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Abstract

Our field has seen significant improve-
ments in the quality of machine translation
systems over the past several years. The
single biggest factor in this improvement
has been the accumulation of ever larger
stores of data. However, we now find our-
selves the victims of our own success, in
that it has become increasingly difficult to
train on such large sets of data, due to
limitations in memory, processing power,
and ultimately, speed (i.e., data to mod-
els takes an inordinate amount of time).
Some teams have dealt with this by focus-
ing on data cleaning to arrive at smaller
data sets (Denkowski et al., 2012a; Rarrick
et al., 2011), “domain adaptation” to ar-
rive at data more suited to the task at hand
(Moore and Lewis, 2010; Axelrod et al.,
2011), or by specifically focusing on data
reduction by keeping only as much data as
is needed for building models e.g., (Eck
et al., 2005). This paper focuses on tech-
niques related to the latter efforts. We have
developed a very simple n-gram counting
method that reduces the size of data sets
dramatically, as much as 90%, and is ap-
plicable independent of specific dev and
test data. At the same time it reduces
model sizes, improves training times, and,
because it attempts to preserve contexts for
all n-grams in a corpus, the cost in quality
is minimal (as measured by BLEU ). Fur-
ther, unlike other methods created specif-
ically for data reduction that have similar
effects on the data, our method scales to
very large data, up to tens to hundreds of
millions of parallel sentences.
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1 Introduction

The push to build higher and higher quality Sta-
tistical Machine Translation systems has led the
efforts to collect more and more data. The
English-French (nearly) Gigaword Parallel Corpus
(Callison-Burch et al., 2009), which we will refer
to henceforth as EnFrGW, is the result of one such
effort. The EnFrGW is a publicly available cor-
pus scraped from Canadian, European and inter-
national Web sites, consisting of over 22.5M par-
allel English-French sentences. This corpus has
been used regularly in the WMT competition since
2009.

As the size of data increases, BLEU scores in-
crease, but the increase in BLEU is not linear in re-
lation to data size. The relationship between data
size and BLEU flattens fairly quickly, as demon-
strated in Figure 1. Here we see that BLEU scores
increase rapidly with small amounts of data, but
they taper off and flatten at much larger amounts.
Clearly, as we add more data, the value of the new
data diminishes with each increase, until very little
value is achieved through the addition of each new
sentence. However, given that this figure repre-
sents samples from EnFrGW, can we be more effi-
cient in the samples we take? Can we achieve near
equivalent BLEU scores on much smaller amounts
of data drawn from the same source, most espe-
cially better than what we can achieve through ran-
dom sampling?

The focus of this work is three-fold. First, we
seek to devise a method to reduce the size of train-
ing data, which can be run independently of par-
ticular dev and test data, so as to maintain the in-
dependence of the data, since we are not interested
here in domain adaptation or selective tuning. Sec-
ond, we desire an algorithm that is (mostly) qual-
ity preserving, as measured by BLEU, OOV rates,
and human eval, ultimately resulting in decreased
training times and reduced model sizes. Reduced

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 281-291,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



27.00

26.00

25.00

2400

23.00 ———

22.00 5

21.00

20.00

L T~ T T Ve T T T T - B = = = = B

Figure 1: BLEU score increase as more data is
added (in millions of words), random samples
from EnFrGW

training times provide for greater iterative capac-
ity, since we can make more rapid algorithmic
improvements and do more experimentation on
smaller data than we can on much larger data.
Since we operate in a production environment, de-
ploying smaller models is also desirable. Third,
we require a method that scales to very large data.
We show in the sections below the application of
an algorithm at various settings to the 22.5M sen-
tence EnFrGW corpus. Although large, 22.5M
sentences does not represent the full total of the
English-French data on the Web. We require an
algorithm that can apply to even larger samples of
data, on the order of tens to hundreds of millions
of sentences.

