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Introduction

This volume contains papers describing the CoNLL-2013 Shared Task and the participating systems.
This year, we continue the tradition of the Conference on Computational Natural Language Learning
(CoNLL) of having a high profile shared task in natural language processing, centered on automatic
grammatical error correction of English essays. This task has gained popularity recently with the
organization of the HOO (Helping Our Own) shared tasks in 2011 and 2012. The grammatical error
correction task is impactful since it is estimated that hundreds of millions of people in the world are
learning English as a second language, and they benefit directly from an automated grammar checker.

In the recent HOO shared task in 2012, only two error types, i.e., determiner and preposition, are
considered. In contrast, the CoNLL-2013 shared task has included a more comprehensive list of error
types, including noun number, verb form, and subject-verb agreement errors in addition to determiner
and preposition errors. Extending into more error types introduces the possibility of correcting multiple
interacting errors.

For this shared task, we have only one track in which shared task participants are provided with an
annotated training corpus, but are allowed to use additional resources as long as they are publicly
available. The training corpus, NUCLE (NUS Corpus of Learner English), is a large collection of
English essays written by students at the National University of Singapore (NUS) who are non-native
speakers of English. The essays were annotated by professional English instructors at the NUS. As in
other shared tasks, we provide a common test set with gold-standard annotations, and a scorer to evaluate
the submitted system output.

A total of 17 participating teams submitted system output and 16 of them submitted system description
papers. Many different approaches were adopted to perform grammatical error correction. We hope that
these approaches help to advance the state of the art in grammatical error correction, and that the test set
and scorer, which are freely available after the shared task, can be useful resources for those interested
in grammatical error correction.

Hwee Tou Ng, Joel Tetreault, Siew Mei Wu, Yuanbin Wu, and Christian Hadiwinoto
Organizers of the CoNLL-2013 Shared Task
June 2013
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Abstract
The CoNLL-2013 shared task was devoted
to grammatical error correction. In this
paper, we give the task definition, present
the data sets, and describe the evaluation
metric and scorer used in the shared task.
We also give an overview of the various
approaches adopted by the participating
teams, and present the evaluation results.

1 Introduction

Grammatical error correction is the shared task
of the Seventeenth Conference on Computational
Natural Language Learning in 2013 (CoNLL-
2013). In this task, given an English essay written
by a learner of English as a second language, the
goal is to detect and correct the grammatical errors
present in the essay, and return the corrected essay.

This task has attracted much recent research in-
terest, with two shared tasks Helping Our Own
(HOO) 2011 and 2012 organized in the past two
years (Dale and Kilgarriff, 2011; Dale et al.,
2012). In contrast to previous CoNLL shared tasks
which focused on particular subtasks of natural
language processing, such as named entity recog-
nition, semantic role labeling, dependency pars-
ing, or coreference resolution, grammatical error
correction aims at building a complete end-to-end
application. This task is challenging since for
many error types, current grammatical error cor-
rection systems do not achieve high performance
and much research is still needed. Also, tackling
this task has far-reaching impact, since it is esti-
mated that hundreds of millions of people world-
wide are learning English and they benefit directly
from an automated grammar checker.

The CoNLL-2013 shared task provides a forum
for participating teams to work on the same gram-
matical error correction task, with evaluation on
the same blind test set using the same evaluation
metric and scorer. This overview paper contains a
detailed description of the shared task, and is orga-
nized as follows. Section 2 provides the task def-
inition. Section 3 describes the annotated training
data provided and the blind test data. Section 4 de-
scribes the evaluation metric and the scorer. Sec-
tion 5 lists the participating teams and outlines the
approaches to grammatical error correction used
by the teams. Section 6 presents the results of the
shared task. Section 7 concludes the paper.

2 Task Definition

The goal of the CoNLL-2013 shared task is to
evaluate algorithms and systems for automati-
cally detecting and correcting grammatical errors
present in English essays written by second lan-
guage learners of English. Each participating
team is given training data manually annotated
with corrections of grammatical errors. The test
data consists of new, blind test essays. Prepro-
cessed test essays, which have been sentence-
segmented and tokenized, are also made available
to the participating teams. Each team is to submit
its system output consisting of the automatically
corrected essays, in sentence-segmented and tok-
enized form.

Grammatical errors consist of many different
types, including articles or determiners, preposi-
tions, noun form, verb form, subject-verb agree-
ment, pronouns, word choice, sentence structure,
punctuation, capitalization, etc. Of all the er-
ror types, determiners and prepositions are among
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the most frequent errors made by learners of En-
glish. Not surprisingly, much published research
on grammatical error correction focuses on arti-
cle and preposition errors (Han et al., 2006; Ga-
mon, 2010; Rozovskaya and Roth, 2010; Tetreault
et al., 2010; Dahlmeier and Ng, 2011b), with rel-
atively less work on correcting word choice errors
(Dahlmeier and Ng, 2011a). Article and preposi-
tion errors were also the only error types featured
in the HOO 2012 shared task. Likewise, although
all error types were included in the HOO 2011
shared task, almost all participating teams dealt
with article and preposition errors only (besides
spelling and punctuation errors).

In the CoNLL-2013 shared task, it was felt
that the community is now ready to deal with
more error types, including noun number, verb
form, and subject-verb agreement, besides arti-
cles/determiners and prepositions. Table 1 shows
examples of the five error types in our shared task.

Since there are five error types in our shared task
compared to two in HOO 2012, there is a greater
chance of encountering multiple, interacting errors
in a sentence in our shared task. This increases the
complexity of our shared task relative to that of
HOO 2012. To illustrate, consider the following
sentence:

Although we have to admit some bad
effect which is brought by the new
technology, still the advantages of the
new technologies cannot be simply dis-
carded.

The noun number error effect needs to be corrected
(effect → effects). This necessitates the correction
of a subject-verb agreement error (is → are). A
pipeline system in which corrections for subject-
verb agreement errors occur strictly before correc-
tions for noun number errors would not be able
to arrive at a fully corrected sentence for this ex-
ample. The ability to correct multiple, interacting
errors is thus necessary in our shared task. The re-
cent work of (Dahlmeier and Ng, 2012a), for ex-
ample, is designed to deal with multiple, interact-
ing errors.

Note that the essays in the training data and the
test essays naturally contain grammatical errors of
all types, beyond the five error types focused in our
shared task. In the automatically corrected essays
returned by a participating system, only correc-
tions necessary to correct errors of the five types

are made. The other errors are to be left uncor-
rected.

3 Data

This section describes the training and test data
released to each participating team in our shared
task.

3.1 Training Data

The training data provided in our shared task is
the NUCLE corpus, the NUS Corpus of Learner
English (Dahlmeier et al., 2013). As noted by
(Leacock et al., 2010), the lack of a manually an-
notated and corrected corpus of English learner
texts has been an impediment to progress in gram-
matical error correction, since it prevents com-
parative evaluations on a common benchmark test
data set. NUCLE was created precisely to fill this
void. It is a collection of 1,414 essays written
by students at the National University of Singa-
pore (NUS) who are non-native speakers of En-
glish. The essays were written in response to some
prompts, and they cover a wide range of topics,
such as environmental pollution, health care, etc.
The grammatical errors in these essays have been
hand-corrected by professional English instructors
at NUS. For each grammatical error instance, the
start and end character offsets of the erroneous text
span are marked, and the error type and the cor-
rection string are provided. Manual annotation is
carried out using a graphical user interface specif-
ically built for this purpose. The error annotations
are saved as stand-off annotations, in SGML for-
mat.

To illustrate, consider the following sentence at
the start of the first paragraph of an essay:

From past to the present, many impor-
tant innovations have surfaced.

There is an article/determiner error (past → the
past) in this sentence. The error annotation, also
called correction or edit, in SGML format is
shown in Figure 1. start par (end par) de-
notes the paragraph ID of the start (end) of the er-
roneous text span (paragraph ID starts from 0 by
convention). start off (end off) denotes the
character offset of the start (end) of the erroneous
text span (again, character offset starts from 0 by
convention). The error tag is ArtOrDet, and the
correction string is the past.
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Error tag Error type Example sentence Correction (edit)
ArtOrDet Article or determiner In late nineteenth century, there

was a severe air crash happening
at Miami international airport.

late → the late

Prep Preposition Also tracking people is very
dangerous if it has been con-
trolled by bad men in a not good
purpose.

in → for

Nn Noun number I think such powerful device
shall not be made easily avail-
able.

device → devices

Vform Verb form However, it is an achievement as
it is an indication that our soci-
ety is progressed well and peo-
ple are living in better condi-
tions.

progressed → progressing

SVA Subject-verb agreement People still prefers to bear the
risk and allow their pets to have
maximum freedom.

prefers → prefer

Table 1: The five error types in our shared task.

<MISTAKE start par="0" start off="5" end par="0" end off="9">
<TYPE>ArtOrDet</TYPE>
<CORRECTION>the past</CORRECTION>
</MISTAKE>

Figure 1: An example error annotation.

The NUCLE corpus was first used in
(Dahlmeier and Ng, 2011b), and has been
publicly available for research purposes since
June 20111. All instances of grammatical errors
are annotated in NUCLE, and the errors are
classified into 27 error types (Dahlmeier et al.,
2013).

To help participating teams in their prepara-
tion for the shared task, we also performed au-
tomatic preprocessing of the NUCLE corpus and
released the preprocessed form of NUCLE. The
preprocessing operations performed on the NU-
CLE essays include sentence segmentation and
word tokenization using the NLTK toolkit (Bird
et al., 2009), and part-of-speech (POS) tagging,
constituency and dependency tree parsing using
the Stanford parser (Klein and Manning, 2003;
de Marneffe et al., 2006). The error annotations,
which are originally at the character level, are
then mapped to error annotations at the word to-
ken level. Error annotations at the word token

1http://www.comp.nus.edu.sg/∼nlp/corpora.html

level also facilitate scoring, as we will see in Sec-
tion 4, since our scorer operates by matching to-
kens. Note that although we released our own
preprocessed version of NUCLE, the participating
teams were however free to perform their own pre-
processing if they so preferred.

3.1.1 Revised version of NUCLE
NUCLE release version 2.3 was used in the
CoNLL-2013 shared task. In this version, 17 es-
says were removed from the first release of NU-
CLE since these essays were duplicates with mul-
tiple annotations.

In the original NUCLE corpus, there is not an
explicit preposition error type. Instead, prepo-
sition errors are part of the Wcip (wrong collo-
cation/idiom/preposition) and Rloc (local redun-
dancy) error types. The Wcip error type combines
errors concerning collocations, idioms, and prepo-
sitions together into one error type. The Rloc er-
ror type annotates extraneous words which are re-
dundant and should be removed, and they include
redundant articles, determiners, and prepositions.

3



Training data Test data
(NUCLE)

# essays 1,397 50
# sentences 57,151 1,381
# word tokens 1,161,567 29,207

Table 2: Statistics of training and test data.

In our shared task, in order to facilitate the detec-
tion and correction of article/determiner errors and
preposition errors, we performed automatic map-
ping of error types in the original NUCLE cor-
pus. The mapping relies on POS tags, constituent
parse trees, and error annotations at the word token
level. Specifically, we map the error types Wcip
and Rloc to Prep, Wci, ArtOrDet, and Rloc−.
Prepositions in the error type Wcip or Rloc are
mapped to a new error type Prep, and redundant
articles or determiners in the error type Rloc are
mapped to ArtOrDet. The remaining unaffected
Wcip errors are assigned the new error type Wci
and the remaining unaffected Rloc errors are as-
signed the new error type Rloc−. The code that
performs automatic error type mapping was also
provided to the participating teams.

The statistics of the NUCLE corpus (release 2.3
version) are shown in Table 2. The distribution
of errors among the five error types is shown in
Table 3. The newly added noun number error type
in our shared task accounts for the second highest
number of errors among the five error types. The
five error types in our shared task constitute 35%
of all grammatical errors in the training data, and
47% of all errors in the test data. These figures
support our choice of these five error types to be
the focus of our shared task, since they account
for a large percentage of all grammatical errors in
English learner essays.

While the NUCLE corpus is provided in our
shared task, participating teams are free to not use
NUCLE, or to use additional resources and tools
in building their grammatical error correction sys-
tems, as long as these resources and tools are pub-
licly available and not proprietary. For example,
participating teams are free to use the Cambridge
FCE corpus (Yannakoudakis et al., 2011; Nicholls,
2003) (the training data provided in HOO 2012
(Dale et al., 2012)) as additional training data.

Error tag Training % Test %
data data

(NUCLE)
ArtOrDet 6,658 14.8 690 19.9
Prep 2,404 5.3 312 9.0
Nn 3,779 8.4 396 11.4
Vform 1,453 3.2 122 3.5
SVA 1,527 3.4 124 3.6
5 types 15,821 35.1 1,644 47.4
all types 45,106 100.0 3,470 100.0

Table 3: Error type distribution of the training and
test data.

3.2 Test Data

25 NUS students, who are non-native speakers of
English, were recruited to write new essays to be
used as blind test data in the shared task. Each
student wrote two essays in response to the two
prompts shown in Table 4, one essay per prompt.
Essays written using the first prompt are present
in the NUCLE training data, while the second
prompt is a new prompt not used previously. As
a result, 50 test essays were collected. The statis-
tics of the test essays are shown in Table 2.

Error annotation on the test essays was carried
out by a native speaker of English who is a lecturer
at the NUS Centre for English Language Commu-
nication. The distribution of errors in the test es-
says among the five error types is shown in Ta-
ble 3. The test essays were then preprocessed in
the same manner as the NUCLE corpus. The pre-
processed test essays were released to the partici-
pating teams.

Unlike the test data used in HOO 2012 which
was proprietary and not available after the shared
task, the test essays and their error annotations in
the CoNLL-2013 shared task are freely available
after the shared task.

4 Evaluation Metric and Scorer

A grammatical error correction system is evalu-
ated by how well its proposed corrections or edits
match the gold-standard edits. An essay is first
sentence-segmented and tokenized before evalua-
tion is carried out on the essay. To illustrate, con-
sider the following tokenized sentence S written
by an English learner:

There is no a doubt, tracking system

4



ID Prompt
1 Surveillance technology such as RFID (radio-frequency identification) should not be used to

track people (e.g., human implants and RFID tags on people or products). Do you agree? Sup-
port your argument with concrete examples.

2 Population aging is a global phenomenon. Studies have shown that the current average life span
is over 65. Projections of the United Nations indicate that the population aged 60 or over in
developed and developing countries is increasing at 2% to 3% annually. Explain why rising life
expectancies can be considered both a challenge and an achievement.

Table 4: The two prompts used for the test essays.

has brought many benefits in this infor-
mation age .

The set of gold-standard edits of a human annota-
tor is g = {a doubt → doubt, system → systems,
has → have}. Suppose the tokenized output sen-
tence H of a grammatical error correction system
given the above sentence is:

There is no doubt, tracking system has
brought many benefits in this informa-
tion age .

That is, the set of system edits is e = {a doubt
→ doubt}. The performance of the grammatical
error correction system is measured by how well
the two sets g and e match, in the form of recall
R, precision P , and F1 measure: R = 1/3, P =
1/1, F1 = 2RP/(R + P ) = 1/2.

More generally, given a set of n sentences,
where gi is the set of gold-standard edits for sen-
tence i, and ei is the set of system edits for sen-
tence i, recall, precision, and F1 are defined as
follows:

R =
∑n

i=1 |gi ∩ ei|∑n
i=1 |gi|

(1)

P =
∑n

i=1 |gi ∩ ei|∑n
i=1 |ei|

(2)

F1 =
2×R× P

R + P
(3)

where the intersection between gi and ei for sen-
tence i is defined as

gi ∩ ei = {e ∈ ei|∃g ∈ gi,match(g, e)} (4)

Evaluation by the HOO scorer (Dale and Kilgar-
riff, 2011) is based on computing recall, precision,
and F1 measure as defined above.

Note that there are multiple ways to specify a
set of gold-standard edits that denote the same cor-
rections. For example, in the above learner-written

sentence S, alternative but equivalent sets of gold-
standard edits are {a → ε, system → systems, has
→ have}, {a → ε, system has → systems have},
etc. Given the same learner-written sentence S
and the same system output sentence H shown
above, one would expect a scorer to give the same
R,P, F1 scores regardless of which of the equiv-
alent sets of gold-standard edits is specified by an
annotator.

However, this is not the case with the HOO
scorer. This is because the HOO scorer uses
GNU wdiff2 to extract the differences between
the learner-written sentence S and the system out-
put sentence H to form a set of system edits.
Since in general there are multiple ways to spec-
ify a set of gold-standard edits that denote the
same corrections, the set of system edits com-
puted by the HOO scorer may not match the set of
gold-standard edits specified, leading to erroneous
scores. In the above example, the set of system
edits computed by the HOO scorer for S and H is
{a → ε}. Given that the set of gold-standard edits
g is {a doubt → doubt, system → systems, has →
have}, the scores computed by the HOO scorer are
R = P = F1 = 0, which are erroneous.

The MaxMatch (M2) scorer3 (Dahlmeier and
Ng, 2012b) was designed to overcome this limita-
tion of the HOO scorer. The key idea is that the
set of system edits automatically computed and
used in scoring should be the set that maximally
matches the set of gold-standard edits specified by
the annotator. The M2 scorer uses an efficient al-
gorithm to search for such a set of system edits
using an edit lattice. In the above example, given
S, H , and g, the M2 scorer is able to come up
with the best matching set of system edits e = {a
doubt → doubt}, thus giving the correct scores
R = 1/3, P = 1/1, F1 = 1/2. We use the M2

2http://www.gnu.org/s/wdiff/
3http://www.comp.nus.edu.sg/∼nlp/software.html
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scorer in the CoNLL-2013 shared task.
The original M2 scorer implemented in

(Dahlmeier and Ng, 2012b) assumes that there
is one set of gold-standard edits gi for each
sentence i. However, it is often the case that
multiple alternative corrections are acceptable for
a sentence. As we allow participating teams to
submit alternative sets of gold-standard edits for
a sentence, we also extend the M2 scorer to deal
with multiple alternative sets of gold-standard
edits.

Based on Equations 1 and 2, Equation 3 can be
re-expressed as:

F1 =
2×

∑n
i=1 |gi ∩ ei|∑n

i=1 (|gi|+ |ei|)
(5)

To deal with multiple alternative sets of gold-
standard edits gi for a sentence i, the extended
M2 scorer chooses the gi that maximizes the cu-
mulative F1 score for sentences 1, . . . , i. Ties
are broken based on the following criteria: first
choose the gi that maximizes the numerator∑n

i=1 |gi ∩ ei|, then choose the gi that minimizes
the denominator

∑n
i=1 (|gi|+ |ei|), finally choose

the gi that appears first in the list of alternatives.

5 Approaches

54 teams registered to participate in the shared
task, out of which 17 teams submitted the output
of their grammatical error correction systems by
the deadline. These teams are listed in Table 5.
Each team is assigned a 3 to 4-letter team ID. In
the remainder of this paper, we will use the as-
signed team ID to refer to a participating team.
Every team submitted a system description paper
(the only exception is the SJT2 team).

Many different approaches are adopted by par-
ticipating teams in the CoNLL-2013 shared task,
and Table 6 summarizes these approaches. A com-
monly used approach in the shared task and in
grammatical error correction research in general
is to build a classifier for each error type. For ex-
ample, the classifier for noun number returns the
classes {singular, plural}, the classifier for article
returns the classes {a/an, the, ε}, etc. The classi-
fier for an error type may be learned from train-
ing examples encoding the surrounding context of
an error occurrence, or may be specified by deter-
ministic hand-crafted rules, or may be built using
a hybrid approach combining both machine learn-
ing and hand-crafted rules. These approaches are

denoted by M, R, and H respectively in Table 6.
The machine translation approach (denoted by

T in Table 6) to grammatical error correction
treats the task as “translation” from bad English
to good English. Both phrase-based translation
and syntax-based translation approaches are used
by teams in the CoNLL-2013 shared task. An-
other related approach is the language modeling
approach (denoted by L in Table 6), in which
the probability of a learner sentence is compared
with the probability of a candidate corrected sen-
tence, based on a language model built from a
background corpus. The candidate correction is
chosen if it results in a corrected sentence with a
higher probability. In general, these approaches
are not mutually exclusive. For example, the
work of (Dahlmeier and Ng, 2012a; Yoshimoto et
al., 2013) includes elements of machine learning-
based classification, machine translation, and lan-
guage modeling approaches.

When different approaches are used to tackle
different error types by a system, we break down
the error types into different rows in Table 6, and
specify the approach used for each group of error
types. For instance, the HIT team uses a machine
learning approach to deal with article/determiner,
noun number, and preposition errors, and a rule-
based approach to deal with subject-verb agree-
ment and verb form errors. As such, the entry for
HIT is sub-divided into two rows, to make it clear
which particular error type is handled by which
approach.

Table 6 also shows the linguistic features used
by the participating teams, which include lexical
features (i.e., words, collocations, n-grams), parts-
of-speech (POS), constituency parses, dependency
parses, and semantic features (including semantic
role labels).

While all teams in the shared task use the NU-
CLE corpus, they are also allowed to use addi-
tional external resources (both corpora and tools)
so long as they are publicly available and not pro-
prietary. The external resources used by the teams
are also listed in Table 6.

6 Results

All submitted system output was evaluated using
the M2 scorer, based on the error annotations pro-
vided by our annotator. The recall (R), precision
(P ), and F1 measure of all teams are shown in Ta-
ble 7. The performance of the teams varies greatly,
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Team ID Affiliation
CAMB University of Cambridge
HIT Harbin Institute of Technology
IITB Indian Institute of Technology, Bombay
KOR Korea University
NARA Nara Institute of Science and Technology
NTHU National Tsing Hua University
SAAR Saarland University
SJT1 Shanghai Jiao Tong University (Team #1)
SJT2 Shanghai Jiao Tong University (Team #2)
STAN Stanford University
STEL Stellenbosch University
SZEG University of Szeged
TILB Tilburg University
TOR University of Toronto
UAB Universitat Autònoma de Barcelona
UIUC University of Illinois at Urbana-Champaign
UMC University of Macau

Table 5: The list of 17 participating teams.

Rank Team R P F1

1 UIUC 23.49 46.45 31.20
2 NTHU 26.35 23.80 25.01
3 HIT 16.56 35.65 22.61
4 NARA 18.62 27.39 22.17
5 UMC 17.53 28.49 21.70
6 STEL 13.33 27.00 17.85
7 SJT1 10.96 40.18 17.22
8 CAMB 10.10 39.15 16.06
9 IITB 4.99 28.18 8.48
10 STAN 4.69 25.50 7.92
11 TOR 4.81 17.67 7.56
12 KOR 3.71 43.88 6.85
13 TILB 7.24 6.25 6.71
14 SZEG 3.16 5.52 4.02
15 UAB 1.22 12.42 2.22
16 SAAR 1.10 27.69 2.11
17 SJT2 0.24 13.33 0.48

Table 7: Scores (in %) without alternative an-
swers.

from barely half a per cent to 31.20% for the top
team.

The nature of grammatical error correction is
such that multiple, different corrections are of-
ten acceptable. In order to allow the participating
teams to raise their disagreement with the original
gold-standard annotations provided by the anno-
tator, and not understate the performance of the
teams, we allow the teams to submit their pro-
posed alternative answers. This was also the prac-
tice adopted in HOO 2011 and HOO 2012. Specif-
ically, after the teams submitted their system out-
put and the error annotations on the test essays
were released, we allowed the teams to propose al-
ternative answers (gold-standard edits), to be sub-
mitted within four days after the initial error an-
notations were released. The same annotator who
provided the error annotations on the test essays
also judged the alternative answers proposed by
the teams, to ensure consistency. In all, five teams
(NTHU, STEL, TOR, UIUC, UMC) submitted al-
ternative answers.

The same submitted system output was then
evaluated using the extended M2 scorer, with the
original annotations augmented with the alterna-
tive answers. Table 8 shows the recall (R), preci-
sion (P ), and F1 measure of all teams under this
new evaluation setting.

The F1 measure of every team improves when
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evaluated with alternative answers. Not surpris-
ingly, the teams which submitted alternative an-
swers tend to show the greatest improvements in
their F1 measure. Overall, the UIUC team (Ro-
zovskaya et al., 2013) achieves the best F1 mea-
sure, with a clear lead over the other teams in the
shared task, under both evaluation settings (with-
out and with alternative answers).

For future research which uses the test data of
the CoNLL-2013 shared task, we recommend that
evaluation be carried out in the setting that does
not use alternative answers, to ensure a fairer eval-
uation. This is because the scores of the teams
which submitted alternative answers tend to be
higher in a biased way when evaluated with alter-
native answers.

Rank Team R P F1

1 UIUC 31.87 62.19 42.14
2 NTHU 34.62 30.57 32.46
3 UMC 23.66 37.12 28.90
4 NARA 24.05 33.92 28.14
5 HIT 20.29 41.75 27.31
6 STEL 18.91 37.12 25.05
7 CAMB 14.19 52.11 22.30
8 SJT1 13.67 47.77 21.25
9 TOR 8.77 30.67 13.64
10 IITB 6.55 34.93 11.03
11 STAN 5.86 29.93 9.81
12 KOR 4.78 53.24 8.77
13 TILB 9.29 7.60 8.36
14 SZEG 4.07 6.67 5.06
15 UAB 1.81 17.39 3.28
16 SAAR 1.68 40.00 3.23
17 SJT2 0.33 16.67 0.64

Table 8: Scores (in %) with alternative answers.

We are also interested in the analysis of scores
of each of the five error types. To compute the
recall of an error type, we need to know the er-
ror type of each gold-standard edit, which is pro-
vided by the annotator. To compute the precision
of each error type, we need to know the error type
of each system edit, which however is not avail-
able since the submitted system output only con-
tains the corrected sentences with no indication of
the error type of the system edits.

In order to determine the error type of system
edits, we first perform POS tagging on the submit-
ted system output using the Stanford parser (Klein

and Manning, 2003). We also make use of the POS
tags assigned in the preprocessed form of the test
essays. We then assign an error type to a system
edit based on the automatically determined POS
tags, as follows:

• ArtOrDet: The system edit involves a change
(insertion, deletion, or substitution) of words
tagged as article/determiner, i.e., DT or PDT.

• Prep: The system edit involves a change of
words tagged as preposition, i.e., IN or TO.

• Nn: The system edit involves a change of
words such that a word in the source string
is a singular noun (tagged as NN or NNP)
and a word in the replacement string is a plu-
ral noun (tagged as NNS or NNPS), or vice
versa. Since a word tagged as JJ (adjective)
can serve as a noun, a system edit that in-
volves a change of POS tags from JJ to one of
{NN, NNP, NNS, NNPS} or vice versa also
qualifies.

• Vform/SVA: The system edit involves a
change of words tagged as one of the verb
POS tags, i.e., VB, VBD, VBG, VBN, VBP,
and VBZ.

The verb form and subject-verb agreement error
types are grouped together into one category, since
it is difficult to automatically distinguish the two in
a reliable way.

The scores when distinguished by error type are
shown in Tables 9 and 10. Based on the F1 mea-
sure of each error type, the noun number error type
gives the highest scores, and preposition errors re-
main the most challenging error type to correct.

7 Conclusions

The CoNLL-2013 shared task saw the participa-
tion of 17 teams worldwide to evaluate their gram-
matical error correction systems on a common test
set, using a common evaluation metric and scorer.
The five error types included in the shared task
account for at least one-third to close to one-half
of all errors in English learners’ essays. The best
system in the shared task achieves an F1 score of
42%, when it is scored with multiple acceptable
answers. There is still much room for improve-
ment, both in the accuracy of grammatical error
correction systems, and in the coverage of systems
to deal with a more comprehensive set of error
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types. The evaluation data sets and scorer used
in our shared task serve as a benchmark for future
research on grammatical error correction4.
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Abstract
The CoNLL-2013 shared task focuses on
correcting grammatical errors in essays
written by non-native learners of English.
In this paper, we describe the University
of Illinois system that participated in the
shared task. The system consists of five
components and targets five types of com-
mon grammatical mistakes made by En-
glish as Second Language writers. We de-
scribe our underlying approach, which re-
lates to our previous work, and describe
the novel aspects of the system in more de-
tail. Out of 17 participating teams, our sys-
tem is ranked first based on both the orig-
inal annotation and on the revised annota-
tion.

1 Introduction

The task of correcting grammar and usage mis-
takes made by English as a Second Language
(ESL) writers is difficult for several reasons. First,
many of these errors are context-sensitive mistakes
that confuse valid English words and thus can-
not be detected without considering the context
around the word. Second, the relative frequency
of mistakes is quite low: for a given type of mis-
take, an ESL writer will typically make mistakes
in only a small proportion of relevant structures.
For example, determiner mistakes usually occur
in 5% to 10% of noun phrases in various anno-
tated ESL corpora (Rozovskaya and Roth, 2010a).
Third, an ESL writer may make multiple mistakes
in a single sentence, which may give misleading
local cues for individual classifiers. In the exam-
ple shown in Figure 1, the agreement error on the
verb “tend” interacts with the noun number error
on the word “equipments”.

Therefore , the *equipments/equipment of bio-
metric identification *tend/tends to be in-
expensive .

Figure 1: Representative ESL errors in a sample
sentence from the training data.

The CoNLL-2013 shared task (Ng et al., 2013)
focuses on the following five common mistakes
made by ESL writers:

• article/determiner

• preposition

• noun number

• subject-verb agreement

• verb form

Errors outside this target group are present in the
task corpora, but are not evaluated.

In this paper, we present a system that combines
a set of statistical models, where each model spe-
cializes in correcting one of the errors described
above. Because the individual error types have
different characteristics, we use several different
approaches. The article system builds on the el-
ements of the system described in (Rozovskaya
and Roth, 2010c). The preposition classifier uses
a combined system, building on work described
in (Rozovskaya and Roth, 2011) and (Rozovskaya
and Roth, 2010b). The remaining three models are
all Naı̈ve Bayes classifiers trained on the Google
Web 1T 5-gram corpus (henceforth, Google cor-
pus, (Brants and Franz, 2006)).

We first briefly discuss the task (Section 2) and
give the overview of our system (Section 3). We
then describe the error-specific components (Sec-
tions 3.1, 3.2 and 3.3). The sections describ-
ing individual components quantify their perfor-
mance on splits of the training data. In Section 4,
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we evaluate the complete system on the training
data using 5-fold cross-validation (hereafter, “5-
fold CV”) and in Section 5 we show the results we
obtained on test.

We close with a discussion focused on error
analysis (Section 6) and our conclusions (Sec-
tion 7).

2 Task Description

The CoNLL-2013 shared task focuses on correct-
ing five types of mistakes that are commonly made
by non-native speakers of English. The train-
ing data released by the task organizers comes
from the NUCLE corpus (Dahlmeier et al., 2013),
which contains essays written by learners of En-
glish as a foreign language and is corrected by
English teachers. The test data for the task con-
sists of an additional set of 50 student essays. Ta-
ble 1 illustrates the mistakes considered in the task
and Table 2 illustrates the distribution of these er-
rors in the released training data and the test data.
We note that the test data contains a much larger
proportion of annotated mistakes. For example,
while only 2.4% of noun phrases in the training
data have determiner errors, in the test data 10%
of noun phrases have mistakes.

Error type Percentage of errors
Training Test

Articles 2.4% 10.0%
Prepositions 2.0% 10.7%
Noun number 1.6% 6.0%
Subject-verb agreement 2.0% 5.2%
Verb form 0.8% 2.5%

Table 2: Statistics on error distribution in train-
ing and test data. Percentage denotes the erro-
neous instances with respect to the total number of
relevant instances in the data. For example, 10%
of noun phrases in the test data have determiner
errors.

Since the task focuses on five error types, only
annotations marking these mistakes were kept.
Note that while the other error annotations were
removed, the errors still remain in the data.

3 System Components

Our system consists of five components that ad-
dress individually article1, preposition, noun verb

1We will use the terms ‘article-’ and ‘determiner errors’
interchangeably: article errors constitute the majority of de-

form and subject-verb agreement errors.
Our article and preposition modules build on the

elements of the systems described in Rozovskaya
and Roth (2010b), Rozovskaya and Roth (2010c)
and Rozovskaya and Roth (2011). The article sys-
tem is trained using the Averaged Perceptron (AP)
algorithm (Freund and Schapire, 1999), imple-
mented within Learning Based Java (Rizzolo and
Roth, 2010). The AP system is trained using the
inflation method (Rozovskaya et al., 2012). Our
preposition system is a Naı̈ve Bayes (NB) classi-
fier trained on the Google corpus and with prior
parameters adapted to the learner data.

The other modules – those that correct noun and
verb errors – are all NB models trained on the
Google corpus.

All components take as input the corpus doc-
uments preprocessed with a part-of-speech tag-
ger2 and shallow parser3 (Punyakanok and Roth,
2001). Note that the shared task data already
contains comparable pre-processing information,
in addition to other information, including depen-
dency parse and constituency parse, but we chose
to run our own pre-processing tools. The article
module uses the POS and chunker output to gen-
erate some of its features and to generate candi-
dates (likely contexts for missing articles). The
other system components use the pre-processing
tools only as part of candidate generation (e.g., to
identify all nouns in the data for the noun classi-
fier) because these components are trained on the
Google corpus and thus only employ word n-gram
features.

During development, we split the released train-
ing data into five parts. The results in Sections 3.1,
3.2, and 3.3 give performance of 5-fold CV on the
training data. In Section 4 we report the develop-
ment 5-fold CV results of the complete model and
the performance on the test data. Note that the per-
formance reported for the overall task on the test
data in Section 4 reflects the system that makes use
of the entire training corpus. It is also important to
remark that only the determiner system is trained
on the ESL data. The other models are trained on
native data, and the ESL training data is only used
to optimize the decision thresholds of the models.

terminer errors, and we address only article mistakes.
2http://cogcomp.cs.illinois.edu/page/

software view/POS
3http://cogcomp.cs.illinois.edu/page/

software view/Chunker
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Error type Examples
Article “It is also important to create *a/∅ better material that can support

*the/∅ buildings despite any natural disaster like earthquakes.”
Preposition “As the number of people grows, the need *of /for habitable environ-

ment is unquestionably essential.
Noun number Some countries are having difficulties in managing a place to live for

their *citizen/citizens as they tend to get overpopulated.”
Subject-verb agreement “Therefore , the equipments of biometric identification *tend/tends

to be inexpensive.

Verb form
“...countries with a lot of deserts can terraform their desert to increase
their habitable land and *using/use irrigation..”
“it was not *surprised/surprising to observe an increasing need for a
convenient and cost effective platform.”

Table 1: Example errors. Note that only the errors exemplifying the relevant phenomena are marked
in the table; the sentences may contain other mistakes. Errors marked as verb form include multiple
grammatical phenomena that may characterize verbs.

3.1 Determiners

There are three types of determiner error: omitting
a determiner; choosing an incorrect determiner;
and adding a spurious determiner. Even though
the majority of determiner errors involve article
mistakes, some of these errors involve personal
and possessive pronouns.4 Most of the determiner
errors, however, involve omitting an article (these
make up over 60% in the training data). Similar er-
ror patterns have been observed in other ESL cor-
pora (Rozovskaya and Roth, 2010a).

Our system focuses on article errors. The sys-
tem first extracts from the data all articles, and all
spaces at the beginning of a noun phrase where an
article is likely to be omitted (Han et al., 2006; Ro-
zovskaya and Roth, 2010c). Then we train a multi-
class classifier with features described in Table 3.
These features were used successfully in previous
tasks in error correction (Rozovskaya et al., 2012;
Rozovskaya et al., 2011).

The original word choice (the source article)
used by the writer is also used as a feature. Since
the errors are sparse, this feature causes the model
to abstain from flagging a mistake, which results
in low recall. To avoid this problem, we adopt the
approach proposed in (Rozovskaya et al., 2012),
the error inflation method, and add artificial arti-
cle errors in the training data based on the error
distribution on the training set. This method pre-
vents the source feature from dominating the con-
text features, and improves the recall of the sys-

4e.g. “Pat apologized to me for not keeping the*/my se-
crets.”

tem.
We experimented with two types of classifiers:

Averaged Perceptron (AP) and an L1-generalized
logistic regression classifier (LR). Since the arti-
cle system is trained on the ESL data, of which
we have a limited amount, we also experimented
with adding a language model (LM) feature to the
LR learner. This feature indicates if the correc-
tion is accepted by a language model trained on
the Google corpus. The performance of each clas-
sifier on 5-fold CV on the training data is shown in
Table 4. The results show that AP performs better
than LR. We observed that adding the LM feature
improves precision but results in lower F1, so we
chose the AP classifier without the LM feature for
our final system.

Model Precision Recall F1
AP (inflation) 0.17 0.31 0.22
AP (inflation+LM) 0.26 0.15 0.19
LR (inflation) 0.17 0.29 0.22
LR (inflation+LM) 0.24 0.21 0.22

Table 4: Article development results Results on 5-fold
CV. AP With Inflation achieves the best development using an
inflation constant of 0.85. AP achieves higher performance
without using the language model feature.

3.2 Prepositions

The most common preposition errors are replace-
ments, i.e., where the author correctly recognized
the need for a preposition, but chose the wrong one
to use.
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Feature Type Description
Word n-grams wB, w2B, w3B, wA, w2A, w3A, wBwA, w2BwB, wAw2A, w3Bw2BwB, w2BwBwA, wBwAw2A, wAw2Aw3A,

w4Bw3Bw2BwB, w3w2BwBwA, w2BwBwAw2A, wBwAw2Aw3A, wAw2Aw3w4A
POS features pB, p2B, p3B , pA, p2A, p3A, pBpA, p2BpB, pAp2A, pBwB, pAwA, p2Bw2B, p2Aw2A, p2BpBpA, pBpAp2A,

pAp2Ap3A
NP1 headWord, npWords, NC, adj&headWord, adjTag&headWord, adj&NC, adjTag&NC, npTags&headWord, npTags&NC
NP2 headWord&headPOS, headNumber
wordsAfterNP headWord&wordAfterNP, npWords&wordAfterNP, headWord&2wordsAfterNP, npWords&2wordsAfterNP, headWord&3wordsAfterNP,

npWords&3wordsAfterNP
wordBeforeNP wB&fi ∀i ∈ NP1

Verb verb, verb&fi ∀i ∈ NP1

Preposition prep&fi ∀i ∈ NP1

Source the word used by the original writer
LM a binary feature assigned by a language model

Table 3: Features used in the article error correction system. wB and wA denote the word immediately before and after
the target, respectively; and pB and pA denote the POS tag before and after the target. headWord denotes the head of the NP
complement. NC stands for noun compound and is active if second to last word in the NP is tagged as a noun. Verb features are
active if the NP is the direct object of a verb. Preposition features are active if the NP is immediately preceded by a preposition.
adj feature is active if the first word (or the second word preceded by an adverb) in the NP is an adjective. npWords and npTags
denote all words (POS tags) in the NP.

3.2.1 Preposition Features

All features used in the preposition module are
lexical: word n-grams in the 4-word window
around the target preposition. The NB-priors clas-
sifier, which is part of our model, can only make
use of the word n-gram features; it uses n-gram
features of lengths 3, 4, and 5. Note that since the
NB model is trained on the Google corpus, the an-
notated ESL training data is used only to replace
the prior parameters of the model (see Rozovskaya
and Roth, 2011 for more details).

3.2.2 Training the Preposition System

Correcting preposition errors requires more data
to achieve performance comparable to article er-
ror correction due to the task complexity (Gamon,
2010). We found that training an AP model on
the ESL training data with more sophisticated fea-
tures is not as effective as training on a native En-
glish dataset of larger size. The ESL training data
contains slightly over 100K preposition examples,
which is several orders of magnitude smaller than
the Google n-gram corpus. We use the shared
task training data to replace the prior parameters
of the model (see Rozovskaya and Roth, 2011 for
more details). The NB-priors model does not tar-
get preposition omissions and insertions: it cor-
rects only preposition replacements that involve
the 12 most common English prepositions. The
task includes mistakes that cover 36 prepositions
but we found that the model performance drops
once the confusion set becomes too large. Table
5 shows the performance of the system on the 5-
fold CV on the training data, where each time the
classifier was trained on 80% of the documents.

Model Precision Recall F1
NB-priors 0.14 0.14 0.14

Table 5: Preposition results: NB with priors. Results on
5-fold CV. The model is trained on the Google corpus.

3.3 Correcting Nouns and Verbs

The three remaining types of errors – noun num-
ber errors, subject-verb agreement, and the various
verb form mistakes – are corrected using separate
NB models also trained on the Google corpus. We
focus here on the selection of candidates for cor-
rection, as this strongly affects performance.

3.3.1 Candidate Selection
This stage selects the set of words that are pre-
sented as input to the classifier. This is a crucial
step because it limits the performance of any sys-
tem: those errors that are missed at this stage have
no chance of being detected by the later stages.
This is also a challenging step as the class of
verbs and nouns is open, with many English verbs
and nouns being compatible with multiple parts of
speech. This problem does not arise in preposi-
tion and article error correction, where candidates
are determined by surface form (i.e. can be deter-
mined using a closed list of prepositions or arti-
cles).

We use the POS tag and the shallow parser out-
put to identify the set of candidates that are input
to the classifiers. In particular, for nouns, we col-
lect all words tagged as NN or NNS. Since pre-
processing tools are known to make more mis-
takes on ESL data than on native data, this pro-
cedure does not have a perfect result on the iden-
tification of all noun mistakes. For example, we
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miss about 10% of noun errors due to POS/shallow
parser errors. For verbs, we compared several
candidate selection methods. Method (1) ex-
tracts all verbs heading a verb phrase, as iden-
tified by the shallow parser. Method (2) ex-
pands this set to words tagged with one of the
verb POS tags {VB,VBN,VBG,VBD,VBP,VBZ}.
However, generating candidates by selecting only
those tagged as verbs is not good enough, since the
POS tagger performance on ESL data is known to
be suboptimal (Nagata et al., 2011), especially for
verbs containing errors. For example, verbs lack-
ing agreement markers are likely to be mistagged
as nouns (Lee and Seneff, 2008). Erroneous verbs
are exactly the cases that we wish to include.
Method (3) adds words that are in the lemma list of
common English verbs compiled using the Giga-
word corpus. The last method has the highest re-
call on the candidate identification; it misses only
5% of verb errors, and also has better performance
in the complete model. We thus use this method.

3.3.2 Noun-Verb Correction Performance
Table 6 shows the performance of the systems
based on 5-fold CV on the training data. Each
model is trained individually on the Google cor-
pus, and is individually processed to optimize the
respective thresholds.

Model Precision Recall F1
Noun number 0.17 0.38 0.23
Subject-verb agr. 0.19 0.24 0.21
Verb form 0.07 0.20 0.10

Table 6: Noun, subject-verb agreement and
verb form results. Results on 5-fold CV. The
models are trained on the Google corpus.

4 Combined Model

In the previous sections, we described the individ-
ual components of the system developed to target
specific error types. The combined model includes
all of these modules, which are each applied to
examples individually: there is no pipeline, and
the individual predictions of the modules are then
pooled.

The combined system also includes a post-
processing step where we remove certain correc-
tions of noun and verb forms that we found oc-
cur quite often but are never correct. This hap-
pens when both choices – the writer’s selection

and the correction – are valid but the latter is ob-
served more frequently in the native training data.
For example, the phrase “developing country” is
changed to “developed country” even though both
are legitimate English expressions. If a correction
is frequently proposed but always results in a false
alarm, we add it to a list of changes that is ignored
when we generate the system output. When we
generate the output on Test set, 8 unique pairs of
such changes are ignored (36 pairs of changes in
total).

We now show the combined results on the train-
ing data by conducting 5-fold CV, where we add
one component at a time. Table 8 shows that the
recall and the F1 scores improve when each com-
ponent is added to the system. The final system
achieves an F1 score of 0.21 on the training data
in 5-fold CV.

Model Precision Recall F1
Articles 0.16 0.12 0.14
+Prepositions 0.16 0.14 0.15
+Noun number 0.17 0.23 0.20
+Subject-verb agr. 0.18 0.25 0.21
+Verb form (All) 0.18 0.27 0.21

Table 7: Results on 5-fold CV on the training
data. The article model is trained on the ESL
data using AP. The other models are trained on the
Google corpus. The last line shows the results,
when all of the five modules are included.

5 Test Results

The previous section showed the performance of
the system on the training data. In this section,
we show the results on the test set. As previously,
the performance improves when each component
is added into the final system. However, we also
note that the precision is much higher while the
recall is only slightly lower. We attribute this in-
creased precision to the observed differences in
the percentage of annotated errors in training vs.
test (see Section 3) and hypothesize that the train-
ing data may contain additional relevant errors that
were not included in the annotation.

Besides the original official annotations an-
nounced by the organizers, another set of anno-
tations is offered based on the combination of re-
vised official annotations and accepted alternative
annotations proposed by participants. We show in
Table 8 when our system is scored based on the
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revised annotations, both the precision and the re-
call are higher. Our system achieves the highest
scores out of 17 participating teams based on both
the original and revised annotations.

