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Abstract 

The goal of the Genic Regulation Network task 
(GRN) is to extract a regulation network that 
links and integrates a variety of molecular 
interactions between genes and proteins of the 
well-studied model bacterium Bacillus subtilis. It 
is an extension of the BI task of BioNLP-ST’11. 
The corpus is composed of sentences selected 
from publicly available PubMed scientific 
abstracts. The paper details the corpus 
specifications, the evaluation metrics, and it 
summarizes and discusses the participant results. 

1 Introduction  

The Genic Regulation Network (GRN) task 
consists of (1) extracting information on 
molecular interactions between genes and 
proteins that are described in scientific literature, 
and (2) using this information to reconstruct a 
regulation network between molecular partners 
in a formal way. Several other types of biological 
networks can be defined at the molecular level, 
such as metabolisms, gene expressions, protein-
protein interactions or signaling pathways.  All 
these networks are closely interconnected. For 
example, a gene codes for a protein that catalyzes 
the transformation of small molecules 
(metabolites), while the expression of the gene 
and its related regulation is controlled by other 
proteins. 
The concept of biological networks is not new. 
However, the development of new methods in 
molecular biology in the past twenty years has 
made them accessible at the level of an organism 
as a whole. These new methods allow for the 
design of large-scale experimental approaches 
with high throughput rates of data. They are then 
used to build static and dynamic models that 
represent the behavior of a cell in the field of 
Systems Biology (Kitano, 2002; de Jong, 2002). 
In this context, there has recently been a 

considerable focus on “biological network 
inference”, that is to say the process of making 
inferences and predictions about these networks 
(D'haeseleer, et al., 2000). Therefore, it is 
expected that Information Extraction (IE) from 
scientific literature may play an important role in 
the domain, contributing to the construction of 
networks (Blaschke et al., 1999). IE also plays a 
role in the design and the validation of large-
scale experiments, on the basis of detailed 
knowledge that has already been published. 

2 Context 

Extracting molecular interactions from scientific 
literature is one of the most popular tasks in IE 
challenges applied to biology. The GRN task 
adds a supplementary level that is closer to the 
biological needs: the participant systems have to 
extract a regulation network from the text that 
links and integrates basic molecular interactions.  
The GRN task is based on a series of previous 
challenges in IE that started with the LLL 
challenge in 2005 (Nédellec, 2005). The LLL 
corpus is a set of sentences of PubMed abstracts 
about molecular interactions of the model 
bacterium Bacillus subtilis. Originally, the LLL 
task defined a unique binary genic interaction 
relation between proteins and genes. Since then, 
it has evolved to include the description of 
interaction events in a fine-grained representation 
that includes the distinction between 
transcription, different types of regulations and 
binding events, as proposed by (Manine et al., 
2009). This new schema better captures the 
complexity of regulations at the molecular level. 
Entities other than genes and proteins were 
introduced, such as DNA sites (e.g. transcription 
promoter sites, transcriptional regulator binding 
sites). We proposed the Genic Interaction task 
(Bossy et al., 2012) in the BioNLP’11 Shared 
Task with a full re-annotation of the LLL corpus 
that follows this schema. The GRN task in 
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BioNLP-ST’13 builds on this corpus and 
includes annotation improvements and 
extensions that are detailed below. 

3 Task description 

The BioNLP-ST 2013 GRN task consists of the 
automatic construction of the regulation network 
that can be derived from a set of sentences. As 
usual in relation extraction tasks, the GRN 
corpus includes text-bound annotations. 
However the extraction target is the network, 
which is a structure with a higher level of 
abstraction. GRN thus also provides an explicit 
procedure to derive a network from a set of text-
bound annotations. 
The GRN annotation is stacked in four 
successive levels of annotation: 

1. Text-bound entities represent genes, 
proteins and aggregates (families, 
complexes). Some entities directly relate to a 
gene and are given a unique gene identifier 
corresponding to a node of the network. 
These entities are hereby called genic named 
entities. 

2. Biochemical events and relations are 
molecular-level events (e.g. transcription, 
binding) and detailed knowledge on 
relationships between entities (e.g. promoter 
of gene, regulon membership). 