2 Related Work

In statistical machine translation, selection, prepa-
ration and processing of parallel training data is
often done to serve one of the following scenarios:

e Low Resource Languages: In languages with
low parallel data availability, a subset of a
monolingual corpus is selected for human
translation ((Ananthakrishnan et al., 2010),
(Eck et al., 2005) and (Haffari et al., 2009)).

e Mobile device deployment: For many lan-
guages, translation model sizes built on all
available parallel data are too large to be
hosted on mobile devices. In addition to
translation model pruning, a common solu-
tion is selecting a subset of the data to be
trained on ((Ananthakrishnan et al., 2010)
and (Yasuda et al., 2008)).

e Quick turn-around time during development:

282

A common motivation for training on a sub-
set of a parallel corpus is to reduce training
time during the development cycle of a sta-
tistical machine translation system ((Lin and
Bilmes, 2011) and (Chao and Li, 2011a)).

e Noise reduction: Simple noise reduction
techniques like sentence length and alpha nu-
meric ratio are often used in data preparation.
However, more sophisticated techniques have
been developed to filter out noise from par-
allel data ((Denkowski et al., 2012a) and
(Taghipour et al., 2010)).

e Domain Adaptation: Recently there has been
significant interest in domain adaptation for
statistical machine translation. One of the ap-
proaches to domain adaptation is selecting a
subset of a data that is closer to the target do-
main ((Moore and Lewis, 2010), (Axelrod et
al., 2011)).

e Improve translation quality: An interesting
area of research is selecting a subset of the
training data that is more suitable for sta-
tistical machine translation learning ((Okita,
2009)).

In comparison, the goal of this work is to effi-
ciently reduce very large parallel data sets (in ex-
cess of tens of billions of tokens) to a desired size
in areasonable amount of time. In the related work
referenced above two primary methods have been
used.

1. Maximizing n-gram coverage with minimal
data.

2. Filtering out noisy data based on sentence-
pair based features.

One of the earliest and most cited works using
the first method is (Eck et al., 2005). In this work,
a greedy algorithm is developed to select a subset
of the entire corpus that covers most n-grams with
minimum number of words. In a later work by the
same author, the algorithm was modified to give
higher weight to more frequent words. Although
this is a greedy algorithm and does not provide the
optimum solution, its complexity is quadratic in
the number of sentences. Hence it is not practical
to run this algorithm over very large data sets.

Recently (Ananthakrishnan et al., 2010) intro-
duced a new algorithm that is an improvement



over (Eck et al., 2005). In this work discriminative
training is used to train a maximum entropy pair-
wise comparator with n-gram based features. The
pair-wise comparator is used to select the highest
scoring sentence followed by discounting features
used for the sentence, which are drawn from the
global pool of features. The complexity of this al-
gorithm after training the pairwise comparator is
O (N x K x log(F)) where N is the number of
sentences in the entire corpus, K is the number of
sentences to be selected and F is the size of the fea-
ture space. Although this method works well for
a constant K, its complexity is quadratic when K
is a fraction of N. This method is reported to im-
prove the BLEU score close to 1% over the work
done by (Eck et al., 2005).

(Denkowski et al., 2012a) have developed rela-
tively scalable algorithms that fit in the second cat-
egory above. This algorithm automatically filters
out noisy data primarily based on the following
feature functions: normalized source and target
language model scores, word alignment scores and
fraction of aligned words. Sentences that don’t
score above a certain threshold (mean minus one
or two standard deviations) for all their features
are filtered out. In a similar work, (Taghipour
et al., 2010) use an approach where they incor-
porate similar features based on translation table
entries, word alignment models, source and target
language models and length to build a binary clas-
sifier that filters out noisy data.

Our work incorporates both methods listed
above in a scalable fashion where it selects a sub-
set of the data that is less noisy with a reasonable
n-gram representation of the superset parallel cor-
pus. To put the scalability of our work in perspec-
tive we compiled Table 1, which shows the max-
imum size of the data sets reported in each of the
relevant papers on the topic. Despite the public
availability of parallel corpora in excess of tens
of millions of sentence pairs, none of the related
works, using the first method above, exceed cou-
ple of millions of sentences pairs. This demon-
strates the importance of developing a scalable al-
gorithm when addressing the data selection prob-
lem.

