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Abstract

We describe the system developed for the
CoNLL-2013 shared task—automatic En-
glish L2 grammar error correction. The
system is based on the rule-based ap-
proach. It uses very few additional re-
sources: a morphological analyzer and a
list of 250 common uncountable nouns,
along with the training data provided by
the organizers. The system uses the syn-
tactic information available in the train-
ing data: this information is represented
as syntactic n-grams, i.e. n-grams ex-
tracted by following the paths in depen-
dency trees. The system is simple and
was developed in a short period of time
(1 month). Since it does not employ
any additional resources or any sophisti-
cated machine learning methods, it does
not achieve high scores (specifically, it has
low recall) but could be considered as a
baseline system for the task. On the other
hand, it shows what can be obtained using
a simple rule-based approach and presents
a few situations where the rule-based ap-
proach can perform better than ML ap-
proach.

1 Introduction

There are two main approaches in the design of the
modern linguistic experiments and the develop-
ment of the natural language processing applica-
tions: rule-based and machine learning-based. In
practical applications of machine learning (ML),
the best results are achieved by the methods that
use supervised learning, i.e., that are based on
manually prepared training data for learning. It
is also worth mentioning what can be considered
a general rule for the combination of these two
approaches: a system based on the mixed ap-
proach should obtain better results if each part
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of the system is applied according to its “com-
petence”. Specifically, some problems are better
solved by the application of the rules—Iike the
rules for choosing the correct allomorph of the ar-
ticle “a” vs. “an”, while other problems are better
solved by the usage of ML methods—such as de-
ciding the presence or absence of a definite or an
indefinite determiner.

This paper describes the system developed for
the CoNLL-2013 shared task. The task consists
of grammar correction in texts written by people
learning English as a second language (L.2). There
are five types of errors considered in the task: noun
number, subject-verb agreement, verb form, ar-
ticle/determiner and choice of preposition. The
training data processed by the Stanford parser (de
Marneffe et al., 2006) is provided. This data is part
of the NUCLE corpus (Dahlmeier et al., 2013).
The data also contains the error types and the cor-
rected version.

Development of the system was started only two
months before the deadline, so it is also an inter-
esting example of what can be done in a rather
short period of time and with relatively little ef-
fort: only one person-month joint effort in total.

In our system, we considered mainly the rule-
based approach. Note that we used the ConLL
data to extract preposition patterns, which can be
considered as a very reduced form of machine
learning with yes/no classifier, as well as to con-
struct rules directly from the data.

Another feature of our system is the widespread
use of the syntactic information present in the pro-
vided data. In our previous works, we general-
ized the use of syntactic information in NLP by
introducing the concept of syntactic n-grams, i.e.
n-grams constructed by following the dependency
paths in a syntactic tree (Sidorov et al., 2012;
Sidorov et al., 2013). Note that they are not n-
grams of POS tags, as could be assumed from the
name; the name refers to the manner in which they
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My dog also  likes eating sausage
Figure 1: Example of syntactic tree (for extraction

of syntactic n-grams).

are constructed. That is to say, in a dependency
relation, there is always a head word and a depen-
dent word. In the syntactic tree, this relation is
graphically represented by an arrow: head — de-
pendent. As it can be observed in Fig. 1, we can
also use the tree hierarchy—the head word is al-
ways “higher” in the syntactic tree.

The algorithm for the construction of syntactic
n-grams is as follows: we start from the root word
and move to each dependent word following the
dependency relations. At each step, the sequence
of previous elements in the route taken are taken
into account. The last n words in the sequence
correspond to the syntactic n-gram. This could be
reformulated as: we should take the last n words
of the (unique) path from the root to the current
word.

In other words, we start from the root and reach
one of the dependent words. If we want to con-
struct bigrams, then we have a bigram already. If
we need other elements of the n-gram, then we
move to the word that is dependent and continue to
the words that are dependent on it. If a word has
several dependent words, we consider them one
after another and thus, obtain several syntactic n-
grams. Note that the head word always appears
before the dependent word in the syntactic n-gram
during the construction process.

For example, from the tree presented in Fig. 1,
the following syntactic bigrams can be extracted:
likes-also, likes-dog, dog-my, likes-eating, eating-
sausage. Note that only two syntactic 3-grams
can be constructed: likes-dog-my, likes-eating-
sausage. The construction process is the follow-
ing: we start with the root word like. It has several
dependent words: dog, also, eating. Considering
them one after another, we obtain three syntactic
bigrams. Then we move on to the word dog. It
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has only one dependent word: my. This is another
bigram dog-my. However, the path from like also
goes through it, so this is also the 3-gram like-dog-
my, etc.