3. Interactions denote relations between 
entities and events and relations. Interactions 
are the first abstract annotations; they are the 
key to the construction of the network arcs. 

4. Finally, the Genic Regulation Network is 
derived from the Interactions and from the 
identifiers of the named genic entities. 

 
GerE is a DNA-binding protein that adheres  
 
 
to the promoter of cotB and cotC 
 
 

 

Figure 1. Example of annotated sentence.  

Levels 1, 2 and 3 were obtained by a manual 
annotation of the GRN corpus sentences by a 
domain expert. Level 4 was automatically 
computed from the lower level annotations. The 
training corpus was provided to the participants 
with level 1, 2 and 3 annotations. The algorithm 

to compute the next level was described and 
implemented as a script and made available to 
the participants during the training stage of the 
challenge. 
The test corpus was provided with only  level 1 
annotations (entities). The participants submitted 
their prediction either as a set of Interactions 
(level 3) or directly as a network (level 4). This 
setting allows the participants to train systems 
that work at different levels of abstraction. 
Submissions in the form of Interactions are 
translated into a Genic Regulation Network using 
the algorithm provided during the training stage. 
The evaluation of each submission is carried out 
by comparing the predicted network with the 
reference network. The reference network is 
itself computed from the gold level 1, 2 and 3 
annotations of the test sentences. 
The following subsections describe the four 
annotation levels. The full annotation schema 
that specifies the constraints on event and 
relation arguments can be found on the task web 
page1. 

3.1 Text-bound entity types 

Text-bound entities come in three kinds: event 
trigger words, genic entities and entity 
aggregates. Trigger words are of type Action, 
they serve as anchors for events. 
Genic entities represent mentions of biochemical 
objects of the bacteria cell. Genic entity types 
include Gene, mRNA, Promoter, Protein and Site. 
Finally aggregates denote composite objects of 
the bacteria cell. Aggregate types are: 

- GeneFamily: homologous gene families. 
- Operon: operons sensu prokaryotes. 
- PolymeraseComplex: RNA polymerase 

complexes, either the core complex alone, 
or bound to a sigma factor. 

- ProteinComplex: protein complexes formed 
by several proteins that bind together. 

- ProteinFamily: homologous protein families. 
- Regulon: regulons, sensu prokaryotes. 

3.2 Biochemical events and relation types 

Biochemical events and relations represent the 
knowledge of cellular mechanisms at the 
molecular level. There are three types of events: 

- Transcription_by represents the 
transcription event by a specific RNA 

                                                        
1 https://sites.google.com/site/bionlpst2013/tasks/gene

-regulation-network 

Master of  
Promoter 

Interaction 

Promoter of 
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polymerase. Its agent is usually a 
PolymeraseComplex. 

- Transcription_from represents the 
transcription from a specific site or 
promoter. 

- Action_Target is a generic bio-molecular 
event. 

The relation types represent three major genetic 
regulation patterns in bacteria: promoter 
activation, regulons and binding to specific DNA 
sites. Two types of relations specifically denote 
mechanisms that involve promoters: 

- Promoter_of is a relation between a gene (or 
operon) and its promoter. 

- Master_of_Promoter relation represents the 
control of the transcription from a specific 
promoter by a proteic entity (Protein, 
ProteinComplex or ProteinFamily). 

Two other relation types represent the function 
of regulons: 

- Member_of_Regulon relation denotes the 
membership of a genic entity to a regulon. 

- Master_of_Regulon relation represents the 
control of the activity of an entire regulon 
by a protein. 

Finally two types are used to represent relations 
that are common to different regulation 
mechanisms: 

- Bind_to relation represents the binding of a 
proteic entity to a site on the chromosome. 

- Site_of relation denotes the belonging of a 
chromosomal site to a genic entity such as a 
gene or a promoter. 

3.3 Interaction types 

Interaction relations are labeled with one of six 
types grouped into a small hierarchy following 
two axes: mechanism and effect. The hierarchical 
levels are figured here by the text indentations. 

