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Abstract To fully exploit syntax in learning classi-

fiers, kernel machines (Cristianini and Shawe-
Taylor, 2000) use graph similarity algorithms
(e.g., (Collins and Duffy, 2002) for trees) as struc-
tural kernels (Gartner, 2003). These structural ker-
nels allow to exploit high-dimensional spaces of
syntactic tree fragments by concealing their com-
plexity. These feature spaces, although hidden,
still exist. Then, even in kernel machines, sym-
bolic syntactic structures act only @soxies be-
ducing symbolic syntactic interpretations. tween the source sentences and the syntactic fea-

Results show that DRPs produce feature ture ve(?tors. _
spaces significantly better than those ob- In this paper, we explore an alternative way
tained by existing methods in the same 0 use syntax in feature spaces: thistributed
conditions and competitive with those ob- ~ Representation ParsertDRP). The core of the

formation. the gap between sentences and syntactic feature

spaces. DRPs act as syntactic parsers and fea-
ture extractors at the same time. We leverage on

Syntactic processing is widely considered an imthe distributed treesecently introduced by Zan-
portant activity in natural language understandZotto&Dell'Arciprete (2012) and on multiple lin-
ing (Chomsky, 1957). Research in natural lan-ar regression modelRistributed treesare small
guage processing (NLP) exploits this hypothesig/ectors that encode the large vectors of the syn-
in models and systems. Syntactic features improvéactic tree fragments underlying the tree kernels
performance in high level tasks such as questiofiCollins and Duffy, 2002). These vectors effec-
answering (Zhang and Lee, 2003), semantic roléively represent the original vectors and lead to
labeling (Gildea and Jurafsky, 2002; Pradhan eperformances in NLP tasks similar to tree kernels.
al., 2005; Moschitti et al., 2008; Collobert et al., Multiple linear regression allows to learn linear
2011), paraphrase detection (Socher et al., 2011RRPs from training data. We experiment with the
and textual entailment recognition (MacCartney efPenn Treebank data set (Marcus et al., 1993). Re-
al., 2006; Wang and Neumann, 2007; Zanzotto e$ults show that DRPs produce distributed trees sig-
al., 2009). nificantly better than those obtained by existing
Classification and learning algorithms are keymethods, in the same non-lexicalized conditions,
components in the above models and in curren@nd competitive with those obtained by existing
NLP systems, but these algorithms cannot directlynethods with lexical information. Finally, DRPs
use syntactic structures. The relevant parts ofre extremely faster than existing methods.
phrase structure trees or dependency graphs areThe rest of the paper is organized as fol-
explicitly or implicitly stored in feature vectors. lows. First, we present the background of our

Classification and learning algorithms use
syntactic structures aproxies between
source sentences and feature vectors. In
this paper, we explore an alternative path
to use syntax in feature spaces: Dis-
tributed Representation “Parser{DRP).
The core of the idea is straightforward:
DRPs directly obtain syntactic feature vec-
tors from sentences without explicitly pro-

1 Introduction
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idea (Sec. 2). Second, we fully describe our A solution to the above problem stems from
model (Sec. 3). Then, we report on the experithe recently revitalized research in Distributed
ments (Sec. 4). Finally, we draw some conclusion®kepresentations (DR) (Hinton et al., 1986; Ben-

and outline future work (Sec. 5) gio, 2009; Collobert et al., 2011; Socher et al.,
2011; Zanzotto and Dell'Arciprete, 2012). Dis-
2 Background tributed Representations, studied in opposition to

symbolic representations (Rumelhart and Mcclel-
Classification and learning algorithms for NLP land, 1986), are methods for encoding data struc-
tasks treat syntactic structuress vectors in fea- res such as trees into vectors, matrices, or high-
ture space¢ < R™. Each feature generally rep- order tensors. The targets of these representa-
resents a substructurg. In simple weighting  tjons are generally propositions, i.e., flat tree struc-
schemes, feature values are Lifis a substruc- y,re5. The Holographic Reduced Representations
ture of t and O otherwise. .Different weight?ng (HRR), proposed by Plate (1994), produce nearly
schemes are used and possible. Then, learning &}hogonal vectors for different structures by com-
gorithms exploit these feature vectors in diﬁerentbining circular convolution and randomly gener-

ways. Decision tree learners (Quinlan, 1993) eleckieq vectors for basic components (as in (Ander-
the most representative feature at each iterationyg, 1973; Murdock, 1983)).

