Shallow Semantic Analysis of Interactive Learner Sentences

Levi King
Indiana University

Bloomington, IN USA
leviking@indiana.edu

Abstract

Focusing on applications for analyzing learner
language which evaluate semantic appropri-
ateness and accuracy, we collect data from a
task which models some aspects of interac-
tion, namely a picture description task (PDT).
We parse responses to the PDT into depen-
dency graphs with an an off-the-shelf parser,
then use a decision tree to classify sentences
into syntactic types and extract the logical sub-
ject, verb, and object, finding 92% accuracy in
such extraction. The specific goal in this paper
is to examine the challenges involved in ex-
tracting these simple semantic representations
from interactive learner sentences.

1 Motivation

While there is much current work on analyzing
learner language, it usually focuses on grammati-
cal error detection and correction (e.g., Dale et al.,
2012) and less on semantic analysis. At the
same time, Intelligent Computer-Assisted Language
Learning (ICALL) and Intelligent Language Tutor-
ing (ILT) systems (e.g., Heift and Schulze, 2007;
Meurers, 2012) also tend to focus more on gram-
matical feedback. An exception to this rule is Herr
Komissar, an ILT for German learners that includes
rather robust content analysis and sentence genera-
tion (DeSmedt, 1995), but this involves a great deal
of hand-built tools and does not connect to modern
NLP. Some work addresses content assessment for
short answer tasks (Meurers et al., 2011), but this is
still far from naturalistic, more conversational inter-
actions (though, see Petersen, 2010).
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Our overarching goal is to facilitate ILTs and lan-
guage assessment tools that maximize free interac-
tion, building as much as possible from existing
NLP resources. While that goal is in the distant
future, the more immediate goal in this paper is
to pinpoint the precise challenges which interactive
learner sentences present to constructing semantic
analyses, even when greatly constrained. We ap-
proximate this by collecting data from a task which
models some aspects of interaction, namely a picture
description task (PDT), parsing it with an off-the-
shelf parser, extracting semantic forms, and noting
the challenges throughout.

The focus towards interaction is in accord with
contemporary theory and research in Second Lan-
guage Acquisition (SLA) and best practices in sec-
ond language instruction, which emphasize the lim-
iting of explicit grammar instruction and feedback in
favor of an approach that subtly integrates the teach-
ing of form with conversation and task-based learn-
ing (Celce-Murcia, 1991, 2002; Larsen-Freeman,
2002). Indeed, Ellis (2006) states, “a traditional ap-
proach to teaching grammar based on explicit expla-
nations and drill-like practice is unlikely to result in
the acquisition of the implicit knowledge needed for
fluent and accurate communication.” For our pur-
poses, this means shifting the primary task of an
ICALL application from analyzing grammar to eval-
uating semantic appropriateness and accuracy.

The data for error detection work is ideal for de-
veloping systems which provide feedback on essays,
but not necessarily for more interactive communica-
tion. Thus, our first step is to collect data similar to
what we envision processing in something like an
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ILT game, data which—as far as we know—does
not exist. While we desire relatively free produc-
tion, there are still constraints; for games, for exam-
ple, this comes in the form of contextual knowledge
(pictures, rules, previous interactions). To get a han-
dle on variability under a set of known constraints
and to systematically monitor deviations from tar-
get meanings, we select a PDT as a constrained task
that still promotes interactive communication. Col-
lecting and analyzing this data is our first major con-
tribution, as described in section 3.

Once we have the data, we can begin to extract se-
mantic forms, and our second major contribution is
to outline successes and pitfalls in obtaining shal-
low semantic forms in interactive learner data, as
described in section 4, working from existing tools.
Although we observe a lot of grammatical variation,
we will demonstrate in section 5 how careful se-
lection of output representations (e.g., the treatment
of prepositions) from an off-the-shelf parser and a
handful of syntax-to-semantics rules allow us to de-
rive accurate semantic forms for most types of tran-
sitive verb constructions in our data. At the same
time, we will discuss the difficulties in defining a
true gold standard of meanings for such a task. This
work paves the way for increasing the range of con-
structions and further exploring the space between
free and constrained productions (see also the dis-
cussion in Amaral and Meurers, 2011).

