
Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 50–54,
Donostia–San Sebastián, July 23–25, 2012. c©2012 Association for Computational Linguistics

Kleene, a Free and Open-Source Language
for Finite-State Programming

Kenneth R. Beesley
SAP Labs, LLC
P.O. Box 540475

North Salt Lake, UT 84054
USA

ken.beesley@sap.com

Abstract

Kleene is a high-level programming language,
based on the OpenFst library, for constructing
and manipulating finite-state acceptors and
transducers. Users can program using reg-
ular expressions, alternation-rule syntax and
right-linear phrase-structure grammars; and
Kleene provides variables, lists, functions and
familiar program-control syntax. Kleene has
been approved by SAP AG for release as free,
open-source code under the Apache License,
Version 2.0, and will be available by Au-
gust 2012 for downloading from http://
www.kleene-lang.org. The design, im-
plementation, development status and future
plans for the language are discussed.

1 Introduction

Kleene1 is a finite-state programming language in
the tradition of the AT&T Lextools (Roark and
Sproat, 2007),2 the SFST-PL language (Schmid,
2005),3 the Xerox/PARC finite-state toolkit (Beesley
and Karttunen, 2003)4 and FOMA (Huldén, 2009b),5

all of which provide higher-level programming for-
malisms built on top of low-level finite-state li-
braries. Kleene itself is built on the OpenFst library

1Kleene is named after American mathematician Stephen
Cole Kleene (1909–1994), who investigated the properties of
regular sets and invented the metalanguage of regular expres-
sions.

2http://www.research.att.com/˜alb/
lextools/

3http://www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/SFST.html

4http://www.fsmbook.com
5http://code.google.com/p/foma/

(Allauzen et al., 2007),6 developed by Google Labs
and NYU’s Courant Institute.

The design and implementation of the lan-
guage were motivated by three main principles,
summarized as Syntax Matters, Licensing Matters
and Open Source Matters. As for the syntax,
Kleene allows programmers to specify weighted
or unweighted finite-state machines (FSMs)—
including acceptors that encode regular languages
and two-projection transducers that encode regu-
lar relations—using regular expressions, alternation-
rule syntax and right-linear phrase-structure gram-
mars. The regular-expression operators are bor-
rowed, as far as possible, from familiar Perl-like
and academic regular expressions, and the alterna-
tion rules are based on the “rewrite rules” made pop-
ular by Chomsky and Halle (Chomsky and Halle,
1968). Borrowing from general-purpose program-
ming languages, Kleene also provides variables, lists
and functions, plus nested code blocks and familiar
control structures such as if-else statements and
while loops.

As for the licensing, Kleene, like the OpenFst li-
brary, is released under the Apache License, Version
2.0, and its other dependencies are also released un-
der this and similar permissive licenses that allow
commercial usage. In contrast, many notable finite-
state implementations, released under the GPL and
similar licenses, are restricted to academic and other
non-commercial use. The Kleene code is also open-
source, allowing users to examine, correct, augment
and even adopt the code if the project should ever be
abandoned by its original maintainer(s).

6http://www.openfst.org

50



It is hoped that Kleene will provide an attractive
development environment for experts and students.
Pre-edited Kleene scripts can be run from the com-
mand line, but a graphical user interface is also pro-
vided for interactive learning, programming, testing
and drawing of FSMs.

Like comparable implementations of finite-state
machines, Kleene can be used to implement a vari-
ety of useful applications, including spell-checking
and -correction, phonetic modeling, morphological
analysis and generation, and various kinds of pat-
tern matching. The paper continues with a brief de-
scription the Kleene language, the current state of
development, and plans for the future.

2 Implementation

The Java-language Kleene parser, implemented with
JavaCC and JJTree (Copeland, 2007),7 is Unicode-
capable and portable. Successfully parsed state-
ments are reduced to abstract syntax trees (ASTs),
which are interpreted by calling C++ functions in the
OpenFst library via the Java Native Interface (JNI).

3 Kleene Syntax

3.1 Regular Expressions

Basic assignment statements have a regular expres-
sion on the right-hand side, as shown in Table 1. As
in Perl regular expressions, simple alphabetic char-
acters are literal, and concatenation is indicated by
juxtaposition, with no overt operator. Parentheses
can be used to group expressions. The postfixed *
(the “Kleene star”), + (the “Kleene plus”), and ? de-
note zero-or-more, one-or-more, and optionality, re-
spectively. Square-bracketed expressions have their
own internal syntax to denote character sets, includ-
ing character ranges such as [A-Z]. The union op-
erator is |. Basic regular operations missing from
Perl regular expressions include composition (◦ or
_o_), crossproduct (:), language intersection (&),
language negation (∼) and language subtraction (-).
Weights are indicated inside angle brackets, e.g.
<0.1>.

Special characters can be literalized with a pre-
ceding backslash or inside double quotes, e.g. \* or
"*" denotes a literal asterisk rather than the Kleene

7https://javacc.dev.java.net

plus. To improve the readability of expressions,
spaces are not significant, unless they appear inside
square brackets or are explicitly literalized inside
double quotes or with a preceding backslash.