whereas kernel machines (Cristianini and Shawe- Building on HRRs, Distributed Trees (DT) have
Taylor, 2000) exploit similarity between pairs of paan proposed to encode deeper trees in low di-
instances,s(t1,t2). This similarity is generally mensional vectors (Zanzotto and Dell'Arciprete,
measured as the dot product between the two veg12)  DTs approximate the feature space of tree
tors, i.e.5(t1,t2) = t1 - ta. fragments defined for the tree kernels (Collins and
The use of syntactic features changed when treguffy, 2002) and guarantee similar performances
kernels (Collins and Duffy, 2002) appeared. Treef classifiers in NLP tasks such as question classi-
kernels gave the possibility to fully exploit feature fication and textual entailment recognition. Thus,
spaces of tree fragments. Until then, learning alpjstriputed Trees are good representations of syn-
gorithms could not treat these huge spaces. It igactic trees, that we can use in our definition of

ture vectors and to directly compute similarities

through dot products. Tree kernels (Collins and3  Distributed Representation Parsers

Duffy, 2002), by computing similarities between , _ _ _ ,
two trees with tree comparison algorithms, exactlyln this section, first, we sketch the idea of Dis-
determine dot products of vectors in these targetiouted Representation “Parsers” (DRPs). Then,
spaces. After their introduction, different tree ker-We review thedistributed treesas a way to repre-
nels have been proposed (e.g., (Vishwanathan arygnt trees in low dimensional vectors. Finally, we

Smola. 2002: Culotta and Sorensen. 2004: Mosdescribe how to build DRPs by mixing a function
chitti ’2006))1. Their use spread in,many' NLPthat encodes sentences in vectors and a linear re-

tasks (e.g., (Zhou et al., 2007; Wang and Neydressor that can be induced from training data.

mann, 2007; Moschitti_ et al., 2008;_ Zanzotto et3'1 The Idea

al., 2009; Zhang and Li, 2009)) and in other areas

like biology (Vert, 2002; Hashimoto et al., 2008) The approach to using syntax in learning algo-

and computer security (Diissel et al., 2008; Rieckithms generally follows two steps: first, parse

and Laskov, 2007; Bockermann et al., 2009). ~ Sentences Wi_th a symbolic' parser (e.g., (Collins,
Tree kernels have played a very important role?003; Charniak, 2000; Nivre et al., 2007)) and

in promoting the use of syntactic information in Preduce symbolic tree¢; second, use an en-

learning classifiers, but this method obfuscated th§0der to build syntactic feature vectors. Fig-

fact that syntactic trees are ultimately used as vedd'® 1 sketches this idea whear; the final vectors
tors in learning algorithms. To work with the &€ thedistributed treest < R¢ (Zanzotto and

idea of directly obtaining rich syntactic feature DeI'Arciprete, 2012}. In this case, the last step

vectors from sentences, we need some techniques i1q represent a distributed tree for a tieewe use the
to make these high-dimensional vectors again eXotation ¢ to stress that this small vector is an approximation
plicit, through smaller but expressive vectors. of the original high-dimensional vectdtin the space of tree
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Figure 1: “Parsing” with distributed structures in pergpex

is the Distributed Tree Encoder (DT). Given a tree, the corresponding distributed tree
Our proposal is to build a Distributed Represen-7 is defined as follows:

tation “Parser” (DRP) that directly maps sentences

s into the final vectors. We choose the distributed DT(t)= Y witi 2

treest asthese reduced vectors fully represent the T ES(t)

syntactic trees. ADRP acts as follows (see Fig-

ure 1): first, a functionD encodes sentenseinto  where S(¢t) is the set of the subtrees of ¢, 7;

a distributed vectors € R? second, a function is the small vector corresponding to tree fragment

