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Abstract

This paper presents an application of finite-
state transducers to the domain of medicine.
The objective is to assign disease codes to
each Diagnostic Term in the medical records
generated by the Basque Health Hospital Sys-
tem. As a starting point, a set of manually
coded medical records were collected in order
to code new medical records on the basis of
this set of positive samples. Since the texts
are written in natural language by doctors, the
same Diagnostic Term might show alternative
forms. Hence, trying to code a new medical
record by exact matching the samples in the
set is not always feasible due to sparsity of
data. In an attempt to increase the coverage
of the data, our work centered on applying a
set of finite-state transducers that helped the
matching process between the positive sam-
ples and a set of new entries. That is, these
transducers allowed not only exact matching
but also approximate matching. While there
are related works in languages such as En-
glish, this work presents the first results on au-
tomatic assignment of disease codes to medi-
cal records written in Spanish.

1 Introduction

During the last years an exponential increase in
the number of electronic documents in the medi-
cal domain has occurred. The automatic process-
ing of these documents allows to retrieve informa-
tion, helping the health professionals in their work.
There are different sort of valuable data that help to
exploit medical information. Our framework lays
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on the classification of Medical Records (MRs) ac-
cording to a standard. In our context, the MRs pro-
duced in a hospital have to be classified with re-
spect to the World Health Organization’s 9th Revi-
sion of the International Classification of Diseases'
(ICD-9). ICD-9 is designed for the classification of
morbidity and mortality information and for the in-
dexing of hospital records by disease and procedure.
The already classified MRs are stored in a database
that serves for further classification purposes. Each
MR consists of two pieces of information:

Diagnostic Terms (DTs): one or more terms that
describe the diseases corresponding to the MR.

Body-text: a description of the patient’s details,
antecedents, symptoms, adverse effects, meth-
ods of administration of medicines etc.

Even though the DT's are within a limited domain,
their description is not subject to a standard. Doc-
tors express the DTs in natural language with their
own style and different degrees of precision. Usu-
ally, a given concept might be expressed by alterna-
tive DT's with variations due to modifiers, abbrevia-
tions, acronyms, dates, names, misspellings or style.
This is a typical problem that arises in natural lan-
guage processing due to the fact that doctors focus
on the patients and not so much on the writing of the
MR. On account of this, there is ample variability in
the presentation of the DTs. Consequently, it is not
a straightforward task to get the corresponding ICD-
codes. That is, the task is by far more complex than
a standard dictionary lookup.

"http://www.cdc.gov/nchs/icd/icd9.htm
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The Basque Health Hospital System is concerned
with the automatization of this ICD-code assign-
ment task. So far, the hospital processes the daily
produced documents in the following sequence:

1. Automatic: exact match of the DTs in a set of
manually coded samples.

2. Semi-automatic: through semantic match,
ranking the DTs by means of machine-learning
techniques. This stage requires that experts se-
lect amongst the ranked choices.

3. Manual: the documents that were not matched
in the previous two stages are examined by pro-
fessional coders assigning the codes manually.

The goal of this paper is to bypass the variability
associated to natural language descriptions in an at-
tempt to maximize the proportion of automatically
assigned codes, as the Hospital System aims to ex-
pand the use of the automatic codification of MRs
to more hospitals. According to experts, even an in-
crease of 1% in exact match would represent a sig-
nificant improvement allowing to gain time and re-
sources.

Related work can be found in the literature. For
instance, Pestian et al. (2007) reported on a shared
task involving the assignment of ICD-codes to radi-
ology reports written in English from a reduced set
of 45 codes. In general it implied the examination of
the full MR (including body-text). In our case, the
number of ICD-codes is above 1,000, although we
restrict ourselves to exact and approximate match
over the diagnoses.

Farkas and Szarvas (2008) used machine learning
for the automatic assignment of ICD-9 codes. Their
results showed that hand-crafted systems could be
reproduced by replacing several laborious steps in
their construction with machine learning models.

Tsuruoka et al. (2008) presented a system that
tried to normalize different variants of the terms con-
tained in a medical dictionary, automatically getting
normalizing rules for genes, proteins, chemicals and
diseases in English.

The contribution of this work is: 1) to collect
manually coded MRs in Spanish; ii) to approximate
transduction with finite-state (FS) models for auto-
matic MR coding and, iii) to assess the performance
of the proposed FS transduction approaches.
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2 Approximate transduction

As it was previously mentioned, there are variations
regarding the DT descriptions due to style, miss-
spells, etc. Table 1 shows several pairs of DT and
ICD-codes within the collected samples that illus-
trate some of those variations.