Model Precision Recall F1
Scores based on the original annotations

Articles 0.48 0.11 0.18
+Prepositions 0.45 0.12 0.19
+Noun number 0.48 0.21 0.29
+Subject-verb agr. 0.48 0.22 0.30
+Verb form (All) 0.46 0.23 0.31

Scores based on the revised annotations
All 0.62 0.32 0.42

Table 8: Results on Test. The article model is
trained on the ESL data using AP. The other mod-
els are trained on the Google corpus. All denotes
the results of the complete model that includes all
of the five modules.

6 Discussion and Error Analysis

Here, we present some interesting errors that our
system makes.

6.1 Error Analysis

Incorrect verb form correction: Safety is one of
the crucial problems that many countries and com-
panies *concerned/concerns.

Here, the phrasing requires multiple changes;
to maintain the same word order, this correction
would be needed in tandem with the insertion of
the auxiliary “have” to create a passive construc-
tion.

Incorrect determiner insertion: In this era,
Engineering designs can help to provide more
habitable accommodation by designing a stronger
material so it’s possible to create a taller and safer
building, a better and efficient sanitation system
to prevent *∅/ the disease, and also by designing
a way to change the condition of the inhabitable
environment.

This example requires a model of discourse at
the level of recognizing when a specific disease
is a focus of the text, rather than disease in gen-
eral. The use of a singular construction “a taller
and safer building” in this context is somewhat un-
conventional and potentially makes this distinction
even harder to detect.

Incorrect verb number correction:

One current human *need/needs that should
be given priority is the search for renewable re-
sources.

This appears to be the result of the system
heuristics intended to mitigate POS tagging errors
on ESL text, where the word “need” is considered
as a candidate verb rather thana noun; this results
in an incorrect change to make the “verb” agree in
number with the phrase “one human”.

Incorrect determiner deletion: This had
shown that the engineering design process is es-
sential in solving problems and it ensures that the
problem is thoroughly looked into and ensure that
the engineers are generating ideas that target the
main problem, *the/∅ depletion and harmful fuel.

In this example, local context may suggest a list
structure, but the wider context indicates that the
comma represents an appositive structure.

6.2 Discussion

Note that the presence of multiple errors can have
very negative effects on preprocessing. For exam-
ple, when an incorrect verb form is used that re-
sults in a word form commonly used as a noun,
the outputs of the parsers tend to be incorrect. This
limits the potential of rule-based approaches.

Machine learning approaches, on the other
hand, require sufficient examples of each error
type to allow robust statistical modeling of contex-
tual features. Given the general sparsity of ESL
errors, together with the additional noise intro-
duced into more sophisticated preprocessing com-
ponents by errors with overlapping contexts, it ap-
pears hard to leverage these more sophisticated
tools to generate features for machine learning ap-
proaches. This motivates our use of just POS and
shallow parse analysis, together with language-
modeling approaches that can use counts derived
from very large native corpora, to provide robust
inputs for machine learning algorithms.

The interaction between errors suggests that
constraints could be used to improve results by en-
suring, for example, that verb number, noun num-
ber, and noun phrase determiner are consistent.
This is more difficult than it may first appear for
two reasons. First, the noun that is the subject
of the verb under consideration may be relatively
distant in the sentence (due to the presence of in-
tervening relative clauses, for example). Second,
the constraint only limits the possible correction
options: the correct number for the noun in fo-
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cus may depend on the form used in the preceding
sentences – for example, to distinguish between a
general statement about some type of entity, and a
statement about a specific entity.

These observations suggest that achieving very
high performance in the task of grammar correc-
tion requires sophisticated modeling of deep struc-
ture in natural language documents.

7 Conclusion

We have described our system that participated in
the shared task on grammatical error correction
and ranked first out of 17 participating teams. We
built specialized models for the five types of mis-
takes that are the focus of the competition. We
have also presented error analysis of the system
output and discussed possible directions for future
work.
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Abstract 

Grammatical error correction has been an 
active research area in the field of Natural 
Language Processing. This paper describes the 
grammatical error correction system 
developed at NTHU in participation of the 
CoNLL-2013 Shared Task. The system 
consists of four modules in a pipeline to 
correct errors related to determiners, 
prepositions, verb forms and noun number. 
Although more types of errors are involved 
that than last year’s Shared Task, leading to 
more complicated problem this year, our 
system still obtain higher F-score as compared 
to last year. We received an overall F-measure 
score of 0.325, which put our system in second 
place among 17 systems evaluated. 

1 Introduction 

Grammatical error correction is a task involving 
automatically detecting and correcting 
grammatical errors and improper choices. 
Grammatical error correction in writing of 
English as a second language (L2) or foreign 
language (EFL) is an important issue, for there 
are 375 million L2 speakers and 750 million EFL 
speakers around the world (Graddol, 2006). Most 
of these non-native speakers tend to make many 
kinds of error in their writing. An error 
correction system has the short-term benefit of 
helping writers improve the quality of writing. In 
the long run, non-native writers might learn from 
the corrections and thus gradually gain better 
command of grammar and word choice. 

The HOO shared task of 2012 is aimed at 
detecting and correcting misuse of determiners 
and prepositions, two types of errors accounting 

for only 38% of all errors. Therefore, there are a 
lot more errors related to other parts of speech 
that we have to address in this year’s shared task. 
In this paper, we describe the system submission 
from NTHU. The system reads and processes a 
given sentence through a pipeline of four distinct 
modules dealing with determiners, prepositions, 
verb forms and noun plurality. The output of one 
module feeds into the next module as input. The 
system finally produces possibly corrected 
sentences. 

The rest of the article is organized as follows. 
Section 2 describes detection and correction 
approach of each module in detail. Section 3 
describes experiment setting and results. Then in 
Section 4, we discuss strengths and limitations of 
the proposed system and directions of future 
work. We conclude in Section 5. 

 

2 System Description 

The system is designed to read a sentence and 
process each type of errors in terms and finally 
produce a corrected sentence. In Section 2.1, we 
give an overview of the system. Then, in 
Sections 2.2-2.5, we describe how to correct 
errors related to noun number, determiner, verb 
tense, and preposition.  

 

 
 

Figure 1. System Architecture 
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Table 1. Moving windows of ‘location’ 

Moving 
Window 

n-grams 

MW5 track based on the location 
based on the location of  
on the location of cell 
the location of cell phone 
location of cell phone by 

MW4 based on the location 
on the location of 
the location of cell 
location of cell phone 

MW3 on the location 
the location of 
location of cell 

MW2 the location 
location of 

2.1 Overview 

In this section, we give an overview of our 
system. Figure 1 shows the architecture of the 
error correction system. In this study, we focus 
on five different grammatical error types, 
including the improper usage of Determiner 
(ArtOrDet), Noun Number (Nn), Verb-Tenses 
(Vform), Subject-Verb Agreement (SVA), and 
Preposition (Prep).  In order to deal with these 
different types of errors systematically, we 
propose a back-off model based on the moving 
window approach. 
 
Moving Window 
 
A moving window MW of certain word wi is 
defined as below. (Leacock et al., 2010; 
Rozovskaya et al., 2010) 
 
 𝑀𝑊!,!(𝑤) = {𝑤!!! ,… ,𝑤!!!! !!!   , 𝑗 = 0, 𝑘 − 1  }  (1) 
 
where i denotes the position of word, k the 
window size, and w the original or replacement 
word at position i. In our approach, the window 
size is set to 2 to 5 words.  

For example, consider the target word 
“location” in the sentence, “Children can easily 
be track based on the location of cell phone by 
parents.” The n-grams in moving windows of 
related to “location” of sizes 2 to 5 are shown in 
Table 1. 
 
Back-off Model 
To determine whether the target word needs to 
be changed to a different form (e.g, from 
“location” to “locations”), we first replace the 
target word with its variant forms (e.g., 
‘locations’ for ‘location’) in all MW n-grams and 

Table 2. Trigram information of ‘location’ and 
‘locations’ in back-off model 

MW3 n-gram Freq. S3 
location on the location 

the location of 
location of cell 

304,400 
3,794,400 

1,400 

4 M 

locations on the locations 
the locations of 
locations of cell 

18,200 
374,000 

200 

0.04 M 

 
then measure the ratio of the counts of the 
original and replaced n-grams in a corpus. The 
frequency counts are obtained by querying a 
linguistic search engine Linggle (Joanne Boisson 
et al. 2013), a web-scale linguistic search engine 
based on Google Web1T (Brants and Franz, 
2006). The sum of n-gram counts, Sk with  the 
word w (original or replacement) in the ith 
position is defined as  
 
     𝑆!,!(𝑤)   =    𝑐𝑜𝑢𝑛𝑡(𝑛𝑔𝑟𝑎𝑚)!"#$%  ∈  !"!(!)      (2) 
 
With MW and S, we design a Replace function 
to determine whether is necessary to replace wi 

with its variant form, w' : 
 

Figure 2. The function Replace for determining whether 
to replace a word in location i using moving windows of 
size k. 

 
The parameters λ and ε in Replace are set 
empirically.  

For instance, in the given sentence “Children 
can easily be track based on the location of cell 
phone by parents”, the target word wi is 
‘location’ and the candidate is ‘locations’ for the 
Nn type error. According to Equation 2, the sums 
S9,3(“location”) of the original trigrams is about 4 
million, whereas S9,3(“locations”) of the replaced 
trigrams is only 0.4 million (see Table 2 for more 
details). The value of r is 0.096, and depending 
on the threshold, Replace either returns False 
or back off to consider again the ratio r of 
S9,2(“location”) of the original bigrams and 
S9,2(“locations”) of the replacement bigrams for 
confidence in replacing the word “location.”  

function Replace(i, k, w’) 
r = Si,k(w’)/Si,k(wi) 
if r > λ 

return True 
else if k > 2 and r > ε: 

return Replace (i, k-1, w’) 
else: 

return False 
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2.2 The number module 

The number module is designed to correct error 
related to noun number (i.e., Nn). Two types of 
error are included, errors of singular noun and 
plural noun. 

To correct errors, we identify heads of base 
noun phrase (i.e., NP consisting of maximal 
contiguous sequence of tokens without 
containing another noun phrase or clause) in the 
given sentence by using part-of-speech tags and 
GeniaTagger (Tsuruoka et al., 2006), then use 
the Replace function to replace the original 
nouns (either singular or plural) to a different 
form (i.e., singular to plural, or plural to 
singular). We use two methods in the number 
module: combining voting with back-off, and 
using dependency relations.  

 
Combining voting with back-off  
 
Each n-gram in a moving window of various 
sizes described in Section 2.1 gets to cast a vote. 
When the sum of frequency counts related to the 
original noun is higher than that related to the 
replacement noun, the original noun gets one 
vote and vise versa. Voting method determines 
whether to replace the noun based on majority of 
the votes. For example, all of the 14 replacement 
n-grams (MWi, k , k = 2, 5) in Table 1 get a vote, 
because the n-gram with “location” has higher 
frequency count that the same n-gram replaced 
with “locations”. Intuitively, we should be 
confident enough to decide to stay with the 
original noun, i.e., ‘location.’ 

Back-off model described in Section 2.1 make 
a decision to permit the Replace module to 
change the original noun depend on threshold 𝜆. 
Both of voting and back-off model need to show 
that alternative noun number is better. For the 
scheme of voting and back-off model, we also 
require the top count ratio and absolute count of 
0.95 and 60,000 based on empirical evidence. 

 
Using dependency relations 
 
In some cases, the noun number depends on 
subject-verb agreement. We use part-of-speech 
information of subject and governing verb 
obtained from a tagger to handle such cases. For 
that, we use 3rd person singular present (i.e., 
VBZ) and other verb forms (e.g., VBP) to detect 
noun number mistakes.  

Consider the sentence, “In the society today, 
there are many ideas or concept that are 

currently in the stages of research and 
development.”, where “concept” is a singular 
noun, but should be plural according to syntactic 
dependency information. The dependency parser 
typically produces nsubj(are-7, concept-11) 
among other relations and the word “are” is 
tagged as VBP. Accordingly, we can replace the 
original noun, ‘concept’ to its plural form, 
‘concepts.’ 

 
2.3 Determiners module 

 
The determiner is aimed at correcting determiner 
errors (i.e., errors annotated as ArtOrDet ). Given 
a sentence, we first identify the base noun 
phrases and their determiners (or lack of 
determiner) and using the moving window 
approach to decide whether there is an error and 
which alternative form to use. For determiner 
errors, the variant form of a base NP with a 
determiner is simple the same NP with 
determiner removed, while the variant form of a 
base NP without a determiner is simple the same 
NP with a determiner added. 

In addition to the moving window and back-
off model, we also use dependency relations to 
check if a determiner is required for a base noun 
phrase. 

 
Frequency of n-grams 
 
We adopt the moving window approach and 
combine it with the back-off model mentioned in 
Section 2.1 with slight modification for the cases 
specific to determiner errors. When the head of 
given Base-NP is the last word of the n-gram, (as 
in “Prepare meals for the elderly is my duty.”), 
the head can often be used as an modifier (as in 
“for elderly people” leading to higher counts 
unrelated to the our case of the word being used 
as the head.   

Therefore, while we adopting the moving 
window approach, the count of such n-gram is 
not counted. We set the threshold in the 
Replace function empirically: λ=5 and ε=0.35. 
 
 
Dependency 
 
In some cases, the frequency information of n-
grams provides limited evidence for identifying 
mistakes. Therefore, we use more effective rules 
based on dependency relations to recognize the 
determiner errors in a way similar to the number 
module. 
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Table 3. Verb form n-grams with PMIs. 

Verb Form n-grams PMI Sum 

happening crash happening 
happening at 

21.5 
38.2 

59.7 

happen crash happen 
happen at 

24.0 
35.7 

59.7 

happened crash happened 
happened at 
air crash happened 
happened at Miami 
crash happened at 

30.5 
43.0 
36.2 
31.8 
43.2 

184.7 

happens crash happens 
happens at 
crash happens at 

27.9 
42.4 
37.0 

107.3 

 
We remove a determiner from a noun phrase 

with a plural head and an existing determiner. 
Otherwise, this module adds an appropriate 
determiner before the current noun phrase. For a 
conjunction (i.e., X and/or Y) of two base NPs, 
the rules favor adding a determiner such that 
both NPs have the same kind of determiner. 

2.4 The verb-tense module 

In this section, we mainly concentrate on 
providing more proper verb tenses. Besides 
moving window, we introduce accumulated 
point-wise mutual information (PMI) (Church 
and Hanks, 1990) to improve the performance of 
this module. Applying PMI to this topic is based 
on the hypothesis that an appropriate verb form 
has a higher PMI measure with the context. 

To achieve more flexibility than the standard 
PMI, we use the modified PMI, which is an 
extension of standard PMI allowing an n-gram s 
of arbitrary length as input 

 
 𝑃𝑀𝐼(𝑠) = log !(!|!)

!(!!)!
!!!

                              (3) 

where wi denotes the i-th word in s, k = | s |, and 
P(wi) the probability of wi estimated using a very 
large corpus. P(s|k) is the probability based on 
maximal likelihood estimation:  

 𝑃(𝑠|𝑘) = !"#$%(!)
!"#$%(!)!∈!

                              (4) 

 
where S denotes all n-grams of length k. The 
PMI value of n-grams related to the original and 
alternative tense forms of a give verb are then 
calculated to attempt to correct the verb in 
question with a decision in favor of highest PMI. 

Table 4. Sample search results of “being ?$PP a 
dangerous situation” * 

N-gram Count 

being in a dangerous situation 161 
being a dangerous situation 0 
being at a dangerous situation 0 
being on a dangerous situation 0 
… 0 
being about a dangerous situation 0 

* Note:? denotes option word and $PP denotes wildcard prepositions 

 
With this extended notion of PMI, we 

proceed as follows. First, we select each verb in 
a sentence and extract n-grams in moving 
window method as described in Section 2.2. 
Next, we generate more alternative n-grams by 
substituting all the related verb forms for the 
selected verb. After that, for all these n-grams, 
we calculate PMIs and accumulate the measures 
for each group of verb forms. Finally, if the 
accumulated PMI of the original verb is lower 
than the mean value of PMI of all verb forms, the 
verb in question will be replaced with the verb 
form associated the highest PMI value. 

Consider the sentence, “In late nineteenth 
century, there was a severe air crash happening 
at Miami international airport.” We attempt to 
correct the verbs “was” and “happening” in the 
sentence. Table 3 shows n-grams and 
corresponding PMIs of each verb form. The 
accumulated PMI of “happened” has the 
maximum value. So, the module changes 
“happening” to “happened.”  

2.5 The prepositions module 

For preposition, we attempt to handle the two 
types of error: DELETE and REPLACE, and 
leave the INSERT errors for future work. For 
DELETE errors, the preposition in question 
should be deleted from the given sentence, 
whereas for REPLACE errors the preposition 
should be replaced with a more appropriate 
alternative. The third error type of preposition, 
INSERT, is left for future study. The proposed 
solution is based on the hypothesis that the usage 
of preposition often depends on the collocation 
relation of verb or noun. Therefore, we propose a 
back-off model, which utilizes the dependency 
relations to identify the related words of the 
preposition in question. 

We proceed as follows: For a target 
preposition in a given sentence, we extract the n-
gram containing the preposition, its prepositional 
object, and the content word before the 
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preposition. For example, the n-gram “being in a 
dangerous situation” is extracted from the 
sentence “This can protect the students from 
being in a dangerous situation in particularly for 
the small children who are studying in nursery.” 
The n-gram “being in a dangerous situation” is 
then transformed into a query for a linguistic 
search engine (e.g., Linggle as described in 
Joanne et al. 2013) to obtain the counts of all 
preposition variant forms, including NULL (for 
DELETE) or other prepositions (for REPLACE). 

The transformation process is very simple 
involving changing the proposition to a wild part 
of speech symbol. For example, “being in a 
dangerous situation” is transformed to “being 
?$PP a dangerous situation.” The sample search 
results are shown in Table 4. From the results, 
we could confirm that the preposition “in” is 
used correctly.  

Although we use the web-scale n-gram for 
validation of usage of preposition, however, data 
sparseness still poses a problem. Furthermore, 
we cannot obtain information for n-grams with 
length more than 5, since the Web 1T we used 
only contains 1 to 5-grams. In order to cope with 
the data sparseness problem, we transform a 
query into a more general form, if no result could 
be obtained in the first round of search. To 
generalize the query, we remove the modifiers of 
the prepositional object one after another. 
Additionally, we also attempt to change the 
modifiers with the most frequent modifier of the 
object. Consider the n-gram “in modern digit 
world.” The generalized n-grams “in digit world” 
and “in new world” will then be transformed into 
queries in turns until the results are sufficient for 
the model to make a decision. To avoid false 
alarm, empirically determined thresholds are 
used to measure the ratio of count of a 
preposition variant form to the original 
preposition. 

3 Experiment 

To assess the effectiveness of the proposed 
method, we used the official training and testing 
data of CoNLL-2013 Shared Task. We also 
exploited several tools including Linggle, 
Stanford Parser and Geniatagger in the proposed 
system. 

Linggle supports flexible linguistic queries 
with wild part of speech and returns matching n-
grams counts in Google Web 1T 5gram. Stanford 
Parser and Geniatagger produce syntactical 
information including dependency relations, 

part-of-speech tags, and phrase boundary. The 
evaluation scorer, which computes precision, 
recall, and F-score, is provided by National 
University of Singapore, the organizer of 
CoNLL-2013 Shared Task. 

On the test data, our system obtained the 
precision, recall and F-score of .3057, 0.346, and 
.3246, which put us in first place in term of recall 
and second place in term of F-score. 

4 Discussion 

In this section, we discuss the strengths and 
limitations of our system and propose approaches 
to overcome current limitations. 

The module of noun numbers, moving 
window and syntactic dependency for correcting 
errors cannot handle well some ambiguous cases. 
For example, in this case "In conclusion, what I 
have mentioned above, we have to agree, 
tracking system has many benefits….", according 
to the gold-standard annotations, ‘system has’ is 
corrected to ‘systems have’.  

However, this module keep the original word 
because of the 3rd person singular present verb, 
‘has’. Before ‘has’ being corrected to ‘have’, 
there was no sufficient evidence to support that 
‘systems’ is a good replacement. In cases like 
this, it is often difficult to suggest a correction 
using only the sentential context and n-gram 
frequency and dependency relations. To correct 
such an error, we may need to consider the 
context of the discourse or combine the module 
of different error types such as noun numbers 
and verb tense, which is beyond the scope of the 
current system. 

We handle the determiner errors with 
threshold 𝜆  and 𝜀  empirically derived, but it 
would be more effective if we could use some 
form of minimal error rate tuning (MERT) to set 
the parameters. Besides, we found that applying 
the dependency criteria and moving window 
method in parallel leads to high recall but low 
precision. However, the moving window method 
often fails because of insufficient evidence. In 
such case, the system can perform better in both 
precision and recall by favoring the dependency 
model output. 

For our system, the performance of correcting 
verb form errors is severely limited by the 
lengths of n-gram. The failure related to verb 
forms correction are mostly caused by the 
limitation of n-gram length of Web 1T. There is 
a large portion of sentences where the subject (or 
the adverbs) and the verb are so far apart, that 
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they are not within windows of five words. So, it 
is difficult to use the noun number of the subject 
to select the correct verb form. 

Another major area of limitations of handling 
verb form errors has to do with rare words which 
lead to unseen n-grams even in a very large 
dataset like Web 1T. These rare words are 
mostly name entities that have insufficient 
coverage when combined other words in n-
grams. Intuitively, we can generalize the n-gram 
matching process as in the case of handling 
preposition errors. 

In this study, we use the preposition and object 
relation (POBJ) to determine whether the use of 
the preposition is correct. The relation is useful 
for generalizing the queries and in correcting 
preposition errors. However, many preposition 
errors are unrelated to POBJ. For example, in the 
sentence “Surveillance technology will help to 
prevent the family to loss their member...”, the 
two words “to loss” should be replace with “from 
losing.” Unfortunately, the current system cannot 
correct such an error in the absence of POBJ 
relation. In order to correct this kind of error, we 
have to consider composed relations such as 
noun-preposition-verb, which is crucial to the 
capability of correcting such multiple 
consecutive errors (i.e., preposition plus verb). 

5 Conclusion 

In this paper, we build four modules in 
determiner, noun number, verb form, and 
preposition for error detection and correction. 
For different types of errors, we have developed 
modules independently in accordance with their 
features. The constructed modules rely on both 
moving windows and back-off model to improve 
grammatical error correction. Additionally, for 
verb form errors, we introduce point-wise mutual 
information for higher precision and recall.  

We plan to integrate all the modules in a more 
flexible way than the current pipeline scheme. 
Yet another direction for future research is to 
consider the discourse context. 
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Abstract

This paper describes the Nara Institute
of Science and Technology (NAIST) er-
ror correction system in the CoNLL 2013
Shared Task. We constructed three sys-
tems: a system based on the Treelet Lan-
guage Model for verb form and subject-
verb agreement errors; a classifier trained
on both learner and native corpora for
noun number errors; a statistical machine
translation (SMT)-based model for prepo-
sition and determiner errors. As for
subject-verb agreement errors, we show
that the Treelet Language Model-based
approach can correct errors in which the
target verb is distant from its subject. Our
system ranked fourth on the official run.

1 Introduction

Grammatical error correction is the task of auto-
matically detecting and correcting grammatical er-
rors in text, especially text written by second lan-
guage learners. Its purpose is to assist learners in
writing and helps them learn languages.

Last year, HOO 2012 (Dale et al., 2012) was
held as a shared task on grammatical error cor-
rection, focusing on prepositions and determiners.
The CoNLL-2013 shared task (Dahlmeier et al.,
2013) includes these areas and also noun number,
verb form, and subject-verb agreement errors.

We divide the above 5 error types into three
groups: (1) subject-verb agreement (SVA) and
verb form (Vform) errors, (2) noun number (Nn)
errors, and (3) preposition (Prep) and determiner
(ArtOrDet) errors. For the subject-verb agreement
and verb form errors, we used a syntactic language
model, the Treelet Language Model, because syn-
tactic information is important for verb error cor-
rection. For the noun number errors, we used a
binary classifier trained on both learner and native

corpora. For the preposition and determiner errors,
we adopt a statistical machine translation (SMT)-
based approach, aiming at correcting errors in con-
ventional expressions. After each subsystem cor-
rects the errors of the corresponding error types,
we merge the outputs of all the subsystems.

The result shows our system achieved 21.85
in F-score on the formal run before revision and
28.14 after revision.

The rest of this paper is organized as follows.
Section 2 presents an overview of related work.
Section 3 describes the system architecture of each
of the three subsystems. Section 4 shows experi-
mental settings and results. Section 5 presents dis-
cussion. Section 6 concludes this paper.

2 Related Work

Lee and Seneff (2008) tried correcting English
verb errors including SVA and Vform. They pro-
posed correction candidates with template match-
ing on parse trees and filtered candidates by uti-
lizing n-gram counts. Our system suggests candi-
dates based on the Part-Of-Speech (POS) tag of a
target word and filters them by using a syntactic
language model.

For the noun number errors, we improved the
system proposed by Izumi et al. (2003). In
Izumi et al. (2003), a noun number error detec-
tion method is a part of an automatic error de-
tection system for transcribed spoken English by
Japanese learners. They used a maximum entropy
method whose features are unigrams, bigrams and
trigrams of surface words, of POS tags and of
the root forms. They trained a classifier on only
a learner corpus. The main difference between
theirs and ours is a domain of the training corpus
and features we used. We trained a classifier on
the mixed corpus of the leaner corpus and the na-
tive corpus. We employ a treepath feature in our
system.

Our SMT system for correcting preposition and
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determiner errors is based on Mizumoto et al.
(2012). They constructed a translation model from
the data of the language-exchange social network
service Lang-81 and evaluated its performance for
18 error types, including preposition and deter-
miner errors in the Konan-JIEM Learner Corpus.
On preposition error correction, they showed that
their SMT system outperformed a system using
a maximum entropy model. The main difference
with this work is that our new corpus collection
here is about three times larger.

3 System Architecture

3.1 Subject-Verb Agreement and Verb Form

For SVA and Vform errors, we used the Treelet
Language Model (Pauls and Klein, 2012) to cap-
ture syntactic information and lexical information
simultaneously. We will first show examples of
SVA and Vform errors and then describe our model
used to correct them. Finally, we explain the pro-
cedure for error correction.

3.1.1 Errors
According to Lee and Seneff (2008), both SVA and
Vform errors are classified as syntactic errors. Ex-
amples are as follows:

Subject-Verb Agreement (SVA) The verb is not
correctly inflected in number and person with
respect to its subject.

They *has been to Nara many times.

In this example, a verb “has” is wrongly in-
flected. It should be “have” because its subject is
the pronoun “they”.

Verb Form (Vform) This type of error mainly
consists of two subtypes,2 one of which includes
auxiliary agreement errors.

They have *be to Nara many times.

Since the “have” in this sentence is an auxil-
iary verb, the “be” is incorrectly inflected and it
should be “been”.

The other subtype includes complementation

1http://lang-8.com
2In the NUCLE (Dahlmeier et al., 2013) corpus, most of

semantic errors related to verbs are included in other error
types such as verb tense errors, not Vform errors.

errors like the following:

They want *go to Nara this summer.

Verbs can be a complement of another verb
and preposition. The “go” in the above sentence
is incorrect. It should be in the infinitive form, “to
go”.

3.1.2 Treelet Language Model
We used the Treelet Language Model (Pauls and
Klein, 2012) for SVA and Vform error correction.

Our model assigns probability to a production
rule of the form r = P → C1 · · ·Cd in a con-
stituent tree T , conditioned on a context h consist-
ing of previously generated treelets,3 where P is
the parent symbol of a rule r and Cd

1 = C1 · · ·Cd

are its children.

p(r) = p(Cd
1 |h)

The probability of a constituent tree T is given by
the following equation:

p(T ) =
∏
r∈T

p(r)

The context h differs depending on whether Cd
1 is

a terminal symbol or a sequence of non-terminal
symbols.

Terminal When Cd
1 is a terminal symbol w,

p(Cd
1 |h) = p(w|P, R, r′, w−1, w−2)

where P is the POS tag of w, R is the right sibling
of P , r′ is the production rule which yields P and
its siblings, and w−2 and w−1 are the two words
preceding w.

Non-Terminal When Cd
1 is a sequence of non-

terminal symbols,

p(Cd
1 |h) = p(Cd

1 |P, P ′, r′)

where P is the parent symbol of Cd
1 , P ′ is the par-

ent symbol of P .

In order to capture a richer context, we apply the
annotation and transformation rules below to parse
trees in order. We use almost the same annota-
tion and transformation rules as those proposed by

3The term treelet is used to refer to an arbitrary connected
subgraph of a tree (Quirk et al., 2005)
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Original Candidates
am/VBP, are/VBP or is/VBZ {am/VBP, are/VBP, is/VBZ}

was/VBD or were/VBD {was/VBD, were/VBD}
being/VBG {be/VB, being/VBG}
been/VBN {be/VB, been/VBN}

be/VB {be/VB, being/VBG, been/VBN}

Table 1: Examples of candidates in the case of “be”

ROOT

S

VP

VP

ADVP

NNS

times

JJ

many

PP

NNP

Nara

TO

to

VBN

been

VBP

have

NP

PRP

They

ROOT

S@ROOT-have

VP@S-have

ADVP-NNTS

NNTS

times

JJ

many

PP-to

NNP

Nara

TO-to

to

VBN-been

been

VBP-have

have

PRP-they

They

Figure 1: The tree on the left is before annotations and transformations which convert it to the tree on
the right.

Pauls and Klein (2012). For instance, the common
CFG tree on the left side of Figure 1 is transformed
to the one on the right side.

Temporal NPs Pauls and Klein (2012) marked ev-
ery noun which is the head of an NP-TMP at least
once in the Penn Treebank. For example, NN →
time is replaced with NNT → time and NNS →
times is replaced with NNTS → times. This rule
seems to be useful for correcting verb tense er-
rors.4

Head Annotations We annotated every non-terminal
and preterminal with its head word.5 If the head
word is not a closed class word,6 we annotated
non-terminal symbols with the head POS tag in-
stead of the head word.

NP Flattening Pauls and Klein (2012) deleted NPs
dominated by other NPs, unless the child NPs are
in coordination or apposition. These NPs typically

4Verb tense (Vt) errors are not covered in this shared task.
5We identified the head with almost the same rules used

in Collins (1999).
6We took the following to be the closed class words: all

inflections of the verbs do, be, and have; and any word tagged
with IN, WDT, PDT, WP, WP$, TO, WRB, RP, DT, SYM,
EX, POS, PRP, AUX, MD or CC.

occur when nouns are modified by PPs. Our model
therefore assigns probability to nouns conditioned
on the head of modifying PPs with prepositions
such as “in”, “at” and so on by applying simul-
taneously the NP Flattening and the Head Annota-
tions. However, our model cannot assign probabil-
ity to prepositions conditioned on verbs or nouns
on which the prepositions depend. For this reason
we did not use our model to correct prepositional
errors.

Number Annotations Pauls and Klein (2012) di-
vided numbers into five classes: CD-YR for num-
bers that consist of four digits, which are usually
years; CD-NM for entirely numeric numbers; CD-
DC for numbers that have a decimal; CD-MX for
numbers that mix letters and digits; and CD-AL
for numbers that are entirely alphabetic.

SBAR Flattening They removed any S nodes which
are children of an SBAR.

VP Flattening They removed any VPs immedi-
ately dominated by a VP, unless it is con-
joined with another VP. The chains of verbs
are represented as separated VPs for each verb,
such as (VP (MD will) (VP (VB be) (VP (VBG
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playing) . . .))). This transformation turns the
above VPs into (VP (MD will) (VB be) (VBG

playing) . . .). This has an effect on the cor-
rection of auxiliary agreement errors because
our model can assign probability to main verbs
strongly conditioned on their auxiliary verbs.

Gapped Sentence Annotation They annotated all S
and SBAR nodes that have a VP before any NP.

Parent Annotation They annotated all VPs and chil-
dren of the ROOT node with their parent symbol.

Unary Deletion All unary rules are deleted except
the root and the preterminal rules. We kept only
the bottom-most symbol of the unary rule chain.
This brings many symbols into the context of a
production rule.

3.1.3 Procedure
Our system for SVA and Vform errors tries to cor-
rect the words in a sentence from left to right. Cor-
rection proceeds in the following steps.

1. If the POS tag of the word is “VB”, “VBD”,
“VBG”, “VBN”, “VBP” or “VBZ”, our sys-
tem generates sentences which have the word
replaced with candidates. For example, if the
original word is an inflection of “be”, the sys-
tem generates candidates as shown in Table
1.

2. The system parses those sentences and ob-
tains the k-best parses for each sentence.

3. The system keeps only the one sentence to
which our language model assigned the high-
est probability in the parses.

4. The system repeats Steps 1 to 3 with the sen-
tence kept in Step 3 until the rightmost word
of that sentence.

Note that the system uses the Berkeley Parser7 in
Step 2.

3.2 Noun Number

3.2.1 Errors
A noun number error is the mistake of using the
singular form for a plural noun, and vice versa, as
in the following:

7http://code.google.com/p/
berkeleyparser/

I saw many *student yesterday.

In this example, the inflection of “student”
is mistaken. It should be “students” because it is
modified by “many”.

To correct such errors, we use a binary classi-
fication approach because the inflection of a noun
is either “singular” or “plural”. If the binary clas-
sifier detects an error with a sufficiently high con-
fidence, the system changes the noun form. We
adopt the adaptive regularization of weight vectors
algorithm (AROW) (Crammer et al., 2009). AROW
is a variant of a confidence weighted linear classi-
fication algorithm which is suitable for the classi-
fication of large scale data.

3.2.2 Binary classifier approach

The binary classifier indicates “singular” or “plu-
ral” for all nouns except proper and uncountable
nouns. First, if a noun is found in the training cor-
pus, we extract an instance with features created
by the feature template in Table 2.8 Second, we
train a classifier with extracted instances and la-
bels from the training corpus.

We use unigram, bigram, and trigram features
around the target word and the path features be-
tween the target word and all the other nodes in
the NPs that dominate the target word as the right-
most constituent. The path feature is commonly
used in semantic role labeling tasks (Pradhan et
al., 2004). For the path features, we do not use
the right subtree of the NP as the path features be-
cause we assume that right subtrees do not affect
the number of the target word. We limit the maxi-
mum depth of the subtree containing the NP to be
3 because nodes over this limit may be noisy. To
encode the relationship between the target word
and another node in the NP, we append a symbol
which reflects the direction of tree traversal to the
label: ‘p’ for going up (parent) and ‘c’ for going
down (child). For example, we show extracted fea-
tures in Table 2 for the phrase “some interesting
and recent topics about politics and economics”.

In the training corpus, since the proportions of
singular and plural nouns are unequal, we set dif-
ferent thresholds for classifying singular and plu-
ral forms. These thresholds limit the probabilities
which the binary classifier uses for error detection.
We have used a development set to determine the

8Target word refers to a noun whose POS tag is “NN” or
“NNS” in the Penn Treebank tagset.
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Feature name Word, Pos used as features Example
surface unigram word±1, word±2 and, recent, about, politics
surface bigram word±2 word±1 and recent, about politics
surface trigram word±3 word±2 word±1 interesting and recent, about politics and
POS unigram POS±1, POS±2 CC, JJ, IN, NN
POS bigram POS±1 POS±2 CC JJ, IN NN
POS trigram POS±3 POS±2 POS±1 JJ CC JJ, IN NN CONJ

lemma unigram lemma±2, lemma±1 and, recent, about, politics
lemma bigram lemma±2 lemma±1 and recent, about politics
lemma trigram lemma±3 lemma±2 lemma±1 interesting and recent, about politics and
lemma target lemma of target word topic
path feature path between the target word p NP, pc JJ, pc recent, pp NP, ppc CC, ppc and,

and the other nodes in NP ppc NP, ppcc DT, ppcc some, ppcc JJ, ppcc interesting

Table 2: Features used for the detection of noun number errors and example features for the phrase “some
interesting and recent topics about politics and economics”.

best thresholds for singular and plural forms, re-
spectively.

For proper and uncountable nouns, we do not
change number because of the nature of those
nouns. In order to determine whether to change
number or not, we create a list which consists of
words frequently used as singular forms in the na-
tive corpus.

3.3 Prepositions and Determiners
For preposition and determiner errors, we con-
struct a system using a phrase-based statistical
machine translation (Koehn et al., 2003) frame-
work. The SMT-based approach functions well
in corrections of conventional usage of determin-
ers and prepositions such as “the young” and “take
care of ”. The characteristic of the SMT-based ap-
proach is its ability to capture tendencies in learn-
ers’ errors. This approach translates erroneous
phrases that learners often make to correct phrases.
Hence, it can handle errors in conventional expres-
sions without over-generalization.

The phrase-based SMT framework which we
used is based on the log-linear model (Och and
Ney, 2002), where the decision rule is expressed
as follow:

argmax
e

P (e|f) = argmax
e

M∑
m=1

λmhm(e, f)

Here, f is an input sentence, e are hypotheses,
hm(e, f) feature functions and λm their weights.
The hypothesis that maximizes the weighted sum
of the feature functions is chosen as an output sen-
tence.

The feature functions encode components of
the phrase-based SMT, including the translation

model and the language model. The translation
model suggests translation hypotheses and the lan-
guage model filters out ill-formed hypotheses.

For an error correction system based on SMT,
the translation model is constructed from pairs of
original sentences and corrected sentences, and the
language model is built on a native corpus (Brock-
ett et al., 2006).

Brockett et al. (2006) trained the translation
model on a corpus where the errors are restricted
to mass noun errors. In our case, we trained our
model on a corpus with no restriction on error
types. Consequently, the system corrects all types
of errors. To focus on preposition and determiner
errors, we retain proposed edits that include 48
prepositions and 25 determiners listed in Table 3.

4 Experiments

4.1 Experimental setting

4.1.1 Subject-Verb Agreement and Verb
Form

We describe here the training data and tools used
to train our model. Our model was trained with the
Berkeley LM9 version 1.1.3. We constructed the
training data by concatenating the WSJ sections of
the Penn Treebank and the AFP sections of the En-
glish Gigaword Corpus version 5.10 Our training
data consists of about 27 million sentences. Al-
though human-annotated parses for the WSJ are
available, there is no gold standard for the AFP,
so we parsed the AFP automatically by using the
Berkeley Parser released on October 9, 2012.

9http://code.google.com/p/berkeleylm/
10LDC2011T07
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Preposition about, across, after, against, along, among, around, as, at, before, behind, below,
beside, besides, between, beyond, but, by, despite, down, during, for, from, in,
inside, into, near, of, off, on, onto, opposite, outside, over, past, round, without,
than, through, to, toward, towards, under, until, up, upon, with, within

Determiner the, a, an, all, these, those, many, much, another, no, some, any, my,
our, their, her, his, its, no, each, every, certain, its, this, that

Table 3: Preposition and determiner lists

4.1.2 Noun Number
We trained a binary classifier on a merged corpus
of the English Gigaword and the NUCLE data.
From the English Gigaword corpus, we used the
New York Times (NYT) as a training corpus. In
order to create the training corpus, we corrected
all but noun number errors in the NUCLE data us-
ing gold annotations.

The AROW++ 11 0.1.2 was used for the binary
classification. For changing noun forms, we used
the pattern.en toolkit.12

The maximum depth of subtrees containing an
NP is set to 3 when we extracted the path features.

We built and used a list of nouns that appear in
singular forms frequently in a native corpus. We
counted the frequency of nouns in entire English
Gigaword. If a noun appears in more than 99%13

of occurrences in singular form, we included it in
the list. The resulting list contains 836 nouns.

4.1.3 Prepositions and Determiners
We used Moses 2010-08-13 with default parame-
ters for our decoder14 and GIZA++ 1.0.515 as the
alignment tool. The grow-diag-final heuristics was
applied for phrase extraction. As a language mod-
eling tool we used IRSTLM version 5.8016 with
Witten-Bell smoothing.

The translation model was trained on the NU-
CLE corpus and our Lang-8 corpus.17 From the
Lang-8 corpus, we filtered out noisy sentences.
Out of 1,230,257 pairs of sentences, 1,217,124
pairs of sentences were used for training. As for
the NUCLE corpus we used 55,151 pairs of sen-
tences from the official data provided as training

11https://code.google.com/p/arowpp/
12http://www.clips.ua.ac.be/pages/

pattern-en
13We tested many thresholds, and set 99% as threshold.
14http://sourceforge.net/projects/

mosesdecoder/
15http://code.google.com/p/giza-pp/
16http://sourceforge.net/projects/

irstlm/
17consisting of entries through 2012.

data. We used a 3-gram language model built on
the entire English Gigaword corpus.

4.2 Result

Table 4 shows the overall results of our submit-
ted systems and the results of an additional ex-
periment. In the additional experiment, we tried
the SMT-based approach described in Section 3.3
for errors in SVA, Vform and Nn. While the sys-
tem based on the Treelet Language Model out-
performed the SMT-based system on the SVA er-
rors and the Vform errors, the binary classifier ap-
proach did not perform as well as the SMT-based
system on the Nn errors.

5 Discussion

5.1 Subject-Verb Agreement and Verb Form

We provide here examples of our system’s output,
beginning with a successful example.

source: This is an age which most people *is re-
tired and *has no sources of incomes.

hypothesis: This is an age which most people are
retired and have no sources of incomes.

The source sentence of this pair includes two SVA
errors. The first is that “be” should agree with its
subject “people” and must be “are”. Our system is
able to correct errors where the misinflected pred-
icate is adjacent to its subject. The second error
is also an agreement error, in this case between
“have” and its subject “people”. Our model can
assign probability to yields related to predicates
conditioned strongly on their subjects even if the
distance between the predicate and its subject is
long. The same can be said of Vform errors.

One mistake made by our system is miscorrec-
tion due to the negative effect of other errors.

source/hypothesis: The rising life *expectancies
*are like a two side sword to the modern world.
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submitted system additional experiments
ALL Verb Nn Prep ArtOrDet Verb Nn

Precision 0.2707 0.1378 0.4452 0.2649 0.3118 0.2154 0.3687
original Recall 0.1832 0.2520 0.1641 0.1286 0.2029 0.0569 0.2020

F-score 0.2185 0.1782 0.2399 0.1732 0.2458 0.0900 0.2610
Precision 0.3392 0.1814 0.5578 0.3245 0.4027 0.3846 0.4747

revised Recall 0.2405 0.2867 0.1708 0.1494 0.2497 0.0880 0.2137
F-score 0.2814 0.2222 0.2616 0.2046 0.3082 0.1433 0.2947

Table 4: Results of the submitted system for each type of error and results of additional experiments
with the SMT-based system. The score is evaluated on the m2scorer (Dahlmeier and Ng, 2012). ALL
is the official result of formal run, and each of the others shows the result of the corresponding error
type. Since our system did not distinguish SVA and Vform, we report the combined result for them in the
column Verb.

gold: The rising life expectancy is like a two side
sword to the modern world.

Since the subject of “are” is “expectancies”, the
sentence looks correct at first. However, this ex-
ample includes not only an SVA error but also an
Nn error, and therefore the predicate “are” should
be corrected along with correcting its subject “ex-
pectancies”.

An example of a Vform error is shown below.

source/hypothesis: Besides, we can try to reduce
the bad effect *cause by the new technology.

gold: Besides, we can try to reduce the bad effect
caused by the new technology.

The word “cause” is tagged as “NN” in this sen-
tence. This error is ignored because our system
makes corrections on the basis of the original POS
tag. For a similar example, our system does not
make modifications between the to-infinitive and
the other forms.

5.2 Noun Number

We provide here examples of our system’s output,
beginning with a successful example.

source: many of cell *phone are equipped with
GPS

hypothesis/gold: many of cell phones are
equipped with GPS

In the example, the noun “phone” should be in the
plural form “phones”. This is because the phrase
“many of” modifies the noun. In this case, the un-
igrams “many” and “are”, and the bigram “many

of” are features with strong weights for the plural
class as expected.

However, n-gram features sometimes work to
the contrary of our expectations.

source/hypothesis: RFID is not only used to
track products for logistical and storage *purpose,
it is also used to track people

gold: RFID is not only used to track products for
logistical and storage purposes, it is also used to
track people

The “purpose” is in the PP which is modified by
“products”. Thus, “purpose” should not be af-
fected by the following words. However, the verb
“is”, which is immediately after “purpose”, has a
strong influence to keep the word in singular form.
Therefore, it may be better not to use a verb that
the word is not immediately dependent on as a fea-
ture.

5.3 Prepositions and Determiners
While the SMT-based system can capture the
statistics of learners’ errors, it cannot correct
phrases that are not found in the training corpus.