2 Related Work

In terms of our overarching goals of developing
an interactive ILT, a number of systems exist (e.g.,
TAGARELA (Amaral et al., 2011), e-Tutor (Heift
and Nicholson, 2001)), but few focus on matching
semantic forms. Herr Komissar (DeSmedt (1995))
is one counter-example; in this game, learners take
on the role of a detective tasked with interviewing
suspects and witnesses. The system relies largely on
a custom-built database of verb classes and related
lexical items. Likewise, Petersen (2010) designed
a system to provide feedback on questions in En-
glish, extracting meanings from the Collins parser
(Collins, 1999). Our work is is in the spirit of his,
though our starting point is to collect data of the type
of task we aim to analyze, thereby pinpointing how
one should begin to build a system.
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The basic semantic analysis in this paper paral-
lels work on content assessment (e.g., ETS’s c-rater
system (Leacock and Chodorow, 2003)). Different
from our task, these systems are mostly focused on
essay and short answer scoring, though many fo-
cus on semantic analysis under restricted conditions.
As one example, Meurers et al. (2011) evaluate En-
glish language learners’ short answers to reading
comprehension questions, constrained by the topic
at hand. Their approach performs multiple levels of
annotation on the reading prompt, including depen-
dency parsing and lexical analysis from WordNet
(Fellbaum, 1998), then attempts to align elements of
the sentence with those of the (similarly annotated)
reading prompt, the question, and target answers to
determine whether a response is adequate or what it
might be missing. Our scenario is based on images,
not text, but our future processing will most likely
need to include similar elements, e.g., determining
lexical relations from WordNet.

3 Data Collection

The data involved in this study shares much in com-
mon with other investigations into semantic anal-
ysis of descriptions of images and video, such
as the Microsoft Research Video Description Cor-
pus (MSRvid; Chen and Dolan (2011)) and the
SemEval-2012 Semantic Textual Similarity (STS)
task utilizing MSRvid as training data for assigning
similarity scores to pairs of sentences (Agirre et al.,
2012). However, because our approach requires
both native speaker (NS) and non-native speaker
(NNS) responses and necessitates constraining both
the form and content of responses, we assembled
our own small corpus of NS and NNS responses to
a PDT. Research in SLA often relies on the ability
of task design to induce particular linguistic behav-
ior (Skehan et al., 1998), and the PDT should in-
duce more interactive behavior. Moreover, the use
of the PDT as a reliable language research tool is
well-established in areas of study ranging from SLA
to Alzheimer’s disease (Ellis, 2000; Forbes-McKay
and Venneri, 2005).

The NNSs were intermediate and upper-level
adult English learners in an intensive English as
a Second Language program at Indiana University.
We rely on visual stimuli here for a number of rea-



sons. Firstly, computer games tend to be highly
visual, so collecting responses to visual prompts is
in keeping with the nature of our desired ILT. Sec-
ondly, by using images, the information the response
should contain is limited to the information con-
tained in the image. Relatedly, particularly simple
images should restrict elicited responses to a tight
range of expected contents. For this initial experi-
ment, we chose or developed each of the visual stim-
uli because it presents an event that we believe to be
transitive in nature and likely to elicit responses with
an unambiguous subject, verb and object, thereby re-
stricting form in addition to content. Finally, this
format allows us to investigate pure interlanguage
without the influence of verbal prompts and shows
learner language in a functional context, modeling
real language use.

Response (L1)

He is droning his wife pitcher. (Arabic)

The artist is drawing a pretty women. (Chinese)

The artist is painting a portrait of a lady. (English)

The painter is painting a woman’s paint. (Spanish)

Figure 1: Example item and responses

The PDT consists of 10 items (8 line drawings
and 2 photographs) intended to elicit a single sen-
tence each; an example is given in Figure 1. Par-
ticipants were asked to view the image and describe
the action, and care was taken to explain to partici-
pants that either past or present tense (and simple or
progressive aspect) was acceptable. Responses were

13

typed by the participants themselves (without auto-
matic spell checking). To date, we have collected
responses from 53 informants (14 NSs, 39 NNSs),
for a total of 530 sentences. The distribution of first
languages (L1s) is as follows: 14 English, 16 Ara-
bic, 7 Chinese, 2 Japanese, 4 Korean, 1 Kurdish, 1
Polish, 2 Portuguese, and 6 Spanish.