Regulation 

Binding 

Transcription 

Activation 

Requirement 

Inhibition 

Figure 2. Types of Interaction relations 

The Binding and Transcription types specify the 
mechanism through which the agent regulates the 
target. In a Binding Interaction, the agent binds 
to the target; this includes Protein-DNA binding 
and excludes Protein-Protein binding 
mechanisms. In a Transcription Interaction, the 
agent affects the transcription of the target. 
The Activation, Requirement and Inhibition types 
specify the effect of the agent on the target. In an 
Activation Interaction, the agent increases the 
expression of the target. In a Requirement 
Interaction, the agent is necessary for the 
expression of the target. In an Inhibition 
Interaction, the agent reduces the expression of 
the target. 
The Regulation type is the default type: in such 
interactions, neither the mechanism nor the effect 
is specified. 

3.4 Genic Regulation Network inference 
algorithm 

The genic regulation network corresponding to a 
corpus is inferred from the set of Interaction 
relations. The network presents itself as a 
directed labeled graph where nodes represent 
gene identifiers and edges represent gene 
interactions. The inference is done in two steps: 
the resolution of Interaction relations and the 
removal of redundant arcs. 

Step 1: Resolution of Interaction relations 
The agent and the target of an Interaction 
relation are not necessarily genic named entities. 
They can be secondary events or relations, 
another Interaction, or auxiliary entities (e.g. 
Promoter). The resolution of an Interaction aims 
to look for the genic named entity in order to 
infer the node concerned by the network edge. 
The resolution of Interaction arguments is 
performed using the rules specified below. These 
rules express well-known molecular mechanisms 
in a logical manner: 

1. If the agent (or target) is a genic named entity, 
then the agent (or target) node is the gene 
identifier of the entity. If the entity does not 
have a gene identifier, then it is not a genic 
named entity and there is no node (and thus 
no edge). 

2. If the agent (or target) is an event, then the 
agent (or target) node is the entity referenced 
by the event. 

3. If the agent (or target) is a relation, then the 
agent (or target) of both arguments of the 
relation are nodes. 

Mechanism 

Effect 
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4. If the target is a Promoter and this promoter 
is the argument of a Promoter_of relation, 
then the target node is the other argument of 
the Promoter_of relation. i.e. if A interacts 
with P, and P is a promoter of B, then A 
interacts with B. 

5. If the agent is a Promoter and this promoter is 
the argument of a Master_of_Promoter 
relation, the agent is the other argument of the 
Master_of_Promoter relation. i.e. if A is the 
master of promoter P, and P interacts with B, 
then A interacts with B. 

The resolution of Interaction arguments consists 
of a traversal of the graph of annotations where 
these rules are applied iteratively. Event and 
relation arguments are walked through. Promoter 
entities are handled according to rules 4 and 5. 
If the resolution of the agent or the target yields 
more than one node, then the Interaction resolves 
to as many edges as the Cartesian product of the 
resolved nodes. For instance, if both the agent 
and the target resolve to two nodes, the 
Interaction relation resolves into four edges. 
Edges are labeled with the same set of types as 
the Interactions. Each edge inherits the type of 
the Interaction relation from which it has been 
inferred. 

Step 2: Removal of redundant arcs 
In this step, edges with the same agent, target 
and type are simplified into a single edge. This 
means that if the same Interaction is annotated 
several times in the corpus, then it will resolve 
into a single edge. This means that the prediction 
of only one of the interactions in the corpus is 
enough to reconstruct the edge. 
Moreover, Interaction types are ordered 
according to the hierarchy defined in the 
preceding section. Since the sentences are 
extracted from PubMed abstracts published 
during different periods, they may mention the 
same Interaction with different levels of detail, 
depending on the current state of knowledge. For 
a given edge, if there is another edge for the 
same node pair with a more specialized type, 
then it is removed. For instance, the edges (A, 
Regulation, B) and (A, Transcription, B) are 
simplified into (A, Transcription, B). Indeed the 
former edge conveys no additional information 
in comparison with the latter.  