(1) source: *with economic situation
gold: in economic situation

(2) source: *with such situation
gold: in such situation

Our system was not able to correct the source
phrase in (1), in spite of the fact that the similar
phrase pair (2) was in the training data. To correct
such errors, we should construct a system that al-
lows a gap in source and target phrases as in Galley
and Manning (2010).
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6 Conclusion

This paper described the architecture of our cor-
rection system for errors in verb forms, subject
verb agreement, noun number, prepositions and
determiners. For verb form and subject verb
agreement errors, we used the Treelet Language
Model. By taking advantage of rich syntactic in-
formation, it corrects subject-verb agreement er-
rors which need to be inflected according to a dis-
tant subject. For noun number errors, we used a
binary classifier using both learner and native cor-
pora. For preposition and determiner errors, we
built an SMT-based system trained on a larger cor-
pus than those used in prior works. We show that
our subsystems are effective to each error type. On
the other hand, our system cannot handle the er-
rors strongly related to other errors well. In future
work we will explore joint correction of multiple
error types, especially noun number and subject-
verb agreement errors, which are closely related
to each other.
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Abstract 

This paper describes the NLP
2
CT Grammati-

cal Error Detection and Correction system for 

the CoNLL 2013 shared task, with a focus on 

the errors of article or determiner (ArtOrDet), 

noun number (Nn), preposition (Prep), verb 

form (Vform) and subject-verb agreement 

(SVA). A hybrid model is adopted for this spe-

cial task. The process starts with spell-

checking as a preprocessing step to correct any 

possible erroneous word. We used a Maxi-

mum Entropy classifier together with manual-

ly rule-based filters to detect the grammatical 

errors in English. A language model based on 

the Google N-gram corpus was employed to 

select the best correction candidate from a 

confusion matrix. We also explored a graph-

based label propagation approach to overcome 

the sparsity problem in training the model. Fi-

nally, a number of deterministic rules were 

used to increase the precision and recall. The 

proposed model was evaluated on the test set 

consisting of 50 essays and with about 500 

words in each essay. Our system achieves the 

5
th

 and 3
rd

 F1 scores on official test set among 

all 17 participating teams based on gold-

standard edits before and after revision, re-

spectively.  

1 Introduction 

With the increasing number of people all over 

the world who study English as their second lan-

guage1, grammatical errors in writing often oc-

curs due to cultural diversity, language habits, 

education background, etc. Thus, there is a sub-

stantial and increasing need of using computer 

                                                 
    

1
 A well-known fact is that the most popular language 

chosen as a first foreign language is English. 

techniques to improve the writing ability for sec-

ond language learners. Grammatical error correc-

tion is the task of automatically detecting and 

correction erroneous word usage and ill-formed 

grammatical constructions in text (Dahlmeier et 

al., 2012). 

In recent decades, this special task has gained 

more attention by some organizations such as the 

Helping Our Own (HOO) challenge (Dale and 

Kilgarriff, 2010; Dale et al., 2012). Although the 

performance of grammatical error correction sys-

tems has been improved, it is still mostly limited 

to dealing with the determiner and preposition 

error types with a very low recall and precision. 

This year, the CoNLL-2013 shared task extends 

to include a more comprehensive list of error 

types, as shown in Table 1. 

To take on this challenge, this paper proposes 

pipe-line architecture in combination with sever-

al error detection and correction models based on 

a hybrid approach. As a preprocessing step we 

firstly employ a spelling correction to correct the 

misspelled words. To correct the grammatical 

errors, a hybrid system is designed that integrat-

ed with Maximum Entropy (ME) classifier, de-

terministic filter and N-gram language model 

scorer, each of which is constructed as an indi-

vidual model. According to the phenomena of 

the problems, we use different combinations of 

the models trained on specific data to tackle the 

corresponding types of errors. For instance, Prep 

and Nn have a strong inter-relation with the 

words (surface) that are preceding and following 

the active word. This can be detected and recov-

ered by using a language model. On the other 

hand, SVA is more complicated and it is more 

effective to determine the mistakes by using the 

linguistic and grammatical rules. The correction
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Error Type Description Example 

Vform 

Replacement The solution can be obtain (obtained) by using technology. 

Insertion 
However, the world has always beyond our imagination and ø (has) 

never let us down. 

Deletion It also indicates that the economy has been (ø) dramatically grown. 

SVA 
Subject-verb-

Agreement 
My brothers is (are) nutritionists. 

ArtOrDet 

Replacement 
The leakage of these (this) confidential information can be a sensitive 

issue to personal, violation of freedom and breakdown of safety. 

Insertion The survey was done by ø (the) United Nations. 

Deletion 
The air cargo of the (ø) Valujet plane was on fire after the plane had 

taken off. 

Nn Noun number He receives two letter (letters). 

Prep 

Replacement They work under (in) a conductive environment. 

Insertion 
Definitely, there are point of view that agree ø (with) the technology 

but also the voices of objection. 

Deletion 
Today, the surveillance technology has become almost manifest to (ø) 

wherever we go. 

 
Table 1: The error types with descriptions and examples. 

 

components are combined into a pipeline of cor-

rection steps to form an end-to-end correction 

system. Different types of corrections may inter-

act with each other. Therefore, only for each fo-

cus word in a sentence will pass the filter and 

predict by the system. 

Take the sentence for example, “The patent 

applications do not need to be censored.”, if the 

word “applications” is changed to “application” 

(Nn error) by a correction module, then the fol-

lowing auxiliary verb “do” should be revised to 

“does” (SVA error) accordingly. That is, if a mis-

take is introduced by a component in the prior 

step, subsequent analyses are most likely affect-

ed negatively. To avoid the errors propagated 

into further components, we proposed to deploy 

the analytical (pipelined) components in the or-

der of Nn, ArtOrDet, Vform, SVA and Prep. 

For non-native language learners, over 90% 

usage of prepositions and articles are correctly 

used, which makes the errors very sparse (Ro-

zovskaya and Roth, 2010c) in a text, and about 

10% error is not “sparse” by the way. This factor 

severely restricts the improvement of data-driven 

systems. Different from the previous methods to 

overcome error sparsity, we explored a graph-

based label propagation method that makes use 

of the prediction on large amount of unlabeled 

data. The predicted data are then used to 

resample our training data. This semi-supervised 

method may fix a skewed label distribution in the 

training set and is helpful to enhance the models.  

The paper is organized as follows. We firstly 

review and discuss the related work. The data 

used to construct the models is described in Sec-

tion 3. Section 4 discusses the proposed model 

based on semi-supervised learning, and the over-

all hybrid system is given in Section 5. The 

methods of grammatical error detection and cor-

rection are detailed in Section 6, followed by an 

evaluation, discussion and a conclusion to end 

the paper. 

2 Related Work 

The issues of grammatical error correction have 

been discussed from different perspectives for 

several decades. In this section, we briefly re-

view some related methods. 

The use of machine learning methods to tackle 

this problem has shown a promising perfor-

mance. These methods are normally created 

based on a large corpus of well-formed native 

English texts (Tetreault and Chodorow 2008; 

Tetreault et al., 2010) or annotated non-native 

data (Gamon, 2010; Han et al., 2010). Although 

the manually error-tagged text is much more ex-

pensive, it has shown improvements over the 

models trained solely on well-formed native text 

(Kochmar et al., 2012). Additionally, both gener-

ative and discriminative classifiers were widely 

used. Among them, Maximum Entropy was gen-

erally used (Rozovskaya and Roth, 2011; 

Sakaguchi et al., 2012; Quan et al., 2012) and 

obtained a good result for preposition and article 

correction using a large feature set. Naive Bayes 
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were also applied to recognize or correct the er-

rors in speech or texts (Lynch et al., 2012). How-

ever, only using classifiers always cannot give a 

satisfied performance. Thus, grammar rules and 

probabilistic language model can be used as a 

simple but effective assistant for correction of 

spelling (Kantrowitz et al, 2003) and grammati-

cal errors (Dahlmeier et al., 2012; Lynch et al., 

2012; Quan et al., 2012; Rozovskaya et al., 

2012). 

3 Data Set 

The training data is the NUS Corpus of Learner 

English (NUCLE) that provided by the National 

University of Singapore (Dahlmeier et al., 2013). 

The NUCLE contains more than one million 

words (1,400 essays) and has been annotated 

with error-tags and correction-labels. There are 

27 categories of errors, with 45,106 errors in to-

tal. In this CoNLL-2013 shared task, five types 

of errors (around 32% of the total errors) are 

concerned. Figure 1 shows the statistics infor-

mation of error types. 

 

 
 

Figure 1. The distribution of different error types in 

the training set. 
 

As the distribution of different errors respects 

the real environment, there is a serious problem 

hidden in it. Roughly estimated, the ratio be-

tween the correct and error classes in NUCLE is 

around 100:1, or even more. The imbalance 

problem may be heavily harmful to machine 

learning methods. Therefore, researchers (Ro-

zovskaya et al., 2012; Dahlmeier et al., 2012) 

provided several approaches such as reducing 

correct instances to deal with error sparsity. In-

stead of downsampling the data, we try to up-

sample error instances. Different from UI system 

(Rozovskaya et al., 2012) which simulates learn-

ers to make mistakes artificially, we propose a 

semi-supervised learning method that makes use 

of a large amount of unlabeled data which is easy 

to collect. In practice, semi-supervised learning 

requires less human effort and gives higher accu-

racy in creating a model.  

4 Error Examples Expansion Using 

Graph-Based Label Propagation  

As mentioned before, the corpus contains a low 

amount of error examples, which results in a 

high sparsity in the label distribution. In reality, 

the balance between the error and correct data is 

crucial for training a robust grammar detection 

models. Our experiment results demonstrate that 

too many correct data lead to unfavorable error 

detection rate. In order to resolve this obstacle, 

this paper introduces to using external data 

sources, i.e., a large amount of easily accessible 

raw texts, to automatically achieve more labeled 

example for training a stronger model. This pa-

per employs transductive graph-based semi-

supervised learning approach. 

4.1 Graph-Based Label Propagation 

Graph-based label propagation is one of the criti-

cal subclasses of SSL. Graph-based label propa-

gation methods have recently shown they can 

outperform the state-of-the-art in several natural 

language processing (NLP) tasks, e.g., POS tag-

ging (Subramanya et al., 2010), knowledge ac-

quisition (Talukdar et al., 2008), shallow seman-

tic parsing for unknown predicate (Das and 

Smith, 2011).  This study uses graph SSL to en-

rich training data, mainly the examples with in-

correct tag, from raw texts.  

This approach constructs a k nearest-neighbor 

(k-nn) similarity graph over the labeled and un-

labeled data in the first step. The vertices in the 

constructed graph consist of all instances (feature 

vector) that occur in labeled and unlabeled text, 

and edge weights between vertices are computed 

using their Euclidean distance. Pairs of vertices 

are connected by weighted edges which encode 

the degree to which they are expected to have the 

same label (Zhu, 2003). In the second step, label 

propagation operates on the constructed graph. 

The primary objective is to propagate labels from 

a few labeled vertices to the unlabeled ones by 

optimizing a loss function based on the con-

straints or properties derived from the graph, e.g. 

smoothness (Zhu et al., 2003; Subramanya and 

Bilmes, 2008; Talukdar et al., 2009), or sparsity 

(Das and Smith, 2012). This paper uses propaga-

tion method (MAD) in (Talukdar et al., 2009).  

Vform

9%
SVA

10%

ArtOrDet

42%

Nn

24%

Prep

15%
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Figure 2. Workflow of our proposed system. 

4.2 Implementation 

In this paper, the labeled data is taken from NU-

CLE corpus. They are regarded as the “seed” 

data, including 93,000 correct and 1,200 incor-

rect instances. The unlabeled data is collected 

from the English side of news magazine corpus 

(LDC2005T10). Based on that, a 5-NN similarity 

graph is constructed. With the graph and the 

properties of the labeled data derived from the 

NUCLE, the MAD algorithm is used to propa-

gate the error-tag (label) from labeled vertices to 

the unlabeled vertices. Afterwards, the unlabeled 

examples with incorrect tag are added into the 

original training data for training. 

5 System Description 

This section describes the details of our system, 

including preprocessing of training set, confusion 

set generating, classifier training and language 

models building. The grammatical error correc-

tion procedure is shown in Figure 2. 

5.1 Preprocessing 

As mentioned in Section 3, there is a large 

amount (68%) of other error types which may 

result in new errors or confuse the system with 

wrong information in correction. In order to 

make the best use of the corpus, it needs to filter 

all errors not covered by the CoNLL 2013 shared 

task, and then generate a separate corpus for each 

error type. Therefore, we recovered other irrele-

vant errors accordingly. For each error type, we 

also recover other 4 types of errors, and then we 

got a pure training data set which only includes 

one error type.  

For the misspelled problem, we used an open 

source toolkit (JMySpell
2
) which allows us to 

use the dictionaries form OpenOffice. JMySpell 

                                                 
    

2
 Available at https://kenai.com/projects/jmyspell. 

gives a list of suggestion candidate words, and 

we select the first one to replace the original 

word.  

5.2 Confusion Set Generating 

Confusion sets include the correction candidates 

which are used to modify the wrong places of a 

sentence. We generated a confusion set for each 

type of error correction component.  

The confusion set for Nn, Vform and SVA was 

built on Penn Treebank
3
. The format can be de-

scribed as that each prototype word follows all 

possible combinations with Part-Of-Speech (POS) 

and variants. For instance, the format of the word 

“look” in confusion set should looks like “look 

look#VB look#VBP looking#VBG looks#VBZ 

looked#VBN look#NN looks#NNS”. The proto-

type “look” and POS are the constraints for 

choosing the correct candidate. In order to quick-

ly find the candidates according to each detected 

error place, we indexed the confusion set in Lu-

cene
4
 which is another open source toolkit with a 

high-performance, full-featured text search en-

gine library. 

For ArtOrDet and Prep, the confusion sets are 

manually created because the possible modifica-

tions are not so many which are discussed in 

Section 6.1 and 6.2. 

5.3 Maximum Entropy Classifier 

The machine learning algorithm we used to train 

the detection models is Maximum Entropy (ME), 

which can classify the data by giving a probabil-

ity distribution. It is similar to multiclass logistic 

regression models, but much more profitable 

with sparse explanatory feature vectors. For ME 

classifier, the feature of text data is suitable for 

training the model, so we choose it as our detec-

tion classifier.  

                                                 
    

3
 Available at http://www.cis.upenn.edu/~treebank/. 

    
4
 Available at http://lucene.apache.org/. 
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We employed Stanford Classifier
5
 which is a 

Java implementation of maximum entropy 

(Manning & Klein, 2003).  

5.4 N-gram Language Model 

The probabilistic language model is constructed 

on Google Web 1T 5-gram corpus (Brants and 

Franz, 2006) by using the SRILM toolkit 

(Stolcke, 2002). All generated modification can-

didates are scored by it and only candidates that 

strictly increase than a threshold can be kept.  

The normalized language model score is de-

fined as 

1
log Pr( )lmscore s

s
                 (1) 

in which s is the corrected sentence and |s| is the 

sentence length in tokens (Dahlmeier et al., 

2012). 

6 Grammatical Error Correction 

6.1 Article and Determiner 

The component for ArtOrDet task integrates with 

the language model and rule-based techniques. 

Language models are constructed to select the 

best candidate from a confusion set of possible 

article choices {a, the, an, ø}, given the pre-

corrected sentence. Each Noun Phrase (NP) in 

the test sentence will be pre-corrected as correc-

tion candidates. However, only using a language 

model to determine the best correction will often 

result in a low precision, because a certain 

amount of correct usages of ArtOrDet are mis-

judged. 

In order to avoid this problem, we proposed a 

voting method based on multiple language mod-

els. We integrated two separate language models: 

one was converted from the large Google corpus 

(general LM) and the other one was constructed 

from a small in-domain corpus (in-domain LM). 

Additionally, the in-domain corpus involves two 

parts. One is the training data which has been 

totally corrected according to the gold answer. 

The other one includes the sentences which are 

similar to the test set. We extracted them from 

some well-formed native English corpora such as 

English News Magazine of LDC2005T10
6
 using 

term frequency-inverse document frequency (TF-

IDF) as the similarity score. Each document Di is 

                                                 
    

5
 Available at 

http://nlp.stanford.edu/software/classifier.shtml. 

    
6
 Available at http://www.ldc.upenn.edu/Catalog/catalog 

Entry.jsp?catalogId=LDC2005T10. 

represented as a vector (wi1, wi2,…, win), and n is 

the size of the vocabulary. So wij is calculated as 

follows: 

 )log( jijij idftfw   (2) 

where tfij is term frequency (TF) of the j-th word 

in the vocabulary in the document Di, and idfj is 

the is the inverse document frequency (IDF) of 

the j-th word calculated. The similarity between 

two sentences is then defined as the cosine of the 

angle between two vectors.  

Each candidate sentence will be scored by 

these two LMs and compared with a threshold. 

Only if both of the LMs agree, the modification 

will be kept. We believe this method could filter 

a lot of wrong modification and improve the pre-

cision. 

6.2 Preposition 

For Prep error type, we used the same method as 

ArtOrDet. The only difference is confusion ma-

trix. Our system corrects the unnecessary, miss-

ing and unwanted errors for the five most fre-

quently prepositions which are in, for, to, of and 

on. While developing our system, we found that 

adding more prepositions did not increase per-

formance in our experiments. Thus the confusion 

set is {in, for, to, of, on, ø}. 

6.3 Noun Number 

A single noun in the sentence that is hard to dis-

tinguish whether it is singular or plural, so we 

treat a noun phrase as a observe subject. Our 

strategy of correcting noun number error is to use 

a filter contains rule-based and machine learning 

method. It can filter a part of nouns that absolute-

ly right, and the rest of nouns will be detected by 

the language model generated by SRILM
7
. 

The rule-based filter of our system contains 

several criteria. It can detect the noun phrase by 

article, i.e. it can simply find out that the noun is 

singular which with an article of “a” or “an”. 

The determiner and cardinal number also will be 

taken into consider by the rule-based model such 

as “I have three apple.”, then system can find out 

the “apple” should be “apples”. The correct noun 

will keep the original one, and the incorrect noun 

will be replaced with a new candidate. 

After the first level filtering by the rules, the 

rest of noun phrases are indeterminacy by system. 

Therefore, we use a ME classifier for further fil-

tering. We use lexical, POS and dependency 

                                                 
    

7
 http://www.speech.sri.com/projects/srilm/. 
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parse information as features. The features are 

listed in Table 2.  

In previous steps, most of the error can be de-

tected, but also it may give a lot of wrong sug-

gests, in order to reduce this situation, we use N-

gram language model scorer to evaluate on the 

candidates and choose the highest probability 

one. 

 

Feature Example 

Observer word 

Word (w0) resource 

POS (p0) NN 

First word in NP 

Word (wNP-1st) a 

POS (pNP-1st) DT 

Dependency Relation det 

Previous word before observed word 

Word (w-1) good 

POS (p-1) JJ 

Word after observed word 

Word (w1) and 

POS (p1) CC 

Head word of observed word 

Word (whead) water 

POS (phead) NN 

Dependency relation rcomd 

Word Combination 

w0 + wNP-1st resource + a 

w0 + w-1 resource + good 

w0 + w1 resource + and 

w0 + whead resource + water 

wNP-1st + whead a + water 

POS Combination 

p0 + pNP-1st NN + DT 

p0 + p-1 NN + JJ 

p0 + p1 NN + CC 

p0 + phead NN + NN 

pNP-1st + phead DT + NN 

 
Table 2: Features for Nn and the example: “An exam-

ple is water which is a good resource and is plentiful.” 

6.4 Verb Form 

Determining the correct form of a verb in Eng-

lish is complex, involving a relatively wide range 

of choices. A verb can have many forms, such as 

base, gerund, preterite, past participle and so on. 

To detect the tense of verb error is much more 

related to the semantics level than syntax level. 

Therefore, it is hard to extract a common feature 

for training model. We chose to separate it into 

several problems and use rule-based model to do 

the Vform correction. 

For auxiliary verbs, there are three categories, 

one is modal verbs (do, can, may, will, might, 

should, must, need and dare), the other is the 

form of “be” and “have”. In a verb phrase, nor-

mally modals precede “have” and “be”, and 

“have” proceed “be”, then we can get the order-

ing like this: Modal, Have, Be. Auxiliary verbs 

can incorporate with other verbs, and have dif-

ferent combination. Based on the previous study 

of the core language engine (Alshawi, 1992), we 

define the rules that contain the type of verb, 

which tense of verbs can be used with, and their 

entries in the lexicon. For example: 

 
(can (aux (modal) (vform pres)  (COMPFORM bare)) 

 

This means “can” is a modal verb, it can be 

used with a verb that in the present tense, when 

“can” used alone with the main verb should as 

complement the base (bare) form. In here, the 

COMPFORM attribute is the entry condition in 

the grammar.  

6.5 Subject-Verb Agreement 

The basic principle of Subject-Verb Agreement 

is singular subjects need singular verbs; plural 

subjects need plural verbs, such as following sen-

tences: 

My brother is a nutritionist. 

My sisters are dancers. 

Therefore, the subject of the sentence is the 

key point. To decide whether the verb is singular 

or plural should look into the context and find 

out the POS of the subject. We utilize the exist-

ing information given by NUCLE to extract the 

subject of the verb. For example, the sentence 

“Statistics show that the number are continuing 

to grow with the existing population explosion.” 

Figure 3 shows the parse tree of this sentence. 

 
Figure 3. Parse tree of the example sentence. 

Root
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NP1
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VBP1NNPS
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IN1
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…DT2 NN2 VBP2
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.

.
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Through Figure 3, the observed words are 

“show” and “are”, the subjects are “statistics” 

and “number” respectively that we can conclude 

“statistics” should use plural verb and “number” 

should use singular verb “is” instead of “are”. 

The other features extracted for training are 

listed in Table 3. 

 

Feature Example 

Observer word 

Word (w0) are 

POS (p0) VBP 

Subject NP 

First word (wNP-1st) the 

POS of first word (pNP-1st) DT 

Head word (wNP-head) number 

POS of head word (pNP-head) NN 

Previous word before observed word 

Word (w-1) number 

POS (p-1) NN 

NP after observed word 

First word (wNPa-1st) the 

POS of first word (pNPa-1st) DT 

Head word (wNPa-head) explosion 

POS of head word (pNPa-head) NN 

Word combination 

w0 + wNP-1st are + the 

w0 + wNP-head are + number 

w0 + w-1 are + number 

w0 + wNPa-1st are + the 

w0 + wNPa-head are + explosion 

POS combination 

p0 + pNP-1st VBP + DT 

p0 + pNP-head VBP + NN 

p0 + p-1 VBP + NN 

p0 + pNPa-1st VBP + DT 

p0 + pNPa-head VBP + NN 

 

Table 3: Features for SVA and the example: “Statis-

tics show that the number are continuing to grow with 

the existing population explosion.” 

 

The purpose of extracting the noun phrase af-

ter the observed word is in the situation of the 

subject is after the verb, such as “Where are my 

scissors?”, “scissors” is the subject of this sen-

tence. 

7 Evaluation and Discussion 

The evaluation is provided by the organizer and 

generated by M
2
 scorer (Dahlmeier & Ng, 2012). 

The result consists of precision, recall and F-

score. Our grammatical error correction system 

has proposed 1,011 edits. The evaluation result 

of our system output for the CoNLL-2013 test 

data is shown in Table 4. 

 

Results Precision Recall F-score 

Before 

Revision 
0.2849 0.1753 0.2170 

After  

Revision 
0.3712 0.2366 0.2890 

 
Table 4: Evaluation result of Precision, Recall and F-

score. 

 

Error Type Error # Correct # % 

ArtOrDet 690 145 21.01 

Nn 396 92 23.23 

Vform 122 8 6.55 

SVA 124 37 29.83 

Prep 311 6 1.93 

 
Table 5: Detail information of evaluation result (Be-

fore Revision). 

 

Error Type Error # Correct # % 

ArtOrDet 725 177 24.42 

Nn 484 132 27.27 

Vform 151 16 10.60 

SVA 138 47 34.06 

Prep 325 9 2.77 

 
Table 6: Detail information of evaluation result (After 

Revision). 

 

The data in table 5 and 6 are the detailed in-

formation for each error type which was calcu-

lated by us, the table 5 is the data before revision, 

and the table 6 is that after revision. Second col-

umn is the amount of the gold edits, and the third 

column is the amount of our correct edits, and 

the last column is the percentage of correct edits. 

We analyzed the results in detail, and found sev-

eral critical reasons of causing low recall. Firstly, 

the five error types are associated relatively, if 

one is modified, it may cause a chain reaction, 

such as the article will affect the noun number, 

and the noun number will cause the SVA errors. 

Some Nn errors still cannot be detected or given 

a wrong correction by our system, which de-

creases the precision and recall of SVA. Another 

reason is our system does not perform well in 

Vform and Prep error correction. In our output, 

just a few errors have been revised. This means 

the quantity of correction rules is not enough that 

cannot cover all the linguistic phenomena. For 
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instance, the situation of missing verb or unnec-

essary verb cannot be detected. On the other 

hand, the hybrid method of our system has fil-

tered some wrong suggestion candidates that im-

prove the precision. 

8 Conclusion 

We have presented the hybrid system for English 

grammatical error correction. It achieves a 28.9% 

F1-score on the official test set. We believe that if 

we find more appropriate features, our system 

can still be improved and achieve a better per-

formance. 
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Abstract
We present an approach to grammatical er-
ror correction for the CoNLL 2013 shared
task based on a weighted tree-to-string
transducer. Rules for the transducer are
extracted from the NUCLE training data.
An n-gram language model is used to
rerank k-best sentence lists generated by
the transducer. Our system obtains a pre-
cision, recall and F1 score of 0.27, 0.1333
and 0.1785, respectively, on the official
test set. On the revised annotations, the
F1 score increases to 0.2505. Our system
ranked 6th out of the participating teams
on both the original and revised test set an-
notations.

1 Introduction

There has recently been an increase in research on
automated grammatical error detection and correc-
tion for writing by English language learners (Lea-
cock et al., 2010). In the most prominent line of
research, statistical classifiers are trained to de-
tect or correct specific error types. Features for
these classifiers are based on word context and lo-
cal syntactic information. The classifiers are com-
bined, and a language model is often used to filter
corrections. Research on this approach focusses
especially on preposition and determiner errors.
Most of the systems in the HOO 2011 and 2012
shared tasks (Dale and Kilgarriff, 2011; Dale et
al., 2012) fall under this broad approach.

In a second class of models, a model for gen-
erating corrected sentences is formulated in the
noisy-channel framework, relying strongly on a
language model to distinguish between grammati-
cal and ungrammatical candidate corrections (Lee
and Seneff, 2006; Turner and Charniak, 2007;
Park and Levy, 2011). Such models are often in-
spired by techniques developed for statistical ma-
chine translation (Brockett et al., 2006). Finally,

rule-based methods are often used in commercial
language processing systems such as word pro-
cessors. Here large hand-crafted linguistically ex-
pressive, error-tolerant grammars are used to anal-
yse sentences and identify where constraints have
been broken.

In this paper we present our system for the
CoNLL 2013 shared task in grammatical error cor-
rection (Ng et al., 2013). Our grammar correction
model is based on a tree-to-string transducer that
is specified by a set of rules that each rewrite a
tree fragment to a string of words and variables.
These rules are extracted automatically from a set
of training examples. Each training example con-
sists of an incorrect sentence, a corresponding cor-
rect sentence with its parse tree, and a word align-
ment between the incorrect and correct sentences.
During decoding the model searches for parsed
well-formed sentences that could be transformed
into a given incorrect sentence with high probabil-
ity. Sentences are split into linguistically plausible
clauses to decrease the average sentence length, in
order to improve decoding runtime. In order to
discriminate more accurately between candidate
sentence corrections an n-gram language model
trained on a large corpus of well-formed text is
used to rerank the k-best hypotheses that the trans-
ducer model generates. The tree transducer and
language model scores are weighted to maximize
the model F1 score on a validation set. After de-
coding the clauses are recombined into the original
sentence structure.

The next section describes preprocessing and
the resources used by our system. Section 3
defines weighted tree-to-string transducers. We
present the formulation of our error correction
model in section 4, and discuss decoding with it
in section 5. Section 6 describes language model
reranking. System results are given in section 7.
Finally, section 8 draws some conclusions and dis-
cuss future work.
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2 Data Pre-processing

2.1 NUCLE
We use the pre-processed version of the NUCLE
corpus (Dahlmeier et al., 2013) released as train-
ing data for this shared task. The data con-
sist of essays, subdivided into paragraphs. Us-
ing NLTK (Bird et al., 2009), paragraphs were
split into sentences with NLTK punkt and sen-
tences were tokenized with NLTK word tokenize.
Though this sentence-splitting and tokenization is
not error-free (for example, quotation marks are
handled incorrectly in some contexts), we use it to
maintain consistency in our model. An error anno-
tation in the data consists of the start and end token
offsets in a sentence, as well as the correction that
should replace the text between the offsets.

We divide the corpus into 80% training data,
10% validation data and 10% development data.
Splitting is performed by random selection at es-
say level. For each sentence with corrections, we
refer to the original as the incorrect sentence, and
to the version with the corrections applied to it
as the correct sentence. For the purpose of train-
ing our models, all words are lowercased. As de-
scribed below, we also construct an alignment be-
tween the words of each of these sentence pairs.

The 2013 shared task focusses on five error
types: Article or determiner, preposition, noun
number, verb form, and subject-verb agreement
errors. In the training data we only apply correc-
tions of these types to obtain the correct version
of the sentences, though other error types are also
included in the error annotations. An alternative
would be to apply the corrections of other error
types to the correct and incorrect versions of the
sentences. However, we decided against that in or-
der to keep the training data realistically close to
the test data, which will also contain these other er-
rors. We do, however, correct some of the mechan-
ical errors, especially spelling errors, in the incor-
rect and correct versions of the training data, to
reduce noise that these errors may introduce into
the model.

In order to train a syntax-based model for gram-
mar correction, the correct version of the sen-
tences are parsed with the Berkeley parser (Petrov
and Klein, 2007). The Berkeley parser is a state-
of-the-art unlexicalized parser. Given that the cor-
rect side of our training data will still contain er-
rors, it is unlikely that lexicalized parsing will be
more accurate. Parser options are set to obtain left-

binarized parse trees under Viterbi decoding.

2.2 Wikipedia language model

We train the n-gram language model used in our
system on a large corpus of text extracted from
the English Wikipedia. The April 2013 Wikipedia
XML dump1 is used. This is parsed with the
gwtwiki2 Wikipedia parser, and all sentences con-
sisting of 6 or more words are extracted. These
sentences are tokenized with NLTK and lower-
cased. The corpus has about 1 500 millions words.
As vocabulary we use the 64 000 words with the
highest frequency occurrence in the corpus. A
3-gram language model is trained from the cor-
pus on this restricted vocabulary, to keep the size
of the language model reasonable. The language
model is trained and applied with the SRILM
toolkit (Stolcke, 2002). Kneser-Ney smoothing is
used to estimate the model weights.

2.3 Vocabulary

We set the vocabulary of the transducer model as
the union of the vocabulary of our language model
and the vocabulary of the words of the correct sen-
tences in the NUCLE training data. In the trans-
ducer construction we ensure that all words in this
vocabulary can be accepted. A large number of
URLs occur in the training data, as citations are
included in some of the essays. We replace these
with a <url> symbol to reduce noise in the vo-
cabulary.

In the validation, development and test data,
words that do not appear in the vocabulary are re-
placed with an <unk> symbol. We record the re-
placed words, so that after decoding they can be
replaced back to their original positions. We do
not perform automatic spelling correction on the
test data as a preprocessing step: The occurrence
of out of vocabulary words is small enough that
performing spelling correction will not have a sig-
nificant impact on the performance of our system.

We use the NLTK interface to WordNet (Miller,
1995) to find pairs of singular and plural nouns
and groups of verbs that have the same base form.
All verbs and non-proper nouns that occur in the
language model vocabulary are grouped like this.
The groups are used to construct additional rules
for noun number and verb form errors.

1http://download.wikimedia.org/enwiki/
latest/enwiki-latest-pages-articles.xml.
bz2

2http://code.google.com/p/gwtwiki/

44



3 Weighted Tree-to-string Transducers

Tree transducers are a class of automata-theoretic
models that perform transformations on tree struc-
tures. There is a rich theory concerning these mod-
els, and tree transducers with different restrictions
can compute different classes of transformations.
Algorithms for weighted variants of these trans-
ducers have recently been developed (Graehl et al.,
2008; May, 2010) and applied to syntax-based sta-
tistical machine translation.

Tree-to-string transducers are a class of tree
transducers that generalizes synchronous context-
free grammars. These transducers can be used to
transform strings into trees: For a given output
string, the decoding problem is to find the input
tree that could be transformed into the given string
with the highest probability. This decoding pro-
cess is referred to as backward application. The
formulation is due to the noisy-channel model of-
ten followed in statistical machine translation.

3.1 Definitions

We need a few preliminary definitions (the no-
tation of May (2010) is generally followed): A
ranked alphabet Σ is a finite set of symbols, each
which can take a finite set of ranks. A tree t ∈
TΣ is denoted by σ(t1, . . . , tk), where k ∈ N,
t1, . . . , tk ∈ TΣ and σ is a node of rank k. Σk

denotes the subset of Σ of all symbols with rank
k. TΣ(S) is the set of all trees in TΣ∪S where
symbols from S occur only at the leaves. We do-
nate by X = {x1, x2, . . .} a set of variables, and
Xk = {x1, . . . , xk}. With respect to Xk, a tree
u ∈ TΣ(Xk) or a sequence u ∈ (∆∪ (Q×X))∗ is
linear if each element of Xk occurs at most once
in u, and nondeleting if each element ofXk occurs
at least once in u.

Formally, a weighted extended top-down
tree-to-string transducer M is a 5-tuple
(Q,Σ,∆, R,Qd) (May, 2010, chap. 2). Q is
an alphabet of states that all have rank one. Σ
and ∆ are the ranked input and output alphabets,
respectively. Qd is the set of initial states. R
is a finite set of rules with an associated weight
function π : R → W . Each rule r ∈ R is of
the form q.t → g for q ∈ Q, t ∈ TΣ(X) and
g ∈ (∆ ∪ (Q ×X))∗. The tree t should be linear
in X , and each variable in g should also be in t.

We refer to q.t as the left hand side of a rule, and
to g as the right hand side. M is linear if the right
hand side of each rule is linear, and nondeleting if

the right hand side of each rule is nondeleting with
respect to Xk, the set of variables on the left hand
side.

For a rule r : q.t → g and e, f ∈ (∆ ∪ (Q ×
TΣ))∗, a derivation step e ⇒r f is obtained by
replacing the left-most element of e of the form
q(s), where s matches t, by a transformation of
g, where each instance of a variable is replaced
with the corresponding subtree of s. The sequence
d = (r1, . . . , rm) is a derivation of the pair (t, s)
if t ⇒r1 t1 ⇒r2 . . . ⇒rm s, where ti ∈ (∆ ∪
(Q × TΣ))∗ for 1 ≤ i < m. The weight of d is
wt(d) = π(r1) · . . . · π(rm).

The tree transducer that we use is a weighted
linear, nondeleting top-down tree-to-string trans-
ducer. The expressive power of this transducer
class is sufficient for the transformations that we
need our model to perform. Relaxing these re-
strictions will increase the decoding complexity
of the transducer model significantly. Since we
work with binarized trees, no node will have a rank
greater than 2. Our transducer only has one state,
q. Look-ahead restrictions are added to restrict the
variables on the left hand side to match specific
constituents.

3.2 Probability model
A tree-to-string transducer can represent a condi-
tional probability model for the output sentences
given the input trees, or a joint probability model
over the input trees and output strings. We will
use a joint probability distribution for our model.
Note that there is spurious ambiguity in the model
at two levels: Firstly, it is possible that there can
be different derivations for the same tree-string
pair. However, during the application of the model
this ambiguity occurs infrequently. Secondly, the
model can generate different trees with the same
yield.

Suppose c is a correct sentence in the set C of
all possible correct sentences, and i is the given
(possibly) incorrect sentence. Let τ(c) represent
the set of all possible parse trees of c. Then we
want to find sentence

ĉ = arg max
c∈C

P (c, i) (1)

= arg max
c∈C

Σπ∈τ(c)P (π, i) (2)

The rule probabilities for the joint model are
conditioned on the root node of the rule left hand
side (and not on the entire left hand side, as would
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be the case for a conditional model). The model is
trained from a set of derivations constructed from
the training data, as will be described below. Let
f(r) be the number of times that rule r occurs in
all the training derivations. Then the probability
estimate of a rule is

p(r|root(r)) =
f(r)

Σr′:root(r′)=root(r)f(r′)
(3)

In the construction of the transducer, some rules
that do not occur in the training derivations are
added. In order to give non-zero weights to
these added rules, we apply Good-Turing smooth-
ing (Katz, 1987). This method has the advantage
of decreasing the counts of low-frequency rules
whose rule counts may provide unreliable prob-
ability estimates. For the rules of each of the root
nonterminals, the counts of rules with frequencies
between 0 and 5 are re-estimated.

4 Transducer Model Formulation

4.1 Word alignment
In order to extract rules from the training data
to perform transformations between incorrect and
correct sentences, we need to construct an align-
ment between words in each pair of correct and
incorrect sentences. This approach is similar to
aligning words in source and target language sen-
tences for statistical machine translation. We con-
struct the alignments from given sequences of edit
operations in the training data. Figure 1(a) gives
an example of a parse tree for a correct phrase,
aligned with a corresponding incorrect phrase.

Firstly, all words in a sentence that do not oc-
cur in any edits are aligned one-to-one between
the correct and incorrect sentence. In the example,
“that”, “up” and “across” are aligned in this way.
Then, for each edit annotation, we consider the in-
correct and correct phrases of that edit. Note that
in the NUCLE annotations the incorrect phrase
will always be non-empty, but the correct phrase
may be empty.

Words that occur in both the correct and incor-
rect edit phrases are aligned one-to-one. We re-
strict such alignments to prevent overlapping. In
the example in Figure 1(a), there is an edit to re-
place “the America” with “America”, so the word
“America” is aligned. Adding these alignments
may split a phrase into unaligned subphrases. If
such a subphrase is empty on either side, then the
word(s) on the other side have to be left unaligned.

(a)

SBAR

S

VP

PP

NP

NNP

America

IN

across

@VP

PRT

RP

up

VBD

sprang

WHNP

WDT

that

that sprung up across the America

(b)
(1) q.WDT (that)→ that
(2) q.VP (x0:@VP x1:PP)→ q.x0 q.x1
(3) q.VBD (sprang)→ sprung
(4) q.SBAR (x0:WHNP x1:S)→ q.x0 q.x1
(5) q.PP (x0:IN x1:NP)→ q.x0 the q.x1
(6) q.NNP (America)→ America

Figure 1: (a) Example alignment between a cor-
rect parse tree and an incorrect clause. (b) Some
rules extracted from the example.

In the example, “the” will be unaligned. But if the
subphrases are non-empty on both sides, then all
the words on the incorrect side are aligned to all
the words on the correct side of the subphrase. In
many instances, this will occur for single word re-
placements. In the example, “sprung” is aligned
with “sprang” in this manner.

4.2 Rule extraction

We follow the GHKM transducer rule extraction
algorithm described in (Galley et al., 2004) and
(Galley et al., 2006). Given a training example
(π, i, a), where π is the correct tree, i the incorrect
sentence and a the alignment, rules are extracted
for a tree-to-string derivation of (π, i) that is min-
imally consistent with the alignment a. Counts
of how many times each rule is extracted over all
the training examples are used to estimate the rule
probabilities. A training example is represented as
a directed graph as in Figure 1(a), with the edges
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going downward.
For each of the nodes in π, we compute a span

and a complement span with respect to the nodes
in i. The span of a node n is defined by the indexes
of the first and last words in f that are reachable
from n. The spans of the leaves in the tree (the
words of the correct sentence) are defined by a,
and the spans of the other nodes can be computed
bottom-up for each node from the spans of its child
nodes. The complement span of n is the union of
the spans of all nodes that are neither ancestors nor
descendants of n. The complement spans can be
computed top-down for each node by taking the
union of the complement span of its parent and
the spans of its siblings. Nodes whose spans and
complement spans do not overlap, are called fron-
tier nodes. From each frontier node, a rule can be
extracted: The left hand side of the rule is a subtree
rooted at n. The subtree is extracted by traversing
π top-down from n, replacing all frontier nodes
reached with variables (as more rules will be ex-
tracted from there). The right hand side is formed
by the words of the span of n of the incorrect side,
with the span of each left hand side frontier node
replaced by the corresponding variable.

Figure 1(b) gives sample rules extracted from
the training example in Figure 1(a). In the example
tree, all the constituent nodes are frontier nodes,
as there are no complex rewrites. For constituents
under which no changes are made, CFG-like rules
such as (1) and (2) are extracted. In the case
where a single word is substituted (in the example,
“sprang” with “sprung”), a rule for this substitu-
tion will be extracted (3). If there were no align-
ment between these words, the algorithm would
have attached the word “sprung” to the rule headed
by SBAR (4), which would clearly not have been
linguistically sensible. In the case of the deletion
of a word in the incorrect sentence, that word will
left be unaligned (“the” in the example). The rule
for this word (5) will have as head the lowest node
that spans the words in i to the left and right of
the unaligned word – in the example, the PP node.
Rewrite rules for aligned words in phrase edits are
also extracted (6).

4.3 Additional rules

We add rules to the transducer that involve words
in the vocabulary. Whichever of these rules have
not already been extracted from the training data
will be assigned a rule count of 0, otherwise their

Non-lexicalized
q.S (x0:NP x1:VP)→ q.x0 q.x1 −0.596
q.S (x0:VP x1:VP)→ q.x0 q.x1 −5.781

q.VP (x0:VP x1:SBAR)→ q.x0 q.x1 −3.723
Word identity

q.NN (work)→ work −2.614
q.VBP (work)→ work −2.475

q.DT (the)→ the −0.183
Single word substitution

q.NN (work)→ works −4.343
q.VBP (work)→ working −4.541
q.VBZ (works)→ work −4.802

q.DT (the)→ a −3.100
q.IN (of )→ from −3.901

Phrase substitution
q.NP (DT (the) NN (right))→ rights −5.109

q.VP (VBG (being) VP (VBN (researched)))
→ under researching −6.272

Context-sensitive phrase substitution
q.VP (TO (to) VP (VB (work) x0:PP))

→ working q.x0 −6.272
q.PP (IN (in) S (VP (VBG (generating) x0:NP)))

→ to generate q.x0 −5.480
Context-sensitive word insertion and deletion

q.NP (DT (the x0:NN)→ q.x0 −2.634
q.VP (VBZ (has) x0:VP)→ q.x0 −5.202

q.VP (x0:VB x1:NP)→ q.x0 into q.x1 −5.203

Table 1: Example transducer rules by type, with
log probability weights.

rule counts will be left unchanged.
We need to ensure that there are lexical rewrite

rules for all the words in our vocabulary. For each
of the words in the vocabulary we find one or two
possible part-of-speech tags, using the NLTK POS
tagger. We add word identity rules in the form of
the examples in Table 1. An identity rule is also
added for the <unk> symbol.

Additional rules are added for noun number and
verb form errors, using the word groups extracted
from the vocabulary and WordNet. These rules
perform substitutions between singular and plural
nouns (in both directions) and between verbs with
the same base forms. Subject-verb agreement er-
rors are also concerned with the verb form in the
sentence, so added verb form rules will also be ap-
plicable to such errors. Examples of these single
word substitutions are given in Table 1. Since de-
terminer and preposition errors are restricted to a
relatively small number of possible substitutions,
we assume that all relevant rules involving these
errors have already been extracted from the train-
ing data.

See Table 1 for rule examples categorized by
the type of rewrite the rule performs. Examples
of rules for all the error types under consideration
are included. Log probability rule weights are also
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given. Phrase substitution rules can be fully lexi-
cal (without variables) or context-sensitive (when
they have variables). Word insertions and dele-
tions will always be context-sensitive.

5 Transducer Model Decoding

5.1 Sentence to clause splitting

A challenge to our transducer model on the NU-
CLE dataset is the length of sentences. On the
training data, 46% of sentences have length greater
than 20 and 13% have length greater that 30.
The decoding time of our model increases sharply
when the length of sentences becomes greater than
20. For lengths greater that 30 decoding is not
practically feasible on our available computational
resources. In order to address this problem, we
perform linguistically motivated sentence splits to
decrease the length of sentences passed to the de-
coder. Clauses that are still longer than 30 words
are not decoded. Decoding was performed on a
desktop computer with 8GB RAM. To keep the
overall decoding time reasonable, we restrict de-
coding to take no more than 1 minute per sentence
on average.

Sentence splitting is based on constituency
parses (obtained with the Berkeley parser) of the
incorrect sentences under consideration. Sen-
tences are split at clause level, using the heuristics
described below. The goal is to extracted clauses
that have a form similar to that of full sentences.

