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Abstract

We present the Pathway Curation (PC)
task, a main event extraction task of
the BioNLP shared task (ST) 2013.
The PC task concerns the automatic ex-
traction of biomolecular reactions from
text. The task setting, representation
and semantics are defined with respect
to pathway model standards and ontolo-
gies (SBML, BioPAX, SBO) and docu-
ments selected by relevance to specific
model reactions. Two BioNLP ST 2013
participants successfully completed the
PC task. The highest achieved F-
score, 52.8%, indicates that event extrac-
tion is a promising approach to support-
ing pathway curation efforts. The PC
task continues as an open challenge with
data, resources and tools available from
http://2013.bionlp-st.org/

1 Introduction

Following developments in molecular biology, bi-
ological phenomena are increasingly understood
on the molecular level, as the products of complex
systems of molecular reactions. Pathway mod-
els formalizing biomolecules and their reactions
in machine readable representations are a key way
of sharing and communicating human understand-
ing of these phenomena and of developing com-
putational models of biological systems (Kitano,
2002). Many pathway models integrate knowl-
edge from hundreds or thousands of scientific pub-
lications, and their curation requires substantial
manual effort. To support this effort, we have de-
veloped PathText (Kemper et al., 2010) which pro-
vides a seamless environment integrating a path-
way visualizer, text mining systems and annota-
tion tools. Furthermore, automatic processing of
the domain literature could thus potentially play
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action.

an important role in the support of pathway cura-
tion.

Information extraction targeting biomolecular
reactions has been a major focus of efforts in
biomedical natural language processing, with sev-
eral tasks, resources, and tools addressing in par-
ticular protein-protein interactions (Krallinger et
al., 2007; Pyysalo et al., 2008; Tikk et al., 2010).
However, most such efforts have employed sim-
ple representations, such as entity pairs, that are
not sufficient for capturing molecular reactions to
the level of detail required to support the curation
of pathway models. Additionally, previous efforts
have not directly involved the semantics (e.g. re-
action type definitions) of such models. Perhaps
in part due to these reasons, natural language pro-
cessing and information extraction methods have
not been widely embraced by biomedical pathway
curation communities (Ohta et al., 2011c; Ohta et
al., 2011a).

We believe that the extraction of structured
event representations (Figure 1) pursued in the
BioNLP Shared Tasks offers many opportuni-
ties to make significant contributions to support
the development, evaluation and maintenance of
biomolecular pathways. The Pathway Curation
(PC) task, a main task of the BioNLP Shared Task
2013, is proposed as a step toward realizing these
opportunities. The PC task aims to evaluate the ap-
plicability of event extraction systems to pathway
curation and to encourage the further development
of methods for related tasks. The design of the
task aims to address current issues in information
extraction for pathway curation by explicitly bas-
ing its representation and extraction targets on ma-
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Figure 2: Illustration of pathway reaction (left), matching representation as an idealized text-bound event
structure (middle) and applied event representation for statements actually appearing in text (right).

jor standards developed in the biomolecular path-
way curation community, such as SBML (Hucka
et al., 2003) and BioPAX (Mi et al., 2011), and
ontologies such as the Systems Biology Ontology!
(SBO) (Courtot et al., 2011). Further, The corpus
texts are selected on the basis of relevance to a se-
lection of pathway models from PANTHER Path-
way DB? (Mi and Thomas, 2009) and BioMod-
els® (Li et al., 2010) repositories. The PC task set-
ting and its document selection protocol aim to ac-
count for both signalling and metabolic pathways,
the latter of which has received comparatively lit-
tle attention in recent domain IE efforts (Li et al.,
2013).

2 Task setting

The PC task is formulated as an event extraction
task (Ananiadou et al., 2010) following the general
representation and task setting first introduced in
the BioNLP ST 2009 (Kim et al., 2011). The pri-
mary aim is the extraction of event structures, or
events, each of which can involve any number of
physical entities or other events in specific roles.
The event representation is sufficiently expres-
sive to allow the definition of event structures that
closely parallel the definition of reactions in path-
way representations such as SBML and BioPAX.
These pathway representations differentiate be-
tween three primary groups of reaction partici-
pants: reactants (“inputs”), products (“outputs”),
and modifiers, where the specific roles of modi-
fiers can be further identified to differentiate e.g.
"http
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reaction catalysts from inhibitors. Correspond-
ingly, the PC task applies the Theme role defined
in previous BioNLP ST tasks to capture reactants,
introduces a new Product role for products, and
applies the previously defined Cause role and reg-
ulatory events to capture modifiers (Figure 2; see
also Section 2.3).