4 Method

We parse a sentence into a dependency representa-
tion (section 4.1) and then extract a simple seman-
tic form from this parse (section 4.2), to compare to
gold standard semantic forms.

4.1 Obtaining a syntactic form

We start analysis with a dependency parse. Because
dependency parsing focuses on labeling dependency
relations, rather than constituents or phrase struc-
ture, it easily finds the subject, verb and object of
a sentence, which can then map to a semantic form
(Kiibler et al., 2009). Our approach must eventually
account for other relations, such as negation and ad-
verbial modification, but at this point, since we fo-
cus on transitive verbs, we take an naive approach in
which subject, verb and object are considered suffi-
cient for deciding whether or not a response accu-
rately describes the visual prompt.

We use the Stanford Parser for this task, trained on
the Penn Treebank (de Marneffe et al., 2006; Klein
and Manning, 2003).! Using the parser’s options,
we set the output to be Stanford typed dependencies,
a set of labels for dependency relations. The Stan-
ford parser has a variety of options to choose from
for the specific parser ouput, e.g., how one wishes to
treat prepositions (de Marneffe and Manning, 2012).
We use the CCPropagatedDependencies /
CCprocessed option to accomplish two things:?
1) omit prepositions and conjunctions from the sen-
tence text and instead add the word to the depen-
dency label between content words; and 2) propa-
gate relations across any conjunctions. These deci-
sions are important to consider for any semantically-
informed processing of learner language.

"http://nlp.stanford.edu/software/
lex—-parser.shtml

http://nlp.stanford.edu/software/
dependencies_manual.pdf



To see the impetus for removing prepositions,
consider the learner response (1), where the prepo-
sition with is relatively unimportant to collecting the
meaning. Additionally, learners often omit, insert,
or otherwise use the wrong preposition (Chodorow
et al., 2007). The default parser would present a
prep relation between played and with, obscuring
what the object is; with the options set as above,
however, the dependency representation folds the
preposition into the label (prep_with), instead of
keeping it in the parsed string, as shown in Figure 2.

(1) The boy played with a ball.

root

prep-with

nsubj
. det

vroot The Boy played with :; ‘Ball

Figure 2: The dependency parse of (1)

This is a very lenient approach to prepositions,
as prepositions certainly carry semantic meaning—
e.g., the boy played in a ball means something quite
different than what (1) means. However, because
we ultimately compare the meaning to an expected
semantic form (e.g., play(boy,ball)), it is easier to
give the benefit of the doubt. In the future, one may
want to consider using a semantic role labeler (e.g.,
SENNA (Collobert et al., 2011)).

As for propagating relations across conjunctions,
this ensures that each main verb connects to its argu-
ments, as needed for a semantic form. For example,
in (2), the default parser returns the relation between
the first verb of the conjunction structure, setting and
its subject, man, but not between reading and man.
The options we select, however, return an nsub j
relation between setting and man and also between
reading and man (similarly for the object, paper).

(2) The man is setting and reading the paper.

In addition to these options, many dependency re-
lations are irrelevant for the next step of obtaining
a semantic form. For example, we can essentially
ignore determiner (det) relations between a noun
and its determiner, allowing for variability in how a
learner produces or does not produce determiners.
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4.2 Obtaining a semantic form
4.2.1 Sentence types

We categorized the sentences in the corpus into
12 types, shown in Table 1. We established these
types because each type corresponds to a basic sen-
tence structure and thus has consistent syntactic fea-
tures, leading to predictable patterns in the depen-
dency parses. We discuss the distribution of sen-
tence types in section 5.1.

