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Abstract
We discuss data-driven morphological
segmentation, in which word forms are
segmented into morphs, the surface forms
of morphemes. Our focus is on a low-
resource learning setting, in which only a
small amount of annotated word forms are
available for model training, while unan-
notated word forms are available in abun-
dance. The current state-of-art methods
1) exploit both the annotated and unan-
notated data in a semi-supervised man-
ner, and 2) learn morph lexicons and sub-
sequently uncover segmentations by gen-
erating the most likely morph sequences.
In contrast, we discuss 1) employing only
the annotated data in a supervised man-
ner, while entirely ignoring the unanno-
tated data, and 2) directly learning to pre-
dict morph boundaries given their local
sub-string contexts instead of learning the
morph lexicons. Specifically, we em-
ploy conditional random fields, a popular
discriminative log-linear model for seg-
mentation. We present experiments on
two data sets comprising five diverse lan-
guages. We show that the fully super-
vised boundary prediction approach out-
performs the state-of-art semi-supervised
morph lexicon approaches on all lan-
guages when using the same annotated
data sets.

1 Introduction

Modern natural language processing (NLP) appli-
cations, such as speech recognition, information
retrieval and machine translation, perform their
tasks using statistical language models. For mor-
phologically rich languages, estimation of the lan-
guage models is problematic due to the high num-
ber of compound words and inflected word forms.

A successful means of alleviating this data sparsity
problem is to segment words into meaning-bearing
sub-word units (Hirsimäki et al., 2006; Creutz et
al., 2007; Turunen and Kurimo, 2011). In lin-
guistics, the smallest meaning-bearing units of a
language are called morphemes and their surface
forms morphs. Thus, morphs are natural targets
for the segmentation.

For most languages, existing resources contain
large amounts of raw unannotated text data, only
small amounts of manually prepared annotated
training data, and no freely available rule-based
morphological analyzers. The focus of our work is
on performing morphological segmentation in this
low-resource scenario. Given this setting, the cur-
rent state-of-art methods approach the problem by
learning morph lexicons from both annotated and
unannotated data using semi-supervised machine
learning techniques (Poon et al., 2009; Kohonen
et al., 2010). Subsequent to model training, the
methods uncover morph boundaries for new word
forms by generating their most likely morph se-
quences according to the morph lexicons.

In contrast to learning morph lexicons (Poon et
al., 2009; Kohonen et al., 2010), we study mor-
phological segmentation by learning to directly
predict morph boundaries based on their local sub-
string contexts. Specifically, we apply the linear-
chain conditional random field model, a popular
discriminative log-linear model for segmentation
presented originally by Lafferty et al. (2001). Im-
portantly, we learn the segmentation model from
solely the small annotated data in a supervised
manner, while entirely ignoring the unannotated
data. Despite not using the unannotated data, we
show that by discriminatively learning to predict
the morph boundaries, we are able to outperform
the previous state-of-art.

We present experiments on Arabic and Hebrew
using the data set presented originally by Snyder
and Barzilay (2008), and on English, Finnish and
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Turkish using the Morpho Challenge 2009/2010
data sets (Kurimo et al., 2009; Kurimo et al.,
2010). The results are compared against two state-
of-art techniques, namely the log-linear model-
ing approach presented by Poon et al. (2009) and
the semi-supervised Morfessor algorithm (Koho-
nen et al., 2010). We show that when employ-
ing the same small amount of annotated train-
ing data, the CRF-based boundary prediction ap-
proach outperforms these reference methods on
all languages. Additionally, since the CRF model
learns from solely the small annotated data set, its
training is computationally much less demanding
compared to the semi-supervised methods, which
utilize both the annotated and the unannotated data
sets.

The rest of the paper is organized as follows. In
Section 2, we discuss related work in morpholog-
ical segmentation and methodology. In Section 3,
we describe our segmentation method. Our exper-
imental setup is described in Section 4, and the
obtained results are presented in Section 5. In Sec-
tion 6, we discuss the method and the results. Fi-
nally, we present conclusions on the work in Sec-
tion 7.