The careful reader may observe that an alter-
nate strategy for reducing model sizes (e.g., use-
ful for the Mobile scenario noted above, but also
in any scenario where space concerns are an is-
sue), would be to reduce phrase table size rather
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Reference Total Sentences
(Ananthakrishnan et al., 2010) 253K
(Eck et al., 2005) 123K
(Haffari et al., 2009) 1.8M!
(Lin and Bilmes, 2011) 1.2M?
(Chao and Li, 2011b) 2.3M

Table 1: Data Sizes for Related Systems

than reduce training data size. A good example
of work in this space is shown in (Johnson et al.,
2007), who describe a method for phrase table re-
duction, sometimes substantial (>90%), with no
impact on the resulting BLEU scores. The prin-
cipal of our work versus theirs is where the data
reductions occur: before or after training. The pri-
mary benefit of manipulating the training data di-
rectly is the impact on training performance. Fur-
ther, given the increasing sizes of training data,
it has become more difficult and more time con-
suming to train on large data, and in the case of
very large data (say tens to hundreds of millions
of sentence pairs), it may not even be possible to
train models at all. Reduced training data sizes in-
creases iterative capacity, and is possible in cases
where phrase table reduction may not be (i.e., with
very big data).

3 Vocabulary Saturation Filter (VSF)

The effects of more data on improving BLEU
scores is clearly discernible from Figure 1: as
more data is added, BLEU scores increase. How-
ever, the relationship between quantity of data and
BLEU is not linear, such that the effects of more
data diminishes with each increase in data size, ef-
fectively approaching some asymptote. One might
say that the vocabulary of the phrase mappings de-
rived from model training “saturate” as data size
increases, since less and less novel information
can be derived from each succeeding sentence of
data added to training. It is this observation that
led us to develop the Vocabulary Saturation Filter
(VSF).

VSF makes the following very simple assump-
tion: for any given vocabulary item v there is some
point where the contexts for v—that is, the n-gram

!Sentence count was not reported. We estimated it based
on 18M tokens.

This is a very interesting work, but is only done for se-
lecting speech data. The total number of sentences is not re-
ported. We given a high-end estimate based on 128K selected
tokens.



sequences that contain v—approach some level
of saturation, such that each succeeding sentence
containing v contributes few or no additional con-
texts, and thus has little impact on the frequency
distributions over v. In other words, at a point
where the diversity of contexts for v approach a
maximum, there is little value in adding additional
contexts containing v, e.g., to translation models.

The optimal algorithm would then, for each v
€ V, identify the number of unique contexts that
contain v up to some threshold and discard all oth-
ers. An exhaustive algorithm which sets thresh-
olds for all n-gram contexts containing v, however,
would take a large amount of time to run (mini-
mally quadratic), and may also overrun memory
limitations on large data sets.

For VSF, we made the following simplifying as-
sumption: we set an arbitrary count threshold ¢ for
all vocabulary items. For any given v, when we
reach ¢, we no longer need to keep additional sen-
tences containing v. However, since each instance
of v does not exist in isolation, but is rather con-
tained within sentences that also contain other vo-
cabulary items v, which, in turn, also need to be
counted and thresholded, we simplified VSF even
further with the following heuristic: for any given
sentence s, if all v € V within s have not reached
t, then the sentence is kept. This has the direct
consequence that many vocabulary items will have
frequencies above ¢ in the output corpus.

The implementation of VSF is described in Al-
gorithm 1 below.

VSF clearly makes a number of simplifying as-
sumptions, many of which one might argue would
reduce the value of the resulting data. Although
easy to implement, it may not achieve the most
optimal results. Assuming that VSF might be de-
fective, we then looked into other algorithms at-
tempting to achieve the same or similar results,
such as those described in Section 2, and explored
in-depth the algorithms described in (Eck et al.,
2005).