P transforms the input vectos into a distributed 7; andw; is the weight of subtree; in the final

tree ¢ . This second step is a vector to vector transfeature space. As in (Collins and Duffy, 2002), the
formation and, in a wide sense, “parses” the inpu€t:S(t) contains tree fragments such that the

sentence. root of 7 is any non-terminal node inand, if
Given an input sentence, a DRP is then a contains node, it must contain all the siblings of

function defined as follows: nint (see, for examples,.,(t) in Figure 2). The

= weightw; is defined as:

t = DRP(s) = P(D(s 1

) (D) @ VAITil=1if || > 1and) # 0

In this paper, we design some functiobsand we wi=¢ 1 if || =1 (3)
propose a linear functio®, designed to be a re- 0 ifA=0

gressor that can be induced from training data. In _ .
th|s Study1 we use a Space Wmimensions for Whel’ehﬂ IS the number Of non-tel’mlnal nOdeS Of
both sentences anddistributed treesj but, in tree fragment; and \ is the traditional parame-

general, these spaces can be of different size. ter used to penalize large sub_trees. Ror= 0,
w; has a value 1 for productions and O other-

3.2 Syntactic Trees as Distributed Vectors wise. If different tree fragments are associated

We here report on thelistributed tree® (Zan- to nearly orthonormal vectors, the dot product

zotto and Dell’Arciprete, 2012) to describe how 1 - 2 approximates the tree kemnel (Zanzotto and
these vectors represent syntactic trees and how thell'Arciprete, 2012).
dot product between two distributed trees approxi- A key feature of the distributed tree fragments

mates the tree kernel defined by Collins and Duffy™ is that these vectors are built compositionally
(2002). from a set\ of nearly orthonormal random vec-

tors ., associated to node labets Given a sub-

fragments. treer, the related vector is obtained as:

2For the experiments, we used the implemen-
tation of the distributed tree encoder available at — s —_
http://code.google.com/p/distributed-tree-kernels/ T=n1XnoX...Kny;
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Figure 2: Subtrees of the treén Figure 1

where node vectors; are ordered according to a Non-lexicalized model The non-lexicalized
depth-first visit of subtree andX is a vector com- model relies only on the pos-tags of the sentences
position operation, specifically thehuffled circu- s: s = p; ... p, wherep; is the pos-tag associated
lar convolutior?. This function guarantees that with the i-th token of the sentence. In the follow-
two different subtrees have nearly orthonormaling we discuss how to encode this information in
vectors (see (Zanzotto and Dell'Arciprete, 2012)aR¢ space. The basic modgl, (s) is the one that
for more details). For example, the fifth treeof  considers the bag-of-postags, that is:

setSyo.1ex(t) in Figure 2 is:

S Di(s) =) bs 4)

T5=SK(NPXR (VPR (VKNP))) :

where?i € N is the vector for labep;, taken
We experiment with two tree fragment sets:from the set of nearly orthonomal random vectors

the non-lexicalized sef,,, ;.. (t), where tree frag- A/, It is basically in line with the bag-of-word

ments do not contain words, and the lexicalizednodel used in random indexing (Sahlgren, 2005).

set S, (t), including all the tree fragments. An Due to the commutative property of the sum and

example is given in Figure 2. since vectors in\" are nearly orthonormal: (1)
two sentences with the same set of pos-tags have
3.3 The Model the same vector; and, (2) the dot product between

To build a DRP, we need to define the encodefWo vectors,D; (s1) andD1 (s2), representing sen-
D and the transformeP. In the following, we tencess; ands,, approximately counts how many
present a non-lexicalized and a lexicalized modeP0s-tags the two sentences have in common. The
for the encoderD and we describe how we can Vector for the sentence in Figure 1 is then:
learn the transformeP by means of a linear re- ~ ~ ~
gression model, Di(s) = PRP+V + DT+ NN

The general non-lexicalized model that takes
into account all n-grams of pos-tags, up to length
Establishing good models to encode input sen, is then the following:
tences into vectors is the most difficult challenge.
The models should consider the kind of informa- D;(s) = D;j_i(s) + Z}SZ X...X §i+j,1
tion that can lead to a correct syntactic interpre- i
tation. Only in this way, the distributed repre- whereX is again theshuffled circular convolutian
sentation parser can act as a vector transformingn n-gramp; . .. p; ;1 of pos-tags is represented
module. Unlike in models such as (Socher et al.as};i M. . K Fiﬂq- Given the properties of
2011), we want our encoder to represent the wholgnhe shuffled circular convolutionan n-gram of

sentence as a fixed size vector. We propose a nopos-tags is associated to a versor, as it composes
lexicalized model and a lexicalized model. j versors, and two different n-grams have near|y

3Theshuffled circular convolutioi is defined agXb = OrtthonaI vectors. For example’ vectDg (S)

51(@) ® s2(b) where® is the circular convolution ansh and for the sentence in Figure 1 is:

so are two different random permutations of vector elements.