The reader can compare these syntactic n-grams
with traditional n-grams and consider their advan-
tages: there are a lot less syntactic n-grams, they
are less arbitrary, they have linguistic interpreta-
tion, etc.

Note that syntactic n-grams can be formed by
words (lemmas, stems), POS tags, names of de-
pendency relations, or they can be mixed, i.e., a
combination of the mentioned types. Being n-
grams, they can be applied in any machine learn-
ing task where traditional n-grams are applied.
However, unlike traditional n-grams, they have a
clear linguistic interpretation and can be consid-
ered as an introduction of linguistic (syntactic) in-
formation into machine learning methods. Previ-
ously, we obtained better results by applying the
syntactic n-grams to opinion mining and author-
ship attribution tasks compared to the traditional
n-grams. Further in this paper, it is described how
we use syntactic n-grams for the formulation of
rules in our system and for the extraction of pat-
terns.

The system described in this paper does not ob-
tain high scores. In our opinion, it could be con-
sidered a baseline system for the grammar correc-
tion task due to its simplicity, its use of very few
additional resources and the speed of its develop-
ment. Concretely, if a more sophisticated system
outperforms ours, it reflects well upon that system.
If it performs more poorly, its design should be
revised. On the other hand, this paper also dis-
cusses the few situations where the rule-based sys-
tem can outperform an ML approach. As we men-
tioned earlier, the ideal system would combine
both these approaches. To quote Tapanainen and
Voutilainen (1994), “don’t guess if you know”.

Further below, we describe the lexical resources
that we used, the processing of each type of error
and the evaluation of the system.

2 The System’s Linguistic Resources

The system consists of several program modules
written in the Python programming language. We
used only three types of linguistic resources:

e The provided corpus NUCLE data was pro-
cessed with the Stanford parser. It was
used for the extraction of patterns to identify



preposition errors and for the formulation of
rules.

e A list of the 250 most common uncountable
nouns'. This list was used for processing the
possibility of using the nouns in plural form.

e A morphological analysis system for English
that in our case was based on the FreeL-
ing morphological dictionary (Padré et al.,
2010).

The FreeLing dictionary is a freely available
text file which contains more than 71,000 word
forms with standard POS tags. It has the follow-
ing data: for each word form, it contains a list of
lemmas and POS tags. An example of the entries:
...abandon abandon VB abandon VBP
abandoned abandon VBD abandon VBN
abandoning abandon VBG
abandonment abandonment NN
abandons abandon VBZ...

This list can also be easily reordered by lemmas.
It is therefore very easy to apply this word list to
both morphological analysis and generation. The
morphological analysis simply consists of search-
ing for a word form in the list, while the mor-
phological generation involves searching the list
of lemmas and then finding the word form with
the necessary POS tag, i.e., for the generation, the
input consists in the lemma and the POS tag. For
example, if we want to generate the VBZ form of
the verb rake, then we search in the list ordered ac-
cording to the lemma fake; there are several forms:
take took VBP. take taken VBN, take takes VBZ and
choose the form that has the POS tag VBZ.

3 Error Processing

In accordance with the rules of the ConLL shared
task, only five types of errors were considered:
noun number, incorrect preposition, choice of de-
terminer or article, subject-verb agreement and
verb form. More error types are marked in the
corpus, but they are much more complex, being
related to the meaning and content.

Let us see examples of the errors:

e Preposition error: “...the need of habitable
environment...”, where “for” should be used.

'List of 250 most common uncountable nouns.
www.englishclub.com>Learn English>Vocabulary >Nouns.
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e Nn error: “...people are getting more con-
scious of the damages...”, the word “damage”
in singular should be used.

e SVA error: “...relevant information are read-
ily available...”, where “is” should be used in-
stead.

e Vform error: “The solution can be obtain
by using technology...”, where ‘“obtained”
should appear.

ArtOrDet error: “...It is also important to cre-
ate a better material...”, where “a” should not
be used.

The total number of errors marked in the train-
ing and the test data for ConLL 2013 are presented
by type in Table 1.

Table 1: Numbers of errors in training and test data
listed by type.

Error type Training Test
Vform (Verb form) 1,451 122
SVA (Subject-verb agreement) 1,529 124
ArtOrDet 6,654 690
Nn (Noun number) 3,773 396
Prep (Preposition) 2,402 311

Note that the errors related to the noun num-
ber should be processed first since later, an agree-
ment error could be produced if the noun number
is changed. If the agreement error is introduced by
the modification of the noun number, it is not the
error committed by the student, however it is con-
sidered as such in the current version of the task.
Probably, it can be considered as some sort of sec-
ondary error. The order in which other errors are
processed is irrelevant.