We distinguish between S-clauses, that are indi-
cated by S, SINV and SQ parse tree constituents,
and SBAR-clauses, indicated by SBAR or SBARQ
parse tree constituents. An SBAR-clause usually
consists of an introductory subordinating conjunc-
tion or wh-word, followed by an S-clause.

We perform splits on S-clauses. A clausal split
is performed between the phrase before the start
position of the S-clause and the phrase after that
position. If the parse tree node of the S-clause
is the child of an SBAR-clause node, the split is
performed between the phrase before the starting
position of the SBAR-clause, and the phrase after
the start of the S-clause. The introductory words in
the SBAR-clause are excluded from the extracted
clauses.

Splits are also performed between some phrases
separated by a coordinating conjunction, which is
indicated by a CC tag in the parse tree. Such a split
is performed only if the CC node is a child of an S-
clause node. The phrase before the conjunction is

split from the phrase after the conjunction, while
the conjunction itself is excluded.

After decoding and reranking has been per-
formed, the clauses are recombined to reconstruct
the original sentences. For each clause the highest-
scoring correct clause is chosen. Finally, the origi-
nal case of all the words in the sentence is restored,
as all words were lowercased in the model.

5.2 k-Best decoding

When performing decoding with the transducer
model, we need to find the highest-scoring candi-
date correct sentences, so that we can in turn find
the best sentence according to the overall model.
We found that a good trade-off between speed and
accuracy is to find a list of trees of the 1000-
best derivations for a given (incorrect) sentence.
The weights of different derivations for which the
parse trees have the same yields, are summed to
find weights for each of the hypothesis sentences.
Note that this is an approximation of the summa-
tion in equation (2), which is taken over all parse
trees with the same yield.

In our implementation the weighted tree trans-
ducer package Tiburon (May and Knight, 2006)
is used. Tiburon implements generic operations
on regular tree grammars, tree-to-tree and tree-to-
string transducers. We use Tiburon to perform de-
coding in our model, using its implementation of
backwards application and k-best decoding.

The decoding algorithm implemented by
Tiburon is based on a weighted version of the
Earley parsing algorithm (May, 2010, chap. 4).
Empirically, large rules have a detrimental impact
on the decoding speed of the algorithm. To
address this problem, we extract rules from
binarized parse trees, which results in smaller
rules than using non-binarized parse trees. In
Figure 1(a), the node @VP indicates that a bi-
narization has been performed on the subtree
VP (VBD PRT PP). All remaining rules that
have more that four variables are removed.

As the search space of the model is large, we
need to apply some heuristic pruning. Following
practices used in parsing models such as Huang
and Chiang (2005), beam search is performed.
The cell limit γ, the maximum number of hypothe-
ses that can be kept at a state in the search process,
is set to 30. The beam width β is set to 10−4. This
means that if a hypothesis score is worse than β
times the score of the best partial hypothesis found
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up to a specific point in the model, the hypothesis
is discarded. γ and β were set to make decoding
feasible on available computational resources.

The heuristic pruning may undermine some of
the advantages our model might have in taking
whole sentence analyses into account to generate
error corrections. However, we find that despite
this, the model is still able to generate hypothesis
corrections that take non-local dependencies into
consideration.

6 Language Model Reranking

Although the transducer model defines a joint
probability distribution and is therefore sufficient
to find corrections for given sentences, incorpo-
rating an n-gram language model in our system
significantly increases its performance. The main
reason for this is that the generative transducer
model alone does not have enough discriminative
power to distinguish between well-formed and un-
grammatical sentences.

6.1 Evaluation

The standard evaluation metric used for grammat-
ical error correction is precision, recall and F1
score. Changes made to a given incorrect sentence
are represented by edits. For a sample sentence,
the sufficient statistics for this evaluation metric is
the 3-tuple (#correct system edits, #system edits,
#gold standard edits). This can be summed over
all the examples being evaluated, and the preci-
sion, recall and F1 scores can be computed from
that.

The shared task uses the M2 scorer, as de-
scribed by Dahlmeier and Ng (2012). Given the
original and system sentences, possible system
edit sequences are represented with a lattice. The
edit sequence that is the best match with the gold
standard edit sequence is chosen to compute the
edit scores.

6.2 Reranking

During decoding we compute the language model
score for each of the hypothesis sentences gener-
ated by our transducer model for a given incor-
rect sentence. The log probability scores of the
transducer and language models are normalized
by the length of the incorrect sentence. In order
to weigh these two scores, the transducer score is
kept fixed, and the language model score is multi-
plied by a weight α. For a given incorrect sentence

Data set Precision Recall F1 score
Validation 0.065 0.153 0.092
Development 0.079 0.149 0.103
Test (original) 0.2700 0.1333 0.1785
Test (revised) 0.3712 0.1891 0.2505

Table 2: Model results

i and a generated set of hypothesis correct sen-
tences H(i), we want to find

ĉ = arg max
c∈H(i)

[TT (c, i) + α · LM(c)] (4)

where TT (c, i) gives the tree transducer score
and LM(c) gives the language model score. The
parameter α is set to maximize the F1 score of the
model on a validation set. Let I be the set of in-
correct sentences in this set. Then we want to find

α̂ = arg max
α

F1[Σi∈Iedits(ĉ, i, g(i))] (5)

where ĉ is given by (4) and edits is the sufficient
statistics for the F1 score of ĉ for the incorrect sen-
tence i and gold standard edits g(i).

7 Results

We now present results of the model on our val-
idation and development sets, as well as on the
official test set. A useful measure to analyze the
performance of our model is to perform oracle
reranking on the hypothesis sets generated by the
transducer model. For each sentence, the oracle
picks the hypothesis that will contribute to the best
possible F1 score. We are especially interested in
how frequently the correct sentence is among the
hypothesis sentences – this is called the hypothesis
coverage.

7.1 Development sets

On the development set, only 21% of clauses are
annotated with corrections. For clauses that have
no annotations, the hypothesis coverage is 99%,
while for clauses that have annotations the hypoth-
esis coverage is 49%. The oracle obtains a 0.64 F1
score.

We tune the value of α on the validation set to
maximize the F1 score. The best F1 score is ob-
tained with α = 1.6949. The system results on the
validation set and the development set with this α
are given in Table 2. It was found that a strong

49



Error type Development Test
recall recall

Noun number 0.2231 0.1818
Verb form 0.1839 0.1475
Article or determiner 0.1564 0.1261
Preposition 0.1655 0.0932
Subject-verb agreement 0.0957 0.1048

Table 3: Recall for each error type, on the devel-
opment set and original test set.

weight on the language model (a relatively large
α) increases the recall of the model.

A breakdown of the recall for each error type is
given in Table 3. On the development set, the best
recall is obtained for noun number errors, and the
worst for subject-verb agreement errors. A reason
for the relatively low performance on agreement
errors may be due to the constituency parse tree
representation used. In a clause, the subject noun
phrase and the predicate verb phrase, whose head
verb must agree with the subject, are in different
subtrees. This increases the difficulty in modelling
the dependency between the subject and the verb.

7.2 Test set

The test set released for this shared task consists of
1381 sentences, which we split into 2247 clauses
using the heuristic described above. The distribu-
tion of sentence lengths is very similar to that of
the training data. The number of out of vocabu-
lary words is quite small at 0.03%. The set does
not include any URLs, and the general impression
was that it is less noisy than the training data.

The system result on the test set is given in Ta-
ble 2. Scores for both the original and revised test
data annotations are given. We submitted plau-
sible corrections suggested by our system for the
gold standard revision. This contributed to a sig-
nificant increase in our model score on the revised
annotations. The model recall on the test set is
similar to that of the development on most error
types, though the preposition error recall is signifi-
cantly lower and the subject-verb agreement recall
is slightly higher. This may indicate that prepo-
sition error correction rules in the model does not
generalize well enough.

The precision of our model is significantly bet-
ter on the test set than on the development set. This
can be explained by differences in the character-
istics of the test set. The relative occurrence of

annotated errors is much higher in the test set than
in the development set: 46% of clauses have cor-
rections. It has been found previously that a low
frequency of errors increase the difficulty of the
correction task (Dahlmeier and Ng, 2011). This is
caused especially by an increase in the number of
system edits suggested for sentences that should
not be changed. Our oracle found that for sen-
tences that should not be changed, 100% of the
correct unchanged hypotheses were generated by
the tree transducer, while for sentences that should
be changed, 50% of hypothesis sets contained the
correct result. The oracle obtains a 0.75 F1 score.
The precision of the oracle model increases sig-
nificantly, from 0.65 to 0.95. Varying the choice
of α controls the trade-off between precision and
recall better on the test set than on the validation
set. These results indicate that our model is more
suited for data with the characteristics of the test
set than for data similar to the development sets.

8 Conclusion

We presented a novel approach to grammatical er-
ror correction based on tree transducers, obtaining
promising results. One of the weaknesses of our
model is handling insertions and deletions. The
model performs too many unnecessary deletions,
especially removing content words or non-article
determiners. It also has difficulty in finding edits
where insertions such as article insertions should
be performed.

For future work, ways of constructing better
rule sets for the transducer should be investigated
to take more dependencies into consideration and
to improve probability estimates. Techniques to
improve the runtime of the decoding algorithm
while minimizing the loss in accuracy caused by
heuristic pruning should be considered. Alterna-
tive approaches to reranking could also be investi-
gated. Including additional features may increase
the ability of the model to discriminate between
grammatical and ungrammatical sentences.
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Abstract

This paper describes our use of phrase-
based statistical machine translation (PB-
SMT) for the automatic correction of er-
rors in learner text in our submission to
the CoNLL 2013 Shared Task on Gram-
matical Error Correction. Since the lim-
ited training data provided for the task
was insufficient for training an effective
SMT system, we also explored alternative
ways of generating pairs of incorrect and
correct sentences automatically from other
existing learner corpora. Our approach
does not yield particularly high perfor-
mance but reveals many problems that re-
quire careful attention when building SMT
systems for error correction.

1 Introduction

Most approaches to error correction for non-native
text are based on machine learning classifiers for
specific error types (Leacock et al., 2010; Dale
et al., 2012). Thus, for correcting determiner
or preposition errors, for example, a multiclass
model is built that uses a set of features from the
local context around the target and predicts the ex-
pected article or preposition. If the output of the
classifier is the same as the original sentence, the
sentence is not corrected. Otherwise, a correction
is made based on the predicted class. This is the
de facto approach to error correction and is widely
adopted in previous work.

Building effective classifiers requires identifica-
tion of features types from the text that discrimi-
nate well correcting each specific error type, such
as part-of-speech tags of neighbouring words, n-
gram statistics, etc., which in turn require addi-
tional linguistic resources. Classifiers designed to
correct only one type of error do not perform well
on nested or sequential errors. Correcting more

than one type of error requires building and com-
bining multiple classifiers. These factors make
the solution highly dependent on engineering de-
cisions (e.g. as regards features and algorithms)
as well as complex and laborious to extend to new
types.

An attractive and simpler alternative is to think
of error correction as a translation task. The un-
derlying idea is that a statistical machine transla-
tion (SMT) system should be able to translate text
written in ‘bad’ (incorrect) English into ‘good’
(correct) English. An advantage of using this ap-
proach is that there is no need for an explicit en-
coding of the contexts that surround each error (i.e.
features) since SMT systems learn contextually-
appropriate source-target mappings from the train-
ing data. Likewise, they do not require any special
modification for correcting multiple error types se-
quentially, since they generate an overall corrected
version of the sentence fixing as much as possible
from what they have learnt. Provided the system is
trained using a sufficiently large parallel corpus of
incorrect-to-correct sentences, the model should
handle all the observed errors without any further
explicit information like previously detected error
types, context or error boundaries, and so forth.

The increasing performance of state-of-the-art
SMT systems also suggests they could prove suc-
cessful for other applications, such as error cor-
rection. In fact, SMT systems have been success-
fully used in a few such experiments, as we re-
port below. The work presented here builds upon
these initial experiments and explores the factors
that may affect the performance of such systems.

The remainder of this paper is organised as fol-
lows: Section 2 gives a summary of previous re-
search using SMT for error correction, Section 3
describes our approach and resources, and Sec-
tion 4 reports our experiments and results. Sec-
tion 5 discusses a number of issues related to the
performance of our system and reports some at-
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tempts at improving it while Section 6 includes
our official performance in the shared task. Fi-
nally, Section 7 provides conclusions and ideas for
future work.

2 Related Work

Brockett et al. (2006) describe the use of an
SMT system for correcting a set of 14 count-
able/uncountable nouns which are often confus-
ing for learners of English as a second language.
Their training data consists of a large corpus of
sentences extracted from news articles which were
deliberately modified to include typical countabil-
ity errors involving the target words as observed
in a Chinese learner corpus. Artificial errors are
introduced in a deterministic manner using hand-
coded rules including operations such as chang-
ing quantifiers (much→ many), generating plurals
(advice→ advices) or inserting unnecessary deter-
miners. Experiments show their SMT system was
generally able to beat the standard Microsoft Word
2003 grammar checker, although it produced a rel-
atively higher rate of erroneous corrections.

Similar experiments were carried out by Mizu-
moto et al. (2011) for correcting Japanese as a
second language. However, their training corpus
comprised authentic learner sentences together
with corrections made by native speakers on a so-
cial learning network website. Because the origi-
nal data has no explicit annotation of error types,
the resulting SMT system is not type-constrained.
Their results show that the approach is a viable
way of obtaining very high performance at a rela-
tively low cost provided a large amount of train-
ing data is available. These claims were later
supported by similar experiments using English
texts written by Japanese students (Mizumoto et
al., 2012)

Ehsan and Faili (2013) trained SMT systems
for correcting grammatical errors and context-
sensitive spelling mistakes in English and Farsi.
Datasets are obtained by injecting artificial errors
into well-formed treebank sentences using prede-
fined error templates. Whenever an original sen-
tence from the corpus matches one of these tem-
plates, a pair of correct and incorrect sentences
is generated. This process is repeated multiple
times if a single sentence matches more than one
error template, thereby generating many pairs for
the same original sentence. A comparison be-
tween the proposed systems and rule-based gram-

mar checkers show they are complementary, with
a hybrid system achieving the best performance.

Other approaches using machine translation for
error correction are not aimed at training SMT sys-
tems but rather at using them as auxiliary tools for
producing round-trip translations (i.e. translations
into a pivot foreign language and back into En-
glish) which are used for subsequent post-editing
of the original sentence (Hermet and Désilets,
2009; Madnani et al., 2012). This differs from
our work in that we focus on training and adapt-
ing SMT systems to make all the targeted correc-
tions sequentially rather than using them as ‘black
boxes’ on top of which other systems are built.

3 Method

We approach error correction as a translation task
from incorrect into correct English. Several SMT
systems are built using different training data
and the best one is selected for further refine-
ment. Given the CoNLL-2013 shared task spec-
ification, systems are required to correct five spe-
cific error types involving articles and determin-
ers (ArtOrDet), noun number (Nn), prepositions
(Prep), subject-verb agreement (SVA) and verb
forms (Vform) and must ignore other errors in or-
der to achieve a good score.

3.1 Data
The training data provided for the task is a sub-
set of the NUCLE v2.3 corpus (Dahlmeier et al.,
2013), which comprises essays written in English
by students at the National University of Singa-
pore. The original corpus contains around 1,400
essays, which amount to 1,220,257 tokens, but
since a portion of this data (25 essays of about 500
words each) was included in the test set, we es-
timate the remaining 1,375 essays in the training
set contain around 1,207,757 tokens. All the sen-
tences were manually annotated by human experts
using a set of 27 error types, although we used a
filtered version containing only the five types se-
lected for the shared task.

Because the size of the supplied training data
is too small to train an effective SMT system, we
used additional data from the Cambridge Learner
Corpus1 (CLC). In particular, we derived new
pairs of incorrect and correct sentences using the

1http://www.cup.cam.ac.uk/gb/elt/
catalogue/subject/custom/item3646603/
Cambridge-International-Corpus-
Cambridge-Learner-Corpus/
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publicly available scripts from the First Certificate
in English (FCE) (Yannakoudakis et al., 2011) and
others from the International English Language
Testing System (IELTS) examinations, which in-
clude mainly academic writing. These corpora
include about 16,068 sentences (532,033 tokens)
and 64,628 sentences (1,361,841 tokens) respec-
tively. Given that the error annotation scheme used
in the CLC is more detailed than the one used in
NUCLE, a mapping had to be defined so that we
could produce corrections only for the five target
error types (Table 1).

3.2 Generating Artificial Errors

Following previous approaches, we decided to in-
crease the size of our training set by introducing
new sentences containing artificial errors. This
has many potential advantages. First, it is an eco-
nomic and efficient way of generating error-tagged
data, which otherwise requires manual annotation
and is difficult to obtain. Second, it allows us to
introduce only the types of errors we want, thus
giving us the ability to imitate the original NU-
CLE data and circumvent annotation incompati-
bility. Finally, we can choose our initial sentences
so that they match specific requirements, such as
topic, length, linguistic phenomena, etc.

Again, we use a publicly available portion of the
CLC formed by all the corrected samples featured
on the English Vocabulary Profile2 (EVP) website.
These sentences come from a variety of examina-
tions at different levels and amount to 18,830 sen-
tences and approximately 351,517 tokens.

In order to replicate NUCLE errors in EVP sen-
tences as accurately as possible, we applied the
following procedure:

1. We extract all the possible correction pat-
terns from the NUCLE v2.3 gold standard
and rewrite them as correct-fragment →
incorrect-fragment. Two types of patterns are
extracted, one in terms of lexical items (i.e.
surface forms/words) and another using part-
of-speech (PoS) tags. Table 2 shows some
sample patterns.

2. For each correct sentence in the EVP (target),
we generate a pseudo-source sentence by ap-
plying zero or more of extracted rules.

2http://www.englishprofile.org/index.
php?option=com_content&view=article&id=
4&Itemid=5

Figure 1: An example of the artificial error injec-
tion process.

Our approach is very naive and assumes all
error-injection rules have equal probability.
The injection of errors is incremental and
non-overlapping. Figure 1 illustrates this pro-
cedure.

3. Lexical patterns take precedence over PoS
patterns. However, because the application of
a rule is decided randomly, a sentence might
end up being distorted by both types of pat-
terns, only one, or none at all (i.e. no er-
rors are introduced). In the last case, both
the source and target sentences contain cor-
rect versions.

4. A parallel corpus is built using the error-
injected sentences on the source side and
their original (correct) versions on the target
side.

As we explain in Section 4, this corpus is com-
bined with other training data in order to build dif-
ferent SMT systems.

3.3 Tools

All our systems were built using the Moses SMT
system (Koehn et al., 2007), together with Giza++
(Och and Ney, 2003) for word alignment and the
IRSTLM Toolkit (Federico et al., 2008) for lan-
guage modelling. For training factored models
(Koehn, 2010, Chapter 10) which use PoS infor-
mation, we use RASP’s PoS tagger (Briscoe et
al., 2006). Sentence segmentation, tokenisation
and PoS tagging for artificial error generation were
carried out using NLTK (Bird et al., 2009).

54



NUCLE v2.3 CLC
Error Category Tag Error Category Tag

Article or determiner ArtOrDet

Incorrect determiner inflection DI
Determiner agreement error AGD
Wrong determiner because of noun countability CD
Derivation of determiner error DD
Incorrect determiner form FD
Missing determiner MD
Replace determiner RD
Unnecessary determiner UD

Noun number Nn

Countability of noun error CN
Wrong noun form FN
Incorrect noun inflection IN
Noun agreement error AGN

Preposition Prep

Derivation of preposition error DT
Wrong preposition form FT
Missing preposition MT
Replace preposition RT
Unnecessary preposition UT

Subject-verb agreement SVA Verb agreement error AGV
Determiner agreement error AGD

Verb form Vform

Wrong verb form FV
Incorrect verb inflection IV
Derivation of verb error DV
Incorrect tense of verb TV
Missing verb MV

Table 1: Mapping of error tags between NUCLE v2.3 and the CLC.

Lexical PoS
Pattern Example Pattern Example
has→ have temperature has risen→

temperature have risen
NN→ NNS information→

informations
to be used→ to be use technology to be used→

technology to be use
DT NNP→ NNP the US→ US

during→ for during the early 60s→
for the early 60s

NN VBZ VBN→ NN VBP VBN expenditure is reduced→
expenditure are reduced

Table 2: Sample error injection patterns extracted from the NUCLE v2.3 corpus.

4 Experiments and Results

We first built a baseline SMT system using only
the NUCLE v2.3 corpus and compared it to other
systems trained on incremental additions of the re-
maining corpora. All our systems were trained us-
ing 4-fold cross-validation where the training set
for each run always included the full FCE, IELTS
and EVP corpora but only 3/4 of the NUCLE data,
leaving the remaining fourth chunk for testing.
This training method allowed us to concentrate on
how the system performed on NUCLE data.

Performance was evaluated in terms of preci-
sion, recall and F1 as computed by the M2 Scorer
(Dahlmeier and Ng, 2012), with the maximum
number of unchanged words per edit set to 3 (an
initial suggestion by the shared task organisers
which was eventually changed for the official eval-
uation). The average performance of each system
is reported in Table 3.

In general, results show that precision tends to
drop as we add more training data whereas recall
and F1 slightly increase. This suggests that our
additional corpora do not resemble NUCLE very
much, although they allow the system to correct
some further errors. Contrary to our expectations,
the biggest difference between precision and re-
call is observed when we add the EVP-derived
data, which was deliberately engineered to repli-
cate NUCLE errors. Although it has been reported
that artificial errors often cause drops in perfor-
mance (Sjöbergh and Knutsson, 2005; Foster and
Andersen, 2009), in our case this may also be due
to differences in form (e.g. sentence length, gram-
matical structures covered, error coding) and con-
tent (i.e. topics) between our source (EVP) and
target (NUCLE) corpora as well as poor control
over the artificial error generation process. In fact,
our method does not explicitly consider error con-
texts, error type distribution or other factors that
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Model P R F1 σ

NUCLE 0.1505 0.1530 0.1517 0.0201
NUCLE+FCE 0.1547 0.1518 0.1532 0.0216
NUCLE+FCE+IELTS 0.1217 0.2068 0.1532 0.0151
NUCLE+FCE+IELTS+EVP 0.1187 0.2183 0.1538 0.0206

Table 3: Performance of our lexical SMT models.
The best results are marked in bold. Standard devi-
ation (σ) indicates how stable/homogeneous each
dataset is (lower values are better).

certainly have an impact on the quality of the gen-
erated sentences and may introduce noise if not
controlled. Nevertheless, the system trained on all
four corpora yields the best F1 performance.

We also tested factored models which include
PoS information. Results are shown in Table 4.
The same behaviour is observed for the metrics,
although values for precision are now generally
higher while values for recall are lower. Again,
the best system in terms of F1 is the one trained on
all our corpora, slightly outperforming our previ-
ous best system.

5 Error Analysis and Further
Improvements

When building error correction systems, minimis-
ing the number of cases where correct language
is flagged as incorrect is often regarded as more
important than covering a large number of errors.
Technically, this means high precision is often pre-
ferred over high recall, especially when it is diffi-
cult to achieve both (as is the case for our systems).
A closer observation of the training data, transla-
tion tables and system output reveals a series of
issues that are affecting performance, which are
summarised below.

In order to test some solutions to these prob-
lems, we used our best system as a baseline and
retrained it to include each proposed modification
individually. Results are included in Table 5 and
referenced accordingly.

5.1 Size of training corpus

With slightly over a million tokens, the NUCLE
corpus seems too small to train an efficient SMT
system. However, the additional data we were able
to use differs from the NUCLE corpus in terms of
learner-level, native language, and the tasks being
attempted.

Model P R F1 σ

NUCLE 0.1989 0.1013 0.1342 0.0165
NUCLE+FCE 0.2248 0.0933 0.1319 0.0151
NUCLE+FCE+IELTS 0.1706 0.1392 0.1533 0.0163
NUCLE+FCE+IELTS+EVP 0.1696 0.1480 0.1581 0.0148

Table 4: Performance of our PoS factored
SMT models. The best results are marked in
bold. Standard deviation (σ) indicates how sta-
ble/homogeneous each dataset is (lower values are
better).

5.2 Word reordering

In many cases, our system made corrections by re-
ordering words. Since the five error types in the
shared task rarely implied reordering, this caused
unnecessary edits that harmed precision, as in the
following example.

Original sentence

High Temperture Behaviour Of Candidate...

System hypothesis

High Behaviour Of Temperture Candidate...

Gold standard

High Temperture Behaviour Of Candidate...
(unchanged)

Disabling word reordering in our system helped
to avoid this problem and increased precision
without harming recall (Table 5 #1).

5.3 Limited translation model

Because of the relatively small size of our train-
ing corpus, the resulting phrase tables used by our
SMT systems contain very general alignments (i.e.
corrections) with high probability, which are often
applied in inappropriate contexts and result in a
large number of miscorrections.
In order to minimise this effect, we forced our
SMT system to output the alignments that were
used for correcting each sentence in our devel-
opment sets and deleted from the phrase table
those which consistently caused deviations from
the gold standard. This was done by manually
comparing our systems’ hypotheses to their gold-
standard versions and identifying common pat-
terns in the alignments that led to miscorrections,
such as to→ to the, have→ have a, people→ peo-
ple to, etc. 1,120 out of the total 11,421,886 align-
ments in the original translation table were re-
moved (∼0,01%). Removing such alignments re-
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sults in higher precision but lower recall, as shown
in Table 5 #2.

We also observed that the system was bi-
ased towards making unnecessary insertions of
the definite article before some specific nouns.
This means that the system would almost always
change words like cost, elderly or government for
the cost, the elderly or the government, regardless
of whether this fits the context or not. We believe
this is due to the lack of sufficient training sam-
ples where these words remained unaltered on the
source and target side, so we decided to augment
the NUCLE corpus by adding a copy of all the
corrected versions of the sentences on both sides.
Then, the system should learn that these words can
also remain unchanged in corrections. Table 5 #3
shows this improves precision but harms recall.

Out-of-vocabulary words (i.e. words not seen
during training) are a also common problem in
SMT systems, and this is directly related to the
amount of data available for training. In our sys-
tems, all out-of-vocabulary words were directly
transferred from source to target. That is, when-
ever our system encounters a word it has not seen
previously, it keeps it unchanged. Because of the
way our SMT system works, there is no explicit
generation of verb or noun forms so unless the sys-
tem has learnt this from appropriate contexts (for
example, that a progressive tense is consistently
being used after a preposition), it is unable to make
such corrections.

5.4 Inability to distinguish between
prepositions

We also observed that our systems did not often
correct prepositions. We believed this was due to
the PoS language model using the same tag for
all prepositions and therefore being unable to dis-
tinguish when each preposition must be used. In
fact, when using an ordinary PoS language model,
the original PoS patterns match those of the ex-
pected corrections (i.e. the expected correction has
a preposition and the hypothesis has one too) so no
change is proposed. The following example illus-
trates this problem.

Original sentence
... the need toward energy ...

DT NN PREP NN

System hypothesis
... the need toward energy ...

DT NN PREP NN

(unchanged)

Expected output (not in gold standard)
... the need for energy ...

DT NN PREP NN

However, when the PoS language model is
modified to use preposition-specific tags, the dif-
ference between the original sentence and the ex-
pected output should be detected and fixed by the
system, as shown below.

Original sentence
... the need toward energy ...

DT NN PREP TOWARD NN

System hypothesis
... the need for energy ...

DT NN PREP FOR NN

(unchanged)

Expected output (not in gold standard)
... the need for energy ...

DT NN PREP FOR NN

We expected this change to improve system per-
formance. Although it increased recall, it lowered
precision (Table 5 #4).

5.5 Unnecessary edits

In many cases, our system makes good corrections
which are not considered to belong to any of the
target error types, as illustrated in the following
example.

Original sentence

Thus, we should not compare now with the past
but we need to worried about the future prob-
lems that caused by this situation.

System hypothesis

Thus, we should not compare now with the past
but we need to worry about the future problems
that are caused by this situation.

Gold standard

Thus, we should not compare now with the past
but we need to worry about the future problems
that caused by this situation.

We believe this can be traced to two main
causes. First, there is no clear-cut definition of
each error type, so it is not possible to know the
annotation criteria or scope of each error type.
Therefore, inferring this information from the an-
notated examples may result in poor error map-
ping between the CLC and NUCLE, making the
system learn corrections that are not part of our
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target set and miss others which are actually use-
ful. For example, it is not clear if ‘verb form’ er-
rors (Vform) include change of tense or the addi-
tion of missing verbs. Second, because SMT sys-
tems learn from all parts of a parallel corpus and
maximise fluency using a general language model,
it is hard to limit the corrections to a predefined
set of error types. Using a larger language model
based on the corrected version of the CLC con-
firms this: precision drops while recall improves
(Table 5 #5).

5.6 Gold-standard annotation

The original NUCLE corpus contains corrections
for 27 error types. However, the version used
for the shared task only includes 5 error types
and discards all the remaining corrections. Be-
cause nested and context-dependent errors are
very frequent, the systematic removal of annota-
tions which do not belong to these five types often
generates mutilated or partly-corrected sentences,
a deficiency that has also been reported in other
shared tasks (Kochmar et al., 2012). Here is a typ-
ical example.

Original sentence

These approaches may not produce effect soon,
but it is sustainable for the future generation.

Corrected sentence

These approaches may not produce [immediate
effects]Wci, but [they]Pref [are]SVA [useful]Wci

for the future [generations]Nn.

Type-constrained sentence

These approaches may not produce effect
soon, but it [are]SVA sustainable for the future
[generations]Nn.

These ill-formed sentences are particularly
harmful for SMT systems which, unlike classi-
fiers, work at a global rather than local level. As
a result, many corrections proposed by our sys-
tem are considered incorrect because they do not
match the gold-standard version, as shown below.

Original sentence

Although it is essential for all the fields, ...

System hypothesis

Although it is essential for all the fields, ...
(unchanged)

# System settings P R F1
0 NUCLE+FCE+IELTS+EVP 0.1696 0.1480 0.1581
1 Disabled reordering 0.1702 0.1480 0.1583
2 Removal of incorrect alignments 0.1861 0.1399 0.1598
3 Double NUCLE data 0.1792 0.1229 0.1458
4 Detailed Prep PoS tags 0.1632 0.1504 0.1565
5 Bigger LMs 0.1532 0.1676 0.1601
6 Final system (0+1+2+3+5) 0.1844 0.1375 0.1575

Table 5: Performance of the baseline system plus
different individual settings. Bold values indicate
an improvement over the original baseline system.

Gold standard

Although it [are]SVA essential for all the fields,
...

This raises the question of how to design an ef-
fective and challenging shared task.

5.7 Scoring criteria

The official evaluation using the M2 scorer is sen-
sitive to capitalisation and white space, although
these error types were not part of the task. Both
this fact and the lack of alternative corrections for
each gold-standard edit leave out many other valid
corrections, which in turn means true system per-
formance is underestimated.

5.8 Other factors

Differences between the training and test data can
also affect performance, such as changes in the
writers’ native language, their level of language
proficiency or the topic of their compositions.

The final system submitted to the shared task
is a combination of our best factored model (i.e.
baseline) plus a selection of improvements (Ta-
ble 5 #6).

6 Official Evaluation Results

Systems were evaluated using a set of 50 essays
containing about 500 words each (∼25,000 words
in total) which were written in response to two dif-
ferent prompts. One of these prompts had been
used for a subset of the training data while the
other was new. No error annotations were initially
available for this set. As we mentioned above,
the M2 scorer was set to be sensitive to capitalisa-
tion and white space as well as limit the maximum
number of unchanged tokens per edit to 2.

Initially, each participating team received their
official system results individually. After the gold-
standard annotations of the test set were released,
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Evaluation round Corr.
edits

Prop.
edits

Gold
edits

P R F1

First (pre-revision) 166 424 1643 0.3915 0.1010 0.1606
Second (post-revision) 222 426 1565 0.5211 0.1419 0.2230

Table 6: Official results of our system before and
after revision of the test set annotations. The num-
ber of correct, proposed and gold edits are also in-
cluded for comparison.

many participants raised concerns about their ac-
curacy so they were given the opportunity to sub-
mit alternative annotations. These suggestions
were manually revised by a human annotator and
merged into a new test set which was used to re-
score all the submitted systems in a second official
evaluation round. Evaluation results of our sys-
tem in both rounds (before and after revision of
the test set annotations) are included in Table 6.
Although this measure helped overcome some of
the problems described in Section 5.6, other prob-
lems such as whitespace and case sensitivity were
not addressed.

In both evaluation rounds, our system scores
third in terms of precision, which is particularly
encouraging for error correction environments
where precision is preferred over recall. How-
ever, these values should be considerably higher
in order to prove useful in applications like self-
assessment and tutoring systems (Andersen et al.,
2013).

Results also reveal precision on the test set is
considerably higher than in our cross-validation
experiments. This may be partly a result of the
larger amount of training data in our final system
and/or greater grammatical or thematic similarity
between the test and training sets.

Table 7 shows the distribution of system edits
by error type. The results suggest that lexical het-
erogeneity in the contexts surrounding errors is a
factor in performance, which might be improved
through larger training sets.

7 Conclusions and Future Work

In this paper we have described the use of SMT
techniques for building an error correction system.
We trained lexical and factored phrase-based sys-
tems using incremental combinations of training
data and observed that, in general, recall increases
at the expense of precision. However, this might
be due to structural and thematic differences in the
corpora we used. We also tried a relatively sim-
ple mechanism for injecting artificial errors into

Error Type Pre-revision Post-revision
Corr. Missed Unnec. Corr. Missed Unnec.

ArtOrDet 104 586 161 134 548 132
Nn 30 366 25 38 362 20
Prep 11 301 18 13 246 15
SVA 7 116 0 8 103 0
Vform 14 108 41 29 84 25
Other 0 0 13 0 0 12
TOTAL 166 1477 258 222 1343 204

Table 7: Distribution of system edits by error
type for the two official evaluation rounds (before
and after revision of the test annotations). ‘Corr.’
stands for correct edits, ‘Missed’ for missed ed-
its and ‘Unnec.’ for unnecessary edits. The cate-
gory ‘Other’ includes changes made by our system
which do not belong to any of the other categories.

new data, which caused a drop in precision but in-
creased recall and F1.

Cross-validation experiments show that our sys-
tems were unable to achieve particularly high per-
formance (with precision, recall and F1 consis-
tently below 0.20). A careful analysis revealed
many factors that affect system performance, such
as annotation criteria, training parameters and cor-
pus size and heterogeneity. Our final system sub-
mitted to the CoNLL 2013 shared task was de-
signed to circumvent some of these problems and
maximise precision.

Plans for future work include more detailed er-
ror analysis and the implementation of new solu-
tions to avoid drops in performance. We would
also like to test our approach in an unrestricted
scenario (i.e. using corpora which are not limited
to a fixed number of error types) and use more
flexible evaluation schemes. We believe further
study of the methods used for generating artificial
errors is also vital to help SMT systems become a
useful approach to error correction.
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Montréal, Canada, June. Association for Computa-
tional Linguistics.

Nava Ehsan and Heshaam Faili. 2013. Grammatical
and context-sensitive error correction using a sta-
tistical machine translation framework. Software:
Practice and Experience, 43(2):187–206.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for
handling large scale language models. In Proceed-
ings of the 9th Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH 2008, pages 1618–1621, Brisbane, Aus-
tralia, September. ISCA.

Jennifer Foster and Øistein Andersen. 2009. Gen-
errate: Generating errors for use in grammatical er-
ror detection. In Proceedings of the Fourth Work-
shop on Innovative Use of NLP for Building Edu-
cational Applications, pages 82–90, Boulder, Col-
orado, June. Association for Computational Linguis-
tics.

Matthieu Hermet and Alain Désilets. 2009. Using first
and second language models to correct preposition
errors in second language authoring. In Proceedings
of the Fourth Workshop on Innovative Use of NLP
for Building Educational Applications, EdAppsNLP
’09, pages 64–72, Boulder, Colorado. Association
for Computational Linguistics.

Ekaterina Kochmar, Øistein Andersen, and Ted
Briscoe. 2012. Hoo 2012 error recognition and cor-
rection shared task: Cambridge university submis-
sion report. In Proceedings of the Seventh Workshop
on Building Educational Applications Using NLP,
pages 242–250, Montreal, Canada. Association for
Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Gábor Berend1, Veronika Vincze2, Sina Zarriess3, Richárd Farkas1
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Abstract

We introduce here a participating system
of the CoNLL-2013 Shared Task “Gram-
matical Error Correction”. We focused on
the noun number and article error cate-
gories and constructed a supervised learn-
ing system for solving these tasks. We car-
ried out feature engineering and we found
that (among others) the f-structure of an
LFG parser can provide very informative
features for the machine learning system.

1 Introduction

The CoNLL-2013 Shared Task aimed at identify-
ing and correcting grammatical errors in the NU-
CLE learner corpus of English (Dahlmeier et al.,
2013). This task has become popular in the natural
language processing (NLP) community in the last
few years (Dale and Kilgariff, 2010), which mani-
fested in the organization of shared tasks. In 2011,
the task Helping Our Own (HOO 2011) was held
(Dale and Kilgariff, 2011), which targeted the pro-
motion of NLP tools and techniques in improving
the textual quality of papers written by non-native
speakers of English within the field of NLP. The
next year, HOO 2012 (Dale et al., 2012) specifi-
cally focused on the correction of determiner and
preposition errors in a collection of essays writ-
ten by candidates sitting for the Cambridge ESOL
First Certificate in English (FCE) examination. In
2013, the CoNLL-2013 Shared Task has continued
this direction of research.

The CoNLL-2013 Shared Task is based on the
NUCLE corpus, which consists of about 1,400

student essays from undergraduate university stu-
dents at The National University of Singapore
(Dahlmeier et al., 2013). The corpus contains over
one million words and it is completely annotated
with grammatical errors and corrections. Among
the 28 error categories, this year’s shared task fo-
cused on the automatic detection and correction of
five specific error categories.

In this paper, we introduce our contribution of
the CoNLL-2013 Shared Task. We propose a su-
pervised learning-based approach. The main con-
tribution of this work is the exploration of several
feature templates for grammatical error categories.
We focused on the two “nominal” error categories:

1.1 Article and Determiner Errors

This error type involved all kinds of errors
which were related to determiners and articles
(ArtOrDet). It required multiple correction
strategies. On the one hand, superfluous articles
or determiners should be deleted from the text.
On the other hand, missing articles or determin-
ers should be inserted and at the same time it was
sometimes also necessary to replace a certain type
of article or determiner to an other type. Here is
an example:

For nations like Iran and North Ko-
rea, the development of nuclear power
is mainly determined by the political
forces. → For nations like Iran and
North Korea, the development of nu-
clear power is mainly determined by po-
litical forces.
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1.2 Wrong Number of the Noun
The wrong number of nouns (Nn) meant that either
a singular noun should occur in the plural form or
a plural noun should occur in the singular form.
A special case of such errors was that sometimes
uncountable nouns were used in the plural, which
is ungrammatical. The correction involved here
the change of the number. Below we provide an
example:

All these measures are implemented to
meet the safety expectation of the op-
eration of nuclear power plant. → All
these measures are implemented to meet
the safety expectation of the operation
of nuclear power plants.

2 System Description

Our approach for grammatical error detection was
to construct supervised classifiers for each candi-
date of grammatical error locations. In general,
our candidate extraction and features are based
on the output of the preprocessing step provided
by the organizers which contained both the POS-
tag sequences and the constituency phrase struc-
ture outputs for every sentence in the training and
test sets determined by Stanford libraries. We em-
ployed the Maximum Entropy based supervised
classification model using the MALLET API (Mc-
Callum, 2002), which was responsible for suggest-
ing the various corrections.

The most closely related approach to ours is
probably the work of De Felice and Pulman
(2008). We also employ a Maximum Entropy clas-
sifier and a syntax-motivated feature set. However,
we investigate deeper linguistic features (based on
the f-structure of an LFG parser).

In the following subsections we introduce our
correction candidate recognition procedure and
the features used for training and prediction of
the machine learning classifier. We employed the
same feature set for each classification task.

2.1 Candidate Locations
We used the following heuristics for the recogni-
tion of the possible locations of grammatical er-
rors. We also describe the task of various classi-
fiers at these candidate locations.

Article and Determiner Error category We
handled the beginning of each noun phrase
(NP) as a possible location for errors related

to articles or determiners. The NP was
checked if it started with any definite or
indefinite article. If it did, we asked our
three-class classifier whether to leave it
unmodified, change its type (i.e. an indefinite
to a definite one or vice versa) or simply
delete it. However, when there was no article
at all at the beginning of a noun phrase,
the decision made by a different three-class
classifier was whether to leave that position
empty or to put a definite or indefinite article
in that place.

Wrong Number of the Noun Error category
Every token tagged as a noun (either in plural
or singular) was taken into consideration at
this subtask. We constructed two – i.e. one
for the word forms originally written in plu-
ral and singular – binary classifiers whether
the number (i.e. plural or singular) of the
noun should be changed or left unchanged.

2.2 LFG parse-based features

We looked for the minimal governing NP for each
candidate location. We reparsed this NP with-
out context by a Lexical Functional Grammar
(LFG) parser and we acquired features from its
f-structure. In the following paragraph, LFG is
introduced briefly while Table 1 summarizes the
features extracted from the LFG parse.

Lexical Functional Grammar (LFG) (Bresnan,
2000) is a constraint-based theory of grammar. It
posits two levels of representation, c(onstituent)-
structure and f(unctional)-structure.

C-structure is represented by context free
phrase-structure trees, and captures surface gram-
matical configurations. F-structures approximate
basic predicate-argument and adjunct structures.

The experiments reported in this paper use the
English LFG grammar constructed as part of the
ParGram project (Butt et al., 2002). The gram-
mar is implemented in XLE, a grammar develop-
ment environment, which includes a very efficient
LFG parser. Within the spectrum of approaches to
natural language parsing, XLE can be considered
a hybrid system combining a hand-crafted gram-
mar with a number of automatic ambiguity man-
agement techniques:
(i) c-structure pruning where, based on informa-
tion from statistically obtained parses, some trees
are ruled out before f-structure unification (Cahill
et al., 2007)
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COORD NP/PP is coordinated +/-
COORD-LEVEL syntactic category of coordi-

nated phrase
DEG-DIM dimension for comparitive NPs,

(”equative”/”pos”/”neg”)
DEGREE semantic type of adjec-

tival modifier (”posi-
tive”/”comparative”/”superlative”)

DET-TYPE type of determiner
(”def”/”indef”/”demon”)

LOCATION-TYPE marks locative NPs
NAME-TYPE ”first name”/”last name”
NSYN syntactic noun type (”com-

mon”/”proper”/”pronoun”)
PRON-TYPE syntactic pronoun type (e.g.

”pers”, ”refl”, ”poss”)
PROPER-TYPE type of proper noun (e.g. ”com-

pany”, ”location”, ”name”)

Table 1: Short characterization of the LFG fea-
tures incorporated in our models designed to cor-
rect noun phrase-related grammatical errors

(ii) an Optimality Theory-style constraint mecha-
nism for filtering and ranking competing analyses
(Frank et al., 2001),
and (iii) a stochastic disambiguation component
which is based on a log-linear probability model
(Riezler et al., 2002) and works on the packed rep-
resentations.

Although we use a deep, hand-crafted LFG
grammar for processing the data, our approach is
substantially different from other grammar-based
approaches to CALL. For instance, Fortmann and
Forst (2004) supplement a German LFG devel-
oped for newspaper text with so-called malrules
that accept marked or ungrammatical input of
some predefined types. In our work, we apply an
LFG parser developed for standard texts to get a
rich feature representation that can be exploited
by a classifier. While malrules would certainly be
useful for finding other error types, such as agree-
ment errors, the NP- and PP-errors are often ana-
lyzed as grammatical by the parser (e.g. “the po-
litical forces” vs. “political forces”). Thus, the
grammaticality of a phrase predicted by the gram-
mar is not necessarily a good indicator for correc-
tion in our case.

2.3 Phrase-based contextual features

Besides the LFG features describing the internal
structure of the minimal NP that dominates a can-
didate location, we defined features describing its
context as well. Phrase-based contextual features
searched for those minimal prepositional and noun
phrases that governed a token at a certain can-

Final results Corrected output
P 0.0552 0.1260
R 0.0316 0.0292
F 0.0402 0.0474

Table 2: Overall results aggregated over the five
error types

didate location of the sentence where a decision
was about to be taken. Then features encoding the
types of the phrases that preceded and succeeded
a given minimal governing noun or prepositional
phrase were extracted.

The length of those minimal governing noun
and prepositional phrases as well as those of the
preceding and succeeding ones were taken into
account as numeric features. The motivation be-
hind using the span size of the minimal governing
and neighboring noun and prepositional phrases
is that it was assumed that grammatical errors in
the sentence result in unusual constituency subtree
patterns that could manifest in minimal governing
phrases having too long spans for instance. The
relative position of the candidate position inside
the smallest dominating noun and prepositional
phrases was also incorporated as a feature since
this information might carry some information for
noun errors.