4 An Alternative: (Eck et al., 2005)

In our pursuit of better and generic data reduction
algorithms, we did a number of experiments using
the algorithms described in (Eck et al., 2005). In
the n-gram based method proposed by this work
the weight of each function is calculated using
Equation 1, where j is the n-gram length. In
each iteration of the algorithm, the weight of each
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Input: ParallelCorpus, N, L
Output: SelectedCorpus
foreach sp € ParallelCorpus do
S < EnumNgrams (sp.sre, L) ;
T + EnumNgrams (sp.tgt, L) ;
selected < false;
foreach (s,t) € (S,T) do
if SrcCnt [s]<N v TgtCnt [t]<N
then
‘ selected + true;
end
end
if selected then
SelectedCorpus.2dd (sp) ;
foreach (s,t) € (S,7T) do
SrcCnt [s]++;
TgtCnt [t]++;
end
end

end
Algorithm 1: Pseudocode for implementing
VSF. L: n-gram length, N: n-gram threshold.

sentence is calculated and the sentence with the
highest weight is selected. Once a sentence is se-
lected, the n-grams in the sentence are marked as
seen and have a zero weight when they appear in
subsequent sentences. Therefore, the weights of
all remaining sentences have to be recalculated be-
fore the next sentence can be selected. We refer to
this algorithm henceforth as the Eck algorithm.

E Freq(ngram)
unseen
ngrams

=1

(1

W; (sentence) =

|sentence]

To compare VSF against the Eck algorithm
we selected the English-Lithuanian parallel corpus
from JRC-ACQUIS (Steinberger et al., 2006). We
selected the corpus for the following reasons:

e VSF performance on this particular data set
was at its lowest compared to a number of
other data sets, so there was room for im-
provement by a potentially better algorithm.

With almost 50 million tokens combined (En-
glish and Lithuanian) we were able to opti-
mize the Eck algorithm and run it on this data
set in a reasonable amount of time. The ex-
periments run by the original paper in 2005
were run on only 800,000 tokens.



Using the Eck algorithm with n-gram length set
to one (j < 1in Equation 1) only 10% (5,020,194
tokens total) of the data is sorted, since all n-grams
of size one have been observed by that point and
the weight function for the remaining sentences
returns zero. In other words, since there are no
unseen unigrams after 10% of the data has been
sorted, in Equation 1, the numerator becomes zero
there after and therefore the remaining 90% of
sentence pairs are not sorted. This must be taken
into consideration when examining the compari-
son between unigram VSF and the Eck algorithm
with n-gram length set to one in Figure 2. VSF
with its lowest setting, that is threshold =1, se-
lects 20% of the data, so this chart may not be a
fair comparison between the two algorithms.

WVSF[1,5,10,20)  ====Eck(10%,20%,40%,80%)

0.1160
0.1140

0.1120
2 p1100

&
% 0.1080
Z 0.1060

2 0.1040

0.1020
£ 0.1000
0.0980

0.0960

0.0940

o 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000

Total Number Of Tokens

Figure 2: Unigram Eck vs. Unigram VSF

In an attempt to do a fairer comparison, we also
tried n-grams of length two in the Eck algorithm,
where 50% of the data can be sorted (since all uni-
grams and bigrams are observed by that point). As
seen in Figure 3, the BLEU scores for the Eck and
VSF systems built on the similar sized data score
very closely on the WMT 2009 test set.’

Further exploring options using Eck, we devel-
oped the following two extensions to the Eck algo-
rithm, none of which resulted in a significant gain
in BLEU score over VSF with n-gram lengths set
up to three.

e Incorporating target sentence n-grams in ad-
dition to source side sentence n-grams.

e Dividing the weight of an n-gram (its fre-

3The careful reader may note that there is no official
WMTOO9 test set for Lithuanian, since Lithuanian is not (yet)
a language used in the WMT competition. The test set men-
tioned here was created from a 1,000 sentence sample from
the English-side of the WMTOQO test sets, which we then man-
ually translated into Lithuanian.
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quency) by a constant number each time a
sentence that contains the n-gram is selected,
as opposed to setting the weight of an n-gram
to zero after it has been seen for the first
time.*

In relatively small data sets there is not a signif-
icant difference between the two algorithms. The
Eck algorithm does not scale to larger data sets
and higher n-grams. Since a principal focus of our
work is on scaling to very large data sets, and since
Eck could not scale to even moderately sized data
sets, we decided to continue our focus on VSF and
improvements to that algorithm.