4.2.2 Rules for sentence types

A sentence type indicates that the logical (i.e., se-
mantic) subject, verb, and object can be found in a
particular place in the parse, e.g., under a particular
dependency label. For example, for simple transi-
tive sentences of type A, the words labeled nsub 7,
root, and dobj exactly pinpoint the information
we require. Thus, the patterns for extracting se-
mantic information—in the form of verb(subj,obj)
triples—reference particular Stanford typed depen-
dency labels, part-of-speech (POS) tags, and inter-
actions with word indices.

More complicated sentences or those containing
common learner errors (e.g., omission of the cop-
ula be) require slightly more complicated extraction
rules, but, since we examine only transitive verbs at
this juncture, these still boil down to identifying the
sentence type and extracting the appropriate triple.
We do this by arranging a small set of binary fea-
tures into a decision tree to determine the sentence
type, as shown in Figure 3.

To illustrate this process, consider (3). We pass
this sentence through the parser to obtain the depen-
dency parse shown in Figure 4. The parsed sentence
then moves to the decision tree shown in Figure 3.
At the top of the tree, the sentence is checked for an
expl (expletive) label; having none, it moves right-
ward to the nsubjpass (noun subject, passive)
node. Because we find an nsub jpass label, the
sentence moves leftward to the agent node. This
label is also found, thereby reaching a terminal node
and being labeled as a type F2 sentence.

(3) A bird is shot by a man.

With the sentence now typed as F2, we apply
specific F2 extraction rules. The logical subject is
taken from under the agent label, the verb from



Type | Description Example NS | NNS
A Simple declarative transitive The boy is kicking the ball. 117 | 286
B Simple + preposition The boy played with a ball. 5 23
C Missing tensed verb Girl driving bicycle. 10 44
D Missing tensed verb + preposition | Boy playing with a ball. 0 1
E Intransitive (No object) A woman is cycling. 2 21
F1 | Passive An apple is being cut. 4 2
F2 | Passive with agent A bird is shot by a man. 0 6
Ax | Existential version of A or C There is a boy kicking a ball. 0 0
Bx | Existential version of B or D There was a boy playing with a ball. 0 0
Ex | Existential version of E There is a woman cycling. 0 0
F1x | Existential version of F1 There is an apple being cut. 0 1
F2x | Existential version of F2 There is a bird being shot by a man. 0 0

Z All other forms The man is trying to hunt a bird. 2 6

Table 1: Sentence type examples, with distributions of types for native speakers (NS) and non-native speakers (NNS)

expl?

T T

auxpass?

i

agent? dob3j?

F2x Flx Ax prep_x?

W

Bx Ex

nsubjpass?
2N
agent? dob3j?
F2 Fl1 nsubj? nsubj?
TEA
A C prepsx? D
YAN
B E

Figure 3: Decision tree for determining sentence type and extracting semantic information

root

nsubjpass

agent

det auxpass det

vroot A bird is shot by a man

Figure 4: The dependency parse of (3)

process: the parser is pre-built; the decision tree is
small; and the extraction rules are minimal.

We are able to use little effort in part due to the
constraints in the pictures. For figure 1, for exam-
ple, the artist, the man in the beret, and the man are
all acceptable subjects, whereas if there were multi-
ple men in the picture, the man would not be specific
enough. In future work, we expect to relax such con-

root, and the logical object from nsubjpass,
to obtain shot(man,bird), which can be lemmatized
to shoot(man,bird). Very little effort goes into this
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straints on image contents by including rules to han-
dle relative clauses, adjectives and other modifiers
in order to distinguish between references to simi-



lar elements, e.g., a man shooting a bird vs. a man
reading the newspaper.

5 Evaluation

To evaluate this work, we need to address two major
questions. First, how accurately do we extract se-
mantic information from potentially innovative sen-
tences (section 5.2)? Due to the simple structures
of the sentences (section 5.1), we find high accu-
racy with our simple system. Secondly, how many
semantic forms does one need in order to capture
the variability in meaning in learner sentences (sec-
tion 5.3)? We operationalize this second question
by asking how well the set of native speaker seman-
tic forms models a gold standard, with the intuition
that a language is defined by native speaker usage,
so their answers can serve as targets. As we will
see, this is a naive view.