2.4 Token-based contextual features

A third group of features described the context of
the candidate location at the token level. Here, two
sets of binary features were introduced to mark the
fact if the token was present in the four token-sized
window to its left or right. Dedicated nominal fea-
tures were introduced to store the word form of
the token immediately preceding a decision point
within a sentence and the POS-tags at the preced-
ing and actual token positions.

Two lists were manually created which con-
sisted of entirely uncountable nouns (e.g. blood)
and nouns that are uncountable most of the times
(e.g. aid or dessert). When generating fea-
tures for those classifiers that can modify the plu-
rality of a noun, we marked the fact in a binary
feature if they were present in any of these lists.
Another binary feature indicated if the actual noun
to be classified could be found at an earlier point
of the document.
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Only erroneous All sentences
P 0.1260 0.1061
R 0.0292 0.0085
F 0.0474 0.0158

Table 3: Overall results aggregated over the five
error types

Only erroneous All sentences
P 0.2500 0.0167
R 0.0006 0.0006
F 0.0012 0.0012

Table 4: Overall results aggregated over the five
error types, not using the LFG parser based fea-
tures

3 Results

It is important to note that our officially submit-
ted architecture included an unintended step which
meant that whenever our system predicted that at
a certain point an indefinite article should be in-
serted or (re-)written, the indefinite article an was
put at that place erroneously when the succeeding
token started with a consonant (e.g. outputting an
serious instead of a serious).

Since the output that contained this kind of error
served as the basis of the official ranking we in-
clude in Table 2 the results achieved with the out-
put affected by this unintended behavior, however,
in the following we present our results in such a
manner where this kind of error is eliminated from
the output of our system.

Upon training our systems we followed two
strategies. For the first approach we used all the
sentences regardless if they had any error in them
at all. However, in an alternative approach we uti-
lized only those sentences from the training corpus
that had at least one error in them from the five er-
ror categories to be dealt with in the shared task.
The different results achieved on the test set ac-
cording to the two approaches are detailed in Ta-
ble 3. Turning off the LFG features ended up in
the results detailed in Table 4.

Since our framework in its present state only
aims at the correction of errors explicitly re-
lated to noun phrases, no error categories besides
ArtOrDet and Nn (for more details see Sections
1.1 and 1.2, respectively) could be possibly cor-
rected by our system. Note that these two error
categories covered 66.1% of the corrections on the
test set, so with our approach this was the highest

possibly achievable score in recall.
In order to get a clearer picture on the effective-

ness of our proposed methodology on the two error
types that we aimed at, we present results focusing
on those two error classes.

Nn ArtOrDet
P 0.4783 (44/92) 0.0151 (4/263)
R 0.1111 (44/396) 0.0058 (4/690)
F 0.1803 0.0084

Table 5: The scores achieved and the number of
true positive, suggestions, real errors for the Noun
Number (Nn) and Article and Determiner Errors
(ArtOrDet) categories.

4 Error Analysis

In order to analyze the performance of our system
in more detail, we carried out an error analysis.
As our system was optimized for errors related to
nouns (i.e. Nn and ArtOrDet errors), we focus
on these error categories in our discussion and ne-
glect verbal and prepositional errors.

Some errors in our system’s output were due
to pronouns, which are conventionally tagged as
nouns (e.g. something), but were incorrectly put
in the plural, resulting in the erroneous correc-
tion somethings. These errors would have been
avoided by including a list of pronouns which
could not be used in the plural (even if they are
tagged as nouns).

Another common source of errors was that
countable and uncountable uses of nouns which
can have both features in different senses or
metonymic usage (e.g. coffee as a substance is un-
countable but coffee meaning “a cup of coffee” is
countable) were hard to separate. Performance on
this class of nouns could be ameliorated by apply-
ing word sense disambiguation/discrimination or
a metonymy detector would also prove useful for
e.g. mass nouns.

A great number of nominal errors involved
cases where a singular noun occurred in the text
without any article or determiner. In English, this
is only grammatical in the case of uncountable
nouns which occur in generic sentences, for in-
stance:

Radio-frequency identification is a
technology which uses a wireless non-
contact system to scan and transfer the
data [...]
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The above sentence offers a definition of radio-
frequency identification, hence it is a generic state-
ment and should be left as it is. In other cases,
two possible strategies are available for correc-
tion. First, the noun gets an article or a determiner.
The actual choice among the articles or determin-
ers depends on the context: if the noun has been
mentioned previously and thus is already known
(definite) in the context, it usually gets a definite
article (or a possessive determiner). If it is men-
tioned for the first time, it gets an indefinite arti-
cle (unless it is a unique thing such as the sun).
The difficulty of the problem lies in the fact that
in order to adequately assign an article or deter-
miner to the noun, it is not sufficient to rely only
on the sentence. Thus, is also necessary to go be-
yond the sentence and move on the level of text
or discourse, which requires natural language pro-
cessing techniques that we currently lack but are
highly needed. With the application of such tech-
niques, we would have probably achieved better
results but this remains now for future work.

Second, the noun could be put in the plural.
This strategy is usually applied when either there
are more than one of the thing mentioned or it is a
generic sentence (i.e. things are discussed in gen-
eral and no specific instances of things are spo-
ken of). In this case, the detection of generic sen-
tences/events would be helpful, which again re-
quires deep semantic processing of the discourse
and is also a possible direction for future work.

To conclude, the successful identification of
noun number and article errors would require a
much deeper semantic (and even pragmatic) anal-
ysis and representation of the texts in question.

5 Discussion and further work

Comparing the columns of Table 3 we can con-
clude that restricting the training sentences to only
those which had some kind of grammatical error
in them had a useful effect on the overall effec-
tiveness of our system.

In a similar way, it can be stated based on the
results in Table 4 that composing features from the
output of an LFG parser is essentially beneficial
for the determination of Nn-type errors. Table 5
reveals, however, that those features which work
relatively well on the correction of Nn type errors
are less useful on ArtOrDet-type errors without
any modification.

As our only target at this point was to suggest

error corrections related to noun phrases, our ob-
vious future plans include the extension of our sys-
tem to deal with error categories of different types.
Simultaneously, we are planning to utilize large
scale corpus statistics, such as the Google N-gram
Corpus to build a more effective system.
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Abstract

We describe a system for detecting and
correcting instances of a small class of fre-
quently occurring grammatical error types
in a corpus of essays which have been
manually annotated for these errors. Our
system employs a precise broad-coverage
grammar of English which has been aug-
mented with a set of mal-rules and mal-
entries to explicitly license certain types of
erroneous expressions. The derivation tree
produced by a parser using this grammar
identifies the location and type of an error
in an ill-formed sentence, enabling a post-
processing script to use the tree and the in-
ventory of error types to delete and/or in-
sert tokens in order to produce a corrected
version of the original sentence.

1 Overview

As a participating group in the 2013 CoNLL
Shared Task on Grammatical Error Correction,
we adapted an existing system for error detec-
tion in a simpler closed-vocabulary domain to
meet the additional demands of accommodating
an open vocabulary and producing corrections for
the errors identified. The training and test data
for this shared task are from the NUCLE cor-
pus (Dahlmeier et al., 2013), which consists of
about one million words of short essays written
by relatively competent English language learn-
ers. Each sentence has been manually annotated
to identify and correct a wide range of grammat-
ical and stylistic error types, though the shared
task focused only on correcting instances of five
of these types. Following standard procedure for
such shared tasks, the organizers supplied most of
the annotated data as a development corpus, and
held out a 1381-sentence test corpus which was
used for the evaluation of system output.

2 Resources and Method

The system developed for this task is an extension
of an existing language-processing engine used to
identify grammatical errors in short sentences and
paragraphs written by elementary school students
as part of the automated Language Arts and Writ-
ing course included in the EPGY (Education Pro-
gram for Gifted Youth) course offerings (Suppes et
al., 2012). This error detection engine consists of
a grammar, a parser, and a post-processing script
that interprets the error codes in the derivation
tree for each parsed sentence. Both the grammar
and the parser are open-source resources devel-
oped and distributed as part of the DELPH-IN con-
sortium (www.delph-in.net). We use the English
Resource Grammar, described below, which we
have augmented with both rules and lexical entries
that license instances of certain error types, using
the mal-rule approach of (Schneider and McCoy,
1998), adapted and extended for the ERG as de-
scribed in (Bender et al., 2004). For parsing each
sentence with this grammar, we use the relatively
efficient PET parser (Callmeier, 2002), along with
a parse-ranking method based on a model trained
on a manually disambiguated treebank, so far con-
sisting only of parses of well-formed sentences. In
addition to using the manually constructed 37,000-
word lexicon included in the ERG, we accommo-
date unknown words by mapping POS tags pro-
duced by TnT (Brants, 2000) to generic lexical en-
try types on the fly. The bottom-up chart parser
then exhaustively applies the rules of the grammar
to the lexical entries introduced by the tokens in
the input sentence, producing a packed forest of
analyses (derivations) ranked by likelihood, and
then presents the most likely derivation for post-
processing. The post-processor is a script which
uses the derivation tree to identify the type and lo-
cation of each error, and then takes appropriate ac-
tion, which in the course is an instructional mes-
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sage to the student, and in this shared task is a cor-
rected version of the original sentence.

2.1 English Resource Grammar

The English Resource Grammar used for this task
(ERG: (Flickinger, 2000), (Flickinger, 2011)) is
a broad-coverage grammar implementation which
has been under continuous development since the
mid-1990s at Stanford. As an implementation
within the theoretical framework of Head-driven
Phrase Structure Grammar (HPSG: (Pollard and
Sag, 1994)), the ERG has since its inception en-
coded both morphosyntactic and semantic prop-
erties of English, in a declarative representation
that enables both parsing and generation. While
development has always taken place in the con-
text of specific applications, primary emphasis in
the ERG has consistently been on the linguistic
accuracy of the resulting analyses, at some ex-
pense to robustness. Its initial use was for gener-
ation within the German-English machine transla-
tion prototype developed in the Verbmobil project
(Wahlster, 2000), so constraining the grammar
to avoid overgeneration was a necessary design
requirement that fit well with the broader aims
of its developers. Applications using the gram-
mar since then have included automatic processing
of e-commerce customer support email messages,
a second machine translation system (LOGON:
(Lnning et al., 2004)), and information extraction
over the full English Wikipedia (Flickinger et al.,
2010).

At present, the ERG consists of a rich hier-
archy of types encoding regularities both in the
lexicon and in the syntactic constructions of En-
glish. The lexicon contains 40,000 manually con-
structed lexeme entries, each assigned to one of
975 lexical types at the leaves of this hierarchy,
where the types encode idiosyncracies of subcat-
egorization, modification targets, exceptional be-
havior with respect to lexical rules, etc. The gram-
mar also includes 70 derivational and inflectional
rules which apply to these lexemes (or to each
other’s outputs) to produce the words as they ap-
pear in text. The grammar provides 225 syntactic
rules which admit either unary or binary phrases;
these include a relatively small number of highly
schematic rules which license ordinary combina-
tions of heads with their arguments and their mod-
ifiers, and a rather larger number of construction-
specific rules both for frequently occurring phrase

types such as coordinate structures or appositives,
and for phrase types that occur with markedly
differing frequencies in verious corpus domains,
such as questions or vocatives. Statistical models
trained on manually annotated treebanks are used
both in parsing (Toutanova et al., 2005) and in gen-
eration (Velldal, 2008) to rank the relative likeli-
hoods of the outputs, in order to address the issue
of disambiguation which is central to the use of
any broad-coverage grammar for almost any task.

2.2 Mal-rule example
Each of the hand-coded mal-rules added to the
standard ERG is a variant of a rule needed to anal-
yse well-formed English input. A simple exam-
ple of a mal-rule is given below, expressed in the
attribute-value representation for an HPSG rule;
this unary rule licenses a noun phrase headed by a
singular count noun but lacking its normally oblig-
atory article, as for the NP black cet in That dog
chased black cat. Here the single daughter in this
noun phrase (the HD-DTR) is a nominal phrase still
seeking an obligatory specifier (the article or de-
terminer in a well formed noun phrase), where the
head noun is a singular count noun (non-divisible).
The SYNSEM value in the rule discharges that
obligatory specifier requirement just as the normal
unary rule for bare plural noun phrases does, and
supplies the necessary implicit quantifier in the se-
mantics of the phrase.

SYNSEM

LOCAL

CAT

HEAD
1

noun

VAL

[
SPR < >

COMPS < >

]
CONT

[
RELS < quant rel >

]



HD-DTR

SYNSEM

LOCAL


CAT

HEAD
1

VAL

[
SPR <

[
OPT –
]
>

COMPS < >

]
AGR

[
PN 3sing
DIV –

]






Mal-rule for bare singular NP

2.3 Error types in the task
Of the five error types used in the shared task,
four were already included in the grammar as used
in the EPGY course, involving errors with arti-
cles/determiners, number on nouns, subject-verb
agreement, and verb form. For the task, we added
mal-rules and mal-entries to analyze a subset of er-
rors of the fifth type, which involve incorrect use
of prepositions. Within the ERG, each of the five
error types is associated with multiple mal-rules or
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mal-entries, each licensing one specific error con-
figuration, such as a mal-rule to accommodate the
omission of an obligatory determiner for a noun
phrase headed by a singular count noun, or a mal-
entry for the unwanted use of the with a proper
name.

Most of these grammar-internal error identifiers
correspond to a simple adjustment for correction
in the original sentence, such as the insertion or
deletion of a particular token, or a change to the in-
flection of a particular noun or verb. However, for
some errors, several candidate corrections are trig-
gered by the error identifier, so the post-processing
script must select the most suitable of these correc-
tion candidates. The most frequent correction il-
lustrating this ambiguity is for singular count noun
phrases missing the determiner, such as black cat
in we admired black cat., where the correction
might be the black cat, a black cat, or black cats.
Lacking a rich discourse representation of the con-
text surrounding the error, we employ an N-gram
based ranking approach to choose among the three
alternatives, where the post-processor currently
calls the Microsoft N-gram online resource (Wang
et al., 2011).

Since the development and test data is presented
as pre-tokenized input with one token per line in
familiar CoNLL format, we also employ an offline
script which converts a file of this format into one
which has a single sentence per line, preserving
the tokenization of the CoNLL file, and it is this
one-sentence-per-line file which is processed by
the correction script, which in turn calls the parser
and applies the post-processing steps to its output.

3 An example

We illustrate our method with a simple example
sentence, to show each step of the process. Con-
sider the analysis in Figure 1 of the following sen-
tence taken from the test corpus:

In supermarkets monitors is needed because we
have to track thieves .
The parser is called with this sentence as in-
put, constructs a packed forest of all candidate
analyses licensed by the grammar, and identifies
the most likely analysis as determined by a
general-purpose statistical model trained only
on analyses of well-formed sentences. A more
detailed view of the parse tree in Figure 1 is the
bracketed derivation tree given in (2). Each line of
the derivation identifies the syntactic construction,

lexical rule, or lexical entry used to build each
constituent, and shows its token span, and for the
leaf nodes, the lexical entry, its type (after the
slash), and the surface form of that word in the
input sentence. The boldface identifier on the first
line of the derivation tree shows that this analysis
contains at least one erroneous constituent, which
a perusal of the tree locates as the other boldface
identifier, be c is rbst, for the mal-entry for is that
licenses a mismatch in subject-verb agreement.

(2) Derivation tree view of Fig. 1:

hd-aj scp c 0 11 [ root robust s ]
flr-hd nwh-nc-pp c 0 5
hd-cmp u c 0 2
in/p np i-reg 0 1 "in"
hdn bnp c 1 2
n pl olr 1 2
supermarket n1/n - c 1 2
"supermarkets"

sb-hd nmc c 2 5
hdn bnp c 2 3
n pl olr 2 3
monitor n1/n - c 2 3 "monitors"

hd-cmp u c 3 5
be c is rbst 3 4 "is"
hd xaj-int-vp c 4 5
hd optcmp c 4 5
v pas odlr 4 5
need v1/v np 4 5 "needed"

hd-cmp u c 5 11
because/p cp s 5 6 "because"
sb-hd nmc c 6 11
hdn bnp-qnt c 6 7
we/n - pr-we 6 7 "we"

hd-cmp u c 7 11
v n3s-bse ilr 7 8
have to1/v vp ssr 7 8 "have"

hd-cmp u c 8 11
to c prop/cm vp to 8 9 "to"
hd-cmp u c 9 11
v n3s-bse ilr 9 10
track v1/v np* 9 10 "track"
hdn bnp c 10 11
period plr 10 11
n pl olr 10 11
thief n1/n - c 10 11 "thieves."

The correction script finds this mal-entry identi-
fier in the derivation tree, notes its token position,
and determines from the identifier that the required
correction consists of a simple token substitution,
replacing the surface token is with are. Since no
other errors are present in the derivation tree, the
script then records in the corpus output file the cor-
rected sentence with only the one alteration from
its original form.

Of course, a derivation tree will often identify
multiple errors, and for some error types may re-
quire that multiple tokens be modified for a sin-
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Figure 1: Sample parse tree produced with ERG

gle error, such as in the correction of the equip-
ments have arrived to the equipment has arrived.
Each mal-rule or mal-entry identifier is associated
with a specific correction procedure defined in the
correction script, and the script carries out these
changes in a pre-determined order, for the rela-
tively infrequent instances where the order of ap-
plication matters. For simple alterations such as
a change of number on nouns or verbs, we could
have used the grammar-internal inflectional rule
machinery, but found it more convenient to use ex-
isting Perl and Python modules for English word
inflection.

4 Results and Discussion

During the development phase of the shared task,
we adapted and refined our method using the first
5000 NUCLE sentences from the roughly 50,000-
sentence development corpus. Since our focus in
this task is on precision more than on recall, we
carried out repeated detailed examinations of the
correction procedure’s outputs on the first 500
sentences. In comparing our system’s proposed
corrections with the ‘gold’ human annotations
of errors for these 500, we found the following
frequencies of mismatches between system and
gold:

(3) Comparison of System and Gold on Dev-500

Alteration # of Sentences
Both match 34
Missing gold 26
Differing correction 25
Wrong alteration 28

Examples of the missing gold annotations include
(a) “ArtOrDet” errors such as the missing article
for habitable environment in sentence 829-4-0 and
for password in sentence 830-1-1; (b) “SVA” er-
rors such as for the verb increase in sentence 831-
3-8, and the verb are in sentence 840-4-2; and (c)
“Nn” errors such as for the noun equipments ap-
pearing in sentence 836-1-0, or evidences in sen-
tence 837-2-11.

These varying sources of mismatches made the
automated scoring script used in the evaluation
phase of the shared task (Dahlmeier and Ng, 2012)
not so helpful during development, since it re-
ported our system’s precision as 28%, whereas the
system is actually correct in more than 50% of the
alterations it makes for these first 500 sentences of
the development corpus.

This inconsistency in the gold annotations was
less of an issue, but still present, in our system’s
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precision measure in the evaluation phase of the
shared task, as we found in studying the gold
annotations distributed for the test data after the
evaluation phase ended. The official scored results
for the system output that we submitted are given
in the table in (4).

(4) Official scoring of system output on test data

Precision 29.93%
Recall 5.86 %
F1 9.81 %

In examining the gold annotations for the 1381
sentences comprising the test corpus, we found
47 instances of genuine errors that were miss-
ing gold annotation, but that our system correctly
identified and repaired. While this led to a some-
what lower precision measure, we acknowledge
that compared with the total number of more than
1600 annotated corrections, this level of imperfec-
tion in the annotations was not seriously problem-
atic for evaluation, and we view the official results
in (4) as a reasonable measure of the system output
we submitted for scoring.

While comparing our system results with the
gold test annotations after the evaluation phase
ended, we have found and repaired several sources
of undesirable behavior in the grammar and in our
correction script, with the most significant being
the revision of lexical entries for two compound
nouns appearing with high frequency in the test
corpus: life expectancy (91 occurrences) and pop-
ulation aging/ageing (40 occurrences). Our lexi-
con had erroneously identified life expectancy as
countable, and the parser had wrongly analyzed
population aging as a noun modified by a partici-
ple, analogous to the person speaking. A third
frequently occurring error in the corpus was not
so simple to correct in our grammar, namely the
word society (95 occurrences), which is used con-
sistently in the test corpus as an abstract noun of-
ten wrongly appearing with the. Since this noun
can be used in a different sense (as an organiza-
tion) where the article is appropriate, as in the so-
ciety of wealthy patrons, we would need to find
some other knowledge source to determine that
in the domain of the test corpus, this sense is not
used. Hence our system still fails to identify and
correct the frequent and spurious the in the society.

With the small number of corrections made to
our system’s lexicon, and some minor improve-
ments to the post-processing script, our system

now produces output on the test corpus with an
improved precision measure of 47.5%, and a more
modest improvement in recall to 13.2%, for an F1
of 20.7%. Given the inconsistency of annotation
in the development corpus, it is as yet difficult to
evaluate whether these changes to our correction
script will result in corresponding improvements
in precision on unseen data.

5 Next steps

We see prospects for significant improvement us-
ing the method we are developing for the kind of
automatic correction studied in this shared task.
Many of the missteps that our correction proce-
dure makes can be traced to imperfect parse selec-
tion from among the candidate analyses produced
by the parser, and this could well be improved by
creating a Redwoods-style treebank that includes
both well-formed and ill-formed sentences for an-
notation, so the mal-rules and mal-entries get in-
cluded in the ranking model trained on such a tree-
bank. While our primary focus will continue to be
on increased precision in the corrections the sys-
tem proposes, we welcome the attention to recall
that this task brings, and expect to work with hy-
brid systems that do more with large-scale corpora
such as the English Wikipedia.
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Abstract

This paper describes our system in the shared
task of CoNLL-2013. We illustrate that gram-
matical error detection and correction can be
transformed into a multiclass classification
task and implemented as a single-model sys-
tem regardless of various error types with the
aid of maximum entropy modeling. Our sys-
tem achieves the F1 score of 17.13% on the
standard test set.

1 Introduction and Task Description
Grammatical error correction is the task of auto-
matically detecting and correcting erroneous word
usage and ill-formed grammatical constructions in
text (Dahlmeier et al., 2012). This task could be help-
ful for hundreds of millions of people around the world
that are learning English as a second language. Al-
though there have been much of work on grammatical
error correction, the current approaches mainly focus
on very limited error types and the result is far from
satisfactory.

The CoNLL-2013 shared task, compared with the
previous Help Our Own (HOO) tasks focusing on only
determiner and preposition errors, considers a more
comprehensive list of error types, including determiner,
preposition, noun number, verb form, and subject-
verb agreement errors. The evaluation metric used in
CoNLL-2013 is Max-Matching (M2) (Dahlmeier and
Ng, 2012) precision, recall and F1 between the system
edits and a manually created set of gold-standard ed-
its. The corpus used in CoNLL-2013 is NUS Corpus
of Learner English (NUCLE) of which the details are
described in (Dahlmeier et al., 2013).

In this paper, we describe the system submission
from the team 1 of Shanghai Jiao Tong Univer-

∗This work was partially supported by the National Natu-
ral Science Foundation of China (Grant No.60903119, Grant
No.61170114, and Grant No.61272248), and the National
Basic Research Program of China (Grant No.2009CB320901
and Grant No.2013CB329401).

†Corresponding author

sity (SJT1). Grammatical error detection and correc-
tion problem is treated as multiclass classification task.
Unlike previous works (Dahlmeier et al., 2012; Ro-
zovskaya et al., 2012; Kochmar et al., 2012) that train
a model upon each error type, we use one single model
for all error types. Instead of the original error type, a
more detailed version of error types is used as class la-
bels. A rule based system generates labels from the
golden edits utilizing an extended version of Leven-
shtein edit distance. We use maximum entropy (ME)
model as classifier to obtain the error types and use
rules to do the correction. Corrections are made us-
ing rules. Finally, the corrections are filtered using lan-
guage model (LM).

2 System Architecture
Our system is a pipeline of grammatical error detection
and correction. We treats grammatical error detection
as a classification task. First all the tokens are relabeled
according to the golden annotation and a sequence of
modified version of error types is generated. This re-
labeling task is rule based using an extended version
of Levenshtein edit distance which will be discussed
in the following section. Then with the modified error
types as the class labels, a classifier using ME model
is trained. The grammatical error correction is also
rule based, which is basically the reverse of the rela-
beling phase. The modefied version of error types that
we used is much more detailed than the original five
types so that it enables us to use one rule to do the cor-
rection for each modified error type. After all, the cor-
rections are filtered by LM, to remove those corrections
that seem much worse than the original sentence.

As typical classification task, we have a training step
and a test step. The training step consists three phases:

• Error types relabeling.

• Training data refinement.

• ME training.

The test step includes three phases:

• ME classification.
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• Error correction according to lebels.

• LM filtering.

2.1 Rebeling by Levenshtein Edit Distance
with Inflection
In CoNLL-2013 there are 5 error types but they cannot
be used directly as class labels, since they are too gen-
eral for error correction. For example, the verb form
error includes all verb form inflections such as con-
verting a verb to its infinitive form, gerund form, paste
tense, paste participle, passive voice and so on. Previ-
ous approaches (Dahlmeier et al., 2012; Rozovskaya et
al., 2012; Kochmar et al., 2012) manually decompose
each error types to more detailed ones. For example,
in (Dahlmeier et al., 2012), the determinater error is
decomposed into:

• replacement determiner (RD): { a→ the }

• missing determiner (MD): { ϵ→ a }

• unwanted determiner (UD): { a→ ϵ }

For limited error types such as merely determinatives
error and preposition error in HOO 2012, manually de-
composition may be sufficient. But for CoNLL-2013
with 5 error types including complicated verb inflec-
tion, an automatic method to decompose error types is
needed. We present an extended version of Levenshtein
edit distance to decompose error types into more de-
tailed class labels and relabel the input with the labels
generated.

The original Levenshtein edit distance has 4 edit
types: unchange (U), addition (A), deletion (D) and
substitution (S). We extend the “substitution” edit
into two types of edits: inflection (I) and the orig-
nal substitution (S). To judge whether two words can
be inflected from each other, the extended algorithm
needs lemmas as input. If the two words have the
same lemma, they can be inflected from each other.
The extended Levenshtein edit distance with inflec-
tion is shown in Algorithm 1. It takes the source to-
kens toksrc, destination tokens tokdst and their lemmas
lemsrc, lemdst as input and returns the edits E and the
parameters of edits P. For example, for the golden edit
{look→ have been looking at}, the edits E returned by
DISTANCE will be {A,A,U ,A}, and the parameters
P of edits returned by DISTANCE will be {have, been,
looking, at}.

Then with the output of DISTANCE, the labels can
be generated by calculating the edits between original
text and golden edits. For those tokens without errors,
we directly assign a special label “⊙” to them. The
tricky part of the relabeling algorithm is the problem
of the edit “addition”, A. A new token can only be
added before or after an existing token. Thus for la-
bels with addition, we must find some token that the
label can be assigned to. That sort of token is defined
as pivot. A pivot can be a token that is not changed in

Algorithm 1 Levenshtein edit distance with inflection

1: function DISTANCE(toksrc, tokdst, lemsrc,
lemdst)

2: (lsrc, ldst)← (len(toksrc), len(tokdst))
3: D[0 . . . lsrc][0 . . . ldst]← 0
4: B[0 . . . lsrc][0 . . . ldst]← (0, 0)
5: E[0 . . . lsrc][0 . . . ldst]← ϕ
6: for i← 1 . . . lsrc do
7: D[i][0]← i
8: B[i][0]← (i− 1, 0)
9: E[i][0]← D

10: end for
11: for j ← 1 . . . ldst do
12: D[0][j]← j
13: B[0][j]← (0, j − 1)
14: E[0][j]← A
15: end for
16: for i← 1 . . . lsrc; j ← 1 . . . ldst do
17: if toksrc[i− 1] = tokdst[j − 1] then
18: D[i][j]← D[i− 1][j − 1]
19: B[i][j]← (i− 1, j − 1)
20: E[i][j]← U
21: else
22: m ← min(D[i − 1][j − 1], D[i −

1][j], D[i][j − 1])
23: if m = D[i− 1][j − 1] then
24: D[i][j]← D[i− 1][j − 1] + 1
25: B[i][j]← (i− 1, j − 1)
26: if lemsrc[i − 1] = lemdst[j − 1]

then
27: E[i][j]← S
28: else
29: E[i][j]← I
30: end if
31: else if m = D[i− 1][j] then
32: D[i][j]← D[i− 1][j] + 1
33: B[i][j]← (i− 1, j)
34: E[i][j]← D
35: else if m = D[i][j − 1] then
36: D[i][j]← D[i][j − 1] + 1
37: B[i][j]← (i, j − 1)
38: E[i][j]← A
39: end if
40: end if
41: end for
42: (i, j)← (lsrc, ldst)
43: while i > 0 ∨ j > 0 do
44: insert E[i][j] into head of E
45: insert tokdst[j − 1] into head of P
46: (i, j)← B[i][j]
47: end while
48: return (E, P)
49: end function

an edit, such as the “apple” in edit {apple → an ap-
ple}, or some other types of edit such as the inflection
of “look” to “looking” in edit {look→ have been look-
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ing at}. In the CoNLL-2013 task, the addition edits are
mostly adding articles or determinaters, so when gener-
ating the label, adding before the pivot is preferred and
only those trailing edits are added after the last pivot.
At last, the label is normalized to upper case.

The BNF syntax of labels is defined in Figure 1. The
the non-terminal ⟨inflection-rules⟩ can be substituted
by terminals of inflection rules that are used for cor-
recting the error types of noun number, verb form, and
subject-verb agreement errors. All the inflection rules
are listed in Table 1. The ⟨stop-word⟩ can be subsi-
tuted by terminals of stop words which contains all ar-
ticles, determinnaters and prepositions for error types
of determiner and preposition, and a small set of other
common stop words. All the stop words are listed in
Table 2.

⟨label⟩ ::= ⟨simple-label⟩ | ⟨compound-label⟩

⟨simple-label⟩ ::= ⟨pivot⟩ | ⟨add-before⟩ | ⟨add-after⟩

⟨compound-label⟩ ::= ⟨add-before⟩ ⟨pivot⟩
| ⟨pivot⟩ ⟨add-after⟩
| ⟨add-before⟩ ⟨pivot⟩ ⟨add-after⟩

⟨pivot⟩ ::= ⟨inflection⟩ | ⟨unchange⟩ | ⟨substitution⟩
| ⟨deletion⟩

⟨add-before⟩ ::= ⟨stop-word⟩⊕
| ⟨stop-word⟩⊕⟨add-before⟩

⟨add-after⟩ ::= ⊕⟨stop-word⟩
| ⊕⟨stop-word⟩⟨add-after⟩

⟨substitution⟩ ::= ⟨stop-word⟩

⟨inflection⟩ ::= ⟨inflection-rules⟩

⟨unchange⟩ ::= ⊙

⟨deletion⟩ ::= ⊖

Figure 1: BNF syntax of label

Algorithm 2 is used to generate the label from the
extended Levenshtein edits according to the syntax de-
fined in Figure 1. It takes the original tokens, tokorig

and golden edit tokens, tokgold in an annotation and
their lemmas, lemorig, lemgold as input and returns the
generated label L. For our previous example of edit
{looked → have been looking at}, the L returned by
RELABEL is {HAVE⊕BEEN⊕GERUND⊕AT}. Some
other examples of relabeling are demonstrated in Ta-
ble 3.

The correction step is done by rules according to the
labels. The labels are parsed with a simple LL(1) parser
and edits are made according to labels. A bit of extra
work has to be taken to handle the upper/lower case
problem. For additions and substitutions, the words

added or substituted are normalized to lowercase. For
inflections, original case of words are reserved. Then
a bunch of regular expressions are applied to correct
upper/lower case for sentence head.

Catalog Rules
Noun Number LEMMA, NPLURAL
Verb Number VSINGULAR, LEMMA
Verb Tense LEMMA, GERUND, PAST, PART

Table 1: Inflection rules

Catalog Words
Determinater a an the my your his her its our

their this that these those
Preposition about along among around as at

beside besides between by down
during except for from in inside
into of off on onto outside over
through to toward towards un-
der underneath until up upon with
within without

Modal Verb can could will would shall should
must may might

BE be am is are was were been
HAVE have has had
Other many much

Table 2: Stop words

Tokens Edit Label
to {to reveal→revealing} ⊖
reveal GERUND
a {a woman→women} ⊖
woman NPLURAL
developing {developing world THE⊕
wold →the developing world} ⊙
a {a→ ϵ} ⊖
in {in→on} ON
apple {apple→an apple} AN⊕

Table 3: Examples of relabeling

2.2 Training Corpus Refinement

The corpus used to train the grammatical error recog-
nition model is highly imbalanced. The original train-
ing corpus has 57,151 sentences and only 3,716 of
them contain at least one grammatical error, and only
5,049 of the total 1,161K words are needed to be cor-
rected. This characteristic makes it hard to get a well-
performed machine learning model, since the samples
to be recognized are so sparse and those large amount
of correct data will severely affect the machine learn-
ing process as it is an optimization on the global train-
ing data. While developing our system, we found
that only using sentences containing grammatical er-
rors will lead to a notable improvement of the result.

76



Algorithm 2 Relabeling using the extended Leven-
shtein edit distance

1: function RELABEL(tokorig , tokgold, lemorig ,
lemgold)

2: (E, P) ← DISTANCE(tokorig, tokgold,
lemorig , lemgold)

3: pivot← number of edits in E that are not A
4: L← ϕ
5: L← ′′

6: while i < length of E do
7: if E[i] = A then
8: L← L+ label of edit E[i] with P[i]
9: i← i + 1

10: else
11: l← L+ label of edit E[i] with P[i]
12: pivot← pivot− 1
13: if pivot = 0 then
14: i← i + 1
15: while i < length of E do
16: l← l +⊕+ P[i]
17: i← i + 1
18: end while
19: end if
20: push l into L
21: L← ′′

22: end if
23: end while
24: L← upper case of L
25: return L
26: end function

Inspired by this phenomenon, we propose a method to
refine the training corpus which will reduce the error
sparsity of the training data and notably improve the
recall rate.

The refined training corpus is composed of contexts
containing grammatical errors. To keep the informa-
tion which may have effects on the error identification
and classification, those contexts are selected based on
both syntax tree and n-gram, of which the process is
shown in Algorithm 3. For a word with error, its syntax
context of size c is those words in the minimal subtree
in the syntax tree with no less than c leaf nodes; and its
n-gram context of size n is n− 1 words before and af-
ter itself. In the CORPUSREFINE algorithm, the input c
gives the size of syntax context and n provides the size
of the n-gram context. These two parameters decide
the amount of information that may affect the recogni-
tion of errors. To obtain the context, given a sentence
containing a grammatical error, we first get a minimum
syntax tree whose number of terminal nodes exceed the
c threshold, then check whether the achieved context
containing the error word’s n-gram, if not, add the n-
gram to the context. At last the context is returned by
CORPUSREFINE.

An example illustrating this process is presented in
Figure 2. In this example, n and c are both set to 5,

Algorithm 3 Training Corpus Refine Algorithm

1: function CORPUSREFINE(sentence, c, n)
2: context← ϕ
3: if sentence contains no error then
4: return ϕ
5: end if
6: build the syntax tree T of sentence
7: enode← the node with error in T
8: e← enode
9: while True do

10: pnode← parent node of e in T
11: cnodes ← all the children nodes of pnode

in T
12: if len(cnodes) > c then
13: context← cnodes
14: break
15: end if
16: e← pnode
17: end while
18: i← the position of enode in context
19: l← size of context
20: if i < n then
21: add (n-i) words before context at the head

of context
22: end if
23: if l-i<n then
24: append (l-i) words after context in

context
25: end if
26: return context
27: end function

the minimal syntax tree and the context decided by it
are colored in green. Since the syntax context in the
green frame does not contain the error word’s 5-gram,
therefore, the 5-gram context in the blue frame is added
to the syntax context and the final achieved context of
this sentence is ”have to stop all works for the develop-
ment”.

2.3 LM Filter

All corrections are filtered using a large LM. Only
those corrections that are not too much worse than the
original sentences are accepted. Perplexity (PPL) of the
n-gram is used to judge whether a sentence is good:

PPL = 2−
∑

w∈n-gram p(w) log p(w),

We use rPPL, the ratio between the PPL before and
after correction, as a metric of information gain.

rPPL =
PPLcorrected

PPLoriginal
,

Only those corrections with an rPPL lower than a cer-
tain threshold are accepted.
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N-gram Context

Then the innovators have to stop all works for the development .

S

RB

NP

VP .

DT NNS VBP

S

VP

TO

VP

VB

NP

PP

DT NNS IN

NP

DT NN

Syntax Context

Figure 2: Example of training corpus refinement

3 Features

The single model approach enables us only to optimize
one feature set for all error type in the task, which can
drastically reduce the computational cost in feature se-
lection.

As many previous works have proposed various of
features, we first collected features from different pre-
vious works including (Dahlmeier et al., 2012; Ro-
zovskaya et al., 2012; HAN et al., 2006; Rozovskaya
et al., 2011; Tetreault, Joel R and Chodorow, Martin,
2008). Then experiments with different features were
built to test these features’ effectiveness and only those
have positive contribution to the final performance
were preserved. The features we used are presented in
Table 4, where word0 is the word that we are generat-
ing features for, and word and POS is the word itself
and it’s POS tag for various components. NPHead de-
notes the head of the minimum Noun Phrase (NP) in
syntax tree. wordNP−1 represents the word appearing
before NP in the sentence. NC stands for noun com-
pound and is composed of the last n words (n ≥ 2)
in NP which are tagged as a noun. Verb feature is
the word that is tagged as a verb whose direct object
is the NP containing current word. Adj feature repre-
sents the first word in the NP whose POS is adjective.
Prep feature denotes the preposition word if it imme-
diately precedes the NP. DPHead is the parent of the

current word in the dependency tree, and DPRel is the
dependency relation with parent.

4 Experiments

4.1 Data Sets

The CoNLL-2013 training data consist of 1,397 arti-
cles together with gold-standard annotation. The docu-
ments are a subset of the NUS Corpus of Learner En-
glish (NUCLE) (Dahlmeier et al., 2013). The official
test data consists of 50 new essays which are also from
NUCLE. The first 25 essays were written in response to
one prompt. The remaining 25 essays were written in
response to a second prompt. One of the prompts had
been used for the training data, while the other prompt
is new. More details of the data set are described in (Ng
et al., 2013).

We split the the entire training corpus ALL by article.
For our training step, we randomly pick 90% articles of
ALL and build a training corpus TRAIN of 1,258 arti-
cles. The rest 10% of ALL with 139 articles are for
developing corpus DEV .

For the final submission, we use the entire corpus
ALL for relabeling and training.
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Feature Example
Lexical features
word0 (current word) the
wordi, (i = ±1,±2,±3) man, stared, at, old, oak,

tree
n words before word0,
(n=2, 3, 4)

stared+at,
man+stared+at. . .

n words after word0, (n=2,
3, 4)

old+oak, old+oak+tree . . .

wordi + POSi, (i =
±1,±2,±3)

stared+VBD, at+IN. . .

First word in NP the
ith word before/after NP,
(i = ±1,±2,±3)

man, stared, at, period . . .

wordNP−1 + NP at + ( the + old + oak +
tree )

Bag of words in NP old+oak+the+tree
NC oak tree
Adj + NC old oak tree
Adj POS + NC JJ+oak tree
POS features
POS0 (current word POS) NNS
POSi, (i = ±1,±2,±3) NN, VBD, IN . . .
POS−n + POS−(n−1) +
· · ·+POS−1, (n = 2, 3, 4)

VBD + IN, NN + VBD +
IN . . .

POS1 + POS2 + · · · +
POSn, (n = 2, 3, 4)

JJ + NN, JJ + NN + NNS
. . .

Bag of POS in NP DT+JJ+NN+NN
Head word features
NPHead of NP tree
NPHead POS NN
NPHead +
NPHead POS

tree+NN

Bag of POS in NP +
NPHead

DT JJ NN NN+tree

wordNP−1 + NPHead at+tree
Adj + NPHead old+tree
Adj POS + NPHead JJ+tree
wordNP−1 + Adj +
NPHead

at+old+tree

wordNP−1 + Adj POS +
NPHead

at+JJ+tree

Preposition features
Prep at
Prep + NPHead at+tree
Prep + Adj + NPHead at+old+tree
Prep + Adj POS +
NPHead

at+JJ+tree

Prep + NC at+(oak+tree)
Prep + NP at + ( the + old + oak +

tree )
Prep + NPHead POS at+NN
Prep + Adj +
NPHead POS

at+old+NN

Prep + Adj POS +
NPHead POS

at + JJ + NN

Prep + Bag of NP POS at + ( DT + JJ + NN )
Prep + NPHead POS +
NPHead

at + NN + tree

Lemma features
Lemma the
Dependency features
DPHead word tree
DPHead POS NN
DPRel det

Table 4: Features for grammatical error recognition.
The example sentence is:”That man stared at the old
oak tree.” and the current word is ”the” .

Feature Example
Verb features
Verb stared
Verb POS VBD
Verb + NPHead stared+tree
Verb + Adj + NPHead stared+old+tree
Verb + Adj POS +
NPHead

stared+JJ+tree

Verb + NP stared+(the+old+oak+tree)
Verb + Bag of NP POS stared+(DT+JJ+NN)

Table 5: Features Continued

Count Label
1146000 ⊙
3369 ⊖
3088 NPLURAL
2766 THE⊕
1470 LEMMA
706 A⊕
200˜300 IN AN⊕ THE ARE FOR TO OF
100
˜200

ON A IS GERUND PAST VSINGULAR

50˜100 WITH ⊕THE AT AN BY THIS INTO
5˜50 FROM TO⊕ WAS ABOUT WERE ⊕A

THESE TO⊕LEMMA OF⊕ ⊕OF ARE⊕
⊕TO THROUGH BE⊕PAST AS AMONG
IN⊕ BE⊕ THEIR THE⊕LEMMA OVER
⊕ON HAVE⊕ DURING FOR⊕ ⊕WITH
PART ⊕IN HAVE WITHIN BE MANY
⊕AN THE⊕NPLURAL MUCH IS⊕ WITH⊕
TOWARDS ⊕FOR HAVE⊕PART ⊕ABOUT
WILL ⊕UPON THEIR⊕ HAVE⊕PAST
HAS⊕PART HAS⊕ HAS BY⊕ BEEN⊕
BE⊕⊙ AN⊕LEMMA THAT⊕ ITS HAD
FROM⊕ BETWEEN A⊕LEMMA

4 WERE⊕ UPON THOSE ON⊕ MANY⊕
IS⊕⊙ ⊕FROM CAN AS⊕

3 WILL⊕LEMMA WILL⊕ TOWARD THIS⊕
THAT ITS⊕ HAVE⊕⊙ ⊕BE AT⊕ ⊕AS
ABOUT⊕

2 WOULD WAS⊕ TO⊕BE⊕ THE⊕⊙
ONTO IS⊕PAST IS⊕GERUND INSIDE
HAVE⊕BEEN⊕ CAN⊕LEMMA ⊕BEEN
⊕AT

1 WOULD⊕LEMMA WITHOUT UN-
DER TO⊕THE TO⊕THAT⊕OF
TO⊕HAVE THIS⊕WILL⊕ THIS⊕MAY
THIS⊕HAS⊕ THESE⊕ THE⊕⊙⊕OF
THEIR⊕LEMMA THE⊕GERUND
THE⊕A⊕ THAT⊕HAS⊕BEEN⊕
THAT⊕HAS⊕ SHOULD⊕ ⊕OVER
OF⊕THE⊕ OF⊕THE OF⊕GERUND OFF
OF⊕A⊕ MAY⊕ MAY IS⊕TO IS⊕LEMMA
INTO⊕ ⊕INTO IN⊕THE⊕ HIS HAVE⊕AN
HAS⊕PAST HAS⊕BEEN⊕GERUND
HAS⊕BEEN⊕ HAD⊕⊙ HAD⊕ DURING⊕
COULD CAN⊕BE⊕ CAN⊕ BY⊕GERUND
⊕BY ⊕BETWEEN BESIDES BEEN⊕PART
BEEN AT⊕AN AT⊕A AS⊕THE AS⊕HAS
AROUND ARE⊕PAST ARE⊕A ARE⊕⊙
A⊕⊙⊕OF AM⊕

Table 6: All labels after relabeling
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4.2 Resources

We use the following NLP resources in our sys-
tem. For relabeling and correction, perl mod-
ule Lingua::EN::Inflect1 (Conway, 1998) is used
for determining noun and verb number and Lin-
gua::EN::VerbTense2 is used for determining verb
tense. A revised and extended version of maxi-
mum entropy model3 is used for ME modeling. For
lemmatization, the Stanford CoreNLP lemma annota-
tor (Toutanova et al., 2003; Toutanova and Manning,
2000) is used. The language model is built by the
SRILM toolkit (Stolcke and others, 2002). The corpus
for building LM is the EuroParl corpus (Koehn, 2005).
The English part of the German-English parallel cor-
pus is actually used. We use such a corpus to build
LM for the following reasons: 1. LM for grammatical
error correction should be trained from corpus that it-
self is grammatically correct, and the EuroParl corpus
has very good quality of writing; 2. the NUCLE cor-
pus mainly contains essays on subjects such as environ-
ment, economics, society, politics and so on, which are
in the same dormain as those of the EuroParl corpus.