3.1 Noun Number Error Processing

The only rule we implemented in this case was that
uncountable nouns do not have a plural. We used
a list of the 250 most common uncountable nouns
(as mentioned in the Section 2) to determine the
possibility of a plural form for a noun. For ex-
ample: ...ethics, evidence, evolution, failure, faith,
Sfame, fiction, flour, flu, food, freedom...

We made an exception for the noun “time” and
do not consider it as uncountable, because its use
in the common expressions such as “many times”



is much more frequent than its use as an uncount-
able noun as in “theory of time” or “what time is
it now?”. More sophisticated systems should ana-
lyze the contexts obtained from vast data sets (cor-
pora), i.e. consider n-grams or syntactic n-grams.
Note that word sense disambiguation would be
helpful in the resolution of the mentioned ambigu-
ities. Also, the rule that considers the presence of
the dependent words like “many, a lot of, amount
of” could be added.

3.2 Subject-Verb Agreement and Verb Form
Error Processing

We consider these two types of errors together be-
cause they are related to a similar and a rather sim-
ple grammatical phenomenon. To correct these
errors we used syntactic information to formulate
the rules. This is logical because we cannot rely
on the context words (neighbours) as they appear
in texts (traditional n-grams). Note that the rules
are also related to the modal verbs and the passive
constructions.

The rules for the agreement are very simple: 1)
if the noun is in plural and the VBZ tag is present,
then change the tag to VB, 2) if the noun is in
singular and the VB tag is present, then change
the tag to VBZ. The corresponding morphological
generation is also performed.

The rules for verb form correction are as fol-
lows: 1) if we have a modal verb, then the depend-
ing verb should have a VB tag, 2) if we have an
auxiliary verb “have”, then the main verb should
have a VB tag (perfect tense), etc. Moreover, the
FreeLing morphological dictionary is utilized to
identify the correct verb form. Note that there are
some assumptions here about what drives the verb
form, e.g., that a noun or a modal verb are correct
and the verb needs to change. This appears to be
a reasonable assumption, but may not always be
correct.

3.3 Preposition Error Processing

It is well-known that prepositions depend on lex-
ical units that are their heads, see (Eeg-Olofsson
and Knutsson, 2003). But what should be done
if we want to consider the dependent word? Say,
that in the PP attachment task, the lexical unit is
the preferred solution as well. In general, it would
be an ideal solution in grammar correction, but in
the case of our system, very little training data was
used. If we consider that the dependent word is a
lexical unit, we will have less recall. We are there-
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fore practically obliged to consider that it is a POS
tag.

To process the prepositions, we used the train-
ing data provided by the organizers. Specifically,
we extracted preposition patterns. We apply the
concept of syntactic n-grams to include both the
head word of the preposition and the dependent
word into the pattern. The pattern data corre-
sponds to syntactic n-grams because they are con-
structed using syntactic dependencies. As we
mentioned previously, syntactic n-grams can con-
sist of words, POS tags or a combination. In our
case, we used mixed syntactic n-grams: the head
word is the lexical unit, while the dependent word
is the POS tag, as shown in Table 2.

For example, the first line corresponds to the er-
roneous phrase “...unwelcomed among public...”,
where “among” should be substituted by “by”.
Note that there can be other words between these
three words in the surface representation of the
sentence, but the parser allows the extraction of
the syntactic n-gram, which represents the “pure”
pattern.

In order to choose the syntactic n-gram type, our
first consideration was that the head word should
be a lexical unit (word), because this determines
the choice of the preposition. We used a POS
tag for the dependent element, because we consid-
ered that using a word there would be too specific.
Thus, our final syntactic n-gram for the first line
was “...unwelcomed among NN...”, which should
be changed to “...unwelcomed by NN...”. The syn-
tactic n-gram for the second line was “...trouble for
NN...”, which should be changed to “...trouble in
NN...”, etc. Note that insertion of prepositions is
not considered, but deletion can be performed, i.e.,
changing the preposition to nothing.

The rule for the system is formulated in the fol-
lowing way: if we find a relation “preposition” in
the dependency tree, then for the preposition that
corresponds to this relation, we search the list of
the extracted patterns. If we find the pattern, then
we change the preposition. It is quite clear that
the training data is too limited to obtain patterns
for a great majority of words. Our list contained
only 1,896 elements. These patterns should be ex-
tracted from a very large corpus or a dictionary.

3.4 Article or Determiner Error Processing

In this case, we found only two clear rules, both
related to the article “a”: 1) choice of the allo-



Table 2: Examples of patterns for prepositions.