5.1 Basic distribution of sentences

Before a more thorough analysis, we look at the dis-
tribution of sentence types, shown in Table 1, broken
down between native speakers (NSs) and non-native
speakers (NNSs). A few sentence types clearly dom-
inate here: if one looks only at simple declaratives,
with or without a main verb (types A and C), one
accounts for 90.7% of the NS forms and 84.6% of
the NNS ones, slightly less. Adding prepositional
forms (types B and D) brings the total to 94.3% and
90.8%, respectively. Although there will always be
variability and novel forms (cf. type Z), this shows
that, for situations with basic transitive actions, de-
veloping a system (by hand) for a few sentence types
is manageable. More broadly, we see that clear and
simple images nicely constrain the task to the point
where shallow processing is feasible.

5.2 Semantic extraction

For the purpose of evaluating our extraction system,
we define two major classes of errors. The first are
triple errors, responses for which our system fails to
extract one or more of the desired subject, verb, or
object, based on the sentence at hand and without re-
gard to the target content. Second are content errors,
responses for which our system extracts the desired
subject, verb and object, but the resulting triple does
not accurately describe the image (i.e., is an error of
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the participant’s). We are of course concerned with
reducing the triple errors. Examples are in Table 2.

Triple errors are subcategorized as speaker,
parser, or extraction errors, based on the earliest
part of the process that led to the error. Speaker
errors typically involve misspellings in the original
sentence, leading to an incorrect POS tag and parse.
Parser errors involve a correct sentence parsed in-
correctly or in such a way as to indicate a different
meaning from the one intended; an example is given
in Figure 5. Extraction errors involve a failure of the
extraction script to find one or more of the desired
subject, verb or object in a correct sentence. These
typically involve more complex sentence structures
such as conjoined or embedded clauses.

root
num dep
RN
Two boys boat
CD NNS NN

vroot

NONE(boys,NONE)

root

num nsubj
v NN
Two boys boat
CD NNS VBP

vroot

boat(boys,NONE)

Figure 5: A parser error leading to a triple error (top), and
the desired parse and triple (bottom).

As shown in table 2, we obtain 92.3% accuracy on
extraction for NNS data and roughly the same for
NS data, 92.9%. However, many of the errors for
NNSs involve misspellings, while for NSs a higher
percentage of the extraction errors stem only from
our hand-written extractor, due to native speakers
using more complex structures. For a system inter-
acting with learners, spelling errors are thus more of
a priority (cf. Hovermale, 2008).

Content errors are subcategorized as spelling or
meaning errors. Spelling errors involve one or more
of the extracted subject, verb or object being mis-
spelled severely enough that the intended spelling
cannot be discerned. A spelling error here is un-
like those included in speaker errors above in that it
does not result in downstream errors and is a well-



Error Example

type Sentence Triple Count (%)
Speaker A man swipped leaves. leaves(swipped,man) 16 (4.1%)
% Parser Two boys boat. NONE(boys,NONE) 5 (1.3%)
g Z. | Extraction A man is gathering lots of leafs. gathering(man,lots) 9 (2.3%)
o Total (390) 30 (7.7%)
= Speaker (None) 0 (0%)
&= | v | Parser An old man raking leaves on a path. leaves(man,path) 2 (1.4%)
z Extraction | A man has shot a bird that is falling from the sky. shot(bird,sky) 8 (5.7%)
Total (140) 10 (7.1%)
. % Spellipg The artiest.is drawing a portret. dra\fving(artiest,portret) 36 (9.2%)
E = Meaning The woman is making her laundry. making(woman,laundry) | 23 (5.9%)
2 Total (390) 59 (15.1%)
g " Spelling (None) 0 (0%)
8 7| Meaning A picture is being taken of a girl on a bike. taken(NONE,picture) 3(2.1%)
Total (140) 3(2.1%)

Table 2: Triple errors and content errors by subcategory, with error rates reported (e.g., 7.7% error = 92.3% accuracy)

formed triple except for a misspelled target word.
Meaning errors involve an inaccurate word within
the triple. This includes misspellings that result in a
real but unintended word (e.g., shout(man,bird) in-
stead of shoot(man,bird)).