4.3 Relabeling the Corpus

There are some complicated edits in the annotations
that can not be represented by our rules, for example
substitution of non-stopwords such as {human→ peo-
ple} or {are not short of→ do not lack}. The relabel-
ing phase will ignore those ones thus it may not cover
all the edits. After all, we get 174 labels after relabel-
ing on the entire corpus as shown in Table 6. These
labels are generated following the syntax defined in
Figure1 and terminals defined in Table 1 and Table 2.
Directly applying these labels for correction receives an
M2 score of Precission = 91.43%, Recall = 86.92%
and F1 = 89.12%. If the non-stopwords non-inflection
edits are included, of course the labels will cover all the
golden annotations and directly applying labels for cor-
rection can receive a score up to almost F1 = 100%.
But that will get nearly 1,000 labels which is too com-
putationally expensive for a classification task. Cut out
labels with very low frequency such as those exists only
once reduces the training time, but does not give signif-
icant performance improvement, since it hurts the cov-
erage of error detection. So we use all the labels for
training.

4.4 LM Filter Threshold

To choose the threshold for rPPL, we run a series of
tests on the DEV set with different thresholds. From
our empirical observation on those right corrections
and those wrong ones, we find the right ones seldomly

1http://search.cpan.org/˜dconway/
Lingua-EN-Inflect-1.89/

2http://search.cpan.org/˜jjnapiork/
Lingua-EN-VerbTense-3.003/

3http://www.nactem.ac.uk/tsuruoka/
maxent/

have rPPL > 2, so we test thresholds ranging from 1.5
to 3. The curves are shown in Figure 3.
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Figure 3: Different thresholds of LM filters

With higher threshold, more correction with lower
information gain will be obtained. Thus the recall
grows higher but the precission grows lower. We can
observe a peak of F1 arround 1.8 to 2.0, and the thresh-
old chosen for final submission is 1.91.

4.5 Evaluation and Result
The evaluation is done by calculating the M2 precis-
sion, recall and F1 score between the system output
and golden annotation. All the error types are evalu-
ated jointly. Only one run of a team is permitted to be
submitted. Table 7 shows our result on our DEV data
set and the official test data set.

Data Set Precission Recall F1
DEV 16.03% 15.88% 15.95%
Official 40.04% 10.89% 17.13%

Table 7: Evaluation Results

5 Conclusion
In this paper, we presented the system from team 1 of
Shanghai Jiao Tong University that participated in the
HOO 2012 shared task. Our system achieves an F1
score of 17.13% on the official test set based on gold-
standard edits.
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pages 568–572, Montréal, Canada, June. Associa-
tion for Computational Linguistics.

80



Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng
Ng. 2012. NUS at the HOO 2012 Shared Task. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 216–
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Abstract
We describe our grammar correction sys-
tem for the CoNLL-2013 shared task.
Our system corrects three of the five er-
ror types specified for the shared task -
noun-number, determiner and subject-verb
agreement errors. For noun-number and
determiner correction, we apply a classi-
fication approach using rich lexical and
syntactic features. For subject-verb agree-
ment correction, we propose a new rule-
based system which utilizes dependency
parse information and a set of conditional
rules to ensure agreement of the verb
group with its subject. Our system ob-
tained an F-score of 11.03 on the official
test set using the M2 evaluation method
(the official evaluation method).

1 Introduction

Grammatical Error Correction (GEC) is an inter-
esting and challenging problem and the existing
methods that attempt to solve this problem take
recourse to deep linguistic and statistical analy-
sis. In general, GEC may partly assist in solv-
ing natural language processing (NLP) tasks like
Machine Translation, Natural Language Genera-
tion etc. However, a more evident application of
GEC is in building automated grammar checkers
thereby benefiting non-native speakers of a lan-
guage. The CoNLL-2013 shared task (Ng et al.,
2013) looks at improving the current approaches
for GEC and for inviting novel perspectives to-
wards solving the same. The shared task makes
the NUCLE corpus (Dahlmeier et al., 2013) avail-
able in the public domain and participants have
been asked to correct grammatical errors belong-
ing to the following categories: noun-number,
determiner, subject-verb agreement (SVA), verb
form and preposition. The key challenges are han-
dling interaction between different error groups

and handling potential mistakes made by off-the-
shelf NLP components run on erroneous text.

For the shared task, we have addressed the fol-
lowing problems: noun-number, determiner and
subject-verb agreement correction. For noun-
number and determiner correction, we use a clas-
sification based approach to predict corrections
- which is a widely used approach (Knight and
Chander, 1994; Rozovskaya and Roth, 2010). For
subject-verb agreement correction, we propose a
new rule-based approach which applies a set of
conditional rules to correct the verb group to en-
sure its agreement with its subject. Our system
obtained a score of 11.03 on the official test set
using the M2 method. Our SVA correction sys-
tem performs very well with a F-score of 28.45 on
the official test set.

Section 2 outlines our approach to solving the
grammar correction problem. Sections 3, 4 and
5 describe the details of the noun-number, deter-
miner and SVA correction components of our sys-
tem. Section 6 explains our experimental setup.
Section 7 discusses the results of the experiments
and Section 8 concludes the report.

2 Problem Formulation

In this work, we focus on correction of three
error categories related to nouns: noun-number,
determiner and subject-verb agreement. The
number of the noun, the choice of determiner and
verb’s agreement in number with the subject are
clearly inter-related. Therefore, a coordinated
approach is necessary to correct these errors. If
these problems are solved independently of each
other, wrong corrections may be generated. The
following are some examples:
Erroneous sentence
A good workmen does not blame his tools
Good corrections
A good workman does not blame his tools
Good workmen do not blame his tools
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noun-number

subject-verb agreement determiner

Figure 1: Dependencies between the noun-
number, determiner and subject-verb agreement
errors

Bad corrections
A good workman do not blame his tools
Good workman does not blame his tools

The choice of noun-number is determined by
the discourse and meaning of the text. The choice
of determiner is partly determined by the noun-
number, whereas the verb’s agreement depends
completely on the number of its subject. Fig-
ure 1 shows the proposed dependencies between
the number of a noun, its determiner and num-
ber agreement with the verb for which the noun
is the subject. Assuming these dependencies, we
first correct the noun-number. The corrections to
the determiner and the verb’s agreement with the
subject are done taking into consideration the cor-
rected noun. The noun-number and determiner are
corrected using a classification based approach,
whereas the SVA errors are corrected using a rule-
based system; these are described in the following
sections.

3 Noun Number Correction

The major factors which determine the number
of the noun are: (i) the intended meaning of the
text, (ii) reference to the noun earlier in the dis-
course, and (iii) stylistic considerations. Gram-
matical knowledge is insufficient for determining
the noun-number, which requires a higher level of
natural language processing. For instance, con-
sider the following examples:
(1) I bought all the recommended books. These
books are costly.
(2) Books are the best friends of man.

In Example (1), the choice of plural noun in the
second sentence is determined by a reference to
the entity in the previous sentence. Example (2) is
a general statement about a class of entities, where
the noun is generally a plural. Such phenomena
make noun-number correction a difficult task. As
information at semantic and discourse levels is dif-
ficult to encode, we explored lexical and syntactic

Tokens, POS and chunk tags in
±2 word-window around the noun

Is the noun capitalized ?
Is the noun an acronym ?
Is the noun a named entity?
Is the noun a mass noun, pluralia tantum?
Does the noun group have an article/

demonstrative/quantifier?
What article/demonstrative/quantifier does

the noun phrase have ?
Are there words indicating plurality in

the context of the noun?
The first two words of the sentence

and their POS tags
The number of the verb for which this noun

is the subject
Grammatical Number of majority of nouns

in noun phrase conjunction

Table 1: Feature set for noun-number correction

information to obtain cues about the number of the
noun. The following is a summary of the cues we
have investigated:
Noun properties: Is the noun a mass noun, a plu-
ralia tantum, a named entity or an acronym?
Lexical context: The presence of a plurality indi-
cating word in the context of the noun (e.g. the
ancient scriptures such as the Vedas, Upanishads,
etc.)
Syntactic constraints:

• Nouns linked by a conjunction agree with
each other (e.g. The pens, pencils and books).

• Presence/value of the determiner in the noun
group. However, this is only a secondary cue,
since it is not possible to determine if it is the
determiner or the noun-number that is incor-
rect (e.g. A books).

• Agreement with the verb of which the noun is
the subject. This is also a secondary feature.

Given that we are dealing with erroneous text,
these cues could themselves be wrong. The prob-
lem of noun-number correction is one of mak-
ing a prediction based on multiple cues in the
face of such uncertainty. We model the prob-
lem as a binary classification problem, the task
being to predict if the observed noun-number
of every noun in the text needs correction (la-
bels: requires correction/no correction). Alterna-
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tively, we could formulate the problem as a sin-
gular/plural number prediction problem, which
would not require annotated learner corpora text.
However, we prefer the former approach since we
can learn corrections from learner corpora text (as
opposed to native speaker text) and use knowledge
of the observed number for prediction. Use of ob-
served values has been shown to be beneficial for
grammar correction (Rozovskaya and Roth, 2010;
Dahlmeier and Ng, 2011).

If the model predicts requires correction, then
the observed number is toggled to obtain the cor-
rected noun-number. In order to bias the system
towards improved precision, we apply the correc-
tion only if classifier’s confidence score for the re-
quires correction prediction exceeds its score for
the no correction prediction by at least a threshold
value. This threshold value is determined empiri-
cally. The feature set designed for the classifier is
shown in Table 1.

4 Determiner Correction

Determiners in English consist of articles, demon-
stratives and quantifiers. The choice of deter-
miners, especially articles, depends on many fac-
tors including lexical, syntactic, semantic and dis-
course phenomena (Han et al., 2006). Therefore,
the correct usage of determiners is difficult to mas-
ter for second language learners, who may (i) in-
sert a determiner where it is not required, (ii) omit
a required determiner, or (iii) use the wrong de-
terminer. We pose the determiner correction prob-
lem as a classification problem, which is a well
explored method (Han et al., 2006; Dahlmeier and
Ng, 2011). Every noun group is a training in-
stance, with the determiner as the class label. Ab-
sence of a determiner is indicated by a special
class label NO DET. However, since the number
of determiners is large, a single multi-class classi-
fier will result in ambiguity. This ambiguity can
be reduced by utilizing of the fact that a partic-
ular observed determiner is replaced by one of a
small subset of all possible determiners (which we
call its confusion set). For instance, the confu-
sion set for a is {a, an, the, NO DET}. It is un-
likely that a is replaced by any other determiner
like this, that, etc. Rozovskaya and Roth (2010)
have used this method for training preposition cor-
rection systems, which we adopt for training a de-
terminer correction system. For each observed de-
terminer, we build a classifier whose prediction is

Description Path

1 Direct subject

verb

noun

nsubj

verb

noun

nsubjpass

2 Path through Wh-determiner

noun

wh-determiner

ref verb

rcmod

nsubj

3 Clausal subject

verb

noun

csubj

verb

noun

csubjpass

4 External subject

verb_1

noun

nsubj

verb_2

xsubj

to

aux

5 Path through copula

verb

subj_complement

cop

noun

nsubj

6 Subject in a different clause

verb_1

verb_3

conj

conjunction

cc

noun

nsubj

verb_2

conj

7 Multiple subjects

noun_1

noun_2

conj

noun_3

conj

conjunction

cc

verb

nsubj

Table 2: Some rules from the singular-
ize verb group rule-set

limited to the confusion set of the observed deter-
miner. The confusion sets were obtained from the
training corpus. The feature set is almost the same
as the one for noun-number correction. The only
difference is that context window features (token,
POS and chunk tags) are taken around the deter-
miner instead of the noun.

5 Subject-Verb Agreement

The task in subject-verb agreement correction is to
correct the verb group components so that it agrees
with its subject. The correction could be made
either to the verb inflection (He run → He runs)
or to the auxiliary verbs in the verb group (He
are running → He is running). We assume that
noun-number and verb form errors (tense, aspect,
modality) do not exist or have already been cor-
rected. We built a rule-based system for perform-
ing SVA correction, whose major components are
(i) a system for detecting the subject of a verb, and
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(ii) a set of conditional rules to correct the verb
group.

We use a POS tagger, constituency parser and
dependency parser for obtaining linguistic infor-
mation (noun-number, noun/verb groups, depen-
dency paths) required for SVA correction. Our as-
sumption is that these NLP tools are reasonably
robust and do a good analysis when presented with
erroneous text. We have used the Stanford suite of
tools for the shared task and found that it makes
few mistakes on the NUCLE corpus text.

The following is our proposed algorithm for
SVA correction:

1. Identify noun groups in a sentence and the in-
formation associated with each noun group:
(i) number of the head noun of the noun
group, (ii) associated noun groups, if the
noun group is part of a noun phrase conjunc-
tion, and (iii) head and modifier in each noun
group pair related by the if relation.

2. Identify the verb groups in a sentence.

3. For every verb group, identify its subject as
described in Section 5.1.

4. If the verb group does not agree in number
with its subject, correct each verb group by
applying the conditional rules described in
Section 5.2.

5.1 Identifying the subject of the verb
We utilize dependency relations (uncollapsed) ob-
tained from the Stanford dependency parser to
identify the subject of a verb. From analysis of de-
pendency graphs of sentences in the NUCLE cor-
pus, we identified different types of dependency
paths between a verb and its subject, which are
shown in Table 2. Given these possible depen-
dency path types, we identify the subject of a verb
using the following procedure:

• First, check if the subject can be reached us-
ing a direct dependency path (paths (1), (2),
(3) and (4))

• If a direct relation is not found, then look for
a subject via path (5)

• If the subject has not been found in the previ-
ous step, then look for a subject via path (6)

A verb can have multiple subjects, which can be
identified via dependency path (7).

Rule Condition Action
1 ∃w ∈ vg, pos tag(w) = MD Do nothing

2 ∃w ∈ vg, pos tag(w) = TO Do nothing

3 subject(vg) 6= I Replace are by is

4 subject(vg) = I Replace are by am

5 do, does /∈ vg ∧ subject(vg) 6= I Replace have by has

6 do, does /∈ vg ∧ subject(vg) = I Replace has by have

Table 3: Some rules from the singular-
ize verb group rule-set
w is a word, vg is a verb group, POS tags are from the Penn
tagset

5.2 Correcting the verb group

For correcting the verb group, we have two sets of
conditional rules (singularize verb group and plu-
ralize verb group). The singularize verb group
rule-set is applied if the subject is singular,
whereas the pluralize verb group rule-set is ap-
plied if the subject is plural or if there are multi-
ple subjects (path (7) in Table 2). For verbs which
have subjects related via dependency paths (3) and
(4) no correction is done.

The conditional rules utilize POS tags and lem-
mas in the verb group to check if the verb group
needs to be corrected and appropriate rules are ap-
plied for each condition. Some rules in the sin-
gularize verb group rule-set are shown in Table 3.
The rules for the pluralize verb group rule-set are
analogous.

6 Experimental Setup

Our training data came from the NUCLE corpus
provided for the shared task. The corpus was
split into three parts: training set (55151 sen-
tences), threshold tuning set (1000 sentences) and
development test set (1000 sentences). In addi-
tion, evaluation was done on the official test set
(1381 sentences). Maximum Entropy classifiers
were trained for noun-number and determiner cor-
rection systems. In the training set, the number
of instances with no corrections far exceeds the
number of instances with corrections. Therefore,
a balanced training set was created by including
all the instances with corrections and sampling
α instances with no corrections from the training
set. By trial and error, α was determined to be
10000 for the noun-number and determiner cor-
rection systems. The confidence score threshold
which maximizes the F-score was calibrated on
the tuning set. We determined threshold = 0
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Task Development test set Official test set
P R F-1 P R F-1

Noun Number 31.43 40 35.2 28.47 9.84 14.66
Determiner 35.59 17.5 23.46 21.43 1.3 2.46

SVA 16.67 23.42 19.78 29.57 27.42 28.45
Integrated 29.59 17.24 21.79 28.18 4.99 11.03

Table 4: M2 scores for IIT Bombay correction system: component-wise and integrated

for the noun-number and the determiner correction
systems.

The following tools were used in the devel-
opment of the system for the shared task: (i)
NLTK (MaxEntClassifier, Wordnet lemmatizer),
(ii) Stanford tools - POS Tagger, Parser and NER
and Python interface to the Stanford NER, (iii)
Lingua::EN::Inflect module for noun and verb plu-
ralization, and (iv) Wiktionary list of mass nouns,
pluralia tantum.

7 Results and Discussion

Table 4 shows the results on the test set (de-
velopment and official) for each component of
the correction system and the integrated system.
The evaluation was done using the M2 method
(Dahlmeier and Ng, 2012). This involves comput-
ing F1 measure between a set of proposed system
edits and a set of human-annotated gold-standard
edits. However, evaluation is complicated by the
fact that there may be multiple edits which gen-
erate the same correction. The following example
illustrates this behaviour:

Source: I ate mango
Hypothesis: I ate a mango

The system edit is ε→ a, whereas the gold stan-
dard edit is mango→a mango. Though both the
edits result in the same corrected sentence, they do
not match. The M2 algorithm resolves this prob-
lem by providing an efficient method to detect the
sequence of phrase-level edits between a source
sentence and a system hypothesis that achieves the
highest overlap with the gold-standard annotation.

It is clear that the low recall of the noun-number
and determiner correction components have re-
sulted in a low overall score for the system. This
underscores the difficulty of the two problems.
The feature sets seem to have been unable to cap-
ture the patterns determining the noun-number and
determiner. Consider a few examples, where the
evidence for correction look strong:

1. products such as RFID tracking system have
become real

2. With the installing of the surveillances for
every corner of Singapore

A cursory inspection of the corpus indicates that
in the absence of a determiner (example (1)), the
noun tends to be plural. This pattern has not been
captured by the correction system. The coverage
of the Wiktionary mass noun and pluralia tantum
dictionaries is low, hence this feature has not had
the desired impact (example(2)).

The SVA correction component has a reason-
ably good precision and recall - performing best
amongst all the correction components. Since
most errors affecting agreement (noun-number,
verb form, etc.) were not corrected, the SVA
agreement component could not correct the agree-
ment errors. If these errors had been corrected, the
accuracy of the standalone SVA correction com-
ponent would have been higher than that indicated
by the official score. To verify this, we manually
analyzed the output from the SVA correction com-
ponent and found that 58% of the missed correc-
tions and 43% of the erroneous corrections would
not have occurred if some of the other related er-
rors had been fixed. If it is assumed that all these
errors are corrected, the effective accuracy of SVA
correction increases substantially as shown in Ta-
ble 5. A few errors in the gold standard for SVA
agreement were also considered for computing the
effective scores. The standalone SVA correction
module therefore has a good accuracy.

A major reason for SVA errors (∼18%) is
wrong output from NLP modules like the POS tag-
ger, chunker and parser. The following are a few
examples:

• The verb group is incorrectly identified if
there is an adverb between the main and aux-
iliary verbs.

It [do not only restrict] their freedom in all
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SVA Score Development test set Official test set
P R F-1 P R F-1

Official 16.67 23.42 19.78 29.57 27.42 28.45
Effective 51.02 55.55 53.18 65.32 66.94 66.12

Table 5: M2 scores (original and modified) for SVA correction

aspects , but also causes leakage of personal
information .

• Two adjacent verb groups are not distin-
guished as separate chunks by the chunker
when the second verb group is non-finite in-
volving an infinitive.

The police arrested all of them before they
[starts to harm] the poor victim.

• The dependency parser makes errors in iden-
tifying the subject of a verb. The noun prob-
lems is not identified as the subject of is by
the dependency parser.

Although rising of life expectancies is an
challenge to the entire human nation , the
detailed problems each country that will en-
counter is different.

Some phenomena have not been handled by our
rules. Our system does not handle the case where
the subject is a gerund phrase. Consider the exam-
ple,

Collecting coupons from individuals are the first
step.

The verb-number should be singular when a
gerund phrase is the subject. In the absence of
rules to handle this case, coupons is identified as
the subject of are by the dependency parser and
consequently, no correction is done.

Our rules do not handle interrogative sentences
and interrogative pronouns. Hence the following
sentence is not corrected,

People do not know who are tracking them.
Table 6 provides an analysis of the error type

distribution for SVA errors on the official test set.

8 Conclusion

In this paper, we presented a hybrid grammati-
cal correction system which incorporates both ma-
chine learning and rule-based components. We
proposed a new rule-based method for subject-
verb agreement correction. As future work, we
plan to explore richer features for noun-number
and determiner errors.

Error types % distribution
Noun-number errors 58.02 %
Wrong tagging, chunking, parsing 18.52 %
Wrong gold annotations 7.40%
Rules not designed 6.1%
Others 9.88 %

Table 6: Causes for missed SVA corrections and
their distribution in the official test set
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Abstract
This paper describes our submission for the
CoNLL 2013 Shared Task, which aims to to
improve the detection and correction of the
five most common grammatical error types in
English text written by non-native speakers.
Our system concentrates only on two of them;
it employs machine learning classifiers for the
ArtOrDet-, and a fully deterministic rule based
workflow for the SVA error type.

1 Introduction
Grammatical error correction is not a new task in Natu-
ral Language Processing field. Many previous research
was done to solve the problem. Most of these works
focus on article and preposition correction.

In this paper we present our implementation of our
system that participated in the CoNLL 2013 Shared
Task for grammatical error correction. Out of the 28
annotated error types in the training data, this year’s
task focuses on 5 error types: article or determiner (Ar-
tOrDet), preposition (Prep), noun number (Nn), verb
form (Vform) and subject-verb agreement (SVA). This
error proportion can be seen in Table 1.

From these error types we focused on ArtOrDet and

Error type Counts
ArtOrDet 6658

Nn 3779
Prep 2404

Vform 1453
SVA 1527

Table 1: Error types in NUCLE corpus

SVA mistakes only.
The remaining part of this paper is organized as

follows. Chapters refcorp and 3 describe the data
and system architecture. Chapter 4.2 explains the Ar-
tOrDet classification task. Our experimental setup for
ArtOrDet error is presented in Section 4.3. Chapter 4.4
describes the results from our experiments and some
analysis regarding the results. Chapters 5.1 and 5.1.1
describe the task and issues respectively, Chapter 5.2
explains the how the subject-verb pairs are extracted,
Chapter 5.3 is about the evaluation of the pairs. Lastly,

Chapter 8 will conclude our work.

2 Corpora and Tools
The training corpus (Dahlmeier, 2013) consists of ap-
prox. 1400, 40-sentence long essays (summing up to
overall 1161567 tokens), written by non-native speak-
ers, and annotated by professional English language in-
structors for error tags and corrections.

The tokenized, POS-tagged and dependency and
constituency parsed version of the corpus was also
provided, along with the tools (tokenization - NLTK,
POS-tagging and parsing - Stanford parser (Marie-
Catherine de Marneffe, 2011)).

The other NLP-tools used in our implementation
(described in the relevant sections) are the LIBLIN-
EAR classifier and NodeBox.

For evaluation of the system results the M2 Scorer
(Dahlmeier, 2012) was used.

3 System and Pipeline
Our system consists of two independent subsystems,
which are combined serially. The parsed version of the
input text first goes through the ArtOrDet subsystem
whose output is re-parsed, and serves as the input for
the SVA subsystem:

1. Article and determiner correction

2. Re-parsing of the data

3. Subject-verb agreement correction

In the following 2 Chapters we present the workflows
for the ArtOrDet and SVA mistake types separately.

4 ArtOrDet Correction
4.1 ArtOrDet Mistake Type
The ArtOrDet error type is the most common mistake.
We pose this ArtOrDet error correction as a multi-class
classification task. The output from the classification
task will be used to correct the data.

Both sentences ’girls like flowers’ and ’the girls like
flowers’ can be accepted as correct, depending on the
context - whether the noun refers to a specific group or
it is a general statement. Another example like ’he ate
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the cake’ and ’he ate a cake’ are also grammatically
correct depending on the context whether the cake has
been introduced before or not.

4.2 ArtOrDet Classification

An article or a determiner is followed by an NP. This
article often refers to a definite or indefinite element
of a class or pointing to something specific or general.
There are many examples article/determiner that fol-
lows an NP, for example, the, a, some, any, this, these,
that, those, etc. According to (Huddleston, 1984), one
NP can hold up to three determiners e.g. all her many
ideas. Moreover, each NP has a head which is noun
type class. This noun consists of three subclasses in-
cluding common noun (e.g. book, car, dog), proper
noun (e.g. Larry, Sarah, Germany) and pronoun (e.g.
you, we, they, them, it). Since we are working with
ArtOrDet errors, then there is no point of checking NP
which contains pronoun subclass because an article can
never be followed by pronoun.

We classify these ArtOrDet errors into several types
which are described in Table 2. The most common er-
ror is caused by missing the (around 39%). Addition-
ally, unnecessary use of the contributes 26% of error.
Furthermore, confusion between using the or or a/an
bring 4.3% error. We classified around 15% as unde-
fined error due to several reason. First, the error does
not appear in front of the NP itself, sometimes it ap-
pears in the middle of the NP. Second, the error appears
in other type phrase like adjective phrase, this makes
the problem is more difficult to trace. For example, a
clause ”...such invention helps to prevent elderly from
falling down.” The word elderly is recognized as adjec-
tive phrase and the correction happens in front of that
word (adding article the). Third, the correction involves
other articles for example this, that, and many more.

Besides the above error, there is another error which
we have to handle such as confusion between a or
an. This problem can be solved using a rule-based
approach which will be discussed in the next section.
To simplify this, we normalize article a and an into a.
Later on, after the classification is done, we will use
this rule-based to return the correct article.

4.3 Experimental setup

After defining the error types, we split the corpus into
training and testing dataset. We select 50 documents
from the corpus as a held-out test data and the rest is
used for the training data. For the training part, we
extract the NP (which is not headed by pronoun) using
the information from constituent parse tree and POS
tags. Each NP that is extracted represents one training
example. Thus, if an NP is incorrect then we label it
to one of the label from Table 2. We consider this task
as a multi-class classification task, that one NP finds a
mapping f : x→ {c1, c2, . . . , c8} that maps x ∈ NPs
into one of the 8 labels.

For the first experiment, we select two well known

Classification label Training
Correct NP 97.91%
Missing the 0.92%
Missing a/an 0.30%
Unnecessary the 0.07%
Unnecessary a/an 0.61%
Use the instead of a/an 0.03%
Use a/an instead of the 0.06%
Undefined 0.11%

Table 3: Training data

classification methods such as LIBLINEAR (Fan et al.,
2008) and Naive Bayes (McCallum and Nigam, 1998).
Both of these methods are trained using the same train-
ing data and features which we are going to discuss in
Subsection 4.3.5. In the testing part, our classifier will
predict a label for each NP. If the classifier predicts that
the observed NP is already correct or it needs to add
article a then we apply a rule-based approach to make
sure it puts the right article (a/an). This rule-based will
utilize CMU pronouncing dictionary from NLTK to do
the checking and put conditional constraints such as
checking whether this NP is an acronym or not.

The second and third experiments are inspired by
(Dahlmeier et al., 2012; Rozovskaya et al., 2012). We
realize that the proportion of observed NP without ar-
ticle error outnumbers the observed NP with an article
error (see Table 3). Therefore, this huge proportion of
correct NP may affect the classifier accuracy. To justify
this claim, we will utilize error inflation method for the
second experiment and do re-sampling and undersam-
pling NP as the third experiment.

4.3.1 Naive Bayes
Naive Bayes is a famous classification method which
applies Bayes theorem’s with naive assumptions. This
assumptions believe that all features that are use to de-
scribe the data are independent (McCallum and Nigam,
1998). The advantages of this method are fast and
easy to implement. This method has shown to be a
good classification tool in NLP field (e.g. spam filter-
ing, news classification, etc.). To classify an instance
D = 〈f1, f2, . . . , fn〉 according to one of the classes
cj ∈ C, we calculate the maximum likelihood estima-
tion of a prior probability cj times the product of every
featuresf1,...,n given class cj times as described below:

c = arg max
cj∈C

P (cj)
∏

i

P (fi|cj) (1)

For this task, we utilize naive bayes package from
NLTK. This method is trained using the features which
are already described in Table 4.

4.3.2 LIBLINEAR
LIBLINEAR provides a large-scale classification li-
brary to handle sparse data that contains a large num-
bers of instances and features (Fan et al., 2008).
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ArtOrDet errors Proportion Example(s)
Missing the 38.9% Working class Singaporean would be motivated to work hard as they know the government

would contribute...
Missing a/an 12.8% If China can come up with an effective policy to change its education system and stimulate

innovation
Unnecessary the 26% The innovators, who are normally work under Research and Development department, have

to recognize...
Unnecessary a/an 2.7% It would no longer be able to a have constant economic growth which places a detrimental

effect on the country
Use the instead of a/an 2.9% The government budgets should be diverted to other areas of the a country’s development

since resources are limited
Use a/an instead of the 1.4% As a result of a the growing aging population...
Undefined 15.3% ...such invention helps to prevent the elderly from falling down.

Of course, it this is not possible.
This caused problem like the appearance of slums which most of the time is not safe due to
the their unhealthy environment

Table 2: ArtOrDet errors distribution from NUCLE corpus

It supports two binary linear classifiers such as L2-
regularized logistic regression (LR), L1-loss and L2-
loss linear SVM. Given a pair training set instance
(xi, yi), where i = 1, . . . , l, xi ∈ Rn and y ∈
{+1,−1}l. This data will be considered as optimiza-
tion problem:

min
w

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi

(2)

where C > 0 as a penalty parameter.
LIBLINEAR not only supports binary class prob-

lems but also multi-class problems via one-vs-the-rest
strategy. For our purpose, we will use this LIBLINEAR
package with C = 0.125. This penalty value is come
from the grid search which is provided in the package
to find the best parameter C.

Both of these classification methods are evaluated by
calculating the number of corrects prediction compare
to the annotation label which is defined as:

Accuracy =
# of correct predictions

# of predictions
(3)

4.3.3 Error Inflation Method
Since the ArtOrDet errors that we have is sparse and
increase the errors proportion in the training data can
help the classifier to perform better then we apply this
error inflation method (Rozovskaya et al., 2012). We
select some positive constant (less than 1.0) to reduce
the proportion of the correct example and adding this
proportion to the other error types by generating the
artificial error. We found that probability among the
corrections are still similar.

4.3.4 Re-sampling and Undersampling
Besides error inflation method, we are also interested
in re-sampling NP with ArtOrDet error and undersam-
pling without ArtOrDet error. Some combination will
be selected to see whether it can help the classifier in
detecting and correcting the ArtOrDet errors. we select

some constant number to re-sample the NP which con-
tains ArtOrDet error and some threshold to undersam-
pling the NP which is correct. The results from these
two approaches are discussed in the next section.

4.3.5 Feature Extraction
We adopt some features from (Dahlmeier et al., 2012;
Rozovskaya et al., 2012) which are described in Ta-
ble 4. Most of the features are coming from lexical and
POS. If the NP contains an article, then we will sepa-
rate it and consider as as additional feature.
wNb and wNa in Table 4 represent word at posi-

tion N before the NP and word at position N after the
article position. If there is no article in the beginning
of NP then first word in the NP is recognize as w1a.
pNb and pNa describe the POS of wNb and wNa.
NC is a noun compound and this compound is gener-
ated by the last two words inside the NP which have
noun POS. head of the NP is identified with headWord
feature and it is determined using the information from
dependency tree. NP is a noun phrase which is ex-
tracted from the constituent parse tree. posX is a POS
feature of X where x ∈ {NC,NP, headWord}. verb
feature and prep are determined from the POS informa-
tion. wordAfterNP is activated if there is another word
after the NP.

4.4 Results & Discussion

The result from the first experiment can be seen in Ta-
ble 6. We compare the baseline with Naive Bayes and
LIBLINEAR classifier. The baseline that we choose for
this task has similar definition with (Rozovskaya and
Roth, 2010) which is ’do nothing’. The reason behind
of this is because the proportion of NP using correct
article is more than 90% and this is better than state-of-
the-art classifier for article selection (with article selec-
tion, usually the baseline is set by majority class which
is zero article). The result shows that LIBLINEAR pro-
duces a minor improvement than the baseline. This in-
crease is influenced by the rule based approach that we
develop to correct the use of a and an. Naive Bayes
doesn’t perform well due to the dependent features that
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Feature Type Description
Observed article article
Word n-grams w1b, w2b, w3b, w2b w1b, w3b w2b w1b, w1a, w2a, w3a, w1a w2a, w1a w2a w3a, w1b w1a, w2b w1b w1a,

w1b w1a w2a, w2b w1b w1a w2a, w3b w2b w1b w1a, w1b w1a w2a w3a
POS features p1b, p2b, p3b, p2b p1b, p3b p2b p1b, p1a, p2a, p3a, p1a p2a, p1a p2a p3a, p1b p1a, p2b p1b p1a, p1b p1a p2a,

p2b p1b p1a p2a, p3b p2b p1b p1a, p1b p1a p2a p3a, p1b w1b, p1b w1a, p2b w2b, p2b w2a
NP NC, posNC, headWord, posHeadWord, headWord posHeadWord, w1b posNP posHeadWord, w1b headWord,

w1b headWord wordAfterNP
Verb verb, verb headWord, verb NC, verb NP, verb posNP headWord, verb posNP NC
Preposition prep, prep headWord, prep NC, prep NP, prep posNP headWord, prep posNP NC

Table 4: Features set

1 0.9 0.8 0.7 0.6 0.5
acc. 98.64% 98.63% 98.14% 97.12% 95.10% 92.36%

Table 5: ArtOrDet accuracy using error inflation

Method Accuracy
Baseline 98.5%

Naive Bayes 82 %
LIBLINEAR 98.67 %

Table 6: Classifier performance on correcting Ar-
tOrDet errors

we employs.
Our second experiment tests the use of error inflation

method on LIBLINEAR classifier. This test is applied
to LIBLINEAR classifier with since it has a higher ac-
curacy than Naive Bayes. The results from this experi-
ment is described in Table 5. The smaller the constant
number will result in larger article errors. Nonetheless,
if we introduce too many error it will reduce the accu-
racy.

The last experiment test the effect of re-sampling
NP with ArtOrDet several error times and reducing the
number of observed NP that is already correct can be
seen in Table ??. The re-sampling parameter is put
on the first column (5, 10, 15, 20 and 25 times) deter-
mine how many duplicates are made for each NP. On
the row side we use a threshold to reduce the propor-
tion of the observed NP which is already correct. So
for each correct NP, we generate a random number and
if it is higher than the threshold, then it is included in
the training dataset. Table ?? reveals that re-sampling
some NP that has ArtOrDet error does not increase the
accuracy. On the other hand, reducing the threshold
improve the accuracy.

If we look deeper, we found that increasing the
threshold and re-sampling may have a positive corre-
lation with correcting the error. However, the number
of false positives also increased.

4.5 Further analysis

Inspired by (Gamon et al., 2008) to make two classi-
fiers for detecting and correcting article errors. If we
consider that our classifier can detect correctly the er-
ror, then we only need to train another classifier to
make the correction by using the same features as de-

Classification label # Accuracy
Missing the 45 96%
Missing a/an 26 38%
Unnecessary the 47 100%
Unnecessary a/an 4 100%
Use the instead of a/an 4 0%
Use a/an instead of the 1 0%
Undefined 5 0%
TOTAL 132 79%

Table 7: Error Correction distribution

scribed in Table 4. The training for this classifier comes
from all NP with ArtOrDet error. Our result proves that
79% of the ArtOrDet can be corrected (see Table 7)

On one hand, our classifier does a good job in a sense
of detecting missing article and removing unnecessary
article. On the other hand, it is hard to predict either
choosing between a/an or the. We found that our clas-
sifier labels this confusion as unnecessary the or a/an.
This means that we have to remove the article for both
of these confusions.

This may be caused by lack of training data for par-
ticular errors such as confusion between the & a/an.
We realize that this mistake occurs often when the ar-
ticle would appear in front of an adjective - and in our
feature sets there is no explicit adjective feature.

5 SVA Correction

5.1 SVA Mistake Type

Subject-verb agreement is the fourth most common
mistake type in texts written by English language
learners. It is also the highest done by machine
translation systems, yet still an unsolved problem.
The English verb inflection paradigm is relatively
simple, and only the misuse of third person singular
and finite form of the verb (the form coinciding with
the infinitive form) are of interest for the SVA error
correction:

*John and Mary goes to work every day.
*Mary go to work every day.

Nevertheless, it is not a straightforward task, mainly
because of the difficulties of linking the corresponding
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subjects and verbs together. The detection of the dis-
agreement is relatively simple, compared to the task of
recognizing the number of the subject and verb.

This mistake type is different in nature form the error
types (e.g. determiner and preposition) as the scope of
the analysis cannot be determined as easily, therefore it
has to be the whole sentence. The verb and its corre-
sponding subject can be quite distant from one another
in the sentence, and by no means have predictable po-
sitions.
In English the verbs and their subjects have no fixed
positions; in indicative sentences the verb most of the
times (not immediately) but follows the subject, al-
though not necessarily, e.g. in sentences with exple-
tives the subject follows the verb:
However, there/EXPL are/VERB still many prob-
lems/SUBJ hampering engineering design process for
innovations.

5.1.1 Issues on the Syntactic Level
There are two types of syntactic phenomena that make
the recognition and agreement evaluation of subject-
verb difficult.
These issues are explained on dependency parsing ex-
amples, but can be generalized to any kind of grammar.

5.1.2 Multiple Subjects
When there are multiple subjects in the sentence, only
the first one is labeled as a subject, the ones following
it get the conj label. Even if all of them are in singular
form, the verb has to be in its plural form, as multi-
ple subjects mean plural number in English. If these
type of sentences are not taken care of, that can lead to
many missed corrections and to even more faulty ones.
Figure 5.1.2 visualizes the problem.

5.1.3 Subject Coreference
If a sentence contains a wh-subordinate clause, the
verb in the subordinate clause has to agree with the
antecedent of the subject, but the subject is a WH-
determiner (that, what, which, who, etc.) that can refer
to both singular and plural antecedents.
The referent (ref) of the head of an NP is the rela-
tive word introducing the relative clause modifying the
NP is an existing label in dependency parsing, but not
available with the parser used here.
There are multiple ways to resolve the coreference, the
one simplistic method1 applied here is based on the as-
sumption that the antecedent of the wh-subject is the
closest preceding noun or pronoun to it.
Another competing method is to use the head of the
verb in the subordinate clause, which is exactly the an-
tecedent of the wh-subject (see in Figure 5.1.3). This
relation is labeled as rcmod, the relative clause modi-
fier.
When the verb is an auxiliary, its head can be a verb

1In sentences, where the wh-subject is a clausal subject,
like What engineers should do is to invent new machines. are
handled separately.

(which have shaped/VBN), an adjective (which is ef-
fective/JJ) or a noun (which is a competitive funding
scheme/NN), whose head is the antecedent of the rela-
tive clause.
The second method, apart from being challenging to
implement, yields to significantly worse results than
the first one, most probably because of the dependency
annotation mistakes in the corpus. The other problem
with it is, that it requires the subjects and verbs to be
paired before they the pairing is done in the pipeline.

5.2 Subject-Verb Pair Extraction
In order to being able to evaluate their agreement, the
first task in finding SVA errors is identifying matching
subjects and verbs. This is done in two steps:

1. extracting all predicate verbs and subjects from
the sentence,

2. identifying which subject(s) belongs to which
verb(s).

For recognizing inflected verb forms in 1. the POS-tags
are used; all inflected verb forms (VBZ, VBP, VBD,
MD) are extracted from the sentence. As for the sub-
jects, the dependency labels nsubj, nsubjpass, csubj
are used to recognize them.
This is also the place where the multiple subject identi-
fication and coreference resolution is done. Pronoun-
and determiner subjects are classified as singular or
plural subjects, based on a finite list. Noun subjects
are classified based on their POS-tags: NN and NNP as
singular, NNS and NNPS as plural.
Once all subjects and verbs were extracted from the
sentence, they have to be paired.
In 2., depending on how many subjects and verbs were
extracted, POS templates were used to pair them.

It has to be noted here that in dependency parsing the
subjects are not always dependent on the predicate verb
itself, but rather on the main verb in the sentence, such
as in Figure 5.2, so the head of the subject information
couldn’t be used.
There is no straightforward solution in the constituency
parse trees either; it is not sufficient to take the head of
the NP under the ROOT as the subject, as this solution
wouldn’t handle relative clauses properly.

5.2.1 Patterns
Only patterns, which can be almost exhaustively
correctly classify subject-verb pairs are used.
Each verb is paired with the subject that is assigned an
identical index. The following patterns are used:

Subject1 Verb1
Verb1 Subject1
Subject1/2 Verb1 Verb2
Subject1 Verb1 Subject2
Subject1 Verb1 Subject2 Verb2
Subject1 Verb1 Verb2 Subject2
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Good environment , efficient technology support and proper use of food *is required .

ROOT

nsubjpass

conj

conj

Figure 1: Dependency relations in a sentence with conjunct subjects. Only the relevant dependencies are marked.
There is an original SVA mistake (made by the author) in the sentence due to the missed identification of the
conjunct subjects.

Innovations that are radically different face even greater problems .

ROOT

nsubj

nsubj

cop

rcmod

Figure 2: Sentence with subordinate clause. Only relevant dependencies are marked. The subject of the subordinate
sentence is headed by the adjective, which is headed by the subject of the main clause.

Wind and wave can all be used for generating power .

ROOT
nsubjpass

cc

conj
advmod

auxpass
prep prep

amod

pobj

Figure 3: Sentence with labeled dependency relations. The first subject is not headed by the finite verb of the
sentence can, but rather by the verb in the participial form used.

All other patterns (with 5 and more subjects or verbs
in the sentence) were discarded from the evaluation,
due to the far too many pairing possibilities. These
long sentences generally contain a lot of modifiers, and
make up 34% of the development data.

5.3 SV-Agreement Evaluation: Rule-based
System

After the pairing is complete, only the pairs which in-
clude VBP2/VBZ3 tags for the verbs, or verb forms in
the past tense of the copula (was/were) are retained for
the agreement evaluation.
If the number of the subject and verb don’t agree, the
verb form gets corrected.

2plural verb form
3third person singular verb form

5.3.1 Correction
The correction is done by using NodeBox, which is a
tool that generates the morphologically correct singular
or plural form of a given English verb.

5.4 SVA Results

On development set, only SVA-corrections, with other
error types not being corrected we get a precision of
0.18.25% and a recall of 22.20%.

5.4.1 System Error Analysis
The following patterns emerged. False negatives
(missed corrections) are mostly, but not exclusively due
to non-accurate POS-tags, non-accurate parse trees (in-
cluding many titles of the documents), dependency on
other mistake types: especially on the noun number
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type mistakes, mistake annotation errors and other spe-
cific cases.

6 Integrating the Systems
The systems, handling separately the mistake types, are
combined in a sequential order.
The SVA mistake type heavily depends on the correc-
tion of the other mistake types, most prominently on
the noun number (Nn) mistakes, as the example sen-
tence below shows.
*This will , if not already , caused/Vform problems as
there are/SVA very limited spaces/Nn for us .
This will , if not already , cause problems as there is
very limited space for us .
Although we don’t deal with Nn-mistakes, the SVA-
system is still the last in the row. After each iteration,
the test data is re-parsed, to become the input for the
next system.

7 Joint Results on Blind Data
Our final results (run on the M2 scorer) are as shown in
Table 7.

Precision 0.2769
Recall 0.110

F1 0.0211

Table 8: System results on blind data

8 Conclusion
Correcting ArtOrDet errors for this task is not an easy
job especially the number of NP using correct article
is really high (more than 95%). However our LIBLIN-
EAR classifier performance is slightly better than the
baseline and Naive Bayes. Besides comparing between
Naive Bayes and LIBLINEAR classifiers for this task
we also adapt two approaches from (Dahlmeier et al.,
2012) and (Rozovskaya et al., 2012). Our result ex-
plains that neither re-sampling method nor error infla-
tion method contribute to the increase of accuracy.

There are several directions that can be pursued
to improve the classifier accuracy. Adding language
model feature which is mentioned by (Gamon et al.,
2008; Dahlmeier et al., 2012) might be useful to filter
the result. However using language model like Google
N-gram corpus would need some extra treatment since
the data is really big and need a lot of computation time
to build the language model.

