4 tracks per subject in Anvil.

Pointing gestures are used naturally when peo-
ple refer to a far away object. We define a pointing
gesture as a hand gesture without physical contact
with the target. Our definition of pointing gesture
does not include head or other body part move-
ments used to indicate targets. Our corpus in-
cludes very few occurrences of those; additionally,
our collaborators in the RoboHelper project focus
on recognizing hand gestures. We have identified
two types of pointing gestures. The first is, point-
ing gestures with an identifiable target, which is
usually indicated by a short time stable hand point-
ing. The other type is without a fixed target. It
usually happens when the subject points to several
targets in a short time, or the subject just points to
a large space area.

For a pointing gesture, we mark two attributes:
the time span and the target. The time span of
a pointing gesture starts when the subject initi-
ates the hand movement, ends when the subject
starts to draw the hand back. We have devised a
Referring Index System (Chen and Di Eugenio,
2012) to mark the different types of targets: sin-
gle identifiable target, multiple identifiable targets
and unidentifiable target.

During Find tasks, subjects need to physically
interact with the objects, e.g. they need to open
cabinets to get plates, to put a pot on the stove etc.
Those physical contact actions often perform a re-
ferring function as well, either adding new enti-
ties to the discourse model, or referring to an al-
ready established referent. For example, in Fig-
ure 3, the action [Touch(Hel,Drawerl)] that ac-
companies Utty disambiguates This by referring to
Drawerl, tantamount to a pointing gesture; con-
versely, the action [Takeout(HEL,spoon1)] associ-
ated with Uttg establishes a referent for spoonl.
Following (Foster et al., 2008), we label Haptic-
Ostensive (H-O) those actions that involve physi-
cal contact with an object, and that can at the same
time perform a referring function. Note that target
objects here exclude the partner’s body parts, as
when HEL helps ELD get up from a chair.

No existing work that we know of identifies

intact cognitive functions, but this subject was an exception.



types of H-O actions. Hence, we had to define our
own categories, based on the following two princi-
ples: (1) The H-O types must be grounded in our
data, namely, the definitions are empirically based:
these H-O actions are frequently observed in the
corpus. (2) They are within the scope of what our
collaborators can recognize from the haptic sig-
nals. The five H-O action types we defined are:

Touch: when the subject only touches the
targets, no immediate further actions are per-
formed

MANIP-HOLD: when the subject takes out
or picks up an object and holds it stably for a
short period of time

MANIP-NO-HOLD: when the subject takes
out or picks up an object, but without explic-
itly showing it to the other subject

Open: starts when the subject has physical
contact with the handle of the fridge, a cabi-
net or a drawer, and starts to pull; ends when
the physical contact is off

Close: when the subject has physical con-
tact with the handle of the fridge, a cabinet
or a drawer, and starts to push; ends when the
physical contact is off

For H-O action annotation, three attributes are
marked: time span, target and action type. The
“Target” attribute is similar to the “Target” at-
tribute in pointing gesture annotation. Since H-
O actions are more accurate than pointing ges-
tures (Foster et al., 2008), the targets are all iden-
tifiable.

Table 1 provides distributions of the length in
seconds for different types of events in the Find
corpus. Table 2 shows the counts of different
events divided by type of participant. From these
two tables, it is apparent that:

e Pointing gestures and H-O actions were fre-
quently used: their total corresponds to 61%
of the number of utterances

e Utterances are short:
words on average

only 1.77, and 4.2

e ELD performed 66% of pointing gestures,
and HEL 97.5% of H-O actions

Multimodal Event Relation Annotation.
Pointing gestures and H-O actions can accompany
an utterance, e.g. see move 2 in Figure 3: HEL
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H-O Actions
1088~

Total
43777

Utterances
2555”7

Pointing
5717

Table 1: Find Subcorpus: Length in seconds

ELD | HEL || Total

Utterances 756 760 1516
Words 3612 | 2981 6593
Pointing 219 113 332
H-O Actions 15 582 597

Table 2: Find Subcorpus: Counts

asks “Down there” while pointing to a drawer;
or can be used independently, e.g. see move 6
in Figure 3: HEL does not utter any words, but
opens the drawer after ELD confirms that is
the right drawer with “Uh-huh”. In the latter
case, HEL used an action to respond to ELD.
Pointing gestures and H-O actions are followed
by utterances as well, e.g. move 11 in Figure 3:
after HEL opens a drawer, ELD says “Yes, there
itis”.