It is important to note that while the event repre-
sentation allows a one-to-one mapping to reactions
in principle, an annotation scheme cannot guar-
antee that actual statements in text map to fully
specified reactions: in free-form text, authors fre-
quently omit mention of some entities taking part
in reactions, perhaps most typically to avoid re-
dundancies such as in “p38+v is phosphorylated
into phospho-p38+” (Figure 2b). Representations
extracted from explicit statements in text will thus
in some cases omit aspects of the corresponding
complete reactions in pathway models.

Systems addressing the PC task are expected to
extract events of specific types given 1) free-form
text and 2) gold standard annotation for mentions
of physical entities in that text. The task annota-
tions also include equivalence relations and event
modifications, a secondary extraction target. The
annotation types are detailed below.

2.1 Entities

The entity annotation marks mentions of physical
entities using start and end offsets in text (contigu-
ous span) and a type selected from a fixed set. The
following four entity types are marked in the PC
task: SIMPLE CHEMICAL, annotated with refer-
ence to the Chemical Entities of Biological Inter-
est (ChEBI) resource (Degtyarenko et al., 2008);



Entity type Scope Reference Ontology ID

SIMPLE CHEMICAL simple, non-repetitive chemical entities ChEBI SB0:0000247

GENE OR GENE PRODUCT  genes, RNA and proteins gene/protein DBs  SB0O:0000246

COMPLEX entities of non-covalently linked components  complex DBs SB0:0000253

CELLULAR COMPONENT  parts of cell and extracellular environment GO-CC SB0:0000290

Table 1: Entity types, definitions, and reference resources.

Event type Core arguments Additional arguments Ontology ID

CONVERSION Theme:Molecule, Product:Molecule SBO:0000182
PHOSPHORYLATION Theme:Molecule, Cause:Molecule Site:SIMPLE CHEMICAL SB0:0000216
DEPHOSPHORYLATION Theme:Molecule, Cause:Molecule Site:SIMPLE CHEMICAL SB0O:0000330

(Other modifications, such as ACETYLATION, defined similarly.)

LOCALIZATION Theme:Molecule At/From/ToLoc:CELL. cCOMP.  GO:0051179
TRANSPORT Theme:Molecule From/ToLoc:CELL. COMP. SB0O:0000185

GENE EXPRESSION Theme:GENE OR GENE PRODUCT GO:0010467

TRANSCRIPTION Theme:GENE OR GENE PRODUCT SBO:0000183
TRANSLATION Theme:GENE OR GENE PRODUCT SBO:0000184
DEGRADATION Theme:Molecule SBO:0000179
BINDING Theme:Molecule, Product: COMPLEX SBO:0000177
DISSOCIATION Theme:COMPLEX, Product:Molecule SB0O:0000180

REGULATION Theme:ANY, Cause:ANY GO:0065007
. . GO:0048518,

POSITIVE REGULATION Theme:ANY, Cause:ANY GO-0044093
ACTIVATION Theme:Molecule, Cause:ANY SBO:0000412

. ) GO0:0048519,

NEGATIVE REGULATION  Theme:ANY, Cause:ANY GO-0044092

INACTIVATION

PATHWAY Participant:Molecule

Theme:Molecule, Cause:ANY

SB0O:0000412
SB0O:0000375

Table 2: Event types and arguments. ‘“Molecule” refers to an entity annotation of any of the types
SIMPLE CHEMICAL, GENE OR GENE PRODUCT, or COMPLEX, and “ANY” refers to an annotation of
any type, either entity or event. The indentation corresponds to ontological relationships between the
event types: for example, PHOSPHORYLATION is—a CONVERSION and TRANSCRIPTION part—-of

GENE EXPRESSION.

GENE OR GENE PRODUCT, annotated with refer-
ence to gene and protein databases such as UniProt
(Consortium, 2011), Entrez Gene (Maglott et al.,
2005) and PFam (Finn et al., 2010); COMPLEX,
annotated with reference to database resources
covering complexes; and CELLULAR COMPO-
NENT, annotated following the scope of the Gene
Ontology cellular component subontology
(Ashburner et al., 2000) (Table 1). For discussion
of the relation between these types and the repre-
sentations applied in pathway models, we refer to
Ohta et al. (2011c).