The hardest part of the SVA-correction task is to ex-
tract the matching subject-verb pairs; with sufficient
amount of data annotated for that purpose (there is one
out there, for Swedish), the rule-based approach could
be turned into a statistical learning one, which might
improve the recall of the system. I have found no pre-
vious research pointing to this direction. Long and
complex sentences, with more than one subject-verb

pairs, are frequent in corpora specific to life sciences
and technology literature, such as the corpus used in
this shared task. The system definitely works better on
shorter sentences.
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Abstract
We describe the system developed for the
CoNLL-2013 shared task—automatic En-
glish L2 grammar error correction. The
system is based on the rule-based ap-
proach. It uses very few additional re-
sources: a morphological analyzer and a
list of 250 common uncountable nouns,
along with the training data provided by
the organizers. The system uses the syn-
tactic information available in the train-
ing data: this information is represented
as syntactic n-grams, i.e. n-grams ex-
tracted by following the paths in depen-
dency trees. The system is simple and
was developed in a short period of time
(1 month). Since it does not employ
any additional resources or any sophisti-
cated machine learning methods, it does
not achieve high scores (specifically, it has
low recall) but could be considered as a
baseline system for the task. On the other
hand, it shows what can be obtained using
a simple rule-based approach and presents
a few situations where the rule-based ap-
proach can perform better than ML ap-
proach.

1 Introduction
There are two main approaches in the design of the
modern linguistic experiments and the develop-
ment of the natural language processing applica-
tions: rule-based and machine learning-based. In
practical applications of machine learning (ML),
the best results are achieved by the methods that
use supervised learning, i.e., that are based on
manually prepared training data for learning. It
is also worth mentioning what can be considered
a general rule for the combination of these two
approaches: a system based on the mixed ap-
proach should obtain better results if each part

of the system is applied according to its “com-
petence”. Specifically, some problems are better
solved by the application of the rules—like the
rules for choosing the correct allomorph of the ar-
ticle “a” vs. “an”, while other problems are better
solved by the usage of ML methods—such as de-
ciding the presence or absence of a definite or an
indefinite determiner.

This paper describes the system developed for
the CoNLL-2013 shared task. The task consists
of grammar correction in texts written by people
learning English as a second language (L2). There
are five types of errors considered in the task: noun
number, subject-verb agreement, verb form, ar-
ticle/determiner and choice of preposition. The
training data processed by the Stanford parser (de
Marneffe et al., 2006) is provided. This data is part
of the NUCLE corpus (Dahlmeier et al., 2013).
The data also contains the error types and the cor-
rected version.

Development of the system was started only two
months before the deadline, so it is also an inter-
esting example of what can be done in a rather
short period of time and with relatively little ef-
fort: only one person-month joint effort in total.

In our system, we considered mainly the rule-
based approach. Note that we used the ConLL
data to extract preposition patterns, which can be
considered as a very reduced form of machine
learning with yes/no classifier, as well as to con-
struct rules directly from the data.

Another feature of our system is the widespread
use of the syntactic information present in the pro-
vided data. In our previous works, we general-
ized the use of syntactic information in NLP by
introducing the concept of syntactic n-grams, i.e.
n-grams constructed by following the dependency
paths in a syntactic tree (Sidorov et al., 2012;
Sidorov et al., 2013). Note that they are not n-
grams of POS tags, as could be assumed from the
name; the name refers to the manner in which they
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Figure 1: Example of syntactic tree (for extraction
of syntactic n-grams).

are constructed. That is to say, in a dependency
relation, there is always a head word and a depen-
dent word. In the syntactic tree, this relation is
graphically represented by an arrow: head→ de-
pendent. As it can be observed in Fig. 1, we can
also use the tree hierarchy—the head word is al-
ways “higher” in the syntactic tree.

The algorithm for the construction of syntactic
n-grams is as follows: we start from the root word
and move to each dependent word following the
dependency relations. At each step, the sequence
of previous elements in the route taken are taken
into account. The last n words in the sequence
correspond to the syntactic n-gram. This could be
reformulated as: we should take the last n words
of the (unique) path from the root to the current
word.

In other words, we start from the root and reach
one of the dependent words. If we want to con-
struct bigrams, then we have a bigram already. If
we need other elements of the n-gram, then we
move to the word that is dependent and continue to
the words that are dependent on it. If a word has
several dependent words, we consider them one
after another and thus, obtain several syntactic n-
grams. Note that the head word always appears
before the dependent word in the syntactic n-gram
during the construction process.

For example, from the tree presented in Fig. 1,
the following syntactic bigrams can be extracted:
likes-also, likes-dog, dog-my, likes-eating, eating-

sausage. Note that only two syntactic 3-grams
can be constructed: likes-dog-my, likes-eating-

sausage. The construction process is the follow-
ing: we start with the root word like. It has several
dependent words: dog, also, eating. Considering
them one after another, we obtain three syntactic
bigrams. Then we move on to the word dog. It

has only one dependent word: my. This is another
bigram dog-my. However, the path from like also
goes through it, so this is also the 3-gram like-dog-

my, etc.
The reader can compare these syntactic n-grams

with traditional n-grams and consider their advan-
tages: there are a lot less syntactic n-grams, they
are less arbitrary, they have linguistic interpreta-
tion, etc.

Note that syntactic n-grams can be formed by
words (lemmas, stems), POS tags, names of de-
pendency relations, or they can be mixed, i.e., a
combination of the mentioned types. Being n-
grams, they can be applied in any machine learn-
ing task where traditional n-grams are applied.
However, unlike traditional n-grams, they have a
clear linguistic interpretation and can be consid-
ered as an introduction of linguistic (syntactic) in-
formation into machine learning methods. Previ-
ously, we obtained better results by applying the
syntactic n-grams to opinion mining and author-
ship attribution tasks compared to the traditional
n-grams. Further in this paper, it is described how
we use syntactic n-grams for the formulation of
rules in our system and for the extraction of pat-
terns.

The system described in this paper does not ob-
tain high scores. In our opinion, it could be con-
sidered a baseline system for the grammar correc-
tion task due to its simplicity, its use of very few
additional resources and the speed of its develop-
ment. Concretely, if a more sophisticated system
outperforms ours, it reflects well upon that system.
If it performs more poorly, its design should be
revised. On the other hand, this paper also dis-
cusses the few situations where the rule-based sys-
tem can outperform an ML approach. As we men-
tioned earlier, the ideal system would combine
both these approaches. To quote Tapanainen and
Voutilainen (1994), “don’t guess if you know”.

Further below, we describe the lexical resources
that we used, the processing of each type of error
and the evaluation of the system.

2 The System’s Linguistic Resources

The system consists of several program modules
written in the Python programming language. We
used only three types of linguistic resources:

• The provided corpus NUCLE data was pro-
cessed with the Stanford parser. It was
used for the extraction of patterns to identify
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preposition errors and for the formulation of
rules.

• A list of the 250 most common uncountable
nouns1. This list was used for processing the
possibility of using the nouns in plural form.

• A morphological analysis system for English
that in our case was based on the FreeL-
ing morphological dictionary (Padró et al.,
2010).

The FreeLing dictionary is a freely available
text file which contains more than 71,000 word
forms with standard POS tags. It has the follow-
ing data: for each word form, it contains a list of
lemmas and POS tags. An example of the entries:
...abandon abandon VB abandon VBP

abandoned abandon VBD abandon VBN

abandoning abandon VBG

abandonment abandonment NN

abandons abandon VBZ...

This list can also be easily reordered by lemmas.
It is therefore very easy to apply this word list to
both morphological analysis and generation. The
morphological analysis simply consists of search-
ing for a word form in the list, while the mor-
phological generation involves searching the list
of lemmas and then finding the word form with
the necessary POS tag, i.e., for the generation, the
input consists in the lemma and the POS tag. For
example, if we want to generate the VBZ form of
the verb take, then we search in the list ordered ac-
cording to the lemma take; there are several forms:
take took VBP, take taken VBN, take takes VBZ and
choose the form that has the POS tag VBZ.

3 Error Processing

In accordance with the rules of the ConLL shared
task, only five types of errors were considered:
noun number, incorrect preposition, choice of de-
terminer or article, subject-verb agreement and
verb form. More error types are marked in the
corpus, but they are much more complex, being
related to the meaning and content.

Let us see examples of the errors:

• Preposition error: “...the need of habitable
environment...”, where “for” should be used.

1List of 250 most common uncountable nouns.
www.englishclub.com>Learn English>Vocabulary>Nouns.

• Nn error: “...people are getting more con-
scious of the damages...”, the word “damage”
in singular should be used.

• SVA error: “...relevant information are read-
ily available...”, where “is” should be used in-
stead.

• Vform error: “The solution can be obtain
by using technology...”, where “obtained”
should appear.

• ArtOrDet error: “...It is also important to cre-
ate a better material...”, where “a” should not
be used.

The total number of errors marked in the train-
ing and the test data for ConLL 2013 are presented
by type in Table 1.

Table 1: Numbers of errors in training and test data
listed by type.

Error type Training Test
Vform (Verb form) 1,451 122
SVA (Subject-verb agreement) 1,529 124
ArtOrDet 6,654 690
Nn (Noun number) 3,773 396
Prep (Preposition) 2,402 311

Note that the errors related to the noun num-
ber should be processed first since later, an agree-
ment error could be produced if the noun number
is changed. If the agreement error is introduced by
the modification of the noun number, it is not the
error committed by the student, however it is con-
sidered as such in the current version of the task.
Probably, it can be considered as some sort of sec-
ondary error. The order in which other errors are
processed is irrelevant.

3.1 Noun Number Error Processing
The only rule we implemented in this case was that
uncountable nouns do not have a plural. We used
a list of the 250 most common uncountable nouns
(as mentioned in the Section 2) to determine the
possibility of a plural form for a noun. For ex-
ample: ...ethics, evidence, evolution, failure, faith,

fame, fiction, flour, flu, food, freedom...

We made an exception for the noun “time” and
do not consider it as uncountable, because its use
in the common expressions such as “many times”
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is much more frequent than its use as an uncount-
able noun as in “theory of time” or “what time is
it now?”. More sophisticated systems should ana-
lyze the contexts obtained from vast data sets (cor-
pora), i.e. consider n-grams or syntactic n-grams.
Note that word sense disambiguation would be
helpful in the resolution of the mentioned ambigu-
ities. Also, the rule that considers the presence of
the dependent words like “many, a lot of, amount
of” could be added.

3.2 Subject-Verb Agreement and Verb Form
Error Processing

We consider these two types of errors together be-
cause they are related to a similar and a rather sim-
ple grammatical phenomenon. To correct these
errors we used syntactic information to formulate
the rules. This is logical because we cannot rely
on the context words (neighbours) as they appear
in texts (traditional n-grams). Note that the rules
are also related to the modal verbs and the passive
constructions.

The rules for the agreement are very simple: 1)
if the noun is in plural and the VBZ tag is present,
then change the tag to VB, 2) if the noun is in
singular and the VB tag is present, then change
the tag to VBZ. The corresponding morphological
generation is also performed.

The rules for verb form correction are as fol-
lows: 1) if we have a modal verb, then the depend-
ing verb should have a VB tag, 2) if we have an
auxiliary verb “have”, then the main verb should
have a VB tag (perfect tense), etc. Moreover, the
FreeLing morphological dictionary is utilized to
identify the correct verb form. Note that there are
some assumptions here about what drives the verb
form, e.g., that a noun or a modal verb are correct
and the verb needs to change. This appears to be
a reasonable assumption, but may not always be
correct.

3.3 Preposition Error Processing
It is well-known that prepositions depend on lex-
ical units that are their heads, see (Eeg-Olofsson
and Knutsson, 2003). But what should be done
if we want to consider the dependent word? Say,
that in the PP attachment task, the lexical unit is
the preferred solution as well. In general, it would
be an ideal solution in grammar correction, but in
the case of our system, very little training data was
used. If we consider that the dependent word is a
lexical unit, we will have less recall. We are there-

fore practically obliged to consider that it is a POS
tag.

To process the prepositions, we used the train-
ing data provided by the organizers. Specifically,
we extracted preposition patterns. We apply the
concept of syntactic n-grams to include both the
head word of the preposition and the dependent
word into the pattern. The pattern data corre-
sponds to syntactic n-grams because they are con-
structed using syntactic dependencies. As we
mentioned previously, syntactic n-grams can con-
sist of words, POS tags or a combination. In our
case, we used mixed syntactic n-grams: the head
word is the lexical unit, while the dependent word
is the POS tag, as shown in Table 2.

For example, the first line corresponds to the er-
roneous phrase “...unwelcomed among public...”,
where “among” should be substituted by “by”.
Note that there can be other words between these
three words in the surface representation of the
sentence, but the parser allows the extraction of
the syntactic n-gram, which represents the “pure”
pattern.

In order to choose the syntactic n-gram type, our
first consideration was that the head word should
be a lexical unit (word), because this determines
the choice of the preposition. We used a POS
tag for the dependent element, because we consid-
ered that using a word there would be too specific.
Thus, our final syntactic n-gram for the first line
was “...unwelcomed among NN...”, which should
be changed to “...unwelcomed by NN...”. The syn-
tactic n-gram for the second line was “...trouble for
NN...”, which should be changed to “...trouble in
NN...”, etc. Note that insertion of prepositions is
not considered, but deletion can be performed, i.e.,
changing the preposition to nothing.

The rule for the system is formulated in the fol-
lowing way: if we find a relation “preposition” in
the dependency tree, then for the preposition that
corresponds to this relation, we search the list of
the extracted patterns. If we find the pattern, then
we change the preposition. It is quite clear that
the training data is too limited to obtain patterns
for a great majority of words. Our list contained
only 1,896 elements. These patterns should be ex-
tracted from a very large corpus or a dictionary.

3.4 Article or Determiner Error Processing

In this case, we found only two clear rules, both
related to the article “a”: 1) choice of the allo-
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Table 2: Examples of patterns for prepositions.
Preposition Preposition Head word Head word Dependent word Dependent word

(error) (correction) (lemma) (POS) (lemma) (POS)
among by unwelcomed VBN public NN

for in trouble NN development NN
on in practice NN October NNP
on in face VBG field NN

morph “a/an”, and 2) the fact that the article “a”
cannot be used with nouns in plural. Other rules
would be too complex for a manually created rule-
based system. The first rule takes into the account
the immediate neighbor: the choice depends on its
phonetic properties. The second rule considers the
syntactically related head word, which cannot be
in plural if we use the indefinite article.

4 Evaluation of the System

For the evaluation, the organizers provided data
similar to the training data from the same NU-
CLE corpus, which also contained syntactic in-
formation. The evaluation results were provided
by the organizers using their evaluation script in
Python (Dahlmeier and Ng, 2012). The results ob-
tained with this script for our system are: precision
17.4 %, recall 1.8%, and F1 measure 3.3% (the
preliminary scores were: 12.4%, 1.2% and 2.2%
correspondingly). See the final remarks in this
section, where we argue that the real values should
be: precision 25%, recall 2.6%, and F1 measure
4.7%.

The results are low, but as we mentioned previ-
ously, our system uses a rule-based approach with
very few additional resources, so it cannot com-
pete with ML based approaches that additionally
rely on vast lexical resources and the Internet. Due
to its simplicity, low use of additional resources,
and very short development time, we consider our
system a possible baseline system for the task. On
the other hand, we showed that in some cases the
rules should be used as a complementary tech-
nique for ML learning methods: don’t guess if you
know.

The low recall of the system is to be expected
as we process only clearly defined errors, ignoring
more complex cases.

It is always interesting to perform an analysis of
the errors committed by a system. Let us analyze
the supposed errors committed by our system
for the noun number error type. It performed 18

corrections, 3 of which coincide with the marks
in the corpus data. Two of them are clear errors
of the system: “traffic jam”, where the word
“jam” is used in a sense other than that of the
“substance”, and “many respects”, where again
the word “respect” has a different meaning to that
of the uncountable noun. There are 13 cases listed
below, that our system marked as errors, because
they are uncountable nouns in plural, but they
are not marked in the corpus. Let us consider the
nouns in capital letters:
...peaceful(JJ) LIVINGS(NNS)

2
...,

...life(NN) QUALITIES(NNS)...,

...Many(JJ) science(NN) FICTIONS(NNS)...,

...does(VBZ) not(RB) have(VB) enough(JJ)

LANDS(NNS)...,

...indicates(VBZ) that(IN) the(DT) FOODS(NNS)

the(DT) people(NNS) eat(VBP)...,

...problem(NN) of(IN) public(JJ) TRANSPORTA-

TIONS(NNS)...,

...healthcare(NN) consume(VBP) large(JJ)

QUANTITIES(NNS) of(IN) energy...,

...this(DT) society(NN) may(MD) lack(VB) of(IN)

LABOURS(NNS)...

Note that the words “equipment” and “usage”
in plural were marked as errors in the corpus. In
our opinion, it is inconsistent to mark these two as
errors, and not to mark the words from this list as
such. While it is true that their use in plural is pos-
sible, it is clearly forced and is much less probable.
At least, students of English should learn to use
these words in singular only. Some of these mis-
takes (but not all) were corrected by the organizers
for the final scoring data. If we consider all these
cases as correctly marked errors, then the preci-
sion of our system is around 25%, recall 2.6%, and
F1 measure 4.7%.

2“LIVINGS” is encountered 5 times and “QUANTITIES”
is encountered 2 times
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5 Conclusions
In this paper we have described the system pre-
sented for the CoNLL-2013 shared task for gram-
mar correction in English (L2). The system uses
a rule-based approach and relies on very few addi-
tional resources: a list of 250 uncountable nouns, a
morphological analyzer and the training data from
the NUCLE corpus provided by the organizers.
The system uses syntactic n-grams for rule formu-
lation, i.e., n-grams that are constructed by follow-
ing the dependency paths in a parsed tree.

We analyzed various situations in which a rule
based technique can give better results than ML
techniques: don’t guess if you know. These cases
are: 1) two rules for the article “a”, and 2) the
rules for uncountable nouns (in this case, word
sense disambiguation would help to determine if
the sense in the text is an uncountable noun or
has some other use), and 3) the subject-verb agree-
ment rule. In the case of prepositions, ML learn-
ing is definitely better. Otherwise, vast resources
would need to be used, which in any case, would
resemble machine learning. We are not sure about
verb form errors: the rules which we formulated
are rather simple, but the performance of various
ML methods should be analysed in order to decide
which technique is better.

The system is simple and was developed in a
very short time. It does not obtain high scores and
could be considered as a baseline system for the
task.
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Abstract
We describe the ’TILB’ team entry for
the CONLL-2013 Shared Task. Our sys-
tem consists of five memory-based classi-
fiers that generate correction suggestions
for center positions in small text windows
of two words to the left and to the right.
Trained on the Google Web 1T corpus, the
first two classifiers determine the presence
of a determiner or a preposition between
all words in a text. The second pair of clas-
sifiers determine which is the most likely
correction of an occurring determiner or
preposition. The fifth classifier is a general
word predictor which is used to suggest
noun and verb form corrections. We re-
port on the scores attained and errors cor-
rected and missed. We point out a num-
ber of obvious improvements to boost the
scores obtained by the system.

1 Introduction

Our team entry, known under the abbreviation
’TILB’ in the CONLL-2013 Shared Task, is a sim-
plistic text and grammar correction system based
on five memory-based classifiers implementing
eight different error correctors. The goal of the
system is to be lightweight: simple to set up and
train, fast in execution. It requires a preferably
very large but unannotated corpus to train on, and
closed lists of words that contain categories of in-
terest (in our case, determiners and prepositions).
The error correctors make use of information from
a lemmatizer and a noun and verb inflection mod-
ule. The amount of explicit grammatical infor-
mation input in the system is purposely kept to
a minimum, as accurate deep grammatical infor-
mation cannot be assumed to be present in most

real-world situations and languages. The system
described in this article takes plain text as input
and produces plain text as output.

Memory-based classifiers have been applied to
similar tasks before. (Van den Bosch, 2006) de-
scribes memory based classifiers used for con-
fusible disambiguation, and (Stehouwer and Van
den Bosch, 2009) shows how agreement errors can
be detected. In the 2012 shared task ’Helping Our
Own’ (Dale et al., 2012) memory based classifiers
were used to solve the problem of missing and
incorrect determiners and prepositions (Van den
Bosch and Berck, 2012).

The CONLL-2013 Shared Task context limited
the grammatical error correction task to detecting
and correcting five error types:

ArtOrDet Missing, unnecessary or incorrect article or de-
terminer;

Prep Incorrect preposition used;
Nn Wrong form of noun used (e.g. singular instead

of plural);
Vform Incorrect verb form used (e.g. I have went);
SVA Incorrect subject-verb agreement (e.g. He have).

The corrections made by the system are scored
by a program provided by the organizers (Ng,
2012). It takes a plain textfile as input (the output
generated by the system) and outputs a list with
correctly rectified errors followed by precision, re-
call and F-score.

As training material we used two corpora. The
Google Web 1T corpus (Brants and Franz, 2006)
was used to train the classifiers for the ArtOrDet
and Prep error categories. The GigaWord Newspa-
per text corpus1 was used to create the data for the
classifier for the noun and verb-related error cat-
egories. To make the classifiers more compatible

1http://www.ldc.upenn.edu/
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with each other, future versions of the system will
all be trained on the same corpus. We also used
two lists, one consisting of 64 prepositions and
one consisting of 23 determiners, both extracted
from the CONLL-2013 Shared Task training data.
Using the Google corpus means that we restricted
ourselves to a simple 5-gram context, which ob-
viously places a limit on the context sensitivity of
our system; on the other hand, we were able to
make use of the entire Google Web 1T corpus. The
context for the grammatical error detectors was
kept similar to the other classifiers, also 5-grams.

2 System

Our system is based on five memory-based clas-
sifiers that all run the IGTree classifier algorithm
(Daelemans et al., 1997), a decision-tree approx-
imation of k-nearest neighbour classification im-
plemented in the TiMBL software package.2 The
first two classifiers determine the presence of a de-
terminer or a preposition between all words in a
text in which the actual determiners and prepo-
sitions are masked. The second pair of classi-
fiers determine which is the most likely correction
given a masked determiner or preposition. The
fifth classifier is a general word predictor that is
used for suggesting noun and verb form correc-
tions.

All classifiers take a windowed input of two
words to the left of the focus position, and two
words to the right. The focus may either be a posi-
tion between two words, or be on a word. In case
of a position between two words, the task is to pre-
dict whether the position should actually be filled
by an determiner or a preposition. When the fo-
cus is on the word in question, the task is to decide
whether it should be deleted, or whether it should
be corrected.

It is important to note that not just one classifi-
cation is returned for a given context by the IGTree
classifier, but a distribution of results and their re-
spective occurrence counts. The classifier matches
the words in the context to examples in the tree in
a fixed order, and returns the distribution stored
at that point in the tree when an unknown word
is encountered. This is analogous to the back-
off mechanisms often used in other n-gram based
language modeling systems. When even the first
feature fails to match, the complete class distribu-
tion is returned. The output from the classifiers

2http://ilk.uvt.nl/timbl

is filtered by the error correctors for the correct
answers. Filtering is done based on distribution
size, occurrence counts and ratios in occurrence
counts (in the remainder of the text, where we say
frequency we mean occurrence count), and in the
case of the noun and verb-related error types, on
part-of-speech tags.

The system corrects a text from left to right,
starting with the first word and working its way
to the end. Each error corrector is tried after the
other, in the order specified below, until a correc-
tion is suggested. At this point, the correction is
stored, and the system starts processing the next
word. The other classifiers are not tried anymore
after a correction has been suggested by one of the
classifiers.

The first two classifiers, preposition? and de-
terminer?, are binary classifiers that determine
whether or not there should be a preposition or a
determiner, respectively, between two words to the
left and two words to the right:

• The preposition? classifier is trained on all
120,711,874 positive cases of contexts in the
Google Web 1T corpus in which one of the 64
known prepositions are found to occur in the
middle position of a 5-gram. To enable the
classifier to answer negatively to other con-
texts, roughly the same amount of negative
cases of randomly selected contexts with no
preposition in the middle are added to form
a training set of 238,046,975 cases. We in-
corporate the Google corpus token counts in
our model. We performed a validation exper-
iment on a single 90%-10% split of the train-
ing data; the classifier is able to make a cor-
rect decision on 88.6% of the 10% heldout
cases.

• Analogously, the determiner? classifier
takes all 86,253,841 positive cases of 5-
grams with a determiner in the middle po-
sition, and adds randomly selected negative
cases to arrive at a training set of 169,874,942
cases. On a 90%–10% split, the classifier
makes the correct decision in 90.0% of the
10% heldout cases.

The second pair of classifiers perform the multi-
label classification task of predicting which prepo-
sition or determiner is most likely given a context
of two words to the left and to the right. Again,
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Figure 1: System architecture. Shaded rectangles are the five classifiers.

these classifiers are trained on the entire Google
Web 1T corpus, including its token counts:

• The which preposition? classifier is trained
on the aforementioned 120,711,874 cases of
any of the 64 prepositions occurring in the
middle of 5-grams. The task of the classi-
fier is to generate a class distribution of likely
prepositions given an input of the four words
surrounding the preposition, with 64 possible
outcomes. In a 90%-10% split experiment on
the complete training set, this classifier labels
63.3% of the 10% heldout cases correctly.

• The which determiner? classifier, by anal-
ogy, is trained on the 86,253,841 positive
cases of 5-grams with a determiner in the
middle position, and generates class distribu-
tions composed of the 23 possible class labels
(the possible determiners). On a 90%-10%
split of the training set, the classifier predicts
68.3% of all heldout cases correctly.

The fifth classifier predicts the most likely
word(s) between a context of two words to the left
and two to the right.

• The general word predictor, which word?,
for the grammatical error types, was trained
on 10 million lines of the GigaWord En-
glish Newspaper corpus. This amounts to
66,675,151 5-grams. It predicts the word in
the middle between the two context words on
the left and on the right.

From the predictions of the five classifiers the
following eight error correctors are derived. There
is no one-to-one correspondence between classi-
fier and corrector. The ArtOrDet and Prep error
categories are handled by three separate errors cor-
rectors each that handle replacement, deletion, and

insertion errors. The three error types Nn, Vform
and SVA are handled by just two correctors:

1 missing preposition (Prep)
2 replace preposition (Prep)
3 unnecessary preposition (Prep)
4 missing determiner (ArtOrDet)
5 replace determiner (ArtOrDet)
6 unnecessary determiner (ArtOrDet)
7 noun form (Nn, SVA)
8 verb form (Vform, SVA)

For the latter two error correctors, 7 and 8,
we make additional use of a lemmatizer3 and a
singular-plural determiner and generator4 for noun
form errors, and a verb tense determiner and gen-
erator5 for verb form and SVA errors.

The algorithms for the six preposition and de-
terminer correctors will be explained in the rest of
this section. The algorithms use the same logic,
the difference is in the different lists and parame-
ters used for each error type.

The algorithm for missing preposition (or deter-
miner) is as follows.

1 next word is not a preposition
2 run positive-negative classifier P+

−

3 if the classification = + (i.e. we expect a preposition),
and freq(+):freq(−) > MP PNR

4 run the which preposition? classifier
5 if length distribution <= MP DS take answer as missing

preposition

The parameters (MP PNR and MP DS in the
above algorithm) are used to control the certainty
we expect from the classifier. Their values were
determined in our submission to the 2012 ’Helping

3http://www-nlp.stanford.edu/software/
corenlp.shtml

4https://pypi.python.org/pypi/inflect
5http://nodebox.net/code/index.php/

Linguistics

104



Our Own’ shared task (Dale et al., 2012), which
focused on determiner and preposition errors (Van
den Bosch and Berck, 2012). Similar classifiers
were used in this year’s system, and the same pa-
rameters were used this time.

In step 3 above, we check the ratio between the
frequency of the positive answer and the negative
answer. If the ratio is larger than the parameter
MP PNR (set to 20) we interpret this as being cer-
tain. In step 5, we prefer a small, sharp distribution
of answers. A large distribution indicates the clas-
sifier not finding any matches in the context and
returning a large distribution with all possible an-
swers. In that case, the majority class tends to be
the majority class of the complete training data,
and not the specific answer(s) in the context we
are looking at. To avoid this we only suggest an
answer when the distribution is equal to or smaller
than a certain preset threshold, MP DS, which was
set to 20 for this task.

The algorithm for replacing propositions (or de-
terminers) proceeds as follows:

1 word in focus is a preposition p

2 run which preposition?, classification is palt

3 if freq(palt) > RP F and
4 if word is in distribution and freq(palt):freq(p) > RP R,

take palt as a correction

This algorithm shows another parameter,
namely a check on frequency (occurrence count).
In order to be generated as a correction, the
alternate answer must have a frequency higher
than RP F, set to 5 in our system, and the ratio
between its frequency and that of the preposition
in the distribution that is the same as in the text
must be larger than RP R. This parameter was set
to 20.

The algorithm for unnecessary preposition (or
determiner) works as follows:

1 word in focus is a preposition
2 run positive-negative classifier P+

−

3 if classification = − and freq(−):freq(+) > UP NPR

4 the preposition is unnecessary

The next two algorithms show the Nn and Vf
correctors. The parameters these correctors use
have not been extensively tweaked, but rather use
the same settings as used in the preposition and
determiner correctors.

The first list shows the algorithm for the noun
type error. This error corrector also makes use of a
noun inflection module to turn singular nouns into

plural and vice versa. The algorithm first looks for
the alternative version of the noun in the distribu-
tion returned by the classifier given the context. If
it is found, and if it is much more frequent in the
distribution than the noun form used in the text, a
noun form error may have been found. The alter-
native form found in the distribution is returned as
the correction.

1 word in focus w is a noun
2 check singular or plural, determine alternate version walt

3 run the which-word? classifier, resulting in distribution
D

4 check if w is in D
5 check if walt is in D
6 if freq(w) in D < 10 and walt is in D use walt as correc-

tion

Finally, the verb form error corrector makes use
of a verb-tense determiner and generator, and a
lemmatizer. The alternative verb forms are gen-
erated from the lemma of the verb and the tense of
the verb. To prevent the system changing, for ex-
ample, give to gave, the generated alternatives are
kept in the same tense as the word in the text. This
does, however, mean that it will not be able to cor-
rect verb tense errors (I see him yesterday versus I
saw him yesterday).

1 word in focus is a verb v

2 determine the lemma of v

3 determine the tense of v

4 generate alternatives in same tense as word, valt

5 run which-word? predictor, resulting in distribution D
6 check if v is in D
7 check which valt are in D, take highest frequency

freq(valt)

8 if freq(valt):freq(v) > 10: take valt as a correction of v

3 Results

Table 1 lists the precision, recall and F-score of our
system on the test data. The test data (Tetreault,
2013) consisted of 300 paragraphs of English text
written by non-native speakers. The system’s out-
put is processed by a scorer supplied by the orga-
nizers (Ng, 2012). For each sentence, it reports the
number of correct, proposed and gold edits, and a
running total of the system’s precision, recall and
F-score.

The system suggested a total of 1,902 edits. Of
these, 118 were correct. The total number of cor-
rect edits was 1,643. To explain the score obtained
by the system, we inspect the kind of errors which
it was subjected to, and what kind of errors it did
correct and which it missed.
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Precision 6.20%
Recall 7.18%
F1 6.66%

Table 1: Summary Score

We see a number of errors which are difficult to
correct because they depend on understanding the
sentence. Take the following sentence for exam-
ple:

Surveillance technology such as RFID can be
operated twenty-four hours with the absence of
operators to track done every detail about human
activities .

The gold-edit for this sentence is changing with
(word 11) to without. This edit may be question-
able, but questionability aside, it is based on a un-
derstanding of what is being talked about in the
text. Correcting these kinds of errors falls outside
the scope of the system at the moment.

Multi-word edits are also a problem. In All pas-
sengers and pilots were died, the gold-edit is to
change were died to died. In The readers are just
smiling when they flip the page because it never
comes to their mind that one day it might come
true, the gold-edit is to change are just smiling to
just smile. These kind of corrections are missed
by our system at the moment due to the rigid one-
word, left-to-right checking of the sentence.

Inserting more than one word is also problem-
atic for our system at the moment. Take the fol-
lowing sentence.

Firstly , security systems are improved in many
areas such as school campus or at the workplace .

The gold-edit is to insert on the before school. A
potential solution for this problem is to take mul-
tiple passes over the sentence, first inserting on,
followed by the in a later pass.

Nevertheless, the system made a number of cor-
rect edits as well. The next subsections list exam-
ples of each error type and a correction, where ap-
plicable.

Missing determiner

In this sentence, the missing determiner before
smart was corrected by the system.

In spite of that, the smart phone is still a device . . .

In the following sentence however, a determiner
is inserted where it is not needed, before RFID.

. . . the idea of using the RFID to track people . . .

To illustrate the reasoning of our system, the de-
terminer? classifier thinks that it is more than 13
times more likely to find a determiner between of
using and RFID to than not. Of the possible de-
terminers, the determiner the has the highest fre-
quency with 38,809 occurrences.

Replace Determiner

Here is an example of a determiner which is cor-
rected:

. . . signal and also a⇒the risk that their phone . . .

It also happens that the right determiner is incor-
rectly changed into another determiner, as shown
in the next example.

. . . this kind of tragedy to happen on any⇒the family.

The determiner the had a frequency of more
than 6 million in the distribution, compared to only
68,612 for any.

Unnecessary Determiner

The system did not detect any unnecessary deter-
miners. It missed, for example, removing the de-
terminer the in this setentence:

. . . technology available for the Man ’s life .

Replace Preposition

In this example, a preposition was corrected.

. . . to be put into⇒under close surveillance . . .

But in the following sentence

. . . remain functional for⇒after a long period of . . .

the preposition for is unfortunately changed to af-
ter, which in this context is more common.

Unnecessary Preposition

The following is an example of a correct removal
of a preposition:
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. . . , many of things that are regarded . . .

Prepositions were also incorrectly removed, as
shown in the following example. Here

. . . that can be out of our imaginations . . .

of is deemed unnecessary.

Missing Preposition

In this example, the missing preposition on was
inserted after live.

. . . find another planet to live on , the earth is . . .

In the sentence

. . . especially in the elderly and the children . . .

the system inserts the preposition in between es-
pecially and and, which in this case was incorrect.

Noun form

The next example shows a noun form correction.

. . . brought harmful side effect⇒effects to human body

This can, of course, also go wrong:

Since RFID tags⇒tag attached to the product . . .

Here the singular form of the noun was deemed
correct.

Verb form

Finally, an example of a verb form correction:

People needs⇒need a safe environment to live . . .

And the final example, an incorrect replacement
of been to was.

. . . that has currently been⇒was implemented

4 Discussion

We have described a memory-based grammar
checker specialized in correcting the five types of
errors in the CONLL-2013 Shared Task. The sys-
tem is built on five classifiers specialized in the
error categories relevant for the task. They are
trained to find errors in a small local context of
two words to the left and two words to the right.

The system scans each word in each sentence in
the test data and calls the relevant classifier(s) to
determine if a word needs to be replaced, deleted,
or inserted. The classifiers take word tokens as
input; no deep grammatical information was sup-
plied to them. Even though the training data sup-
plied for the task contained syntax trees, they were
not used in creating our system. On the other hand,
the part-of-speech information in the training data
was used to create the lists of prepositions and de-
terminers. Furthermore, a part-of-speech tagger
was used to determine if the noun or verb form
error corrector was to be applied.

There are several obvious shortcomings to this
approach. The most obvious one is that each cor-
rector is applied to single words, using only a
small local context of two words to the left and
right. This may work fine for missing preposi-
tions and determiners, but for spotting grammat-
ical errors like subject-verb agreement this limited
contextual scope is insufficient. It also means that
we are only able to correct “single words to single
words”. That is, it is not possible to substitute two
words for one, and vice versa. One avenue that
could be explored is larger contexts. In addition,
the classifiers are not limited to words, and con-
texts with other (contextual) information could be
tried as well.

Secondly, the correctors are applied in a strict
order one after the other. This should not be a
big problem as the classifiers are called separately
for their particular part-of-speech category (deter-
miner, preposition, verb, or noun). On the other
hand, this puts a lot of weight on the part of speech
tagger. Ambiguous or wrong tags could cause the
wrong corrector to be tried and even applied, and
could miss a potential correct correction.

Furthermore, the corrected words are not fed
back into the system. This means that the context
after an error still contains that error. This may
cause the classifiers to mismatch and miss the next
error. It should be noted that the small context of
two words to the left and right probably helps to
alleviate this problem. However, making the sys-
tem insert corrections and backtracking a step (or
more) could help towards solving the problem of
multi-word corrections.

Finally, not all correctors found errors. This
may of course depend on the test data, but it seems
unlikely that the data contained no ’missing prepo-
sition’ errors. There is a potential gain in tuning
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the parameters controlling the error correctors.

4.1 Update

The organizers of the shared task updated the m2-
scorer used to calculate the results, resulting in
slightly better scores. Table 2 shows the revised
score of our system, with the old score between
parentheses.

Precision 7.60% (6.20%)
Recall 9.29% (7.18%)
F1 8.36% (6.66%)

Table 2: Revised Summary Score

And to conclude, we continued working on the
system and tweaked some of the parameters con-
trolling the preposition and determiner checkers.
By allowing the correctors to be applied more of-
ten, we see an increase in the number of proposed
and correct edits (2,533 and 178 respectively). The
downside to this is of course that the number of
false positives increases, which decreases the pre-
cision of the system.

The tweaked score is shown in table 3, with the
revised score between parentheses.

Precision 7.03% (7.60%)
Recall 10.83% (9.29%)
F1 8.52% (8.36%)

Table 3: Tweaked Summary Score

These improved scores give us good hope that
the highest scores have not been reached yet.
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Abstract

We report on the TOR system that partic-
ipated in the 2013 CoNLL shared task on
grammatical correction. The system was
a provisional implementation of a beam
search correction over a noisy channel
model. Although the results on the shared
task test set were poor, the approach may
still be promising, as there are many as-
pects of the current implementation that
could be optimised. Grammatical correc-
tion is inherently difficult both to perform
and to evaluate. As such, possible im-
provements to the evaluation are also dis-
cussed.

1 Introduction

Grammatical correction covers many subproblems
including spelling correction, lexical choice, and
even paraphrasing. There is a sense in which syn-
tax is separable from semantics and discourse. A
sentence may be parsable in a language, even if it
is nonsensical. On the other hand, many errors that
we consider a matter of grammar, such as some
instances of determiner choice, are only incorrect
because of the semantic or discourse properties of
the sentence in its context.

Another complexity is that there are degrees of
grammatical correctness. Some sentences are not
parsable, but others are just awkward sounding, or
unconventional.

So a grammatical error may manifest in a mes-
sage that doesn’t code a meaning in the language
at all, and the task becomes inferring a plausible
meaning and coding it correctly. This is analogous
to non-word spelling errors. Alternatively, it may
result in a meaning that is not exactly what was
intended. This is more like a real-word spelling
error.

In either case, the implication is that in order to
detect and correct a grammatical error, we must be

able to infer the intended meaning. This points to
the depth of the problem.

1.1 Confusion Sets

A common and useful way to construe error cor-
rection, including grammatical correction, is to
first classify sets of alternatives that are mutu-
ally confusable. This is typically done at the
lexical level, though the idea is generalizable to
multiword expressions, constructions, or phrases.
Then the text under examination is searched for
instances of members of these confusion sets. Fi-
nally a heuristic is used to decide whether one of
its alternatives would have been a more appropri-
ate choice in its context. Within this framework,
there are different approaches to these steps.

In choosing our confusion sets, we wanted to
be flexible and extensible. Therefore, we did not
want to depend on corpora of errors with annotated
corrections to infer alternatives. So we collected
general statistics from corpora that were assumed
to be correct, and used those to evaluate proposed
corrections to observed sentences. This approach
is not unique to this model. It is seen, for exam-
ple, in (De Felice and Pulman, 2007), (Tetreault
and Chodorow, 2008), and (Gamon et al., 2009),
among others.

However, the main difference between our sys-
tem and previous ones is that we do not select our
confusion sets in advance of statistical modelling.
That is, although the confusion sets we used were
based on POS tagsets, there was no classifying or
learning to discriminate among members of a con-
fusion set before the task. The aim of this choice
was to make our system more general and flex-
ible. We can now modify our confusion sets at
runtime without retraining any models. The provi-
sional confusion sets we used are somewhat arbi-
trary, but this can be changed independently of the
rest of the system.

Although our system was not competitive at this
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stage, it provides a preliminary basis for further
experiments.

The remainder of this paper describes the
framework and the initial implementation of that
framework that was used in the shared task, as
well as future improvements to the model. We
also discuss the difficulty in evaluating such sys-
tems. All of the code used to generate our submis-
sion is freely available for examination and use on
GitHub (Wilcox-O’Hearn and Wilcox-O’Hearn,
2013).

2 Overview of the system

We approach grammatical error correction using a
noisy channel model. Such a model is also used by
(Park and Levy, 2011) and (West, Park, and Levy,
2011). One appealing aspect of this model is that it
makes explicit the cost of error, such that a correc-
tion must not only be more likely than the observa-
tion to be proposed, but it must be more likely even
given that errors are less likely than non-errors to
a degree specified by the properties of the channel.
In practice this can mitigate false positives that re-
sult from overconfidence in a language model.

A grammatical error is treated as a transforma-
tion of some original, correct sentence,S, gener-
ated by a language modelM . We attempt to re-
cover the original sentence by hypothesizing pos-
sible transformations that could have resulted in
the observed sentenceS′. If we estimate that it is
more likely thatS was generated byM and trans-
formed intoS′ than thatS′ was generated byM
and left unchanged, we proposeS as a correction.

In this preliminary implementation of the
framework, we use a combination of word and
POS n-gram models as the language generation
model, while POS tags form the basis of our chan-
nel model.

To generate sentence hypotheses that can in-
clude multiple interacting errors interleaved with
non-errors while putting a bound on the size of the
search space, we use a left-to-right beam search.
This differs from the beam search used by Dal-
heimer and Ng (2012a). In their work, the search
space is constructed by generating variations of
the entire sentence. Just as here, at each iteration,
they make every variation appropriate at a single
position, but they evaluate the whole sentence con-
taining that correction. Although sentences that
require multiple interacting corrections will ini-
tially have a low score under this method, a large

enough beam width will allow the corrections to
be made one at a time without being lost from
consideration. In our model, by evaluating par-
tial sentences from left-to-right, we hope to lessen
the need for a large beam width, by holding off in-
tegration of the continuation of the sentence, and
letting it unfold in a way that more closely mimics
human sentence comprehension.

2.1 The language model

To model language generation, we used an inter-
polation of two n-gram models, a trigram model
based on regular word types, and a 5-gram model
of POS tags. The data for these models was
derived by combining the corrected version of
the NUCLE corpus (Dalheimer, Ng, and Wu,
2013) with a randomly chosen selection of ar-
ticles from Wikipedia as provided by the West-
bury Lab Wikipedia corpus (Shaoul and Westbury,
2010), which we tokenised using NLTK (Bird,
Loper, and Klein, 2009) to match the format of
the shared task. The precise set of articles used
is included in our GutHub repository (Wilcox-
O’Hearn and Wilcox-O’Hearn, 2013). We used
SRILM 1.7.0 (Stolcke, 2002) to generate a mod-
est trigram model of 5K words. We then passed
the same data through the Stanford POS tagger
v3.1.4 (Toutanova, Klein, Manning, and Singer,
2003) and again through SRILM to produce a POS
5-gram model.

2.2 The channel model

The channel model provides a definition of trans-
formations that could have been applied to a sen-
tence before we observed it. Our system consid-
ers only transformations of single words, specif-
ically, only single word insertions, deletions, and
substitutions. This cannot represent every gram-
mar error we might encounter, but makes a good
first approximation, and it represents all errors in
this iteration of the shared task. To simplify the
description and implementation, we equivalently
consider the empty string to be a valid word in-
cluded in some substitution (confusion) sets, and
define the channel as one that sometimes replaces
a word with one of the alternatives in its confu-
sion set. The probability of such replacement is a
parameterα to be inferred.

As explained in the introduction, one goal of our
system is to allow flexible confusion sets that do
not need to be fully specified in advance of learn-
ing statistics about them. Therefore, we define our
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confusion sets in terms of the standard POS tagsets
as given by the Stanford tagger, using a notion of
closed vs. open word classes.

2.2.1 Closed Classes

For our purposes, a closed word class is a set of
words that has a relatively small, finite number
of members. We composed the following closed
classes out of POS tagsets for the purposes of this
task:

• DT ∪ {ǫ},

• MD ∪ {ǫ},

• IN ∪ TO∪ {ǫ},

• a hand-built class called AUX, consisting of
‘be’, ‘do’, ‘have’, and ‘get’ verbs,∪ TO ∪
{ǫ}.

We then restricted each class to thek most fre-
quently occurring words within it. Our provisional
system usedk = 5.

In the standard tagset, the setTO contains only
the word “to”. We have put “to” into two dif-
ferent classes, because the same word form rep-
resents both the preposition and infinitive verb
marker. Although the second such class is labelled
“AUX”, it does not correspond directly to the
standard definition of auxiliary as given by gram-
mars of English. First, “to” does not meet all of
the properties of auxiliaries. For example, because
it does not occur with a subject, it cannot partici-
pate in subject-auxiliary inversion. On the other
hand, although modals are traditionally a subclass
of auxiliaries, we have left them separate as de-
fined in the tagset.