2 Related work

The CRF model has been widely used in NLP seg-
mentation tasks, such as shallow parsing (Sha and
Pereira, 2003), named entity recognition (McCal-
lum and Li, 2003), and word segmentation (Zhao
et al., 2006). Recently, CRFs were also employed
successfully in morphological segmentation for
Arabic by Green and DeNero (2012) as a com-
ponent of an English to Arabic machine trans-
lation system. While the segmentation method
of Green and DeNero (2012) and ours is very sim-
ilar, our focuses and contributions differ in sev-
eral ways. First, while in our work we consider
the low-resource learning setting, in which a small
annotated data set is available (up to 3,130 word
types), their model is trained on the Arabic Tree-
bank (Maamouri et al., 2004) constituting sev-
eral times larger training set (588,244 word to-
kens). Second, we present empirical comparison
between the CRF approach and two state-of-art
methods (Poon et al., 2009; Kohonen et al., 2010)
on five diverse languages. Third, due to being a
component of a larger system, their presentation
on the method and experiments is rather undersp-
eficied, while here we are able to provide a more

thorough description.
In the experimental section, we compare the

CRF-based segmentation approach with two state-
of-art methods, the log-linear modeling approach
presented by Poon et al. (2009) and the semi-
supervised Morfessor algorithm (Kohonen et al.,
2010). As stated previously, the CRF-based seg-
mentation approach differs from these methods in
that it learns to predict morph boundaries from
a small amount of annotated data, in contrast to
learning morph lexicons from both annotated and
large amounts of unannotated data.

Lastly, there exists ample work on varying un-
supervised (and semi-supervised) morphological
segmentation methods. A useful review is given
by Hammarström and Borin (2011). The funda-
mental difference between our approach and these
techniques is that our method necessarily requires
manually annotated training data.

3 Methods

In this section, we describe in detail the CRF-
based approach for supervised morphological seg-
mentation.

3.1 Morphological segmentation as a
classification task

We represent the morphological segmentation task
as a structured classification problem by assign-
ing each character to one of four classes, namely
{beginning of a multi-character morph (B), mid-
dle of a multi-character morph (M), end of a multi-
character morph (E), single character morph (S)}.
For example, consider the English word form

drivers

with a corresponding segmentation

driv + er + s .

Using the classification notation, this segmenta-
tion is represented as

START B M M E B E S STOP
<w> d r i v e r s </w>

where we have assumed additional word start
and end markers <w> and </w> with respective
classes START and STOP. As another example,
consider the Finnish word form

autoilla (with cars)

with a corresponding segmentation

auto + i + lla .

Using the classification notation, this segmenta-
tion is represented as
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START B M M E S B M E STOP
<w> a u t o i l l a </w>

Intuitively, instead of the four class set {B, M,
E, S}, a segmentation could be accomplished us-
ing only a set of two classes {B, M} as in (Green
and DeNero, 2012). However, similarly to Chi-
nese word segmentation (Zhao et al., 2006), our
preliminary experiments suggested that using the
more fine-grained four class set {B, M, E, S} per-
formed slightly better. This result indicates that
morph segments of differerent lengths behave dif-
ferently.

3.2 Linear-chain conditional random fields
We perform the above structured classification us-
ing linear-chain conditional random fields (CRFs),
a discriminative log-linear model for tagging and
segmentation (Lafferty et al., 2001). The central
idea of the linear-chain CRF is to exploit the de-
pendencies between the output variables using a
chain structured undirected graph, also referred to
as a Markov random field, while conditioning the
output globally on the observation.

Formally, the model for input x (characters in a
word) and output y (classes corresponding to char-
acters) is written as

p (y |x;w) ∝
T∏

t=2

exp
(
w>f(yt−1, yt,x, t)

)
,

(1)
where t indexes the characters, T denotes word
length, w the model parameter vector, and f the
vector-valued feature extracting function.

The purpose of the feature extraction function
f is to capture the co-occurrence behavior of the
tag transitions (yt−1, yt) and a set of features de-
scribing character position t of word form x. The
strength of the CRF model lies in its capability to
utilize arbitrary, non-independent features.

3.3 Feature extraction
The quality of the segmentation depends heavily
on the choice of features defined by the feature
extraction function f . We will next describe and
motivate the feature set used in the experiments.