In terms of mention types in text, the annotation
for SIMPLE CHEMICAL, GENE OR GENE PROD-
UCT and COMPLEX covers entity name mentions
only, while the annotation for CELLULAR COM-
PONENT covers entity name mentions, nominal

mentions, and adjectival references (e.g. “mito-
chondrial”).

2.2 Relations

The PC task defines one relation type, Equiv
(equivalence), which can hold between entity
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Figure 3: Example Equiv annotation.

mentions of the same type and specifies that they
refer to the same real-world entity (Figure 3).
These relations are only applied to determine if
two events match during evaluation, where entities
connected by an Equiv relation are considered in-
terchangeable. Gold standard Equiv relations are
applied also for test data, and systems participat-
ing in the task are not expected to extract these
relations.

2.3 Events

The event annotation marks references to reac-
tions, processes and comparable associations in
scope of the annotation using the event represen-
tation. For the definition and scope of the event
annotation, we rely primarily on the Systems Biol-
ogy Ontology (SBO), drawing some general types
not in scope of this ontology from the Gene Ontol-
ogy (GO). Table 2 presents the event types anno-



Pathway Repository ID Publication

mTOR BioModels MODEL1012220002  (Caron et al., 2010)
mTORC] upstream regulators ~ BioModels MODEL1012220003  (Caron et al., 2010)
TLR BioModels MODEL2463683119  (Oda and Kitano, 2006)
Yeast Cell Cycle BioModels MODEL1011020000  (Kaizu et al., 2010)
Rb BioModels MODELA4132046015  (Calzone et al., 2008)
EGFR BioModels MODEL2463576061  (Oda et al., 2005)
Human Metabolic Network BioModels MODEL6399676120  (Duarte et al., 2007)
NF-kappaB pathway - - (Oda et al., 2008)
p38 MAPK PANTHER DB P05918 -

p53 PANTHER DB P00059 -

p53 feedback loop pathway PANTHER DB P04392 -

Wnt signaling pathway PANTHER DB P00057 -

Table 3: Pathway models used to select documents for the task, with pathway repository model identifiers
and publications presenting each model (when applicable).

tated in the PC task and their arguments. We refer
again to Ohta et al. (201 1c) for detailed discussion
of the relation between these types and other rep-
resentations applied in pathway models.

The role in which each event argument (entity
or other event) participates in an event is specified
as one of the following:

Theme entity/event that undergoes the effects of
the event. For example, the entity that is tran-
scribed in a TRANSCRIPTION event or transported
in a TRANSPORT event.

Cause entity/event that is causally active in the
event. Marks, for example, “P;” in “P; inhibits Py
expression”.

AtLoc,FromLoc,ToLoc : location in which the
Theme entity of a LOCALIZATION event is local-
ized (Afr) in LOCALIZATION events not involving
movement or is transported (or moves) from/to
(From/To) in LOCALIZATION and TRANSPORT
events involving movement.

Site site on the Theme entity that is modified in
the event. Can be specified for modification events
such as PHOSPHORYLATION.

Participant general role type identifying an en-
tity that participates in some underspecified way in
a high-level process. Only applied for the PATH-
WAY type.

2.4 Event modifications

In addition to events, the PC task defines a sec-
ondary extraction target, event modifications. Two
modification types are defined: NEGATION and
SPECULATION. Both are binary flags that mod-
ify events, the former marking an event as be-
ing explicitly stated as not occurring (e.g. “P is

70

not phosphorylated”) and the latter as being stated
in a speculative context (“P may be phosphory-
lated.”). Both are defined in terms of annotation
scope and semantics identically as in the BioNLP
ST’09 (Kim et al., 2009).

2.5 Evaluation

The PC task evaluation applies the standard evalu-
ation criteria established in the BioNLP ST 2009.
These criteria relax exact matching between gold
and predicted events in two aspects: approximate
trigger boundary matching, and approximate re-
cursive event matching. The former allows pre-
dicted event triggers to differ from gold triggers
by one word, and the latter requires recursively re-
ferred events to only match in their core arguments
(see Table 2). We refer to Kim et al. (2011) for a
detailed definition of these criteria.

3 Corpus

This section presents the PC task corpus and its
annotation process.