To understand how pointing gestures and H-O
actions participate in the dialogues and how they
interact with utterances, we further annotated the
relationship between utterances, pointing gestures
and H-O actions.  Just using timespans is not
sufficient. It is not necessarily the case that utter-
ance U is associated with gesture / H-O action G
if their timespans overlap. This type of annotation
is purely local: the fact that turns 2-5 in Figure 3
confirm which drawer to open, would be captured
at the dialogue game level.

First, we assign to each utterance, pointing ges-
ture and H-O action a unique event index, so that
we can refer to these events with their indices. For
pointing gestures and H-O actions, we define two
more attributes: “associates” and “follows”. If a
pointing gesture or H-O action is associated with
an utterance, the “associates” value will be the in-
dex of that utterance; by default, the “associates”
value is empty. If a pointing gesture or H-O ac-
tion independently follows an utterance, the “fol-
lows” value will be that utterance’s index. E.g.,
for move 6 in Figure 3, we mark the H-O action
“Open” with “follows [5]”.

For utterances, we only mark the “follows” at-
tribute. If an utterance directly follows a point-
ing gesture or H-O action, we use the index of the
pointing gesture or H-O action as the “follows”
value. By default, the “follows” attribute of an ut-
terance is empty. It means that an utterance fol-



lows its immediate previous utterance.

We define a move as any combination of related
utterances, pointing gestures and H-O actions, per-
formed by the same subject. On the basis of the
event relation annotations, we can compute the di-
alogue’s move flow using the following algorithm.

1. Order all the utterances in a Find task session
by the utterance start time

2. Until all the utterances are processed, for
each unprocessed utterance u;:

(a) If u; follows a pointing gesture or H-O
action, that pointing gesture or H-O ac-
tion forms a new move my; add my to
the sequence before u;

(b) Find all the pointing gestures and H-
O actions labelled as associates of u;.
These events form the move m; together
with u;

(c) Recursively find the events which fol-

low the last generated move, together

with all their associated events to form

another move

This algorithm computes 1791 moves, as shown in
Table 3. More than 90% of pointing gestures are
used with utterances. Only 377 out of 596 H-O ac-
tions are included in the moves, mostly because the
H-O action “Close” frequently follows an “Open”
action (these cases are not detected by the algo-
rithm, because they don’t advance the dialogue).

ELD | HEL || Total
Utterances 545 507 1052
Pointing 9 11 20
H-O 5 213 218
Utterance&Pointing | 209 100 309
Utterance&H-O 2 153 155
[ Total [ 770 T 984 [ 1754 |

Table 3: Moves Statistics in Find Corpus

3.1.2 Dialogue Act Annotation

Since the Find corpus is task-oriented in nature,
we built on the dialogue act inventory of HCRC
MapTask, a well-known task oriented corpus (An-
derson et al., 1991). The MapTask tag set con-
tains 11 moves:? instruct, explain, check, align,
query-w, query-yn; acknowledge, reply-y, reply-n,
reply-w, clarify. However, this inventory of DAs
does not cover utterances that are used to respond

2A twelfth move, Ready, does not appear in our corpus.
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to gestures and actions, such as Utt.;; in Figure 3.
The semantics of the reply-{y/n/w} tags does not
cover these situations. Hence, we devised three
more tags, which apply only to statements that fol-
low a move composed exclusively of a gesture or
an action (in the sense of “follow” just discussed):

e state-y: a statement which conveys “yes”,
such as Utt.;; in Figure 3.

e state-n: a statement which conveys “no”, e.g.
if Utt.1; had been Wait, try the third drawer.

e state: still a statement , but not conveying ac-
ceptance or rejection, e.g. So we got the soup.

Hence, the DAs in {state-y, state-n, state} are
used to tag responses to actions, and the DAs
in {reply-y, reply-n, reply-w} are used to tag re-
sponses to utterances. Table 4 shows the distribu-
tion of DAs by subject.