The goal of a system is to identify the 15.1% of
NNS sentences which are content errors, in order
to provide feedback. Currently, the 7.7% triple er-
rors would also be grouped into this set, showing
the need for further extraction improvements. Also
notable is that three content errors were encountered
among the NS responses. All three were meaning
errors involving some meta-description of the image
prompt rather than a direct description of the image
contents, e.g., A picture is being taken of a girl on a
bike vs. A girl is riding a bike.

5.3 Semantic coverage

Given a fairly accurate extraction system, as re-
ported above, we now turn to evaluating how well
a gold standard represents unseen data, in terms of
semantic matching. To measure coverage, we take
the intuition that a language is defined by native
speaker usage, so their answers can serve as targets,
and use NS triples as our gold standard. The set
of NS responses was manually arbitrated to remove
any unacceptable triples (both triple and content er-
rors), and the remaining set of lemmatized triples
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was taken as a gold standard set for each item.

Similarly, with the focus on coverage, the NNS
triples were amended to remove any triple errors.
From the remaining NNS triples, we call an appro-
priate NNS triple found in the gold standard set a
true positive (TP) (i.e., a correct match), and an
appropriate NNS triple not found in the gold stan-
dard set a false negative (FN) (i.e., an incorrect non-
match), as shown in Table 4. We adopt standard ter-
minology here (TP, FN), but note that we are inves-
tigating what should be in the gold standard, mak-
ing these false negatives and not false positives. To
address the question of how many (NS) sentences
we need to obtain good coverage, we define cover-
age (=recall) as TP/(TP+FN), and report, in Table 3,
23.5% coverage for unique triple types and 50.8%
coverage for triple tokens.

NNS

+ —

Y | TP | FP
NS N | FN | TN

Table 4: Contingency table comparing presence of NS
forms (Y/N) with correctness (4+/—) of NNS forms

We define an inappropriate NNS triple (i.e., a con-
tent error) not found in the gold standard set as a true



Coverage Accuracy
Item || NS | NNS || TP | TN | FN Ty. Tok. Ty. Tok.
1 5 14 3 2 9 3/12 23/38 5/14 25/39
2 6 14 3 5 6 3/9 15/28 8/14 20/32
3 6 19 5 7 7 512 23/30 12/19 30/36
4 4 8 2 2 4 2/6 32/37 4/8 34/39
5 4 24 1 8 15 1/16 3/25 9/24 11/33
6 8 22 3 5 14 3/17 16/31 8/22 21/36
7 7 23 5 4 14 5/19 14/35 9/23 18/39
8 6 23 5 6 11 5/16 10/30 11/22 17/36
9 7 33 3|12 | 18 3/21 3/23 15/33 15/35
10 5 21 2 13| 6 2/8 14/24 15/21 27/35
Total || 58 | 201 | 32 | 64 | 104 || 32/136 153/301 | 96/200 218/360
23.5% 50.8% | 48.0%  60.6%

Table 3: Matching of semantic triples: NS/NNS: number of unique triples for NSs/NNSs. Comparing NNS types to NS
triples, TP: number of true positives (types); TN: number of true negatives; FN: number of false negatives. Coverage