DT ICD
1 | Adenocarcinoma de prostata 185
2 | Adenocarcinomas prostata. 185
3 | Ca. prostata 185
4 | CANCER DE PROSTATA 185
5 | adenocarcinoma de pulmon estadio IV | 1629
6 | CA pulmon estadio 4 1629
7 | ADENOCARCINOMA PANCREAS 1579

Table 1: Examples of DTs and their ICD-codes.

There are differences in the use of uppercase/lower
case; omissions of accents; use of both standard and
non-standard abbreviations (e.g. ca. for both cdncer
and adenocarcinoma); punctuation marks (inciden-
tal use of full-stop as commas, etc.); omission of
prepositions (see rows 1 and 2); equivalence be-
tween Roman and Arabic numerals (rows 5 and 6).
Due to these variations, our problem can be defined
as an approximate lookup in a dictionary.

2.1 Finite-state models

Foma toolkit was used to build the FS machines and
code the evaluation sets. Foma (Hulden, 2009) is
a freely available? toolkit that allows to both build
and parse FS automata and transducers. Foma of-
fers a versatile layout that supports imports/exports
from/to other tools such as: Xerox XFST (Beesley
and Karttunen, 2003), AT&T (Mehryar Mohri
and Riley, 2003), OpenFST (Riley et al., 2009).
There are, as well, outstanding alternatives such as
HFST (Lindén et al., 2010). Refer to (Yli-Jyrd et al.,
20006) for a thorough inventory on FS resources.

The FS models in Figure 1 perform the conver-
sions necessary to carry out a soft match between
the dictionary entries and their variants.

e First, we define the transducer Accents that
takes into account the correspondences be-
tween standard letters and their versions using
accent text marks.

http://code.google.com/p/foma



define Accents [a:dle:é|i:i]o:dluzul...];

define Case [a:A|b:B|c:C|d:D|e:E|f:F|...];

define Spaces [..] (=>) ™ " || [.+#. [ I

define Punctuation ["."|"-="|"™ "], " "-"|" "],

define Plurals [..] -> ([sles]) || - [.#. [ L

define PluralsI [sles] (=>) "" || _ [.#. [ B N

define Preps [..] (=>) [de |del |con |por ] || " "

define Disease [enf|enf.|enfermedad] : [enf|enf. |enfermedad];

define AltCa [tumor|ca|ca. |carcinoma|adenocarcinoma|cancer];

define TagNormCa AltCa:AltCa;

define AltIzqg [izquierdo|izquierdal|izqglizqg.|izgda|izgda. |
izgdol|izgdo.|izdalizda. |izdo|izdo.];

define TagNormIzg AltIzqg:AltIzqg;

Figure 1: A simplified version in Foma source code of the regular expressions and transducers used to
bypass several sources of distortion within the DTs in order to parse variations of unseen input DTs.

e The expression Case matches uppercase and
lowercase versions of the DTs.

There is a set of transducers (Spaces,
Punctuation, Plurals and PluralsI)
that deal with the addition or deletion of spaces
and separators (as full-stop, comma, and hy-
phen) between words or at the end of the DT.

Prepositions. Many DTs can be differen-
tiated by the use or absence of prepositions, al-
though they correspond to the same ICD-code.
For that reason, we designed a transducer that
inserts or deletes the prepositions from a re-
duced set that were identified by inspection of
the training set. In this way, expressions as
”Adenocarcinoma prostata” and “Adenocarci-
noma de prostata” can be mapped to each other.

Tag Normalization of synonyms, vari-
ants and abbreviations. The examination of the
DTs in the training set revealed that there were
several terms used indistinctly, including syn-
onyms and different kinds of variants (mascu-
line and feminine) and abbreviations. For ex-
ample, the words adenocarcinoma, adenoca.,
carcinoma, ca, ca. and cancer serve to name
the same disease. There are also multiple vari-
ants of left/right, indicating the location of an
illness, that do not affect the assignment of the
ICD-code (e.g. izquierdo, izq., izda.).

Finally, all the FS transducers were composed
into a single machine that served to overcome all the
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sources of distortion together.

3 Experimental results

To begin with, coded MRs produced in the hospi-
tal throughout 12 months were collected summing
up a total of 8,020 MRs as described in Table 2.
Note that there are ambiguities in our data-set since
there are 3,313 different DTs that have resulted in
3,407 (DT, ICD-code) different pairs (as shown in
Table 2). That is, the same DT was not always as-
signed the same ICD-code.