ECK 40%

637,764

Figure 3: Bigram Eck vs. Unigram VSF

VSF1
ECK 30%
ECK 20%

11,869,482 17,435,236 22,113,500

WMT 2009 BLEU Score

=)
i

22

Total Token Count

5 Data Order

Unlike the Eck algorithm, VSF is sensitive to the
order of the input data due to the nature of the al-
gorithm. Depending on the order of sentences in
the input parallel corpus, VSF could select differ-
ent subsets of the parallel corpus that would even-
tually (after training and test) result in different
BLEU scores. To address this concern we use
a feature function inspired by (Denkowski et al.,
2012a) which is a normalized combined alignment
score. This feature score is obtained by geomet-
ric averaging of the normalized forward and back-
ward alignment scores which in turn are calculated
using the process described in (Denkowski et al.,
2012a). To keep the algorithm as scalable as pos-
sible we use radix sort. This ordering of the data
ensures sentences with high normalized alignment
scores appear first and sentences with low normal-
ized alignment appear last. As a result, for each
n-gram, VSF will choose the top-N highest scor-
ing sentence pairs that contain that n-gram.

“Further details of the modifications to the Eck algorithm
are not discussed here as they did not yield improvements
over the baseline algorithm and the focus of our work pre-
sented here was shifted to improvements over VSF.



5.1 Data Ordering Complexity

Ordering the data based on normalized combined
alignment score requires two steps. First, the
normalized combined alignment score is com-
puted for each sentence pair using an exist-
ing HMM alignment model. Next, sentence
pairs are sorted based on the calculated score.
The computational complexity of aligning a sin-
gle sentence pair is O (J +1 2) where J is the
number of words in the source sentence and [
is the number of words in the target sentence
(Gao and Vogel, 2008). Therefore the com-
plexity of calculating the combined alignment
score would be O (N x (J2+I1+1I?+J)) or
O (N x max([, J)?) after simplification. Since
radix sort is used for sorting the data, the data can
be sorted in O(d x N) where d is the number of
significant digits used for sorting. Since d is kept
constant®, the overall computational complexity
for data ordering is O (N + N x max(I, J)?).

6 Experiments

6.1 The Machine Translation and Training
Infrastructure

We used a custom-built tree-to-string (T2S) sys-
tem for training the models for all experiments.
The T2S system that we developed uses tech-
nology described in (Quirk et al., 2005), and re-
quires a source-side dependency parser, which we
have developed for English.® We trained a 5-
gram French LM over the entire EnFrGW, which
we used in all systems. We used Minimum Error
Rate Training (MERT) (Och, 2003) for tuning the
lambda values for all systems, tuned using the of-
ficial WMT2010 dev data.

6.2 Test and Training Data

In all experiments, we used the EnFrGW cor-
pus, or subsets thereof. 7 We used three test sets

3In experiments described in Section 6 five significant
digits were used for radix sort.

SFurther details about the decoders is beyond the scope of
this paper. The reader is encouraged to refer to the sources
provided for additional information.

"Because of some data cleaning filters we applied to the
data, the actual full sized corpus we used consisted of slightly
less data than that used in the WMT competitions. Every
team has its own set of favorite data cleaning heuristics, and
ours is no different. The filters applied to this data are focused
mostly on noise reduction, and consist of a set of filters re-
lated to eliminating content that contains badly encoded char-
acters, removing content that is too long (since there is little
value in training on very long sentences), removing content
where the ratio between numeric versus alphabetic characters
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t= Random VSF | Ordered VSF
1 1.83 M 1.83 M 1.68 M
2 2.53 M 2.53 M 2.34 M
5 3.62M 3.62M 335 M
10 4.62M 4.62M 429 M
20 5.83 M 5.83 M 5.44 M
40 726 M 726 M 6.83 M
60 821 M 821 M 778 M
100 9.53M 9.53M 9.13M
150 | 10.67M | 10.67M 10.33 M
200 | 11.53M | 11.53 M 11.23 M
250 | 1222M | 1222M 11.97M
All 225M

Table 2: English-side Sentence Counts (in mil-
lions) for different thresholds for VSF, VSF after
ordering the data based on normalized combined
alignment score and random baselines.

in all experiments, as well. Two consisted of
the WMT 2009 and 2010 test sets, used in the
WMT competitions in the respective years. The
third consisted of 5,000 parallel English/French
sentences sampled from logs of actual traffic re-
ceived by our production service, Bing Transla-
tor (http://bing.com/translator), which were then
manually translated. The first two test sets are
publicly available, but are somewhat news fo-
cused. The third, which we will call ReqLog, con-
sists of a mix of content and sources, so can be
considered a truly “general” test set.