4 Corpus description 

The GRN corpus is a set of 201 sentences 
selected from PubMed abstracts, which are 

mainly about the sporulation phenomenon in 
Bacillus subtilis. This corpus is an extended 
version of the LLL and BI (BioNLP-ST’11) 
corpora. The additional sentences ensure a better 
coverage of the description of the sporulation. 
An expert of this phenomenon examined the 
regulation network derived from the annotation 
of the original sentences, and then manually 
listed the important interactions that were 
missing. We selected sentences from PubMed 
abstracts that contain occurrences of the missing 
pairs of genes. In this way, the genic interaction 
network is more complete with respect to the 
sporulation. Moreover, the publications from 
which the sentences are extracted cover a wider 
period, from 1996 to 2012. They represent a 
diverse range of writing styles and experimental 
methods. 42 sentences have been added, but 4 
sentences were removed from the BI sentences 
because they described genic interactions in 
bacteria other than Bacillus subtilis. The 
distribution of the sentences among the training, 
development and test sets has been done in the 
following way: 

- Legacy sentences belong to the same set as 
in previous evaluation campaigns (LLL and 
BI). 

- Additional sentences have been randomly 
distributed to training, development and test 
sets. The random sampling has been 
constrained so that the proportion of 
different types of interactions is as much as 
possible the same as in the three sets. 

The GRN task does not include the automatic 
selection by the participant methods of the 
relevant sentences, which are provided. With 
regards to a real-world application, this selection 
step can be achieved with good performance by 
sentence filtering, as demonstrated by Nédellec 
et al. (2001), by using a Naive Bayesian 
classifier. Moreover, the corpus contains 
sentences with no interaction. 
Tables 1 to 3 detail the distribution of the entities, 
relations and events in the corpus. They are 
balanced between the training and test sets: the 
test represents between a quarter and a third of 
the annotations. Table 1 details the entity 
frequency and their distributions by type. 
Column 5 contains the contribution of each 
entity type to the total. Genes and proteins 
represent two thirds of the entities, since they are 
the main actors in genic interactions. It is worth 
noting that the high number of promoters and 
polymerase complexes is specific to bacteria 
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where the biological mechanisms are detailed at 
a molecular level. 
 

Entity # Train+Dev Test 

Gene 199 70% 30% 

GeneFamily 2 50% 50% 

mRNA 1 100%  0% 

Operon 33 67% 33% 

PolymeraseComplex 62 71% 29% 

Promoter 63 73% 27% 

Protein 486 65% 35% 

ProteinComplex 7 100%  0% 

ProteinFamily 18 78% 22% 

Regulon 14 79% 21% 

Site 32 78% 22% 

Total 917 68% 32% 

Table 1. Entity distribution in the GRN corpus. 

Table 2 details the distribution of the 
biochemical events and relations (level 2). The 
most frequent event is Action Target. Action 
Target links, for instance, Transcription by and 
Transcription from events to the target gene. 
 

Event/Relation # Train+dev Test 

Action target 226 68% 32% 

Bind to 9 78% 22% 

Master of Promoter 60 80% 20% 

Master of Regulon 13 85% 15% 

Member of Regulon 12 92% 8% 

Promoter of 47 72% 28% 

Site of 24 75% 25% 

Transcription by 86 71% 29% 

Transcription from 18 78% 22% 

Total 495 72% 28% 

Table 2. Distribution of the biochemical events 
and relations in the GRN corpus. 

Finally, Table 3 details the distribution of the 
Interaction relations (level 3). The distribution 

among Interaction relations is more uniform than 
among entities and molecular events. The 
frequency of the Transcription relation is much 
higher than Binding, which is not surprising 
since transcription is the major mechanism of 
regulation in bacteria, while binding is rare. 
Conversely, the relative frequency of relations 
among Effect types of relations is balanced. 
 
Interaction  # Train+dev Test 

Regulation 80 65% 35% 

Inhibition 50 66% 34% 

Activation 49 67% 33% 

Requirement 35 66% 34% 

Binding 12 75% 25% 

Transcription 108 74% 26% 

Total 334 69% 31% 

Table 3. Distribution of the Interaction relations 
in the GRN corpus. 