3.1 Document selection

To assure that the documents annotated for the PC
task corpus are relevant to pathway reactions, we
applied two complementary approaches, both se-
lecting documents on the basis of relevance to a
specific pathway reaction. First, we selected from
the BioModels repository those pathway models
with the largest numbers of manually created an-
notations referencing a specific PubMed document
identifier. For each of these models, we extracted
literature references, selected a random subset,
downloaded the documents, and manually filtered
to select abstracts that explicitly discuss relevant
molecular reactions. Second, as only a small sub-
set of models include explicit references to the



literature providing evidence for specific pathway
reactions, we applied an alternative strategy where
reactions from a selection of PANTHER DB mod-
els were entered into the PathText system (Kem-
per et al., 2010),* which is capable of suggest-
ing documents relevant to given reactions based
on an SBML model. We then selected a random
set of reactions to query the system, and manually
evaluated the highest-ranking documents to iden-
tify those whose abstracts explicitly discuss the se-
lected reaction. We refer to Miwa et al. (2013a)
for a detailed description of this approach. Table 3
presents the pathway models on which the docu-
ment selection was based.

3.2 Annotation process

The base entity annotation for the PC corpus was
created automatically using state-of-the-art entity
mention taggers for each of the targeted entity
types. For SIMPLE CHEMICAL tagging, the OS-
CAR4 system (Jessop et al., 2011) trained on
the chemical named entity recognition corpus of
Corbett and Copestake (2008) was applied. For
GENE OR GENE PRODUCT mention detection, the
NERsuite’ system trained on the BioCreative 2
Gene Mention task (Wilbur et al., 2007) corpus
was used. NERsuite was also applied for CEL-
LULAR COMPONENT mention detection, for this
task trained on the Anatomical Entity Mention
(AnEM) corpus (Ohta et al., 2012). Finally, COM-
PLEX annotations were created using a combi-
nation of a dictionary and heuristics making use
of the GENE OR GENE PRODUCT annotation (for
mentions such as “cyclin E/CDK2 complex”). To
support the curation process, these tools were in-
tegrated into the NaCTeM text-analysis workflow
system Argo (Rak et al., 2012).

Based on the evaluations of each of these tools
in the studies presenting them, we expected initial
automatic tagging performance to be in the range
80-90% in both precision and recall. Following
initial automatic annotation, the entity mention an-
notation was manually revised to improve quality
and consistency. As the entity annotation is not
itself a target of extraction in the shared task, we
did not separately evaluate the consistency of the
revised entity mention annotation.

To assure that the quality and consistency of
the event annotation are as high as possible, ini-

‘nttp://nactem.ac.uk/pathtext/
‘http://nersuite.nlplab.org/
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Item | Train Devel Test |  Total
Documents 260 90 175 525
Words 53811 18579 35966 | 108356
Entities 7855 2734 5312 15901
Events 5992 2129 4004 12125
Modifications 317 80 174 571

Table 4: PC corpus statistics

tial event annotation was created entirely man-
ually, without automatic support. This annota-
tion effort was carried out using the BRAT anno-
tation tool (Stenetorp et al., 2012) by a group of
biologists in collaboration between NaCTeM and
KISTI. Following initial annotator training and re-
finement of guidelines based on the event type def-
initions provided by the reference ontologies, the
primary event annotation was created by three bi-
ologists. To evaluate and maintain annotation con-
sistency, a random 20% of documents were an-
notated redundantly by all annotators, and these
overlapping annotations were periodically evalu-
ated and differences in annotation were discussed
between the annotators and annotation coordina-
tors. Following initial annotation, a round of semi-
automatic consistency checks were applied using
BRAT. Evaluation of the redundantly annotated
documents using the primary task evaluation cri-
teria gave an inter-annotator agreement of 61.0%
in F-score. For the final corpus, the redundantly
annotated documents were evaluated separately by
an annotation coordinator to select the best of each
set.b

The overall statistics of the corpus are summa-
rized in Table 4. We note that the among the
previous BioNLP ST corpora, only the GENIA
(GE) task corpus has a larger number of annotated
events than the PC corpus.

4 Results

4.1 Participation

Two groups submitted final results to the PC
task, one from the National Centre for Text Min-
ing (NaCTeM) and one from the University of
Turku BioNLP group (TEES-2.1) (Table 5). Both
participants applied their well-established, state-
of-the-art event extraction systems, EventMine’
(Miwa et al., 2012) (NaCTeM) and the Turku

SThis selection implies that the consistency of the event
annotation of the final corpus is expected to exceed the 61%
F-score of the IAA experiment. Consistency after selection
was not separately evaluated.