Our feature set consists of binary indicator func-
tions describing the position t of word x using
all left and right substrings up to a maximum
length δ. For example, consider the problem
of deciding if the letter e in the word drivers
is preceded by a morph boundary. This deci-
sion is now based on the overlapping substrings

to the left and right of this potential bound-
ary position, that is {v, iv, riv, driv, <w>driv} and
{e, er, ers, ers</w>}, respectively. The substrings
to the left and right are considered indepen-
dently. Naturally, if the maximum allowed sub-
string length δ is less than five, the longest sub-
strings are discarded accordingly. In general, the
optimum δ depends on both the amount of avail-
able training data and the language.

In addition to the substring functions, we use a
bias function which returns value 1 independent
of the input x. The bias and substring features are
combined with all the possible tag transitions.

To motivate this choice of feature set, consider
formulating an intuitive segmentation rule for the
English words talked, played and speed with the
correct segmentations talk + ed, play + ed and
speed, respectively. Now, as a right context ed
is generally a strong indicator of a boundary, one
could first formulate a rule

position t is a segment boundary
if its right context is ed.

This rule would indeed correctly segment the
words talked and played, but would incorrectly
segment speed as spe + ed. This error can be re-
solved if the left contexts are utilized as inhibitors
by expanding the above rule as

position t is a segment boundary
if its right context is ed

and the left context is not spe.

Using the feature set defined above, the CRF
model can learn to perform segmentation in this
rule-like manner according to the training data.
For example, using the above example words and
segmentations for training, the CRFs could learn
to assign a high score for a boundary given that
the right context is ed and a high score for a non-
boundary given the left context spe. Subsequent to
training, making segmentation decisions for new
word forms can then be interpreted as voting based
on these scores.

3.4 Parameter estimation
The CRF model parameters w are estimated based
on an annotated training data set. Common train-
ing criteria include the maximum likelihood (Laf-
ferty et al., 2001; Peng et al., 2004; Zhao et al.,
2006), averaged structured perceptron (Collins,
2002), and max-margin (Szummer et al., 2008).
In this work, we estimate the parameters using the
perceptron algorithm (Collins, 2002).

31



In perceptron training, the required graph infer-
ence can be efficiently performed using the stan-
dard Viterbi algorithm. Subsequent to training, the
segmentations for test instances are acquired again
using Viterbi search.

Compared to other training criteria, the struc-
tured perceptron has the advantage of employing
only a single hyperparameter, namely the number
of passes over training data, making model esti-
mation fast and straightforward. We optimize the
hyperparameter using a separate development set.
Lastly, we consider the longest substring length δ
a second hyperparameter optimized using the de-
velopment set.

4 Experimental setup

This section describes the data sets, evaluation
metrics, reference methods, and other details con-
cerning the evaluation of the methods.

4.1 Data sets

We evaluate the methods on two different data sets
comprising five languages in total.

S&B data. The first data set we use is the He-
brew Bible parallel corpus introduced by Snyder
and Barzilay (2008). It contains 6,192 parallel
phrases in Hebrew, Arabic, Aramaic, and English
and their frequencies (ranging from 5 to 3517).
The phrases have been extracted using automatic
word alignment. The Hebrew and Arabic phrases
have manually annotated morphological segmen-
tations, and they are used in our experiments. The
phrases are sorted according to frequency, and ev-
ery fifth phrase starting from the first phrase is
placed in the test set, every fifth starting from the
second phrase in the development set (up to 500
phrases), and the rest of the phrases in the train-
ing set. 1 The total numbers of word types in the
sets are shown in Table 1. Finally, the word forms
in the training set are randomly permuted, and the
first 25%, 50%, 75%, and 100% of them are se-
lected as subsets to study the effect of training data
size.

MC data. The second data set is based on the
Morpho Challenge 2010 (Kurimo et al., 2010).
It includes manually prepared morphological seg-
mentations in English, Finnish and Turkish. The

1We are grateful to Dr. Hoifung Poon for providing us
instructions for dividing of the data set.

Arabic Hebrew
Training 3,130 2,770
Development 472 450
Test 1,107 1,040

Table 1: The numbers of word types in S&B data
sets (Snyder and Barzilay, 2008).