To discern the effects of VSF at different de-
grees of “saturation”, we tried VSF with different
threshold values ¢, ranging from 1 to 250. For each
t value we actually ran VSF twice. In the first case,
we did no explicit sorting of the data. In the sec-
ond case, we ranked the data using the method de-
scribed in Section 5.

Finally, we created random baselines for each
t, where each random baseline is paired with the
relevant VSF run, controlled for the number of
sentences (since ¢ has no relevance for random
samples). The different ¢ values and the resulting
training data sizes (sentence and word counts) are
shown in Tables 2 and 3.

Since our interest in this study is scaling paral-
lel data, for all trainings we used the same LM,
which was built over all training data (the French
side of the full EnFrGW). Because monolingual
training scales much more readily than parallel,

is excessively large, deleting content where the script of the
content is mostly not in latin1 (relevant for French), and some
additional filters described in (Denkowski et al., 2012b). If
the reader wishes additional material on data filtration, please
see (Denkowski et al., 2012b) and (Lewis and Quirk, 2013).



t= Random VSF | Ordered VSF
1 46.1 M 64.52 M 65.74 M
2 63.99 M 8741 M 88.12 M
5 91.55M 121.3 M 120.86 M
10 116.83 M | 151.53 M 149.95 M
20 14731 M | 186.99 M 184.14 M
40 18346 M | 228.14 M 22429 M
60 207.42M | 254.89 M 250.68 M
100 | 240.88 M | 291.45M 287.02 M
150 | 269.77M 322.5M 318.33 M
200 2914 M | 34537TM 341.69 M
250 | 308.83 M | 363.44 M 360.32 M
All | 583.97 M

Table 3: English-side Word Counts for different
thresholds for VSF, VSF after ordering the data
based on normalized combined alignment score
and random baselines.

this seemed reasonable. Further, using one LM
controls one parameter that would otherwise fluc-
tuate across trainings. The result is a much more
focused view on parallel training diffs.

6.3 Results

We trained models over each set of data. In ad-
dition to calculating BLEU scores for each result-
ing set of models in (Table 5), we also compared
OOV rates (Table 6) and performance differences
(Table 4). The former is another window into the
“quality” of the resulting models, in that it de-
scribes vocabulary coverage (in other words, how
much vocabulary is recovered from the full data).
The latter gives some indication regarding the time
savings after running VSF at different thresholds.

On the WMTO09 data set, both sets of VSF
models outperformed the relevant random base-
lines. On the WMT10 and Reqlog test sets, the
pre-sorted VSF outperformed all random base-
lines, with the unsorted VSF outperforming most
random baselines, except at t=60 and t=200 for
WMT10. For the ReqLog, unsorted VSF drops be-
low random starting at t=200. Clearly, the t=200
results show that there is less value in VSF as we
approach the total data size.

The most instructive baseline, however, is the
one built over all training data. It is quite obvi-
ous that at low threshold values, the sampled data
is not a close approximation of the full data: not
enough vocabulary and contextual information is
preserved for the data to be taken as a proxy for
the full data. However, with ¢ values around 20-
60 we recover enough BLEU and OOVs to make
the datasets reasonable proxies. Further, because
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t= Random | VSF | Ordered VSF
1 1:07 | 2:17 1:56
2 1:33 | 2:55 2:39
5 2:15 | 4:05 3:47
10 2:43 | 4:49 4:50
20 3:23 | 5:25 5:14
40 4:12 | 6:16 5:56
60 4:45 | 6:41 7:15
100 5:31 | 7:32 7:55
150 6:07 | 8:20 8:18
200 6:36 | 8:31 8:52
250 7:30 | 9:19 9:11
All 13:12

Table 4: Word alignment times (hh:mm) for dif-
ferent thresholds for VSF, VSF after model score
ordering, and a random baseline

we see a relative reduction in data sizes of 32-
44%, model size reductions of 27-39%, and per-
formance improvements of 41-50% at these ¢ val-
ues further argues for the value of VSF at these set-
tings. Even at t=250, we have training data that is
54% of the full data size, yet fully recovers BLEU.