"http://nactem.ac.uk/EventMine/



NLP Events Other resources
Rank Team Org Word Parse Trig.  Arg. Group. Modif. | Corpora  Other
1 NaCTeM INLP | Snowball Enju, GDep SVM SVM SVM SVM (see text)  triggers
2 TEES-2.1 | 1BI Porter McCCJ+SD | SVM  SVM SVM SVM GE hedge words
Table 5: Participants and summary of system descriptions. Abbreviations: BI=Bioinformatician,

NLP=Natural Language Processing researcher, McCCJ=McClosky-Charniak-Johnson parser, Char-
niak=Charniak parser, SD=Stanford Dependency conversion, GE=GE task corpus.

Team recall prec. F-score
NaCTeM 52.23 5348 52.84
TEES-2.1 47.15 55.78 51.10

Table 6: Primary evaluation results

Event Extraction System8 (Bjorne et al., 2011)
(TEES). The two systems share the same over-
all architecture, a one-best pipeline with SVM-
based stages for event trigger detection, trigger-
argument relation detection, argument grouping
into event structures, and modification prediction.
The feature representations of both systems draw
on substructures of dependency-like representa-
tions of sentence syntax, derived from full parses
of input sentences. TEES applies the Charniak
and Johnson (2005) parser with the McClosky
(2009) biomedical model, converting the phrase-
structure parses into dependencies using the Stan-
ford tools (de Marneffe et al., 2006). By contrast,
EventMine uses a combination of the predicate-
argument structure analyses created by the deep
parser Enju (Miyao and Tsujii, 2008) and the out-
put of the the GDep best-first shift-reduce depen-
dency parser (Sagae and Tsujii, 2007). All three
parsers have models trained in part on the biomed-
ical domain GENIA treebank (Tateisi et al., 2005).

Interestingly, both systems make use of the GE
task data, but the application of EventMine ex-
tends on this considerably by applying a stacked
model (Miwa et al., 2013b) with predictions also
from models trained on the BioNLP ST 2011 EPI
and ID tasks (Pyysalo et al., 2012) as well as from
four corpora introduced outside of the shared tasks
by Thompson et al. (2011), Pyysalo et al. (2011),
Ohta et al. (2011b) and Ohta et al. (2011c).

4.2 Evaluation results

Table 6 summarizes the primary evaluation results.
The two systems demonstrate broadly similar per-
formance in terms of F-scores, with NaCTeM
achieving an 1.7% point higher overall result.

$http://jbjorne.github.io/TEES/
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However, the systems show quite different per-
formance in terms of the precision/recall balance:
while the NaCTeM system has little difference
between precision and recall, TEES-2.1 shows a
clear preference for precision, with 8.6% lower re-
call than precision.

Results are shown separately for each event type
in Table 7. The results largely mirror the over-
all performance, with the NaCTeM system show-
ing better performance for 13 out of the 21 event
types present in the test data and more balanced
precision and recall than TEES-2.1, which em-
phasizes precision over recall for almost all event
types. Although the results do not include evalu-
ation of EventMine with a reduced set of stacked
models in training, the modest difference in per-
formance suggests that comprehensive use of pre-
viously released event resources in EventMine did
not confer a decisive advantage, perhaps in part
due to differences in the event definitions between
the PC task and previous resources.

Overall, the two systems appear quite similar
not only in architecture but also performance, with
the clearest systematic difference observed being
the different emphases on precision vs. recall. As
both systems are based on machine learning meth-
ods with real-valued outputs, it would be relatively
straightforward to use prediction confidences to
analyse performance over the entire precision-
recall curve instead of a single fixed point. Such
analysis could provide further insight into the rel-
ative strengths and weaknesses of these two sys-
tems.