English Finnish Turkish
Unannot. 384,903 2,206,719 617,298
Training 1,000 1,000 1,000
Develop. 694 835 763
Test 10×1,000 10×1,000 10×1,000

Table 2: The numbers of word types in the MC
data sets (Kurimo et al., 2009; Kurimo et al.,
2010).

additional German corpus does not have segmen-
tation annotation and is therefore excluded. The
annotated data sets include training, development,
and test sets for each language. Following Virpi-
oja et al. (2011), the test set results are based on
ten randomly selected 1,000 word sets. Moreover,
we divide the annotated training sets into ten par-
titions with respective sizes of 100, 200, . . . , 1000
words so that each partition is a subset of the all
larger partitions. The data is divided so that the
smallest set had every 10th word of the original
set, the second set every 10th word and the fol-
lowing word, and so forth. For reference methods
that require unannotated data, we use the English,
Finnish and Turkish corpora from Competition 1
of Morpho Challenge 2009 (Kurimo et al., 2009).
Table 2 shows the sizes of the MC data sets.

4.2 Evaluation measures

The word segmentations are evaluated by compar-
ison with linguistic morphs using precision, recall,
and F-measure. The F-measure equals the geo-
metric mean of precision (the percentage of cor-
rectly assigned boundaries with respect to all as-
signed boundaries) and recall (the percentage of
correctly assigned boundaries with respect to the
reference boundaries). While using F-measure is
a standard procedure, the prior work differ at least
in three details: (1) whether precision and recall
are calculated as micro-average over all segmenta-
tion points or as macro-average over all the word
forms, (2) whether the evaluation is based on word
types or word tokens in a corpus, and (3) if the
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reference segmentations have alternative correct
choices for a single word type, and how to deal
with them.

For the experiments with the S&B data sets,
we follow Poon et al. (2009) and apply token-
based micro-averages. For the experiments with
the MC data sets, we follow Virpioja et al. (2011)
and use type-based macro-averages. However, dif-
fering from their boundary measure, we take the
best match over the alternative reference analyses
(separately for precision and recall), since none of
the methods considered here provide multiple seg-
mentations per word type. For the models trained
with the full training set, we also report the F-
measures of the boundary evaluation method by
Virpioja et al. (2011) in order to compare to the
results reported in the Morpho Challenge website.

4.3 CRF feature extraction and training
The features included in the feature vector in the
CRF model (1) are described in Section 3.3. We
include all substring features which occur in the
training data.

The CRF model is trained using the averaged
perceptron algorithm as described in Section 3.4.
The algorithm initializes the model parameters
with zero vectors. The model performance, mea-
sured using F-measure, is evaluated on the devel-
opment set after each pass over the training set,
and the training is terminated when the perfor-
mance has not improved during last 5 passes. The
maximum length of substrings δ is optimized by
considering δ = 1, 2, 3, . . . , and the search is ter-
minated when the performance has not improved
during last 5 values. Finally, the algorithm returns
the parameters yielding the highest F-measure on
the development set.

For some words, the MC training sets include
several alternative segmentations. We resolve this
ambiguity by using the first given alternative and
discarding the rest. During evaluation, the alter-
native segmentations are taken into account as de-
scribed in Section 4.2.

The experiments are run on a standard desktop
computer using our own single-threaded Python-
based implementation2.

4.4 Reference methods
We compare our method’s performance on Arabic
and Hebrew data with semi-supervised Morfessor

2Available at http://users.ics.aalto.fi/
tpruokol/

(Kohonen et al., 2010) and the results reported by
Poon et al. (2009). On Finnish, English and Turk-
ish data, we compare the method only with semi-
supervised Morfessor as we have no implementa-
tion of the model by Poon et al. (2009).

We use a recently released Python implemen-
tation of semi-supervised Morfessor3. Semi-
supervised Morfessor was trained separately for
each training set size, always using the full unan-
notated data sets in addition to the annotated sets.
The hyperparameters, the unannotated data weight
α and the annotated data weight β, were optimized
with a grid search on the development set. For the
S&B data, there are no separate unannotated sets.
When the annotated training set size is varied, the
remaining parts are utilized as unannotated data.

The log-linear model described in (Poon et al.,
2009) and the semi-supervised Morfessor algo-
rithm are later referred to as POON-2009 and S-
MORFESSOR for brevity.