Dialogue Act | ELD | HEL || Total | Ratio
Instruct 295 19 314 | 20.7%
Acknowledge 22 186 208 13.7%
Reply-y 179 3 182 | 12.0%
Check 1 155 156 | 10.3%
Query-yn 23 133 156 10.3%
Query-w 3 144 147 9.7%
Reply-w 132 4 136 9.0%
State-y 40 36 76 5.0%
State-n 16 50 66 4.4%
Reply-n 27 9 36 2.4%
State 7 15 22 1.5%
Explain 10 4 14 0.9%
Align 1 2 3 0.3%

[ Total [ 756 [ 760 ] 1516 | 100% |

Table 4: Dialogue Act Counts in Find Corpus

Intercoder Agreement. In order to verify the
reliability of our annotations, we double coded
15% of the data for pointing gestures, H-O actions
and DAs. These are the dialogues from 3 pairs of
subjects, and contain 22 Find tasks. Because the
pointing gestures and H-O actions are time span
based, when we calculate agreement, we use an
overlap based approach. If the two annotations
from the two coders overlap by more than 50% of
the event length, and the other attributes are the
same, we count this as a match. We used & to
measure the reliability of the annotation (Cohen,
1960). We obtained reasonable values: for point-
ing gestures, k=0.751, for H-O actions, £=0.703,
and for DAs, k=0.789.



4 Experimental Setup

We ran experiments classifying the DA tag for the
current utterance. We employ supervised learn-
ing approaches, specifically: Conditional Random
Field (CRF) (Lafferty et al., 2001), Maximum En-
tropy (MaxEnt), Naive Bayes (NB), and Decision
Tree (DT). These algorithms are widely used for
DA classification (Sridhar et al., 2009; Ivanovic,
2008; Ha et al., 2012; Kim et al., 2012). We
used Mallet (McCallum, 2002) to build CRF mod-
els. MaxEnt models were built using the Max-
Ent 3 package from the Apache OpenNLP pack-
age. Naive Bayes and Decision Tree models were
built with the Weka (Hall et al., 2009) package (for
decision trees, we used the J48 implementation).
All the results we will show below were obtained
using 10 fold cross validation.

4.1 Features

Among our goals were not only to obtain effec-
tive classifiers, but also to investigate which kind
of features are most effective for our tasks. As
a consequence, beyond textual features and dia-
logue history features, we experimented with mul-
timodal features extracted from other modalities,
utterance features, and automatically inferred dia-
logue game features.

Textual features (TX) are the most widely used
features for DA classification (Stolcke et al., 2000;
Bangalore et al., 2008; Sridhar et al., 2009; Di Eu-
genio et al., 2010a; Kim et al., 2010; Boyer et al.,
2011; Ha et al., 2012; Kim et al., 2012). The tex-
tual features we use include lexical, syntactic, and
heuristic features.

Lexical features: Unigrams of the words and
part-of-speech tags in the current utterance.
The words used in the features are processed
using the morphology tool from the Stanford
parser (De Marneffe and Manning, 2008).

Syntactic features: The top node and its
first two child nodes from the sentence parse
tree. If an utterance contains multiple sen-
tences, we use the last sentence. Sentences
are parsed using the Stanford parser.

Number of sentences and number of words in
the utterance. We use Apache OpenNLP li-
brary # to detect sentences and tokenize them.

3http://maxent.sourceforge.net
*http://opennlp.apache.org/
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e Heuristic features: whether an utterance con-
tains WH words (e.g. what, where), whether
an utterance contains yes/no words (e.g. yes,
no, yeah, nope).

Utterance features (UT) are extracted from
the current utterance’s meta information. Previ-
ous research showed that utterance meta informa-
tion such as the utterance speaker can help classify
DAs (Ivanovic, 2008; Kim et al., 2010).

e The actor of the utterance
e The time length of the utterance

e The distance of the current utterance from the
beginning of the dialogue

The pointing gesture feature (PT) indicates
whether the actor of the current utterance w; is
making a pointing gesture G, i.e., whether G is
associated with u;, and hence, part of move m;.

Haptic-Ostensive features (H-O) indicate
whether the actor of the current utterance u; is per-
forming any H-O action G i.e., whether G is asso-
ciated with u;, and hence, part of move m;; and
the type of that action, if yes.

Location features (LLO) include the locations
of the two actors, whether they are in the same
location, whether the actor of the current utter-
ance changes the location during the utterance.
Since we do not have precise measurement of sub-
jects’ locations, we annotate approximate loca-
tions by dividing the apartment into four large ar-
eas: kitchen, table, lounge and bed.