5 Discussion

Although participation in this initial run of the PC
task was somewhat limited, the two participating
systems have been applied to a large variety of
event extraction tasks over the last years and have
shown consistently competitive performance with
the state of the art (Bjorne and Salakoski, 2011;
Miwa et al., 2012). It is thus reasonable to as-
sume that the higher performance achieved by the



NaCTeM TEES-2.1

Event recall prec. F-score | recall prec. F-score
CONVERSION 3433 3548 3490 | 35.82 42.86 39.02
PHOSPHORYLATION 6246 5594 59.02 | 5340 66.00 59.03
DEPHOSPHORYLATION 45.00  56.25 50.00 | 35.00 77.78 48.28
ACETYLATION 69.57 7273 71.11 82.61  76.00 79.17
DEACETYLATION 33.33  33.33 33.33 0.00 0.00 0.00
METHYLATION 42.86  60.00 50.00 | 57.14  80.00 66.67
DEMETHYLATION 100.00 100.00 100.00 | 100.00 100.00 100.00
UBIQUITINATION 5294  64.29 58.06 58.82  76.92 66.67
DEUBIQUITINATION 100.00 100.00 100.00 | 100.00 100.00 100.00
LOCALIZATION 42.25  61.22 50.00 | 43.66 54.39 48.44
TRANSPORT 65.52 61.29 63.33 | 56.55 59.85 58.16
GENE EXPRESSION 90.65 83.15 86.74 | 84.55 79.39 81.89
TRANSCRIPTION 71.15 82.22 76.29 57.69  73.17 64.52
TRANSLATION 0.00 0.00 0.00 | 50.00 100.00 66.67
Simple-total 66.42  64.80 65.60 | 60.40 67.87 63.92
DEGRADATION 78.57  89.19 83.54 | 78.57 78.57 78.57
ACTIVATION 78.54  70.96 74.56 | 72.06 72.06 72.06
INACTIVATION 44.62  55.77 49.57 | 38.46 4545 41.67
BINDING 64.96  47.30 54.74 | 5396 53.96 53.96
DISSOCIATION 38.46  46.88 4225 | 3590 45.16 40.00
PATHWAY 8491  75.50 79.93 | 7094 7550 73.15
General-total 69.07 62.69 6572 | 61.16 65.74 63.37
REGULATION 33.33 3397 33.65 | 29.73  39.51 33.93
POSITIVE REGULATION 3549 4281 38.81 3451 4545 39.23
NEGATIVE REGULATION | 45.75  50.64 48.07 | 41.02  47.37 43.97
Regulation-total 3773  42.79 40.10 | 35.17 44.76 39.39
Sub-total 5347  53.96 53.72 | 4823 56.22 51.92
NEGATION 24.52  35.87 29.13 | 25.16 41.30 31.27
SPECULATION 15.79 2222 18.46 0.00 0.00 0.00
Modification-total 23.56  34.65 28.05 | 2241 40.00 28.73
Total 5223  53.48 52.84 | 47.15 55.78 51.10

Table 7: Primary evaluation results by event type.

task participants, a balanced F-score of 52.8%, is
a good estimate of the performance level that can
be attained for this task by present event extraction
technology.

The results achieved by the two systems are
broadly comparable to the best results achieved by
any system in similar previously introduced event
extraction tasks (Kim et al., 2012; Pyysalo et al.,
2012). Given the novelty of the task domain and
reference resource and the broad selection of doc-
uments, we find the results highly encouraging re-
garding the applicability of event extraction tech-
nology to supporting the development, evaluation,
and maintenance of pathway models.
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6 Conclusions

This paper presented the Pathway Curation (PC)
task, a main event extraction task of the BioNLP
ST 2013. The task was organized in collaboration
between groups with an interest in pathway cura-
tion with the aim of evaluating and advancing the
state of the art in event extraction toward methods
for developing, evaluating and maintaining formal
pathway models in representations such as SBML
and BioPAX. We introduced an event extraction
task setting with reference to pathway model stan-
dards and the Systems Biology Ontology, selected
a set of 525 publication abstracts relevant to spe-
cific model reactions, and created fully manual



event annotation marking over 12,000 event struc-
tures in the corpus.

Two participants in the BioNLP ST 2013 sub-
mitted final predictions to the PC task, applying
established, state-of-the-art event extraction sys-
tems, EventMine and the Turku Event Extrac-
tion System. Both systems achieved F-scores
over 50%, with the EventMine system achiev-
ing the best overall result of 52.8%. This level
of performance is broadly comparable with re-
sults achieved in comparable previously proposed
tasks, indicating that current event extraction tech-
nology is applicable to the projected pathway cu-
ration support tasks.

To allow the further development and evalua-
tion of event extraction methods for the task, the
PC task continues as an open challenge to all inter-
ested participants, with the annotated corpus data,
supporting resources, and evaluation tools avail-
able under open licenses from the task homepage,
http://2013.bionlp-st.org/
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