The intuition guiding those decisions was based
on grammatical function and patterns of alterna-
tives. Verb forms in English often consist of a
closed class wordw, followed by a main verb, the
form of which combines with the particularw to
indicate the tense and aspect. In other words,w
functions as a verb form marker, and doesn’t carry
other information. Modals, in contrast, have uni-
form grammatical co-occurrence patterns, essen-
tially all being followed by bare infinitives. They
have the semantic function of expressing modality,
and are alternatives to one another.

Ultimately, which words are best classed as al-
ternatives should be determined empirically.

2.2.2 Open Classes

We used two open classes specific to this task,
verbs and nouns.

The verb errors of this year’s task included verb
form and subject-verb agreement. Ideally, to find
candidates for the confusion set of a verbv, we
would want to produce morphological variations
of v whose POS tag is different from that ofv.
This was approximated with the following heuris-
tic. We defined the prefix ofv to be the initial
characters ofv, including least the first character,
and not any of the final four, except when the first
character was one of those. We collected all words
in the vocabulary starting with that prefix, whose
stem given by the NLTK Porter stemmer matched
the corresponding stem ofv and that had appeared
at least once with a POS tag indicating a verb of a
different form from that ofv.

Similarly, the only noun errors under consider-
ation were noun number errors, meaning a change
from singular to plural or vice versa. We used the
same prefix and stem-matching heuristic as in the
verb case to find opposite-numbered nouns for this
task.

3 The correction process

In order to detect multiple interacting errors, we
would like to consider every possible variation of
every word in the sentence. To mitigate the combi-
natorial expense, we use a beam search as follows.

Proceeding word-by-word through the sen-
tence, we keep a list of then most likely sentence
beginning fragments. Our provisional system used
n = 5. When we reach the observed wordw, then
for each sentence fragmentsi in the list, we com-
pute the estimated probability that the correct sen-
tence next containedw′ instead ofw, using our
n-gram probability estimateP (w′|si), and that the
channel model transformed it tow, by dividing the
probability of errorα by the number of variations
in the confusion set ofw′, C(w′). We also esti-
mate the probability thatw was the original word.
Because our closed classes each include the empty
string, every empty string in the observed sentence
could have been produced by the deletion of a
member of any of the closed classes. Therefore,
we also consider the possibility of inserting each
word x, from each closed class. In total, the fol-
lowing probabilities are estimated:

(no error)
p = P (w|si)× (1− α)
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and for each wordx in each closed class, other
than the empty string:

(a deletion, no substitution)
p = P (xw|si)× α/|C(x)| × (1− α)

and for each variation ofw, w′:

(a substitution)
p = P (w′|si)× α/|C(w′)|

and for each variation ofw, w′, and each wordx
in each closed class, other than the empty string:

(a deletion and a substitution)
p = P (xw′|si)× α/|C(x)| × α/|C(w′)|

The n most likely such extended fragments are
then kept for the next iteration. Finally, at the end
of the sentence, the sentence with the highest prob-
ability is returned as the correction. Probabilities
are treated as per-word perplexity in order not to
penalise longer sentences.

4 Evaluation

The shared task was evaluated using a section of
the NUCLE corpus (see (Dalheimer, Ng, and Wu,
2013)), and the corresponding corrections as anno-
tated by English instructors. The types of correc-
tions ranged from simple and well-defined, such as
the addition, removal, or exchange of an article or
determiner, to the entire rephrasing of a sentence.
Sometimes the corrections were strictly grammat-
ical, in that the original was not well-formed En-
glish. Some were more stylistic; what the student
had written was awkward, or sounded disfluent,
even if it could have been parsed acceptably. This
is appropriate and consistent with the nature of the
problem. However, it does make evaluation almost
as challenging as the task itself.

Often if a sentence has grammatical errors,
there are many different ways to repair the error.
Teams were encouraged to submit alternative cor-
rections when it was believed that their systems’
output ought to be considered valid, even if it did
not match the particular annotation given by the
grader.

Another problem with the evaluation, however,
actually stemmed from the simplification of the
task. Because grammatical correction is inher-
ently difficult, and because some of the difficulty
increases gradually by type as just described, the
task for this year was made more moderate by se-
lecting only 5 error types from the 27 types defined

in the corpus. However, this resulted in two diffi-
culties.

The first was that some error types were closely
related. Errors of verb form, verb tense, verb
modal, and subject-verb agreement may have
overlapping interpretation. Those error types are
not necessarily distinguishable by our method.

For example, there is a sentence in the test set:

Firstly , security systems are improved in many ar-
eas such as school campus or at the workplace .

which is corrected to:

Firstly , security systems have improved in many
areas such as school campus or at the workplace .

with the annotation of verb tense error type, and
thus not part of this task.

On the other hand, there is also a sentence:

... the electric systems were short circuited...

which is corrected to:

... the electric systems short circuited...

with the annotation of verb form error type, and
thus part of this task.

Second, sometimes an annotation not evaluated
in this task that resulted in a change of word form
was necessarily accompanied by changes to words
that were included in the task. This meant that in
order for the system to match the gold annotations,
it would have to propose a sentence that was gram-
matically incorrect. This is suboptimal. Although
it could sometimes be mitigated by the alternative
correction appeal process, that may not have been
adequate to address all such occurrences. More
accurate scoring might be obtained if only the sen-
tences that do not contain other correction types
are included in the test set.

An example of this is the sentence:

Take Singapore for example , these are installed...

The annotation corrects this sentence to:

Take Singapore for example , surveillance is in-
stalled...

However, the replacement ofthese with surveil-
lance is not in the task, so to get it correct, a sys-
tem would have to hypothesize:

Take Singapore for example , these is installed...
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Evaluation Prec. Rec. F-meas.
Original task 0.1767 0.0481 0.0756
Strict 5 types 0.2079 0.0568 0.0892
With alternatives 0.3067 0.0877 0.1364

Table 1: Results

5 Results

The results of our system were not competitive.
Table 1 lists our scores on the original annotation
(line 1), and after alternative answers were consid-
ered (line 3). It also shows what our system would
have scored if only the sentences in the test set
which contained no errors types other than those
specified for the task were included (line 2).

6 Future Work

There are several simple steps that we expect will
improve our system.

First, the language models could be improved.
They could use corpora better matched to the data
set, and they could have larger vocabulary sizes.
We also observe that the POS models, because of
their inherently small vocabulary, seem to be im-
paired by the backoff paradigm. In this case, if a
sequence is unattested, it is unlikely that the proba-
bility is better estimated by ignoring the beginning
of it. Rather, it is likely to indicate an error. Since
error detection and correction is precisely what we
are attempting, it may be that backoff smoothing
is detrimental to the POS models. This hypothesis
should be tested empirically.

Second, there are several parameters that could
be tuned for better performance, including for ex-
ample,α, the probability that the channel inserts
an error, the beam widthn, and the thresholds for
the number of alternatives considered in a closed
class.

The stemmer we used was not a very sophis-
ticated proxy for morphological analysis, and it
made errors in both directions that affected our re-
sults.

Finally, there are more classes of error that
could be easily included in the sets we have de-
fined. Because they interact, our system may per-
form better when the allowable transformations
are more comprehensive and can complement one
another.
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Abstract 

This paper presents a hybrid model for the 

CoNLL-2013 shared task which focuses on the 

problem of grammatical error correction. This 

year’s task includes determiner, preposition, 

noun number, verb form, and subject-verb 

agreement errors which is more comprehen-

sive than previous error correction tasks. We 

correct these five types of errors in different 

modules where either machine learning based 

or rule-based methods are applied. Pre-

processing and post-processing procedures are 

employed to keep idiomatic phrases from be-

ing corrected. We achieved precision of 

35.65%, recall of 16.56%, F1 of 22.61% in the 

official evaluation and precision of 41.75%, 

recall of 20.29%, F1 of 27.3% in the revised 

version. Some further comparisons employing 

different strategies are made in our experi-

ments.   

1 Introduction 

Automatic Grammatical Error Correction (GEC) 

for non-native English language learners has at-

tracted more and more attention with the devel-

opment of natural language processing, machine 

learning and big-data techniques.
 

The CoNLL-

2013 shared task focuses on the problem of GEC 

in five different error types including determiner, 

preposition, noun number, verb form, and sub-

ject-verb agreement which is more complicated 

and challenging than previous correction tasks. 

Other than most previous works which concen-

trate most on determiner and preposition errors, 

more error types introduces the possibility of 

correcting multiple interacting errors such as de-

                                                 
 Corresponding author 

terminer vs. noun number and preposition vs. 

verb form. 

Generally, for GEC on annotated data such as 

the NUCLE corpus (Dahlmeier et al., 2013) in 

this year’s shared task which contains both origi-

nal errors and human annotations, there are two 

main types of approaches. One of them is the 

employment of external language materials. Alt-

hough there are minor differences on strategies, 

the main idea of this approach is to use frequen-

cies as a filter, such as n-gram counts, and take 

those phrases that have relatively high frequen-

cies as the correct ones. Typical works are shown 

in (Yi et al., 2008) and (Bergsma et al., 2009). 

Similar methods also exist in HOO shared tasks
1
 

such as the web 1TB n-gram features used by 

Dahlmeier and Ng (2012a) and the large-scale n-

gram model described by Heilman et al. (2012). 

The other type is machine learning based ap-

proach which considers most on local context 

including syntactic and semantic features. Han et 

al. (2006) take maximum entropy as their classi-

fier and apply some simple parameter tuning 

methods. Felice and Pulman (2008) present their 

classifier-based models together with a few rep-

resentative features. Seo et al. (2012) invite a 

meta-learning approach and show its effective-

ness. Dahlmeier and Ng (2011) introduce an al-

ternating structure optimization based approach. 

Most of the works mentioned above focus on 

determiner and preposition errors. Besides, Lee 

and Seneff (2008) propose a method to correct 

verb form errors through combining the features 

of parse trees and n-gram counts. To our 

knowledge, no one focused on noun form errors 

in specific researches. 

In this paper, we propose a hybrid model to 

solve the problem of GEC for five error types. 

                                                 
1 http://clt.mq.edu.au/research/projects/hoo/hoo2012 
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Machine learning based methods are applied to 

solve determiner (ArtOrDet), preposition (Prep) 

and noun form (Nn) problems while rule-based 

methods are proposed for subject-verb agreement 

(SVA) and verb form (Vform) problems. We 

treat corrections of errors in each type as indi-

vidual sub problems the results of which are 

combined through a result combination module. 

Solutions on interacting error corrections were 

considered originally but dropped at last because 

of the bad effects brought about by them such as 

the accumulation of errors which lead to a very 

low performance. We perform feature selection 

and confidence tuning in machine learning based 

modules which contribute a lot to our perfor-

mance. Also, pre-processing and post-processing 

procedures are employed to keep idiomatic 

phrases from being corrected.  

Through experiments, we found that the result 

of the system was affected by many factors such 

as the selection of training samples and features, 

and the settings of confidence parameters in clas-

sifiers. Some of the factors make the whole sys-

tem too sensitive that it can easily be trapped into 

a local optimum. Some comparisons are shown 

in our experiments section. 

No other external language materials are in-

cluded in our model except for several NLP tools 

which will be introduced in §5.2. We achieved 

precision of 35.65%, recall of 16.56% and F1 of 

22.61% in the official score of our submitted re-

sult. However, it was far from satisfactory main-

ly due to the ill settings of confidence parameters. 

Trying to find out a set of optimal confidence 

parameters, our model is able to reach an upper 

bound of precision of 34.23%, recall of 25.56% 

and F1 of 29.27% on the official test set. For the 

revised version, we achieved precision of 

41.75%, recall of 20.29%, and F1 of 27.3%. 

The remainder of this paper is arranged as fol-

lows. The next section introduces our system 

architecture. Section 3 describes machine learn-

ing based modules. Section 4 shows rule based 

modules. Experiments and analysis are arranged 

in Section 5. Finally, we give our discussion and 

conclusion in Section 6 and 7. 

2 System Architecture 

Initially, we treat errors of each type as individu-

al sub problems. Machine learning based meth-

ods are applied to solve ArtOrDet, Prep and Nn 

problems where similar problem solving steps 

are shared: sample generation, feature extraction, 

training, confidence tuning in development data, 

and testing. We apply some hand-crafted heuris-

tic rules in solving subject-verb agreement (SVA) 

and verb form (Vform) problems. Finally, results 

from different modules are combined together. 

The whole architecture of this GEC system is 

described in Figure 1. 

A pre-processing and a post-processing filter 

are utilized which include filters for some idio-

matic phrases extracted from the training dataset. 

The Frequent Pattern Growth Algorithm (FP-

Growth) is widely used for frequent pattern min-

ing in machine learning. In pre-processing, we 

firstly apply FP-Growth to gather the frequent 

items in the training set. Through some manual 

refinements, a few idiomatic phrases are re-

moved from the candidate set to be corrected. In 

post-processing, the idiomatic phrase list is used 

to check whether a certain collocation is still 

grammatical after several corrections are per-

formed. There are 996 idiomatic phrases in our 

list which is composed by mainly patterns from 

the training set and a series of hand-crafted ones. 

Typical phrases we extracted are in general, 

have/need to be done, on the other hand, a 

large/big number/amount of, at the same time, in 

public, etc.  

 
Figure 1. Architecture of our GEC system. 

3 Machine Learning Based Modules 

For the error types ArtOrDet, Prep and Nn, we 

choose machine learning based methods because 

we consider there is not enough evidence to di-

rectly determine which word or form to be used. 

Moreover, it is impossible to transfer all the cas-

es we encounter into rules. In this section, we 

describe our processing ideas for each error type 

respectively and then specifically introduce our 

feature selection and confidence tuning approach. 

3.1 Determiners 

Determiners in the error type “ArtOrDet” contain 

articles a/an, the and other determiners such as 

Original texts 

Pre-processing 

Machine learning 

based modules 

Rule based mod-

ules 

Post-processing 

Corrected texts Result combination 
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this, those, etc. This type of error accounts for a 

large proportion which is of great impact on the 

final result. We consider only articles since the 

other determiners are rarely used and the usages 

of them are sometimes ambiguous. Like ap-

proaches described in some previous works 

(Dahlmeier and Ng, 2012a; Felice and Pulman, 

2008), we assign three types a/an, the and empty 

for each article position and build a multi-class 

classifier.  

For training, developing and testing, all noun 

phrases (NPs) are chosen as candidate samples to 

be corrected. For NPs whose articles have been 

annotated in the corpus, the correct ones are their 

target categories, and for those haven’t been an-

notated, the target categories are their observed 

article types. Samples we make use of can be 

divided into two basic types in each category: 

with and without a wrong article. Two examples 

are shown below: 

with: a/empty big apples ~ empty category 

without: the United States ~ the category 

For each category in a, the, and empty, we use 

the whole with data and take samples of without 

ones from the set of correct NPs to make up 

training instances of one category. The reason 

why we make samples of the without ones is for 

the consideration that the classifier would always 

predicts the observed article and never proposes 

any corrections if given too many without sam-

ples, the case of which is mentioned in (Dahl-

meier and Ng, 2012a). However, we found that 

the ratio of with-without shows little effect in our 

model. The article a is regulated to a or an ac-

cording to pronunciation. 

Syntactic and semantic features are considered 

in feature extraction with the help of WordNet 

and the “.conll” file provided. We adopt syntac-

tic features such as the surface word, phrase, 

part-of-speech, n-grams, constituent parse tree, 

dependency parse tree and headword of an NP; 

semantic features like noun category and hyper-

nym. Some expand operations are also done 

based on them (reference to Dahlmeier and Ng, 

2012a; Felice and Pulman, 2008). After feature 

extraction, we apply a genetic algorithm to do 

feature subset selection in order to reduce dimen-

sionality and filter out noisy features which is to 

be described in §3.4. 

Maximum Entropy (ME) has been proven to 

behave well for heterogeneous features in natural 

language processing tasks and we adopt it to 

train our model. We have also tried several other 

classifiers including SVM, decision tree, Naïve 

Bayes, and RankSVM but finally find ME per-

forms well and stably. It provides confidence 

scores for each category which we will make use 

of downstream.  

3.2 Prepositions 

Preposition error correction task is similar to the 

previous one except the different categories and 

corresponding features. Since there are 36 com-

mon prepositions listed by the shared task, origi-

nally, we assign 37 types including 36 preposi-

tions and empty for each preposition position and 

build a multi-class classifier. For training, devel-

oping and testing, each preposition as well as the 

empty position directly after a verb is considered 

as a candidate. Syntactic and semantic features 

extracted are similar to those in article error cor-

rection except for some specific cases for prepo-

sitions such as the verbs related to prepositions 

and the dependency relations. Similarly, we treat 

those preposition phrases with and without a cer-

tain preposition as the two types of samples in 

training (as described in §3.1). Two examples are 

listed below: 

with: on/in the 1860s~ in category 

without: have to be done ~ to category 

Through statistics on the training data, we 

found that most prepositions have very few sam-

ples which may not contribute to the perfor-

mance at all and even bring about noise when 

assigned to wrong categories. After several 

rounds of experiments, we finally adopt a classi-

fier with seven prepositions which are frequently 

used in the whole corpus. They are on, of, in, at, 

to, with and for. As to the classifier, ME also 

outperforms the others. 

3.3 Noun Form 

Noun form may be interacting with determiners 

and verbs which may also have errors in the orig-

inal text. So errors may occur in the context fea-

tures extracted from the original text. However, 

if we use the context features that have been cor-

rected, more errors would be employed due to 

the low performance of the previous steps. 

Through statistics, we found that co-occurrence 

between two types of errors such as SVA and 

ArtOrDet only accounts for a small proportion. 

After a few experiments, we decided to give up 

interacting errors so as to avoid accumulated er-

rors.  

This is a binary classification problem. All 

head nouns in NPs are considered as candidates. 

Each category contains with and without samples 

similar to the cases in §3.1 and §3.2. Features are 

highly related to the deterministic factors for the 
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head noun form such as the countability, Word-

Net type, name entity and whether there some 

specific dependency relations including det, 

amod etc.  

ME also outperforms other classifiers. 

3.4 Feature Selection Using Genetic Algo-

rithm 

Features we extracted are excessive and sparse 

after binarization. They bring noise in quality as 

well as complexity in computation and need to 

be selected a priori. In our work, it is a wrapper 

feature selection task. That is, we have to select a 

combination of features that perform well to-

gether rather than make sure each of them be-

haves well. This GEC task is interesting in fea-

ture selection because word surface features that 

are observed only once are also effective while 

we think that they overfit. Genetic algorithm 

(GA) has been proven to be useful in selecting 

wrapper features in classification (ElAlami, 2009; 

Anba-rasi et al, 2010). We used GA to select fea-

tures as well as reduce feature dimensionality.  

We convert the features into a binary sequence 

in which each character represents one dimen-

sion.  Let “1” indicates that we keep this dimen-

sion while “0” means that we drop it, we use a 

binary sequence such as “0111000…100” to de-

note a combination of feature dimensions. GA 

functions on the feature sequences and finally 

decides which features should be kept. The fit-

ness function we used is the evaluation measure 

F1 described in §5.3. 

3.5 Confidence Tuning 

The Maximum Entropy classifier returns a confi-

dence score for each category given a testing 

sample. However, for different samples, the dis-

tribution of predicted scores varies a lot. For 

some samples, the classifier may have a very 

high predicted score for a certain category which 

means the classifier is confident enough to per-

form this prediction. But for some other samples, 

two or more categories may share close scores, 

the case of which means the classifier hesitates 

when telling them apart. 

We introduce a confidence tuning approach on 

the predicted results through a comparison be-

tween the observed category and the predicted 

category which is similar to the “thresholding” 

approach described in Tetreault and Chodorow 

(2008). The main idea of the confidence tuning 

algorithm is: the choice between keep and drop is 

based on the difference between the confidence 

scores of the predicted category and the observed 

category. If this difference goes beyond a thresh-

old t, the prediction is kept while if it is under t, 

we won’t do any corrections. We believe this 

tuning strategy is especially appropriate in this 

task since to distinguish whether the observed 

category is correct or not affects a lot to the pre-

dicted result.  

The confidence threshold for each category is 

generated through a hill climbing algorithm in 

the development data aimed at maximizing F1-

meaure of the result.  

4 Rule-based Modules 

A few hand-crafted rules are applied to solve the 

verb related corrections including SVA and 

Vform. In these cases, the verb form is only re-

lated to some specific features as described by 

Lee and Seneff (2008). 

4.1 SVA 

SVA (Subject-verb-agreement) is particularly 

related to the noun subject that a verb determines. 

In the dependency tree, the number of the noun 

which has a relation nsubj with the verb deter-

mines the form of this verb. Through observation, 

we find that the verbs to be considered in SVA 

contain only bes (including am, is, are, was, 

were) and the verbs in simple present tense 

whose POSs are labeled with VBZ (singular) or 

VBP(plural).  

To pick out the noun subject is easy except for 

the verb that contained in a subordinate clause. 

We use semantic role labeling (SRL) to help 

solve this problem in which the coordinated can 

be extracted through a trace with the label “R-

Argument”. The following Figure is an example 

generated by the SRL toolkit mate-tools (Bernd 

Bohnet, 2010)
2
. 

 

 
Figure 2. SRL for the demo sentence “Jack, who 

will show me the way, is very tall.” The subject of 

the verb show can be traced through R-A0 -> A0. 

 

  However, the performance of this part is partly 

correlated with the noun form that may have er-

rors in the original text and the wrong SRL result 

brought about because of wrong sentence gram-

mars. 

                                                 
2 http://code.google.com/p/mate-tools/ 
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4.2 Verb Form 

The cases are more complicated in the verb form 

error correction task. Modal, aspect and voice are 

all forms that should be considered for a verb. 

And sometimes, two or more forms are com-

bined together to perform its role in a sentence. 

For example, in the sentence: 

He has been working in this position for a 

long time. 

The bolded verb has been working is a com-

bination of the active voice work, the progressive 

aspect be+VBG and the perfect aspect has+VBN. 

It is a bit difficult for us to take all cases into 

consideration, so we just apply several simple 

rules and solve a subset of problems for this type. 

Some typical rules are listed below: 

1. The verb that has a dependency relation aux 

to preposition to is modified to its base form. 

2. The verb that has a dependency relation 

pcomp to preposition by is modified to its past 

form. 

3. The verb related to other prepositions (ex-

cept to and by) is modified to ~ing form. 

4. The verb depends on auxiliary do and mod-

al verb (including its inflections and negative 

form) is modified to its base form. 

We have also tried to use SRL and transitivity 

of a verb to determine the active and passive 

voice but it didn’t work well. 

5 Experiments and Analysis 

5.1 Data Description 

The NUCLE corpus introduced by NUS (Nation-

al University of Singapore) contains 1414 essays 

written by L2 students with relatively high profi-

ciency of English in which grammatical errors 

have been well annotated by native tutors. It has 

a small proportion of annotated errors which is 

much lower than other similar corpora (Dahl-

meier et al., 2013). In our experiments, we divide 

the whole corpus into 80%, 10% and 10% for 

training, developing and testing. And we use 90% 

and 10% for training and developing for the final 

test. 

5.2 External tools and corpora 

External tools we used include WordNet (Fell-

baum, 1998) for word base form and noun cate-

gory generation, Morphg (Minnen et al., 2000)
3
 

to generate inflections of nouns and verbs, mate-

tools (Bohnet, 2010) for SRL, Stanford-ner 

                                                 
3 http://www.informatics.sussex.ac.uk/research/groups/nlp 

/carroll/morph.html 

(Finkel et al., 2005)
4
 for name entity extraction 

and Longman online dictionary
5
 for generation 

of noun countability and verb transitivity.  

We didn’t employ any external corpora in our 

system. 

5.3 Experiments 

The performance of each machine learning mod-

ule is affected by the selection of training sam-

ples, features and confidence tuning for the max-

imum entropy classifier. All these factors con-

tribute more or less to the final performance and 

need to be carefully developed. In our experi-

ments, we focus on machine learning based 

modules and make comparisons on sample selec-

tion, confidence tuning and feature selection and 

list a series of results before and after applying 

our strategies.  

In our experiment, the performance is meas-

ured with precision, recall and F1-measure where 

1

2 precision recall
F

precision recall

 



 

Precision is the amount of predicted correc-

tions that are also corrected by the manual anno-

tators divided by the whole amount of predicted 

corrections. Recall has the same numerator as 

precision while its denominator is the amount of 

manually corrected errors. They are in accord-

ance with those measurements generated by the 

official m2scorer (Dahlmeier and Ng, 2012c) to a 

great extent and easily to be integrated in our 

program. 

As we have mentioned in Section 3, we don’t 

employ all samples but make use of all with 

(with errors and annotations) instances and sam-

ple the without ones (without errors) for training. 

And the sampling for without type is totally ran-

dom without loss of generality. We apply the 

same strategy in all of these three error types 

(ArtOrDet, Prep and Nn) and try several ratios of 

with-without to find out whether this ratio has 

great impact on the final result and which ratio 

performs best. We use the 80%-10%-10% data 

(mentioned in §5.1) for our experiments and 

make comparisons of different ratios on develop-

ing data. The experimental results are described 

in detail in Figure 3. 

Confidence tuning is applied in all these three 

error types which contributes most to the final 

performance in our model. We compare the re-

sults before and after tuning in all sample ratios 

                                                 
4 http://www-nlp.stanford.edu/software/CRF-NER.shtml 
5 http://www.ldoceonline.com/ 
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that we designed and they are also depicted in 

Figure 3.  

Sample with:without

1:1 1:2 1:3 1:6 1:8 1:10 1:all

P
R

F

0.0

.2

.4

.6

.8

precision before and after tuning

recall before and after tuning

F1 before and after tuning

 
Figure 3-1. Comparisons before and after tuning 

in ArtOrDet. 1:all means to use the whole without 

samples. 
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Figure 3-2. Comparisons before and after tuning in 

Prep.  

1:1 1:2 1:3 1:6 1:8 1:10 1:all

P
R

F

0.0

.2

.4

.6

.8

1.0
precision before and after tuning

recall before and after tuning

F
1 before and after tuning

Sample with:without

 
Figure 3-3. Comparisons before and after tuning 

in Nn. 

 

From the three groups of data in Figure 3, we 

notice that the ratio of samples has little impact 

on F1. This phenomenon shows that our conclu-

sion goes against the previous work by Dahl-

meier and Ng (2012a). We believe it is mainly 

due to our confidence tuning which makes the 

parameters vary much under different sample 

ratios, that is, if given the same parameters, the 

effect of sample ratio selection may become ob-

vious. Unfortunately, we didn’t do such a sys-

tematic comparison in our work. The improve-

ment under confidence tuning can be seen clearly 

in all ratios of with-without samples. The confi-

dence tuning algorithm employed in our work is 

better than the traditional tuning methods that 

assign a fixed threshold for each category or for 

all categories (about 1%~2% better measured by 

F1).  

However, although we are able to pick out the 

training data with a high F1 through confidence 

tuning for the developing data, it is difficult for 

us to choose a set of confidence parameters that 

also fits the test data well. Given several close 

F1s, the numerical values of denominators and 

numerators which determine the precision and 

recall can vary a lot. For example, one set that 

has a high precision and low recall may share the 

similar F1 with another set that has a low preci-

sion and high recall. Our work lacked of the de-

velopment on how to control the number of pro-

posed errors to make leverage on the perfor-

mance between developing set and testing set. It 

resulted in that the developing set and the testing 

set were not balanced at all, and our model was 

not able to keep the sample distribution as the 

training set. This is the main factor that leads to a 

low performance in our submitted result which 

can be clearly seen in Table 1. The upper bound 

performance of our system achieves precision of 

34.23%, recall of 25.56% and F1 of 29.27%, in 

which the F1 goes 7% beyond our submitted sys-

tem. We notice that results of all metrics of the 

three error types where machine learning algo-

rithms are applied improve with the simultaneous 

increase of numerators and denominators. This is 

especially noticeable in Prep. 

For the other two types SVA and Vform, we 

just apply several heuristic rules to solve a subset 

of problems and the case of Vform has not been 

solved well such as tense and voice. 

Genetic Algorithm (GA) is applied to process 

feature reduction and subset selection. This is 

done in ArtOrDet type in which we extract as 

many as 350,000 binary features. For error type 

Prep and Nn, the feature dimensionalities we 

constructed were not as high as that in ArtOrDet, 

and the improvements under GA were not obvi-

ous which we would not discuss in this work. 

Through experiments on a few sample ratios, we 

notice that feature selection using genetic algo-

rithm is able to reduce the feature dimensionality 

to about 170,000 which greatly lowers down the 
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downstream computational complexity. However, 

the improvement contributed by GA after confi-

dence tuning is not obvious as that before confi-

dence tuning. We think it is partly because of the 

bad initialization of GA which is to be improved 

in our future work. The unfixed parameters may 

also lead to such a result which we didn’t discuss 

enough in our work. The comparison before and 

after GA is described in Figure 4. 

 

 Our submission% Upper bound% 

P(Det) 41.38(168/406) 36.44(254/697) 

R(Det) 24.35(168/690) 36.81(254/690) 

F1(Det) 30.66 36.63 

P(Prep) 13.79(4/29) 26.12(35/134) 

R(Prep) 1.29(4/311) 11.25(35/311) 

F1(Prep) 2.35 15.73 

P(Nn) 24.81(65/262) 27.27(102/374) 

R(Nn) 16.41(65/396) 25.76(102/396) 

F1(Nn) 19.76 26.49 

P(SVA) 

R(SVA) 

F1(SVA) 

24.42(21/86) 

16.94(21/124) 

20.00 

24.42(21/86) 

16.94(21/124) 

20.00 

P(Vform) 

R(Vform) 

F1(Vform) 

19.35(6/31) 

4.92(6/122) 

7.84 

19.35(6/31) 

4.92(6/122) 

7.84 

P(all) 35.65(272/763) 34.23(420/1227) 

R(all) 16.56(272/1643) 25.56(420/1643) 

F1(all) 22.61 29.27 

Table 1. Different performances according to dif-

ferent confidence parameters. Det stands for Ar-

tOrDet. 

 

Pre-processing and post-processing we pro-

pose also contribute to some extent which we 

could see from Table 2. Some idiomatic phrases 

are excluded from being corrected in pre-

processing which enhances precision while some 

are being modified in post-processing to improve 

recall. 

 

 Without pre-processing 

and post-processing% 
Final% 

P 

R 

F1 

33.72(265/768) 

16.13(265/1643) 

21.82 

35.65(272/763) 

16.56(272/1643) 

22.61 

Table 2. Comparison with and without pre-

processing and post-processing. 

 

We didn’t do much on the interacting errors 

problem since we didn’t work out perfect plans 

to solve it. So, in the result combination module, 

we just simply combine the result of each part 

together. 

Sample positive:negative
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Figure 4. Comparisons before and after Genet-

ic Algorithm on ArtOrDet error type. ME, GA, 

and Tuning stand for Maximum Entropy, Ge-

netic Algorithm and confidence tuning. 

 

In the revised version, under further correc-

tions for the gold annotations, our model 

achieves precision of 41.75%, recall of 20.19% 

and F1 of 27.3%. 

6  Discussion 

Which factor contributes most to the final result 

in the problem of grammatical error correction? 

Since we didn’t include any external corpora, we 

discuss it here only according to the local classi-

fiers and context features.  

Based on our experiments, we find that, in our 

machine learning based modules, a tiny modifi-

cation of confidence parameter setting for each 

category, no matter which type of error, can have 

great impact on the final result. It results in that 

our model is much too sensitive to parameters 

which may easily lead to a poor behavior. Per-

haps a sufficient consideration of how to keep 

the distribution of samples, such as cross-

validation, may be helpful. In addition, the selec-

tion of classifiers, features and training samples 

all have effect on the result more or less, but not 

as obvious as that of the confidence threshold 

setting. 

7 Conclusion 

In this paper, we propose a hybrid model 

combining machine learning based modules and 

rule-based modules to solve the grammatical er-

ror correction task. We are able to solve a subset 

of the correction problems in which ArtOrDet 

and Nn perform better. However, our result in 

the testing data shows that our model is sensitive 
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to parameters. How to keep the distribution of 

training samples needs to be further developed. 
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Abstract

This paper describes an English grammat-

ical error correction system for CoNLL-

2013 shared task. Error types covered by

our system are article/determiner, prepo-

sition, and noun number agreement. This

work is our first attempt on grammatical

error correction research. In this work,

we only focus on reimplementing the tech-

niques presented before and optimizing

the performance. As a result of the imple-

mentation, our system’s final F1-score by

m2 scorer is 0.1282 in our internal test set.

1 Introduction

As the number of English learners is increas-

ing world widely, the research topic of auto-

mated grammar error correction is lively dis-

cussed. However, automated grammar error cor-

rection is a very difficult field and the result is not

satisfactory. Therefore, the shared task about En-

glish error correction has been annually held and

many researchers are trying to solve this problem.

Helping Our Own (HOO) 2011 is a pilot shared

task for automated correction of errors in non-

native English speakers’ papers. The shared task

evaluates the performance of detection, recogni-

tion, correction on thirteen types of English gram-

matical errors by using F1-score. Because each

error type has different characteristics, they have

to use different approaches to correct appropriate

error types.

In HOO 2012, only two types of errors, prepo-

sition and determiner were handled. This shared

task also evaluated the performance of detection,

recognition, correction by using F1-score. The

best result of the preposition error correction is

0.2371 in F1-score and the determiner error cor-

rection is 0.3460 in F1-score. These are remark-

able achievement.

This year CoNLL 2013 shared task covers five

types of errors based on the result of HOO 2012.

These error types are determiner, preposition,

noun number, verb form, and subject-verb agree-

ment. Because of the limited amount of time and

manpower, we only focus on preposition, deter-

miner and noun number.

2 Previous Works

Most methods for grammar error correction have

tried to correct one type of errors. Researchers

have never attempted to correct different types of

errors at the same time.

In this work, we try to solve the error correction

problem based on the previous research presenting

good performance.

First, the preposition error correction is based

on (Han et al., 2010). They tried to correct the

most commonly used 10 preposition errors based

on the classification approach. 10 prepositions are

about, at, by, for, from, in, of, on, to, with. They

have implemented 11-way classifier to output 11

types of proper word(10 prepositions + ‘NULL’)

for 11 types of source words. This work assumes

that three kinds of corrections exist. If ‘NULL’ is

taken as input and some preposition is produced, it

is omission. If some preposition is taken as input

and another preposition is produced, it is replace-

ment. If some preposition is taken as input and

‘NULL’ is produced, it is commission. In the case

of replacement, correction precision is 0.817 and

recall is 0.132. Furthermore, they reported that

the performance is much better when they train the

model with well edited error tagged corpus.

(Felice and Pulman, 2008) also used a method

based on classification. It is, nevertheless, unusual

that they did not use error tagged learner’s corpus

but error free British National Corpus. Without

using an error tagged corpus, they have achieved

51.5% accuracy for error correction.

To improve low recall of Han’s method, to con-
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struct large training data is the best way. However,

it is very costly and hard work to obtain well edited

error tagged corpus. By the way, error free corpus

like news articles is relatively easy to acquire. We

plan to utilize large error free corpus as the train-

ing data to overcome the problem of low recall.

That plan motivated by Felice’s work has not been

tried on the proposed system. We will attempt to

reimplement the system by utilizing the error free

corpus in the near future.

3 System Description

Our system is composed of three components,

preposition error corrector, article error corrector,

and noun number error corrector. In this work,

we do not consider complex cases of grammar er-

rors, thus we assume that the order of correction

does not influence the result of correction. And

all components are based on the machine learning

method.

3.1 Preposition Error Correction

In the training corpus, there are more article errors

than preposition errors in number. However, the

preposition error correction is much more difficult

and the performance of correction is worse than

the article error correction.

We select preposition error candidates for re-

placement or commission or omission as follows.

• Replacement or Commission

– Preposition : tagged as ‘IN’ or ‘TO’

and dependency relation with its par-

ent(DPREL) is identified as a ‘prep’

• Omission

– In front of a noun phrase : the preceding

word of the noun phrase is not preposi-

tion

– In front of a verb phrase : the preced-

ing word of the verb phrase including

‘VBG’(verb, gerund/present participle)

is not preposition

As described above, we use all

words(preposition and ‘NULL’ when omis-

sion) in that place as source word for preposition

correction.

We have implemented only one classifier that

takes a source word as input and produces cor-

rected preposition or ‘NULL’ as output. We use

No. Feature Name Description

1 s the source word

2 wd-1 the word preceding s

3 wd+1 the word following s

4 wd-1,2 s the two words preceding s

and s

5 s wd+1,2 s and the two words fol-

lowing s

6 3GRAM the trigram, wd-1, s,

wd+1

7 5GRAM the five-gram, wd-2, wd-

1, s, wd+1, wd+2

8 MOD the lexical head which the

preposition modifies

9 ARG the lexical head of the

preposition argument

10 MOD ARG MOD and ARG

11 MOD s MOD and s

12 s ARG s and ARG

13 MOD s ARG MOD, s, ARG

14 MODt ARGt POS tags of MOD and

ARG

15 MODt s the POS tag of MOD and

s

16 s ARGt s and the POS tag of ARG

17 MODt s ARGt MODt and s and ARGt

18 TRIGRAMt POS trigram

19 wd L 3 words preceding s

20 wd R 3 words following s

Table 1: Set of features proposed by (Han et al.,

2010)

the part of feature set(Table 1) proposed by (Han

et al., 2010) for learning. They are presented in

the experiment part.

Each feature represents the word itself in the

Han’s work. However, the same word can be ex-

tracted again as a different kind of features. In or-

der to distinguish the same word used for the dif-

ferent features, we attach the feature name to the

word as postfix. This naming convention can make

the feature sparse, but increase the discrimination

power and improve the performance of the classi-

fier. In our experiment, we have tested the system

with two different sets of features(i.e. raw word

and with feature names).
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3.2 Article Error Correction

We have implemented the article error corrector

just like the preposition error corrector. When we

experiment the pilot article correction system just

like the preposition correction system, it shows a

good performance unexpectedly. There is a little

difference in presenting set of features. In prepo-

sition error corrector, we add postfix to the set of

feature to keep sort of features(e.g. word ‘in’ as

source word feature, postfix is ‘S’, final feature

is ‘in S’). This method gives more discrimination

ability to the classifier. But in case of article, using

raw word lead to a better result.

3.3 Noun Number Error Correction

Noun number error indicates improper use of

singular or plural form of nouns. For example,

the singular form ‘problem’ should be corrected

to the plural form ‘problems’ in the following

sentence.

“They are educational and resource problem.”

As far as we know, there have been few at-

tempts to correct noun number agreement errors.

In this shared task, we propose a novel noun num-

ber agreement correction system based on a ma-

chine learning method trained with basic features.

In order to extract nouns from the input sen-

tences, we parse the sentence and extract the last

noun in every noun phrase for the error correction

candidates. If there is a coordinating conjunction

in the noun phrase, we split the noun phrase into

two parts and extract two candidates.

[S [NP Relevant information] [VP are [ADJP

readily ROOT available [PP on [NP [NP the

internet] and [NP article] [PP in [NP maga-

zines and newspapers] .]]]

Figure 1: Extracting candidates for error correc-

tion of noun number(candidates are indicated by

bold)

Figure 1 shows the example of selecting can-

didates for the error correction of noun number.

We classify a noun into four classes using fea-

tures of Table 2 based on the machine learn-

ing method. Four classes are NN(plural noun),

NNP(plural proper noun), NNS(singular noun),

and NNPS(singular proper noun). It is based on

the observation that the common noun and the

No. Feature Name Description

1 p POS tag for the source word

2 s the source word

3 DET the determiner of the noun ar-
gument

4 CD boolean value whether the
cardinal number exists

5 UCNT boolean value whether the
noun is uncountable

6 MOD the lexical head which the
noun modifies

7 MMOD the lexical head which MOD
modifies

8 ARG the lexical head of the noun
argument

9 AARG the lexical head of the ARG
argument

10 MOD s ARG MOD, s, and ARG

11 MODt POS tag for MOD

12 MMODt POS tag for MMOD

13 ARGt POS tag for ARG

14 AARGt POS tag for AARG

15 MODt p ARGt MODt, p, and ARGt

16 MMOD MOD s MMOD, MOD, and s

17 s ARG AARG s, ARG, and AARG

18 MOD s ARG MOD, s, and ARG

19 MM M s A AA MMOD, MOD, s, ARG, and
AARG

20 MMODt MODt p MMODt, MODt, and p

21 p ARGt AARGt p, ARGt, and AARGt

22 MODt p ARGt MODt, p, and ARGt

23 MMt Mt s At AAt MMODt, MODt, s, ARGt,
and AARGt

Table 2: Set of features for learning noun number

error correction

proper noun have many different characteristic.

The set of features used for learning is shown in

Table 2.

4 Experiments

4.1 Corpus

We use only NUS Corpus of Leaner En-

glish(NUCLE)((Dahlmeier, 2013)) provided from

CoNLL 2013 shared task. We construct the devel-

opment set with first sentences for every 10 sen-

tence and the test set with second sentences and

the training set with the rest of sentences. The

system is trained to learn error correction with the

training set and optimized with the development

set and finally evaluated with the test set.

4.2 Preposition Correction Experiment

Table 1 shows 20 types of features used by (Han

et al., 2010). We have found that the features con-

sist of various types and the learning world be dis-

turbed by too many features. In our experiment,
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Number of feature 20 18 9

Raw

Word

Precision 0.0571 0.1194 0.0196

Recall 0.0402 0.0402 0.1256

F1-score 0.0472 0.0602 0.0339

With

Feature

Name

Precision 0.1034 0.1750 0.0208

Recall 0.0302 0.0352 0.1307

F1-score 0.0467 0.0586 0.0359

Table 3: The result of preposition error correction

we exclude wd L(19), wd R(20) and employ 18

kinds of features.

We will try to train the correction model by us-

ing large amount of error free corpus in order to

overcome the problem of low recall. To parse large

corpus is very time consuming task. So, in this

experiment, we select 9 features which can be ex-

tracted without parsing, and test the possibility of

using 9 features by training and testing the correc-

tion model.

We have performed two different experiments.

In the first experiment, we have used the word it-

self as a feature. In the tables 3˜5, “Raw Word”

represents the case when we use just the word

itself. In the second experiment, we have used

the feature name as the postfix of the feature. In

the tables 3˜5, “With Feature Name” represents

the case when we attach the feature name to the

feature and use it as a feature. For all experi-

ments, we have tried to differentiate the number

of features. 20 features are same as Han’s work.

18 features are the case when we exclude 2 fea-

tures(i.e. wd L(19), wd R(20)). 9 features are the

case when we use only features which do not re-

quire parsing.

We have experimented with Maximum Entropy

learning method, and fixed the iteration number to

200. Table 3 shows that the precision has highly

increased although the recall has decreased when

we add the feature name to the set of features used

for learning.

When we use 18 features except wd L(3 words

preceding s) and wd R(3 words following s), the

error correction system achieves the best perfor-

mance. According to the experimental result, we

can achieve the better result when we use 18 fea-

tures and the raw word. But we select final option

using 18 features and the word with feature name

because of optimization strategies that improve the

precision.

Number of feature 20 18 9

Raw

Word

Precision 0.1827 0.3176 0.0914

Recall 0.1123 0.1264 0.1139

F1-score 0.1391 0.1808 0.1014

With

Feature

Name

Precision 0.1942 0.3174 0.1059

Recall 0.1154 0.1139 0.1061

F1-score 0.1448 0.1676 0.1060

Table 4: The result of article error correction

Kinds of feature Basic

Basic&

Indep-

endent

Basic&

Com-

plex

Raw

Word

Precision 0.2462 0.1435 0.2469

Recall 0.0379 0.0811 0.0540

F1-score 0.0662 0.1036 0.0887

With

Feature

Name

Precision 0.2413 0.1676 0.2875

Recall 0.0378 0.0838 0.0621

F1-score 0.0654 0.1117 0.1022

Table 5: The result of noun number error correc-

tion

4.3 Article Correction Experiment

Table 4 shows that the feature name addition does

not improve the precision in the case of article cor-

rection, and the set of 18 features achieves the best

performance for article correction. Therefore, we

just use raw words for features and select 18 fea-

tures for article correction.

4.4 Noun Number Correction Experiment

In Table 2, features of number 1˜5 belong to the

basic feature set and features of number 6˜15 be-

long to the independent feature set and features

of number 16˜23 belong to the complex feature

set. The experimental result with various combi-

nations of feature sets shows that the set of basic

and complex features achieves the best precision

in spite of low recall as shown in Table 5. We use

this option and experimentally select the iteration

number 700.

5 Conclusions

We develop a grammatical error correction system

which can recognize and correct preposition, arti-

cle, and noun number errors. In this experiment,

we have found out the set of good features for

preposition and article error correction, and pro-

posed a novel noun number error correction tech-

nique based on the machine learning method. For
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the future work, we will try to utilize large amount

of external resources such as well written error

free corpus.
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