7 Discussion

VSF is a simple but effective algorithm for reduc-
ing the size of parallel training data, and does so
independently of particular dev or test data. It per-
forms as well as related algorithms, notably (Eck
et al., 2005), but more importantly, it is able to
scale to much larger data sets than other algo-
rithms. In this paper, we showed VSF applied
to the EnFrGW corpus. It should be noted, how-
ever, that we have also been testing VSF on much
larger sets of English-French data. Two notable
tests are one applied to 65.2M English-French sen-
tence pairs and another applied to one consisting
of 162M. In the former case, we were able to re-
duce the corpus size from 65.2M sentences/1.28B
words® to 26.2M sentences/S68M words. The
BLEU score on this test was stable on the three
test sets, as shown in Table 7. When applied to the
162M sentence/2.1B word data set, we were able
to reduce the data size to 40.5M sentences/674M
words. In this case, sorting the data using model
scores produced the most desirable results, actu-
ally increasing BLEU by 0.90 on WMTO09, but,
unfortunately, showing a 0.40 drop on WMT10.
The fact that VSF runs in one pass is both an
asset and a liability. It is an asset since the algo-
rithm is able to operate linearly with respect to the
size the data. It is a liability since the algorithm is

8Word counts based on the English-side, unwordbroken.



WMT09 WMTI10 ReqLog

t= Random VSF | S+VSF || Random VSF | S+VSF || Random VSF | S+VSF
1 23.76 23.83 23.84 25.69 25.78 25.68 26.34 26.63 26.67
2 23.91 24.04 24.07 25.76 26.21 26.14 26.54 26.99 26.94
5 24.05 24.29 24.40 26.10 26.40 26.32 26.79 27.22 27.12
10 24.15 24.37 24.45 26.21 26.63 26.32 26.98 27.37 27.62
20 24.20 24.40 24.55 26.30 26.46 26.56 27.22 27.38 27.44
40 24.37 24.43 24.65 26.40 26.55 26.53 27.30 27.38 27.62
60 24.32 24.43 24.64 26.56 26.56 26.61 27.38 27.50 27.64
100 24.37 24.49 24.71 26.46 26.75 26.70 27.37 27.52 27.75
150 24.37 24.61 24.71 26.67 26.67 26.70 27.48 27.62 27.75
200 24.48 24.63 24.69 26.56 26.65 26.78 27.57 27.47 27.72
250 24.41 24.57 24.85 26.62 26.74 26.68 27.63 27.45 27.76
All 24.37 26.54 27.63

Table 5: BLEU Score results for VSF, S+VSF (Sorted VSF), and Random Baseline at different thresholds

[

WMT09 WMTI10 ReqLog

t= Random VSF | S+VSF || Random VSF | S+VSF || Random VSF | S+VSF
1 630 424 450 609 420 445 1299 973 1000
2 588 374 395 559 385 393 1183 906 919
5 520 343 347 492 350 356 1111 856 853
10 494 336 335 458 344 344 1092 837 848
20 453 335 335 432 339 341 1016 831 834
40 423 330 331 403 336 337 986 828 833
60 419 329 330 407 333 336 964 831 832
100 389 330 329 391 333 335 950 830 830
150 397 330 330 384 332 332 930 828 828
200 381 328 330 371 331 332 912 827 826
250 356 329 328 370 333 331 884 823 823
All 325 331 822

Table 6: OOV rates for VSF, S+VSF (Sorted VSF), and Random Baseline at different thresholds ¢.

Smoke Test Set WMTO9 Test Set WMT10 Test Set

1 2 5 10 20 40 60 100 150 200 250 1 2 5 10 20 40 60 100 150 200 250 1 2 5 10 20 40 60 100 150 200 250

Random VSF Sorted VSF Smoke Random WSF

Figure 4: Comparative BLEU scores for two VSF implementations, against a randomly sampled baseline.