3.3.1 Sentence Encoders
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Moore-Penrose pseudo-inversiPenrose, 1955).
Pseudo-inverse matriceé8™ are obtained using

Ds(s) = PRP+V+DT+NN+ singular value decomposition (SVD). Matrices
PRPXRV +VRXDT +DI'KNN + have the propertysS*™ = 1. Using the itera-
PRPRVXDT +VRDIKNN tive method for computing SVD (Golub and Ka-

han, 1965), we can obtain different approxima-

tionsS&:) of ST consideringt singular values. Fi-
Lexicalized model Including lexical informa- nal approximations ofDRPs are then:P ) =
tion is the hardest part of the overall model, asrsi )
it makes vectors denser in information. Here MatricesP are estimated by pseudo-inverting
we propose an initial model that is basically asmatrices representing input vectors for sentences
the non-lexicalized mOdel, but includes a VeCtOI'S_ Given the different input representations for
representing the words in the unigrams. Thesentences, we can then estimate different DRPs:
equation representing sentences as unigrams is: prp; = TS;, DRP, = TS;, and so on. We

need to estimate the bdstn a separate parameter
Dlew( ) — g X ~ . .
18 D ¥ w; estimation set.

Vectorw; represents worz'd;i and is taken from the_ 4 Experiments

setV of nearly orthonormal random vectors. This

guarantees thab'e*(s) is not lossy. Given a pair We evaluated three issues for assessing DRP mod-
word-postag(w, p), it is possible to know if the els: the performance of DRPs in reproducing or-
sentence contains this pair, B”(s)x pKw ~ 1  acle distributed trees (Sec. 4.2); the quality of the
if (w, p) is in sentence and D! (s) x pRwa~0 topology of the vector spaces of distributed trees
otherwise. Other vectors for representing wordsinduced by DRPs (Sec. 4.3); and the computation
e.g., distributional vectors or those obtained agun time of DRPs (Sec. 4.4). Section 4.1 describes
look-up tables in deep learning architectures (Colthe experimental set-up.

lobert and Weston, 2008), do not guarantee this .
4.1 Experimental Set-up

possibility.
The general equation for the lexicalized versionData We derived the data sets from the Wall
of the sentence encoder follows: Street Journal (WSJ) portion of the English Penn

lon lon - - Treebank data set (Marcus et al., 1993), using
D (s) = DjZi(s) + Z P Mpiig a standard data split for training (sections 2-21
] ] i ) PT,.qin With 39,832 trees) and for testing (section
This model is only an |n|.t|al prop.osal in order 23 PTy with 2,416 trees). We used section 24
to take into account lexical information. PTy4 with 1,346 trees for parameter estimation.
3.3.2 Learning Transformers with Linear We produced the final data sets diftributed
Regression treeswith three different) values: A=0, A=0.2,
The transformet of the DRP (see Equation 1) 2nd A=0.4.  For eachA, we have two ver-
can be seen as a linear regressor: sions of the data sets: a non-lexicalized version
(no_lex), where syntactic trees are considered
? —Ps (5) without words, and a lexicalized versiotex),

) ) ) _where words are considered. Oracle tréeme
whereP |sgsque_\r§ matrix. This latter can be eStI’transformed into oracle distributed tre%susing
mated having training se(T«LS)«i)foracle Vectors  iq Distributed Tree EncodddT (see Figure 1).
and sentence input vectofs ;, s;) for sentences We experimented with two sizes of the distributed
s;. Interpreting these sets as matrices, we need t@ees spac&?: 4096 and 8192.
solve a linear set of equations, i.&:= PS. We have designed the data sets to determine