Preposition Preposition = Head word Head word Dependent word Dependent word
(error) (correction) (lemma) (POS) (lemma) (POS)
among by unwelcomed VBN public NN

for in trouble NN development NN
on in practice NN October NNP
on in face VBG field NN

morph “a/an”, and 2) the fact that the article “a”
cannot be used with nouns in plural. Other rules
would be too complex for a manually created rule-
based system. The first rule takes into the account
the immediate neighbor: the choice depends on its
phonetic properties. The second rule considers the
syntactically related head word, which cannot be
in plural if we use the indefinite article.

4 Evaluation of the System

For the evaluation, the organizers provided data
similar to the training data from the same NU-
CLE corpus, which also contained syntactic in-
formation. The evaluation results were provided
by the organizers using their evaluation script in
Python (Dahlmeier and Ng, 2012). The results ob-
tained with this script for our system are: precision
17.4 %, recall 1.8%, and F1 measure 3.3% (the
preliminary scores were: 12.4%, 1.2% and 2.2%
correspondingly). See the final remarks in this
section, where we argue that the real values should
be: precision 25%, recall 2.6%, and F1 measure
4.7%.

The results are low, but as we mentioned previ-
ously, our system uses a rule-based approach with
very few additional resources, so it cannot com-
pete with ML based approaches that additionally
rely on vast lexical resources and the Internet. Due
to its simplicity, low use of additional resources,
and very short development time, we consider our
system a possible baseline system for the task. On
the other hand, we showed that in some cases the
rules should be used as a complementary tech-
nique for ML learning methods: don’t guess if you
know.

The low recall of the system is to be expected
as we process only clearly defined errors, ignoring
more complex cases.

It is always interesting to perform an analysis of
the errors committed by a system. Let us analyze
the supposed errors committed by our system
for the noun number error type. It performed 18
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corrections, 3 of which coincide with the marks
in the corpus data. Two of them are clear errors
of the system: “traffic jam”, where the word
“jam” is used in a sense other than that of the
“substance”, and “many respects”, where again
the word “respect” has a different meaning to that
of the uncountable noun. There are 13 cases listed
below, that our system marked as errors, because
they are uncountable nouns in plural, but they
are not marked in the corpus. Let us consider the
nouns in capital letters:

...peaceful(JJ) LIVINGS(NNS)>...,

...life(NN) QUALITIES(NNS,)...,

...Many(JJ) science(NN) FICTIONS(NNS)...,
...does(VBZ) not(RB) have(VB) enough(JJ)
LANDS(NNS,)...,

...indicates(VBZ) that(IN) the(DT) FOODS(NNS)
the(DT) people(NNS) eat(VBP)...,

...problem(NN) of(IN) public(JJ) TRANSPORTA-
TIONS(NNS)...,

...healthcare(NN) consume(VBP)
QUANTITIES(NNS) of(IN) energy...,
...this(DT) society(NN) may(MD) lack(VB) of(IN)
LABOURS(NNS)...

large(JJ)

Note that the words “equipment” and “usage”
in plural were marked as errors in the corpus. In
our opinion, it is inconsistent to mark these two as
errors, and not to mark the words from this list as
such. While it is true that their use in plural is pos-
sible, it is clearly forced and is much less probable.
At least, students of English should learn to use
these words in singular only. Some of these mis-
takes (but not all) were corrected by the organizers
for the final scoring data. If we consider all these
cases as correctly marked errors, then the preci-
sion of our system is around 25%, recall 2.6%, and
F1 measure 4.7%.

2<LIVINGS” is encountered 5 times and “QUANTITIES”
is encountered 2 times



5 Conclusions

In this paper we have described the system pre-
sented for the CoNLL-2013 shared task for gram-
mar correction in English (L2). The system uses
a rule-based approach and relies on very few addi-
tional resources: a list of 250 uncountable nouns, a
morphological analyzer and the training data from
the NUCLE corpus provided by the organizers.
The system uses syntactic n-grams for rule formu-
lation, i.e., n-grams that are constructed by follow-
ing the dependency paths in a parsed tree.

We analyzed various situations in which a rule
based technique can give better results than ML
techniques: don’t guess if you know. These cases
are: 1) two rules for the article “a”, and 2) the
rules for uncountable nouns (in this case, word
sense disambiguation would help to determine if
the sense in the text is an uncountable noun or
has some other use), and 3) the subject-verb agree-
ment rule. In the case of prepositions, ML learn-
ing is definitely better. Otherwise, vast resources
would need to be used, which in any case, would
resemble machine learning. We are not sure about
verb form errors: the rules which we formulated
are rather simple, but the performance of various
ML methods should be analysed in order to decide
which technique is better.

The system is simple and was developed in a
very short time. It does not obtain high scores and
could be considered as a baseline system for the
task.
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