Smoke Test Set WMTO9 Test Set WMT10 Test Set

Random VSF Random VSF

Figure 5: Comparative OOV rates for two VSF implementations, against a randomly sampled baseline.
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ReqLog | WMT(09 | WMT10
65.2 snts 32.90 26.77 29.05
VSF 26.2M snts 33.34 26.75 29.07

Table 7: VSF applied to a 65.2M sentence baseline
system.

sensitive to the order of the data. The latter leads
to issues of reproducibility: with poorly ordered
data, one could easily arrive at a much less than
optimal set of data. However, by adding an addi-
tional pass to build model scores, and then ranking
the data by these scores, we address the serious is-
sue of reproducibility. Further, the ranking tends
to arrive at a better selection of data.

In an attempt to better understand the behavior
of VSF and how VSF changes the n-gram distribu-
tions of vocabulary items in a sample as compared
to the full corpus, we created logs-scale scatter
plots, as seen in Figure 6. In these plots, uni-
gram frequencies of unfiltered data (i.e., the full
corpus, EnFrGW) are on the vertical axis, and un-
igram frequencies of the VSF filtered data are on
the horizontal axis. The three plots show three dif-
ferent settings for ¢. There following observations
can be made about these plots:

1. On the horizontal axis before we reach
loga(t), all data points fall on the x = y line.

2. As the threshold increases the scatter plot
gets closer to the z = y line.

3. VSF has the highest impact on the “medium”
frequency unigrams, that is, those with a fre-
quency higher than the threshold.

The third point speaks the most to the ef-
fects that VSF has on data: Very low frequency
items, specifically those with frequencies below
the threshold ¢, are unaffected by the algorithm,
since we guarantee including all contexts in which
they occur. Low frequency items are at the lower
left of the plots, and their frequencies follow the
x = y line (point 1 above). Medium frequency
items, however, specifically those with frequen-
cies immediately above 7, are the most affected
by the algorithm. The “bulge” in the plots shows
where these medium frequency items begin, and
one can see plainly that their distributions are per-
turbed. The “bulge” dissipates as frequencies in-
crease, until the effects diminish as we approach
much higher frequencies. The latter is a conse-
quence of a simplifying heuristic applied in VSF
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(as described in Section 3): ¢ is not a hard ceil-
ing, but rather a soft one. Vocabulary items that
occur very frequently in a corpus will be counted
many more times than #; for very high frequency
items, their sampled distributions may approach
those observed in the full corpus, and converge on
the z = y line. The authors suspect that the BLEU
loss that results from the application of VSF is the
result of the perturbed distributions for medium
frequency items. Adjusting to higher ¢ values de-
creases the degree of the perturbation, as noted in
the second point, which likewise recovers some of
the BLEU loss observed in lower settings.

8 Future Work

There are several future directions we see with
work on VSF. Because one threshold ¢ for all vo-
cabulary items may be too coarse a setting, we first
plan to explore setting ¢ based on frequency, es-
pecially for vocabulary in the most affected mid-
range (at and above t). If we set ¢ based on uni-
grams falling into frequency buckets, rather than
one setting for all unigrams, we may arrive ear-
lier at a more distributionally balanced corpus, one
that may better match the full corpus. That said,
additional passes over the data come at additional
cost.

Second, we plan to explore applying the VSF al-
gorithm to higher order n-grams (all experiments
thus far have been on unigrams). Preliminary
experiments on bigram VSF, however, show that
with even the lowest setting (t=1), we already pre-
serve well over 50% of the data.

In this work we only experimented with sorting
the data based on the normalized combined align-
ment score inspired by (Eck et al., 2005). A third
direction for future work would be to consider or-
dering the data based on other feature functions
presented in Eck, e.g., source and target language
model, alignment ratio, as well as and feature
functions introduced in (Taghipour et al., 2010),
or a combination of all of these feature functions.

In the fourth case, we plan to do more sophis-
ticated statistical analysis of the effects of VSF
on n-gram distributions and phrase-table entropy.
We also plan to explore the interactions between
VSF and data “diversity”. For instance, VSF may
have a greater positive impact on more narrowly
focused domains than on those that are more gen-
erally focused.
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Figure 6: logs-scale Unigram Frequency scatter plot before VSF versus after VSF
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