An approximate solution can be computed ushow DRPs behave with\ values relevant for
ing Principal Component Analysis and Partialsyntax-sensitive NLP tasks. Both tree kernels and
Least Square RegressforiThis method relies on  distributed tree kernels have the best performances
Tmplementation of this method is available within the in tasks such as queStion classification, seman-
R statistical package (Mevik and Wehrens, 2007). tic role labeling, or textual entailment recognition
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with \ val in the ran —0.4. dim  Model A=0 X=02 X=04
th A values in the range 0-0 DRP 0.6285 05697  0.542
System Comparison We compared the DRPs DRP, 08011 ~ 0.7311  0.631
. N : o DRP;s 0.8276 0.7552 0.6506
against theexisting wayof producing distributed 4096 DRP, 0.8171 0.744  0.6419
trees (based on the recent paper described in DRPs 0.8045 07342  0.631
(Zanzotto and Dell'Arciprete, 2012)): distributed gg%om g'gig 8-?2%’ 8-??2?
. . lex . . .
trees are obtained using the output of a sym- DRP; 08338 07605 0.6558
bolic parser (SP) that is then transformed into a 8192 DSP,,;.. | 0.6584  0.5924  0.4873
distributed tree using th®T with the appropri- DSPiex 08157 07815 0.7123

ate \. We refer to this chain as the Distributed o
Symbolic Parser pSP). The DSP is then the 1able 1 Averagesimilarity on PT; of the
chain DSP(s) = DT(SP(s)) (see Figure 1). DRPs_(wﬁh dlfferentj_') and the DSP on thaon-

As for the symbolic parser, we used Bikel's Ver_IeX|ca_I|zed Qata setwith (_Jllff(_erent)\s and with the
sion (Bikel, 2004) of Collins’ head-driven statisti- two dimensions of the distributed tree space (4096
cal parser (Collins, 2003). For a correct compar-a“d 8192).1 indicates significant dif_ference wrt.
ison, we used the Bikel's parser with oracle part-D9Pnotez (P << .005 computed with the Stu-
of-speech tags. We experimented with two ver-dents ttest)

sions: (1) a lexicalized methoBS P, i.e., the

. . . Model A=0 X=02 X=04
natural setting of the Collins/Bikel parser, and (2) DRP; | 0.7192 0.6406  0.0646
a fully non-lexicalized versio® S P, ;.. that ex- DSPe, | 0.9073  0.8564  0.6459

ploits only part-of-speech tags. We obtained this S
last version by removing words in input sentencesiable 2: Averageimilarity on P33 of the DRPs

and leaving only part-of-speech tags. We trained@nd theDS P, on thelexicalized data setwith
theseDSPS onPTyqin. differentAs on the distributed tree space with 4096

o _ dimensions
Parameter estimation DRPs have two basic pa-

rameters: (1) parametér of the pseudo-inverse, . il h based (i
that is, the number of considered eigenvectors (seté1e cosine similarity aF the sentence-based (i.e.,
Section 3.3.2) and (2) the maximum lengtbf the vector-based) granularity. Results report average

n-grams considered by the encodgy (see Sec- values.

tion 331) We performed the parameter estimaEstimated parameters We estimated parame-
tion on the datasets derived from sectiBif4 by  ters k and j by training the differentb RPs on
maximizing a pseudo f-measure. Section 4.2 rethe T, ... set and by maximizing thsimilarity
ports both the definition of the measure and theyf the DRPs on PTy4. The best pair of param-
results of the parameter estimation. eters isj=3 andk=3000. For completeness, we
report also the best values for the five different
j we experimented withk = 47 for j=1 (the lin-

The first issue to explore is wheth&lRPs are  garly independent vectors representing pos-tags),
actually good “distributed syntactic parsers”™. Wey — 1300 for j=2, & = 3000 for j=3, k = 4000

compareD RPs against the distributed symbolic for j=4, andk = 4000 for j=5. For comparison,

parsers by evaluating how well these “distributedsome resulting tables report results for the differ-
syntactic parsers” reproduce oracle distributecypt vajues of.

trees.
. Results Table 1 reports the results of the first set

Method A good DRP should produce dis- o gxneriments on theon-lexicalizeddata sets.
tributed trees that are similar to oraclt_a dlst_rlb_ute?dThe first block of rows (seven rows) reports te
trees. To capture this, we use the cosine S'm”a”%rage cosine similaritgf the different methods on
between the system and thf oracle vectors: the distributed tree spaces with 4096 dimensions.