The dialogue game feature (DG) models hi-
erarchical dialogue structure. Some previous re-
search on DA classification has shown that hier-
archical dialogue structure encoded via the no-
tion of conversational games (Carlson, 1983) sig-
nificantly improves DA classification (Hastie et
al., 2002; Sridhar et al., 2009; Di Eugenio et al.,
2010a). In MapTask, a game is defined as a se-
quence of moves starting with an initiation (in-
struct, explain, check, align, query-yn, query-w)
and encompassing all utterances up until the pur-
pose of the game has been fulfilled, or abandoned.
In the Find corpus, dialogue games have not been
annotated. In order to use the DG feature, we use
a just-in-time approach to infer dialogue games.
For each dialogue, we maintain a stack for dia-
logue games. When an utterance is classified as
an initiating DA tag, we assume the dialogue has



entered a new dialogue game, and push the DA la-
bel as the dialog game to the top of the stack. The
DG feature value is the top element of the stack.
The dialogue game feature is always inferred at
run time during classification process, just before
an utterance is being processed. Hence, when we
classify the DA for the current utterance u;, the
DG value that we use is the closest preceding ini-
tiating DA.

Dialogue history features (DH) model what
happened before the current utterance (Sridhar et
al., 2009; Di Eugenio et al., 2010a). We encode:

e The previous move’s actor

e Whether the previous move has the same ac-
tor as the current move

e The type of the previous move; if it is an ut-
terance, its DA tag; if it is an H-O action, the
type of H-O action

5 DA Classification Experiments

We ran the DA classification experiments with
three goals. First, we wanted to assess the ef-
fectiveness of different types of features, espe-
cially, the effectiveness of gesture, H-O action, lo-
cation and dialogue game features. Second, we
wanted to compare the performances of different
machine learning algorithms on such a multimodal
dialogue dataset. Third, we wanted to investigate
the performances of different algorithms in the on-
line and offline experiment settings. The DA clas-
sification task could be treated as a sequence label-
ing problem (Stolcke et al., 2000). However, dif-
ferent from other sequence labeling problems such
as part-of-speech tagging, a dialogue system can-
not wait until the whole dialogue ends to classify
the current DA. A dialogue system needs online
DA classification models to classify the DAs when
a new utterance is processed by the system. There
are two differences between online and offline DA
classification modes. First, when we generate the
dialogue history and dialogue game features, we
use the previously classified DA tag results for on-
line mode, while we use the gold-standard DA tags
for offline mode. Second, MaxEnt (using beam
search) and CRF evaluate and classify all the ut-
terances in a dialogue at the same time in offline
mode; however in online mode, MaxEnt and CRF
can only work on the partial sequence up to the
utterance to classify. Whereas this may sound ob-
vious, it explains why the performance of these
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classifiers may be even more negatively affected
in online mode with respect to their offline perfor-
mance, as compared to other classifiers. We will
see that indeed this will happen for CRF, but not
for MaxEnt.

To evaluate feature effectiveness, we group the
features into seven groups: textual features (TX),
utterance features (UT), pointing gesture fea-
ture (PT), H-O action features (H-O), location
features (LO), dialogue game feature (DG), dia-
logue history features (DH). Then we generate all
the combinations of feature groups to run exper-
iments. For each classification algorithm, we ran
10-fold cross-validation experiments, for each fea-
ture group combination, in both online and offline
mode. It would be impossible to report all our re-
sults. Similarly to (Ha et al., 2012), we report our
results with single feature groups and incremen-
tal feature group combinations, as shown in Ta-
ble 5. Whereas all combinations were tried, the
omitted results do not shed any additional light on
the problem. The majority baseline, which al-
ways assigns the most frequent tag to every utter-
ance, has an accuracy of 20.3%.

The CRF offline model performs best, which
confirms the results of (Kim et al., 2010; Kim
et al., 2012). This is due to the strong correla-
tion between dialogue history features (DH) and
the states of the CRF. In online mode, when there
is noise in the previous DA tags, the CRF’s per-
formance drops significantly (p<.005, using x2).
A significant drop in performance from offline to
online mode also happens to NB (p<.005) and
DT (p<.025). MaxEnt performs very stably, the
best online model performs only .015 worse than
the best offline model. The best MaxEnt offline
model beats the other algorithms’ best models ex-
cept CRF, while the MaxEnt online model outper-
forms all the other algorithms’ online models. Our
results thus demonstrate that MaxEnt works best
for online DA classification on our data.