5 Annotation methodology 

A senior biologist, who is a specialist of Bacillus 
subtilis and a bioinformatician, a specialist of 
semantic annotation, defined the annotation 
schema. The biologist annotated the whole 
corpus, using the BI annotations as a starting 
point. The bioinformatician carefully checked 
each annotation. They both used the AlvisAE 
Annotation Editor (Papazian et al., 2012) that 
supported their productivity due to its intuitive 
visualization of dense semantic annotations. 
Subtiwiki provided the identifiers of genes and 
proteins (Flórez et al., 2009). Subtiwiki is a 
community effort that has become the reference 
resource for the gene nomenclature 
normalization of Bacillus subtilis. Other genic 
named entities, like operons, families or protein 
complexes, were given an identifier similar to 
their surface form. Several annotation iterations 
and regular cross-validations allowed the 
annotators to refine and normalize these 
identifiers. 
The consistency of the annotations was checked 
by applying the rules of the network inference 
procedure that revealed contradictions or 
dangling events. The biologist double-checked 
the inferred network against his deep expertise of 
sporulation in Bacillus subtilis. 
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6 Evaluation procedure 

6.1 Campaign organization 

The same rules and schedule were applied to 
GRN as the other BioNLP-ST tasks. The training 
and development data were provided eleven 
weeks before the test set. The submissions were 
gathered through an on-line service, which was 
active for ten days. We took into account the 
final run of each participant to compute the 
official scores. They were published on the 
BioNLP-ST web site together with the detailed 
scores. 

6.2 Evaluation metrics 

The predictions of the participating teams were 
evaluated by comparing the reference network to 
the predicted network that was either submitted 
directly, or derived from the predicted 
Interactions. Since the genic named entity 
annotations are provided with their identifier, the 
network nodes are fixed. Therefore, the 
evaluation consists of comparing the edges of the 
two networks. Their discrepancy is measured 
using the Slot Error Rate (SER) defined by 
(Makhoul et al., 1999) as: 

SER = (S + D + I) / N 

where: 
- S is the number of substitutions (i.e. edges 

predicted with the wrong type) 
- D is the number of deletions (false negatives) 
- I is the number of insertions (false positives) 
- N is the number of arcs in the reference 

network. 

The SER has the advantage over F1, namely it 
uses an explicit characterization of the 
substitutions. (Makhoul et al., 1999) 
demonstrates that the implicit comprehension of 
substitutions in both recall and precision scores 
leads to the underestimation of deletions and 
insertions in the F score. However, we compute 
the Recall, Precision and F1 in order to make the 
interpretation of results easier: 

Recall = M / N 
Precision = M / P 

where: 

- M is the number of matches (true positives). 
- P is the number of edges in the predicted 

network. 

Matches, substitutions, deletions and insertions 
are counted for each pair of nodes. The genic 
regulation network is an oriented graph, thus the 

node pairs (A,B) and (B,A) are handled 
independently. For a given node pair (A,B), the 
number of exact matches (M) is the number of 
edges with the same type in the prediction as in 
the reference. The number of substitutions, 
deletions and insertions depends on the number 
of remaining edges. We name q and r, the 
number of remaining edges between two nodes A 
and B in the prediction and the reference 
respectively: 

- S = min(q, r) 
- if q > r, then I = q – r, D = 0 
- if q < r, then I = 0, D = r – q 

In other words, edges from the prediction and the 
reference are paired, first by counting matches, 
then by maximizing substitutions. The remaining 
edges are counted either as insertions or deletions 
depending if the extra edges are in the prediction 
or reference, respectively. 
The values of S, D, I and M for the whole 
network are the sum of S, D, I and M on all the 
node pairs. 

7 Results 

7.1 Participating systems 

Five systems participated in GRN: 
- University of Ljubljana (Slovenia) (Žitnik et 

al., 2013),  
- K.U.Leuven (Belgium) (Provoost and 

Moens, 2013),  
- IRISA-TexMex (INRIA, France) (Claveau, 

2013), 
- EVEX (U. of Turku / TUCS, Finland and 

VIB / U. of Ghent, Belgium) (Hakala et al., 
2013),  

- TEES-2.1 (TUCS, Finland) (Björne and 
Salakoski, 2013). 