t-o The second block (the last three rows) reports the
m performance on _the ;pgce_v_vith 8192 dimensions.
- Theaverage cosine similaritis computed on the
where ¢ is the system’s distributed tree and PTh3 set. Although we already selectgd3 as

is the oracle distributed tree. We compute thes¢he best parameterization (i.eDRP3), the first

4.2 Parsing Performance

cos(t,0) =
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Output  Model A=0 A=02 X=04
DRPs 0.9490 0.9465  0.9408
Nolex DSPpoie | 0.9033 0.9001  0.8932
DSPiey 0.9627 0.9610  0.9566
DRPs 0.9642 0.9599  0.0025
DSP, 0.9845 0.9817 0.9451

Lex

Oracle’s Tector Space DSP's Tector Space DRP's Tector Space

Table 3: Average Spearman’s Correlation: dim
4096 between the oracle’s vector space and th
systems’ vector spaces (100 trials on lists of 100
sentence pairs).

igure 3: Topology of the resulting spaces derived
with the three different methods: similarities be-
tween sentences

five rows of the first block report the results of the4.3 Kernel-based Performance
DRPs for five values of. This gives an idea of _ _ _ _
how the different DRPs behave. The last two rowsl his experiment investigates haR Ps preserve

of this block report the results of the two DSPs.  the topology of the oracle vector space. This cor-
relation is an important quality factor of a dis-

We can observe some important facts. Firstyipyted tree space. When using distributed tree
DRPs exploiting 2-grams, 3-grams, 4-grams, andyectors in learning classifiers, whethgr- o; in
5-grams of part-of-speech tags behave signifi- ~>

cantly better than the 1-grams for all the valuesthe oracle’s vector space is similar to - #; in

of \. Distributed representation parsers need in'Ehe DRPf vector spacg is more important than
puts that keep trace of sequences of pos-tags #fhethero; is similar to¢; (see Figure 3). Sen-
sentences. But these sequences tend to confulices that are close using the oracle syntactic in-
the model when too long. As expecteB,RP; terpretations should also be close using P vec-
behaves better than all the other DRPs. SecondOrs. The topology of the vector space is more rel-
DRP; behaves significantly better than the com-evant than the actual quality of the vectors. The
parable traditional parsing chaiRSP,, ., that €Xperiment on the parsing quality in the previous
uses only part-of-speech tags and no lexical inSection does not properly investigate this property,
formation. This happens for all the values of @S the performance of DRPs could be not sufficient
Third, DRP; behaves similarly taDSP,., for !0 preserve distances among sentences.

A=0. Both parsers use oracle pos tags to emit sen-

tence interpretations b2 S P, also exploits lex- Method We evaluate the coherence of the topol-
ical information thatD RP; does not access. For ogy of two distributed tree spaces by measuring
A=0.2 and\=0.4, the more informe®dSP,, be- the Spearman’s correlation between two lists of
haves significantly better thabRPs;. But DRP;  pairs of sentences;, s;), ranked according to the
still behaves significantly better than the compa-similarity between the two sentences. If the two
rable DSP,, ;... All these observations are valid lists of pairs are highly correlated, the topology
also for the results obtained for 8192 dimensions.of the two spaces is similar. The different meth-
o?ds and, thus, the different distributed tree spaces

Table 2 reports the results of the second set .
. . are compared against the oracle vector space (see
experiments on thiexicalizeddata sets performed _. N
Figure 3). Then, the first list always represents the

on a 4192-dimension space. The first row reportsOracle vector space and ranks pdis s, ) accord-
theaverage cosine similaritgf D RP5 trained on P PRYS 5

the lexicalized model and the second row reporténg t0 0;- 0;. The second list instead represents

the results ofDSP,,,. In this case DRPs is not the space obtained with iDiP oLa ERP. Thus, it
behaving well with respect td SP,.,.. The addi- is respectively ranked with; - £; or ¢; - ;. In this
tional problemDRP; has is that it has to repro- way, we can comparatively evaluate the quality of
duce input words in the output. This greatly com-the distributed tree vectors of ol¥ R Ps with re-
plicates the work of the distributed representatiorspect to the other methods. We report average and
parser. But, as we report in the next section, thistandard deviation of the Spearman’s correlation
preliminary result may be still satisfactory far0  on 100 runs over lists of 1000 pairs. We used the

andA=0.2. testing setPTy3 for extracting vectors.