5 Results

Method performances for Arabic and Hebrew on
the S&B data are presented in Tables 3 and 4, re-
spectively. The results for the POON-2009 model
are extracted from (Poon et al., 2009). Perfor-
mances for English, Finnish and Turkish on the
MC data set are presented in Tables 5, 6 and 7,
respectively.

On the Arabic and Hebrew data sets, the CRFs
outperform POON-2009 and S-MORFESSOR
substantially on all the considered data set sizes.
On Finnish and Turkish data, the CRFs outper-
form S-MORFESSOR except for the smallest sets
of 100 instances. On English data, the CRFs out-
perform S-MORFESSOR when the training set is
500 instances or larger.

Using our implementation of the CRF model,
obtaining the results for Arabic, Hebrew, English,
Finnish, and Turkish consumed 10, 11, 22, 32,
and 28 minutes, respectively. These CPU times
include model training and hyperparameter opti-
mization. In comparison, S-MORFESSOR train-
ing is considerably slower. For Arabic and He-
brew, the S-MORFESSOR total training times
were 24 and 22 minutes, respectively, and for En-
glish, Finnish, and Turkish 4, 22, and 10 days,
respectively. The higher training times of S-
MORFESSOR are partly because of the larger

3Available at https://github.com/
aalto-speech/morfessor
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grids in hyperparameter optimization. Further-
more, the S-MORFESSOR training time for each
grid point grows linearly with the size of the
unannotated data set, resulting in particularly slow
training on the MC data sets. All reported times
are total CPU times for single-threaded runs, while
in practice grid searches can be parallelized.

The perceptron algorithm typically converged
after 10 passes over the training set, and never re-
quired more than 40 passes to terminate. Depend-
ing on the size of the training data, the optimized
maximum lengths of substrings varied in ranges
{3,5}, {2,7}, {3,9}, {3,6}, {3,7}, for Arabic, He-
brew, English, Finnish and Turkish, respectively.

Method %Lbl. Prec. Rec. F1
CRF 25 95.5 93.1 94.3
S-MORFESSOR 25 78.7 79.7 79.2
POON-2009 25 84.9 85.5 85.2
CRF 50 96.5 94.6 95.5
S-MORFESSOR 50 87.5 91.5 89.4
POON-2009 50 88.2 86.2 87.5
CRF 75 97.2 96.1 96.6
S-MORFESSOR 75 92.8 83.0 87.6
POON-2009 75 89.6 86.4 87.9
CRF 100 98.1 97.5 97.8
S-MORFESSOR 100 91.4 91.8 91.6
POON-2009 100 91.7 88.5 90.0

Table 3: Results for Arabic on the S&B data
set (Snyder and Barzilay, 2008). The column ti-
tled %Lbl. denotes the percentage of the annotated
data used for training. In addition to the given per-
centages of annotated data, POON-2009 and S-
MORFESSOR utilized the remainder of the data
as an unannotated set.

Finally, Table 8 shows the results of the CRF
and S-MORFESSOR models trained with the full
English, Finnish, and Turkish MC data sets and
evaluated with the boundary evaluation method of
Virpioja et al. (2011). That is, these numbers are
directly comparable to the BPR-F column in the
result tables presented at the Morpho Challenge
website4. For each of the three languages, CRF
clearly outperforms all the Morpho Challenge sub-
missions that have provided morphological seg-
mentations.

4http://research.ics.aalto.fi/events/
morphochallenge/

Method %Lbl. Prec. Rec. F1
CRF 25 90.5 90.6 90.6
S-MORFESSOR 25 71.5 85.3 77.8
POON-2009 25 78.7 73.3 75.9
CRF 50 94.0 91.5 92.7
S-MORFESSOR 50 82.1 81.8 81.9
POON-2009 50 82.8 74.6 78.4
CRF 75 94.0 92.7 93.4
S-MORFESSOR 75 84.0 88.1 86.0
POON-2009 75 83.1 77.3 80.1
CRF 100 94.9 94.0 94.5
S-MORFESSOR 100 85.3 91.1 88.1
POON-2009 100 83.0 78.9 80.9

Table 4: Results for Hebrew on the S&B data
set (Snyder and Barzilay, 2008). The column ti-
tled %Lbl. denotes the percentage of the annotated
data used for training. In addition to the given per-
centages of annotated data, POON-2009 and S-
MORFESSOR utilized the remainder of the data
as an unannotated set.