DT [ ICD-code
entries 8,020
different entries 3,407
different forms 3313 [ 1,011

Table 2: The data-set of (DT, ICD-code) pairs.

Next, the data-set was shuffled and divided into 3
disjoint sets for training, development and test pur-
poses as shown in Table 3.

train | dev test
entries 6,020 | 1,000 | 1,000
different entries | 2,825 | 734 728

Table 3: The data-set shuffled and divided into 3 sets

Using the set of mappings derived from the train-
ing set we performed the experiments on the devel-
opment set. After several rounds of tuning the sys-
tem, the resulting system was applied to the test set.



PERCENTAGE OF UNCLASSIFIED DTs
TRAIN EVAL-SET | exact-match | + case-ins. | + punct. | + plurals | +preps. | + tag-norm.
train dev 30.6 27.0 25.2 24.4 239 23.2
train test 29.8 26.7 25.1 24.8 24.3 23.2
train+dev | test 27.7 24.5 23.0 229 22.5 21.4

Table 4: Performance of different FS machines in terms of the percentage of unclassified entries. All the

classified entries were correctly classified, yielding, as a result, a precision of 100%.

Given a DT, the goal is to find its corresponding
ICD-code despite the variations. Different FS ap-
proaches (described in Section 2.1) were proposed
to bypass particular sources of noise in the DT. Their
performance was assessed by means of the percent-
age of unclassified DTs, as summarized in Table 4.
Note that the lower the number of unclassified DTs
the better the performance. In each of the three rows
of Table 4 the results of different experimental se-
tups are shown: in the first two rows the training set
was used to build the models and either the devel-
opment or the test set was evaluated in their turn;
in the third row, both the training and the devel-
opment sets were used to build the model and the
test set was evaluated. The impact of adding pro-
gressively the FS machines built to tackle particular
sources of noise is shown by columns. Thus, the re-
sults of the last column represent the performance
of the transducer allowing exact-match search to-
gether with case-insensitive search, bypassing punc-
tuation marks, allowing plurals, bypassing preposi-
tions and allowing tag-normalization. The compo-
sition of each transducer outperforms the previous
result, yielding an improvement on the test of 6 ab-
solute points over the exact-match baseline, from
27.7% to 21.4%. As it can be derived from the
first column of Table 4 the test set contributed to the
training+development set with %27.7 of new DTs.

Overall, the FSMs progressively improved the re-
sults for the three series of experiments carried out
in more than 6%. As a result, less and less DT's are
left unclassified. In other words, the FS machines
tackling different sources of errors contribute to as-
sign ICD-codes to previously unassigned DTs.

A manual inspection over the results associated
to the evaluation of the development set (focus on
the first row of Table 4) showed that all the DTs
were correctly classified according to the training
data. Overall, the resulting transducer was unable
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to classify 232 DTs out of 1,000 (see last column
in first row). Among the unclassified DTs, 10 out
of 232 were due to misspellings: e.g. cic atriz
(instead of cicatriz), desprendimineot (instead of
desprendimiento). In fact, spelling correction re-
ported improvements in related tasks (Patrick et al.,
2010). The remaining DTs showed wider variations
in their forms, as unexpected degree of specificity
(e.g. named entities), spurious dates or numbers.

4 Conclusions

Medical records in Spanish were collected yielding
a data set of 8,020 DT and ICD-code pairs. While
there are a number of references dealing with En-
glish medical records, there are few for Spanish.
The goal of this work was to build a system that
given a DT it would find its corresponding ICD-
code as in a standard key-value dictionary. Yet, the
DTs are far from being standard since they contain
a number of variations. We proposed the use of sev-
eral FS models to bypass different variants and al-
low to provide ICD-codes even when the exact DT
was not found. Each source of variations was tack-
led with a specific transducer based on handwritten
rules. The composition of each machine improved
the performance of the system gradually, leading to
an improvement up to 6% in accuracy, from 27.7%
unclassified DTs with the exact-match baseline to
21.4% with the tag-normalization transducer.
Future work will focus on the unclassified DTs.
Together with FS models, other strategies shall be
explored. Machine-learning strategies in the field of
information retrieval might help to make the most of
the piece of information that was here discarded (i.e.
the body-text). All in all, regardless of the approach,
the command in this MR classification context is to
get an accuracy of 100%, possibly through the inter-
active inference framework (Toselli et al., 2011).
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