46



10000 09 7

038
0,7

z06

= ;
E 0,5

gle,d 1
‘— DRP ‘ £

0w +—f———__ sp 803

| ==——===DSP.

-== DSP 02

{eeees DSProtes
T — 7 01 | e D R Py

0 10 20 30 40 L

sentencelength (#words)

0 10 20 30 40
sentence length (#words)

Figure 4: Running time with respect to the sen-

tence length (dimension = 4092) Figure 5: Average similarity witth\=0.4 with re-

spect to the sentence length (dimension = 4092)
Results Table 3 reports results both on the non- _ )
lexicalized and on the lexicalized data set. FoPRPS can runcompletely on Graphical Processing
the non-lexicalized data set we report three methNits (GPUs), as dealing only with matrix prod-
ods (DRPs, DS Py jen; andDSPy.,) and for the ucts, fast-Fourier transforms, and randor_n genera-
lexicalized dataset we report two method&H Ps tors, we can better appreciate the potentials of the
and DSP,,). Columns represent different values Prorosed methods.
of A Experiments are carried Ol_Jt on the 4096-5 Conclusions and Future Work
dimension space. For the non-lexicalized data set,
distributed representation parsers behave signifiWe presented Distributed Representation Parsers
cantly better tharDSP,,,, ;.. for all the values of (DRP) as a novel path to use syntactic structures
A. The upper-bound oD S P, is not so far. For in feature spaces. We have shown that these
the harder lexicalized data set, the difference be“parsers” can be learnt using training data and that
tweenDRP; and DS P, is smaller than the one DRPs are competitive with respect to traditional
based on the parsing performance. Thus, we hawaethods of using syntax in feature spaces.
more evidence of the fact that we are in a good This novel path to use syntactic structures in
track. DR Ps can substitute thBSPin generating feature spaces opens interesting and unexplored
vector spaces of distributed trees that adequatelgossibilities. First, DRPs tackle the issue of com-

approximate the space defined by an oracle. putational efficiency of structural kernel methods
_ _ (Rieck et al., 2010; Shin et al., 2011) from another
4.4 Running Time perspective. DRPs could reduce structural kernel

In this last experiment, we compared the runningcomputations to extremely efficient dot products.
time of the DRP with respect to theDSP. The Second, the tight integration of parsing and feature
analysis has been done on a dual-core processwector generation lowers the computational cost of
and both systems are implemented in the samproducing distributed representations from trees,
programming language, i.e. Java. Figure 4 plotss circular convolution is not applied on-line.
the running time of theDRP, the SP, and the Finally, DRPs can contribute to treat syntax in
full DSP = DT o SP. The x-axis represents the deep learning models in a uniform way. Deep
sentence length in words and the y-axis representsearning models (Bengio, 2009) are completely
the running time in milliseconds. The distance be-based on distributed representations. But when
tween SP and DSP shrinks as the plot is in a logapplied to natural language processing tasks (e.g.,
arithmic scale. Figure 5 reports the average cofCollobert et al., 2011; Socher et al., 2011)), syn-
sine similarity of DRP, DS P, andDSP,, .., tactic structures are not represented in the neural
with respect to the sentence length, on the nonnetworks in a distributed way. Syntactic informa-
lexicalized data set with=0.4. tion is generally used by exploiting symbolic parse
We observe that DRP becomes extremely contrees, and this information positively impacts per-
venient for sentences larger than 10 words (seformances on final applications, e.g., in paraphrase
Fig. 4) and the average cosine similarity differencedetection (Socher et al., 2011) and in semantic role
between the different methods is nearly constankabeling (Collobert et al., 2011). Building on the
for the different sentence lengths (see Fig. 5). Thisesults presented here, an interesting line of re-
test already makes DRPs very appealing methodsearch is then the integration of distributed repre-
for real time applications. But, if we consider that sentation parsers and deep learning models.
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