6 Discussion

Intuitively, the CRF-based supervised learning ap-
proach should yield high segmentation accuracy
when there are large amounts of annotated train-
ing data available. However, perhaps surprisingly,
the CRF model yields state-of-art results already
using very small amounts of training data. This
result is meaningful since for most languages it is
infeasible to acquire large amounts of annotated
training data.

The strength of the discriminatively trained
CRF model is that overlapping, non-independent
features can be naturally employed. Importantly,
we showed that simple, language-independent
substring features are sufficient for high perfor-
mance. However, adding new, task- and language-
dependent features is also easy. One might, for ex-
ample, explore features capturing vowel harmony
in Finnish and Turkish.

The CRFs was estimated using the structured
perceptron algorithm (Collins, 2002), which has
the benefit of being computationally efficient and
easy to implement. Other training criteria, such
as maximum likelihood (Lafferty et al., 2001)
or max-margin (Szummer et al., 2008), could
also be employed. Similarly, other classifiers,
such as the Maximum Entropy Markov Models
(MEMMs) (McCallum et al., 2000), are applica-
ble. However, as the amount of information in-
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Method Train. Prec. Rec. F1
CRF 100 80.2 74.6 77.3
S-MORFESSOR 100 88.1 79.7 83.7
CRF 200 84.7 79.2 81.8
S-MORFESSOR 200 88.1 79.5 83.6
CRF 300 86.7 79.8 83.1
S-MORFESSOR 300 88.4 80.6 84.3
CRF 400 86.5 80.6 83.4
S-MORFESSOR 400 84.6 83.6 84.1
CRF 500 88.6 80.7 84.5
S-MORFESSOR 500 86.3 82.7 84.4
CRF 600 88.1 82.6 85.3
S-MORFESSOR 600 86.7 82.5 84.5
CRF 700 87.9 83.4 85.6
S-MORFESSOR 700 86.0 82.9 84.4
CRF 800 89.1 83.2 86.1
S-MORFESSOR 800 87.1 82.5 84.8
CRF 900 89.0 82.9 85.8
S-MORFESSOR 900 86.4 82.6 84.5
CRF 1000 89.8 83.5 86.5
S-MORFESSOR 1000 88.8 80.1 84.3

Table 5: Results for English on the Morpho Chal-
lenge 2009/2010 data set (Kurimo et al., 2009; Ku-
rimo et al., 2010). The column titled Train. de-
notes the number of annotated training instances.
In addition to the annotated data, S-MORFESSOR
utilized an unannotated set of 384,903 word types.

corporated in the model would be unchanged, the
choice of parameter estimation criterion and clas-
sifier is unlikely to have a dramatic effect on the
method performance.

In CRF training, we focused on the supervised
learning scenario, in which no unannotated data is
exploited in addition to the annotated training sets.
However, there does exist ample work on extend-
ing CRF training to the semi-supervised setting
(for example, see Mann and McCallum (2008)
and the references therein). Nevertheless, our re-
sults strongly suggest that it is crucial to use the
few available annotated training instances as ef-
ficiently as possible before turning model train-
ing burdensome by incorporating large amounts of
unannotated data.

Following previous work (Poon et al., 2009;
Kohonen et al., 2010; Virpioja et al., 2011), we
applied the boundary F-score evaluation measure,
while Green and DeNero (2012) reported charac-
ter accuracy. We consider the boundary F-score a
better measure than accuracy, since the boundary-