 

Participant SER Recall Precision 

U. of Ljubljana  0.73 34% 68% 

K.U.Leuven  0.83 23% 50% 

TEES-2.1  0.86 23% 54% 

IRISA-TexMex  0.91 41% 40% 

EVEX  0.92 13% 44% 

Table 4. Final evaluation of the GRN task. 
Teams are ranked by SER. S: Substitutions, D: 

Deletions, I: Insertions, M: Matches. 
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Table 4 summarizes the scores by decreasing 
order. The scores are distributed between the best 
SER, 0.73 achieved by the University of 
Ljubljana, 20 points more than the lowest at 0.92. 
For all systems, the number of insertions is much 
lower than the number of deletions, except for 
IRISA-TexMex. 
The substitutions correspond to the edges that 
were predicted with the wrong type. In order to 
reveal the quality of the predictions with regards 
to the edge types, we calculated two alternate 
SERs. The results are displayed in Table 5.The 
SER Network Shape is obtained by erasing the 
type of all of the edges in the reference and 
predicted networks, as if all edges were of the 
Regulation type. The SER Network Shape 
measures the capacity of the systems to 
reconstruct the unlabeled shape of the regulation 
network. The SER Effect is obtained by erasing 
the mechanism types of all edges only, as if 
Binding and Transcription edges were of type 
Regulation. The Effect edges are kept unchanged. 
The SER Effect measures the quality of the 
predictions for valued networks that only contain 
Effect edges. 
 

Participant SER SER Shape SER Effect 

U. of Ljubljana 0.73 0.60 0.74 

K.U. Leuven 0.83 0.64 0.83 

TEES-2.1 0.86 0.74 0.84 

IRISA-TexMex 0.91 0.51 0.87 

EVEX 0.92 0.79 0.91 

Table 5. Scores obtained by erasing edge types 
(Network Shape) or mechanism types (Effect). 

The SER Network Shape is significantly better 
for all systems, but the impact is dramatic for 
IRISA-TexMex and K.U. Leuven, showing that 
the typing of relations may be the major source 
of error. The SER Effect does not differ 
significantly from the original score. We deduce 
from the comparison of the three scores that the 
types that are the hardest to discriminate are 
effect types. This result is interesting because 
Effect labels are in fact the most valuable for 
systems biology and network inference studies. 
U. of Ljubljana and TEES-2.1 submissions 
contained level 2 and 3 predictions (interactions 
and biochemical events). IRISA provided only 

predictions at level 3 (interactions only). K.U. 
Leuven and EVEX directly submitted a network. 
The performance of the systems that use 
annotations of level 2 confirms our hypothesis 
that a significant part of the interactions can be 
deduced from low-level events. 

7.2     Systems description and result analysis 

All systems applied machine-learning algorithms 
with linguistic features that were stems or 
lemmas, POS-tags and parses, most of them 
being provided by the BioNLP supporting 
resources. With the exception of K.U. Leuven, 
all systems used dependency paths between 
candidate arguments. However different ML 
algorithms were used, as shown in Table 6. 
 

Participant ML algorithm 

U. Ljubljana Linear-chain CRF 

K.U.Leuven SVM (Gaussian RBF) 

TEES-2.1 SVMmulticlass (linear) 

IRISA-TexMex kNN (language model) 

EVEX SVM (TEES-2.1) 

Table 6. ML algorithms used by the participants. 

Beyond syntactic parses and ML algorithms, the 
participant systems combined many different 
sources of information and processing, so that no 
definitive conclusion on the respective potential 
of the methods can be drawn here. 

8 Conclusion 

The GRN task has a strong legacy since the 
corpus is derived from LLL. Moreover, the GRN 
task has advanced a novel IE setting. We 
proposed to extract a formal data structure from 
successive abstract layers. Five different teams 
participated in the task with distinct strategies. In 
particular, we received submissions that work on 
all proposed abstraction levels. 
This shows that Information Extraction 
implementations have reached a state of maturity, 
which allow for new problems to be addressed 
quickly. The performances are promising, yet 
some specific problems have to be addressed, 
like the labeling of edges. 
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