for Types and Tokens = %; Accuracy for Types and Tokens = %
negative (TN) (i.e., a correct non-match). Accu- ’ Type \ NNS \ NS \ Coverage ‘
racy based on this gold standard—assuming perfect cut(woman,apple) 5 0 (5)
extraction—is defined as (TP+TN)/(TP+TN+FN). cut(someone,apple) 4 2 4
We report 48.0% accuracy for types and 60.6% ac- cut(somebody,apple) 3 0
curacy for tokens. cut(she,apple) 3 0
The immediate lesson here is: NS data alone may slice(someone,apple) 2 3 2
not make a sufficient gold standard, in that many cor- cut(person,apple) D) 1 2
rect NNS answers are not counted as correct. How- cut(NONE,apple) 2 0 2)
ever, there are a couple of issues to consider here. slice(woman,apple) 1 1 1
First, we require exact matching of triples. If slice(person,apple) 1 1 1
maximizing coverage is desired, extracting indi- slice(man,apple) 1 0
vidual subjects, verbs and objects from NS triples cut(person, fruit) 1 0
and recombining them into the various possible cut(people,apple) 1 0
verb(subj,obj) combinations would lead to a sizable cut(man,apple) 1 0
improvement. An example of triples distribution and cut(knife,apple) 1 0
coverage for a single item, along with this recombi- chop(woman,apple) 1 0
nation approach is presented in Table 5. chop(person,apple) I 0
It should be noted, however, that automat- slice(NONE, apple) 0 >
ing this recombination without lexical knowledge Total 30 2 10(17)

could lead to the presence of unwanted triples
in the gold standard set. Consider, for exam-
ple, do(woman,shirt)—an incorrect triple derived
from the correct NS triples, wash(woman,shirt) and
do(woman,laundry). In addition to handling pro-

3 Accuracy is typically defined as
(TP+TN)/(TP+TN+FN+FP), but false positives (FPs) are
cases where an incorrect learner response was in the gold
standard, and we have already removed such cases (i.e., FP=0).
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Table 5: Distribution of valid tokens across types for a
single PDT item. Types in italics do not occur in the NS
sample, but could be inferred to expand coverage by re-
combining elements of NS types that do occur.

nouns (e.g., cut(she,apple)) and lexical relations
(e.g., apple as a type of fruit), one approach might be



to prompt NSs to give multiple alternative descrip-
tions of each PDT item.

A second issue to consider is that, even when only
examining cases where the meaning is literally cor-
rect, NNSs produce a wider range of forms to de-
scribe the prompts than NSs. For example, for a pic-
ture showing what NSs overwhelmingly described
as a raking action, many NNSs referred to a man
cleaning an area. Literally, this may be true, but it is
not native-like. This behavior is somewhat expected,
given that learners are encouraged to use words they
know to compensate for gaps in their vocabularies
(Agustin Llach, 2010). This also parallels the obser-
vation in SLA research that while second language
learners may attain native-like grammar, their abil-
ity to use pragmatically native-like language is often
much lower (Bardovi-Harlig and Dornyei, 1998).
The answer to what counts as a correct meaning
will most likely lie in the purpose of an application,
reflecting whether one is developing native-ness or
whether the facts of a situation are expressed cor-
rectly. In other words, rather than rejecting all non-
native-like responses, an ILT may need to consider
whether a sentence is native-like or non-native-like
as well as whether it is semantically appropriate.

6 Summary and Outlook

We have begun the process of examining appro-
priate ways to analyze the semantics of language
learner constructions for interactive situations by
describing data collected for a picture description
task. We parsed this data using an off-the-shelf
parser with settings geared towards obtaining appro-
priate semantic forms, wrote a small set of seman-
tic extraction rules, and obtained 92-93% extrac-
tion accuracy. This shows promise at using images
to constrain the syntactic form of a “free” learner
text and thus be able to use pre-built software. At
the same time, we discussed how learners give re-
sponses which are literally correct, but are non-
native-like. These results can help guide the de-
velopment of ILTs which aim to process the mean-
ing of interactive statements: there is much to be
gained with a small amount of computational effort,
but much work needs to go into delineating a proper
set of gold standard forms.

There are several ways to take this work. First,
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given the preponderance of spelling errors in NNS
data and its effect on downstream processing, the ef-
fect of automatic spelling correction must be taken
into account. Secondly, we only investigated tran-
sitive verbs, and much needs to be done to investi-
gate interactions with other types of constructions,
including the definition of more elaborate semantic
forms (Hahn and Meurers, 2012). Finally, to bet-
ter model ILTs and the interactions found in activ-
ities and games, one can begin by modeling more
complex visual prompts. By using video description
tasks or story retell tasks, we can elicit more com-
plex narrative responses. This would allow us to
investigate the possibility of extending our current
approach to tasks that involve greater learner inter-
action.
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