Method Train. Prec. Rec. F1
CRF 100 71.4 66.0 68.6
S-MORFESSOR 100 69.8 71.0 70.4
CRF 200 76.4 71.3 73.8
S-MORFESSOR 200 75.5 68.6 71.9
CRF 300 80.4 73.9 77.0
S-MORFESSOR 300 73.1 71.8 72.5
CRF 400 81.0 76.6 78.7
S-MORFESSOR 400 73.3 74.3 73.8
CRF 500 82.9 77.9 80.3
S-MORFESSOR 500 73.5 75.1 74.3
CRF 600 82.6 80.6 81.6
S-MORFESSOR 600 76.1 73.7 74.9
CRF 700 84.3 81.4 82.8
S-MORFESSOR 700 75.0 76.6 75.8
CRF 800 85.1 83.4 84.2
S-MORFESSOR 800 74.1 78.2 76.1
CRF 900 85.2 83.8 84.5
S-MORFESSOR 900 74.2 78.5 76.3
CRF 1000 86.0 84.7 85.3
S-MORFESSOR 1000 74.2 78.8 76.4

Table 6: Results for Finnish on the Morpho Chal-
lenge 2009/2010 data set (Kurimo et al., 2009; Ku-
rimo et al., 2010). The column titled Train. de-
notes the number of annotated training instances.
In addition to the annotated data, S-MORFESSOR
utilized an unannotated set of 2,206,719 word
types.

tag distribution is strongly skewed towards non-
boundaries. Nevertheless, for completeness, we
computed the character accuracy for our Arabic
data set, obtaining the accuracy 99.1%, which is
close to their reported accuracy of 98.6%. How-
ever, these values are not directly comparable due
to our use of the Bible corpus by Snyder and Barzi-
lay (2008) and their use of the Penn Arabic Tree-
bank (Maamouri et al., 2004).

7 Conclusions

We have presented an empirical study in data-
driven morphological segmentation employing
supervised boundary prediction methodology.
Specifically, we applied conditional random fields,
a discriminative log-linear model for segmentation
and tagging. From a methodological perspective,
this approach differs from the previous state-of-art
methods in two fundamental aspects. First, we uti-
lize a discriminative model estimated using only
annotated data. Second, we learn to predict morph
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Method Train. Prec. Rec. F1
CRF 100 72.4 79.6 75.8
S-MORFESSOR 100 77.9 78.5 78.2
CRF 200 83.2 82.3 82.8
S-MORFESSOR 200 80.0 83.2 81.6
CRF 300 83.9 85.9 84.9
S-MORFESSOR 300 80.1 85.6 82.8
CRF 400 86.4 86.5 86.4
S-MORFESSOR 400 80.7 87.1 83.8
CRF 500 87.5 86.4 87.0
S-MORFESSOR 500 81.0 87.2 84.0
CRF 600 87.8 88.1 87.9
S-MORFESSOR 600 80.5 89.9 85.0
CRF 700 89.1 88.3 88.7
S-MORFESSOR 700 80.9 90.7 85.5
CRF 800 88.6 90.3 89.4
S-MORFESSOR 800 81.2 91.0 85.9
CRF 900 89.2 89.8 89.5
S-MORFESSOR 900 81.4 91.2 86.0
CRF 1000 89.9 90.4 90.2
S-MORFESSOR 1000 83.0 91.5 87.0

Table 7: Results for Turkish on the Morpho Chal-
lenge 2009/2010 data set (Kurimo et al., 2009; Ku-
rimo et al., 2010). The column titled Train. de-
notes the number of annotated training instances.
In addition to the annotated data, S-MORFESSOR
utilized an unannotated set of 617,298 word types.

boundaries based on their local character substring
contexts instead of learning a morph lexicon.

We showed that our supervised method yields
improved results compared to previous state-of-
art semi-supervised methods using the same small
amount of annotated data, while not utilizing the
unannotated data used by the reference methods.
This result has two implications. First, supervised
methods can provide excellent results in morpho-
logical segmentation already when there are only
a few annotated training instances available. This
is meaningful since for most languages it is infea-
sible to acquire large amounts of annotated train-
ing data. Second, performing morphological seg-
mentation by directly modeling segment bound-
aries can be advantageous compared to modeling
morph lexicons.

A potential direction for future work includes
evaluating the morphs obtained by our method in
real world applications, such as speech recognition
and information retrieval. We are also interested
in extending the method from fully supervised to

Method English Finnish Turkish
CRF 82.0 81.9 71.5
S-MORFESSOR 79.6 73.5 70.5

Table 8: F-measures of the Morpho Chal-
lenge boundary evaluation for CRF and S-
MORFESSOR using the full annotated training
data set.

semi-supervised learning.
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