As concerns features, for online models, textual
features (TX) are the most predictive as a feature
type used by itself. When we add pointing ges-
ture (PT), H-O features (H-O) and location fea-
tures (LO) together to textual features, we notice
a significant performance improvement for most
models (except CRF models). For MaxEnt, which
gives the best results for online models, none of
the gesture, H-O action and location features alone
significantly improve the results, but all three to-



Features CRF MaxEnt NB DT
Offline | Online | Offline | Online | Offline | Online | Offline | Online
1. TX (Textual) .654 .641 .630 .630 449 453 450 450
2. UT (Utterance) .506 376 353 353 417 417 392 392
3. PT (Pointing) 225 155 210 210 212 212 212 212
4. H-O (Haptic-Ostensive) 187 147 237 237 243 243 212 212
5. LO (Location) 259 176 264 264 259 259 265 265
6. DG (Dialogue Game) 137 136 .305 .189 212 212 212 212
7. DH (Dialogue History) .895 .119 480 302 478 284 471 294
8. TX+PT .654 .651 .639 .639 453 453 450 450
9. TX+PT+H-O .670 .649 .637 .637 456 456 449 449
10. TX+PT+H-O+LO .648 .645 657 657 .523% .523% 536" 536
11. TX+PT+H-O+LO+UT .668 612 .685 .685 563 .563 .568 568
12. TX+PT+H-O+LO+UT+DG 770" | 528 7227 ] 709%F | 566 5917 | 576 607"
13. TX+PT+H-O+LO+UT+DG+DH | .847% 475 57+ 427 6357 .606 6717 1627

Table 5: Dialogue Act Classification Accuracy: * indicates significant improvement after adding PT+H-
O+LO to TX (cf. lines 1 and 10); ** indicates significant improvement after adding DG to TX+PT+H-
O+LO+UT (cf. lines 11 and 12); tindicates significant improvement after adding DH to TX+PT+H-
O+LO+UT+DG (cf. lines 12 and 13); bold font indicates the feature group set giving best performance

for each column.

gether do. This confirms the finding of (Ha et al.,
2012) that non-verbal features help DA classifica-
tion. To assess which feature is the most important
among those three non-verbal features, we exam-
ined the experiment results with a leave-one-out
strategy, that is for each classifier in offline and
online modes, we leave one of the gesture, H-O
and location features out from the full experiment
feature set (TX+PT+H-O+LO+UT+DG+DH). No
significant difference was discovered.

When the dialogue game features (DG) are
added to the models, performance increases sig-
nificantly for CRF offline model (p<.005), Max-
Ent offline (p<.005) and online (p<.05) mod-
els, NB online model (p<.05) and DT online
model (p<.005). It confirms previous findings, in-
cluding by our group (Di Eugenio et al., 2010a),
that dialogue game features (DG) play a very im-
portant role in DA classification, even via the sim-
ple approximation we used. When the dialogue
history features (DH) are added to the models,
performance increased significantly for all the of-
fline models and the MaxEnt online model, with
p<<.005. This confirms previous findings that dia-
logue history helps with DA classification.

6 Conclusions and Future Work

In this paper we described our multimodal cor-
pus which is annotated with multimodal informa-
tion (pointing gestures and H-O actions) and dia-
logue acts. Our corpus analysis shows that peo-
ple actively use pointing gestures and H-O actions
alongside utterances in dialogues. The function of

H-O actions in dialogue had hardly been studied
before. Our experiments show that MaxEnt per-
forms best for the online DA classification task.
Multimodal and dialogue game features both im-
prove DA classification.

Short-term future work includes manual anno-
tation for dialogue games, in the hope that more
accurate dialogue game features may further im-
prove DA classification. Longer term future work
includes prediction of the specific next move — the
specific DA and/or the specific gesture, pointing or
H-O action. We have now developed some of the
building blocks of an information-state based mul-
timodal dialogue manager. The major aspects we
still need to address are defining the information-
state for the Find task, and developing rules to up-
date the information-state with multimodal infor-
mation, the classified DAs, and the co-reference
resolution models we already built (Chen et al.,
2011; Chen and Di Eugenio, 2012). Once the
information-state component is in place, we can
expect better and more detailed predictions.
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