In a language like Kleene where alphabetic sym-
bols are literal, and the expression dog denotes three
literal symbols, d, o and g, concatenated together,
there must be a way to distinguish variable names
from simple concatenations. The Kleene solution is
to prefix variable names that are bound to FSM val-
ues with a dollar-sign sigil, e.g. $myvar. Once
defined, a variable name can be used inside subse-
quent regular expressions, as in the following ex-
ample, which models a fragment of Esperanto verb
morphology.

$vroot = don | dir | pens | ir ;
// "give", "say", "think", "go"
$aspect = ad ;
// optional repeated aspect
$vend = as | is | os | us | u | i ;
// pres, past, fut, cond, subj, inf
$verbs = $vroot $aspect? $vend ;
// use of pre-defined variables

Similarly, names of functions that return FSMs are
distinguished with the $ˆ sigil. To denote less com-
mon operations, rather than inventing and prolifer-
ating new and arguably cryptic regular-expression
operators, Kleene provides a set of predefined func-
tions including

$ˆreverse(regexp)
$ˆinvert(regexp)
$ˆinputProj(regexp)
$ˆoutputProj(regexp)
$ˆcontains(regexp)
$ˆignore(regexp, regexp)
$ˆcopy(regexp)

Users can also define their own functions, and func-
tion calls are regular expressions that can appear as
operands inside larger regular expressions.

3.2 Alternation-Rule Syntax

Kleene provides a variety of alternation-rule types,
comparable to Xerox/PARC Replace Rules (Beesley
and Karttunen, 2003, pp. 130–82), but implemented
using algorithms by Måns Huldén (Huldén, 2009a).

51



$var = dog ;
$var = d o g ; // equivalent to dog
$var = ˜( a+ b* c? ) ;
$var = \˜ \+ \* \? ; // literalized special characters
$var = "˜+*?"; // literalized characters inside double quotes
$var = "dog" ; // unnecessary literalization, equivalent to dog
$myvar = (dog | cat | horse) s? ;
$yourvar = [A-Za-z] [A-Za-z0-9]* ;
$hisvar = ([A-Za-z]-[aeiouAEIOU])+ ;
$hervar = (bird|cow|elephant|pig) & (pig|ant|bird) ;
$ourvar = (dog):(chien) ◦ (chien):(Hund) ;
$theirvar = [a-z]+ ( a <0.91629> | b <0.1> ) ; // weights in brackets

Table 1: Kleene Regular-Expression Assignment Examples.

input-expression -> output-expression / left-context _ right-context

Table 2: The Simplest Kleene Alternation-Rule Template.

The simplest rules have the template shown in Ta-
ble 2, and are interpreted into transducers that map
the input to the output in the specified context. Such
rules, which cannot be reviewed in detail here, are
commonly used to model phonetic and orthographi-
cal alternations.

3.3 Right-Linear Phrase Structure Grammars

While regular expressions are formally capable of
describing any regular language or regular relation,
some linguistic phenomena—especially productive
morphological compounding and derivation—can
be awkward to describe this way. Kleene therefore
provides right-linear phrase-structure grammars that
are similar in semantics, if not in syntax, to the Xe-
rox/PARC lexc language (Beesley and Karttunen,
2003, pp. 203–78).

A Kleene phrase-structure grammar is defined as
a set of productions, each assigned to a variable with
a $> sigil. Productions may include right-linear ref-
erences to themselves or to other productions, which
might not yet be defined. The productions are parsed
immediately but are not evaluated until the entire
grammar is built into an FSM via a call to the built-in
function $ˆstart(), which takes one production
variable as its argument and treats it as the starting
production of the whole grammar. The following
example models a fragment of Esperanto noun mor-

photactics, including noun-root compounding.

$>Root = (kat | hund | elefant | dom)
( $>Root | $>AugDim ) ;

$>AugDim = ( eg | et )? $>Noun ;
$>Noun = o $>Plur ;
$>Plur = j? $>Case ;
$>Case = n? ;

$net = $ˆstart($>Root) ;

The syntax on the right-hand side of productions is
identical to the regular-expression syntax, but allow-
ing right-linear references to productions of the form
$>Name.

4 Kleene FSMs

Each Kleene finite-state machine consists of a stan-
dard OpenFst FSM, under the default Tropical
Semiring, wrapped with a Java object8 that stores
the private alphabet9 of each machine.

In Kleene, it is not necessary or possible to de-
clare the characters being used; characters appearing
in regular expressions, alternation rules and right-
linear phrase-structure grammars are stored auto-
matically as FSM arc labels using their Unicode

8Each Java object of the class Fst contains a long integer
field that stores a pointer to the OpenFst machine, which actu-
ally resides in OpenFst’s C++ memory space.

9The alphabet, sometimes known as the sigma, contains just
the symbols that appear explicitly in the labels of the FSM.

52



code point value, and this includes Unicode sup-
plementary characters. Programmer-defined multi-
character symbols, represented in the syntax with
surrounding single quotes, e.g. '+Noun' and
'+Verb', or, using another common convention,
'[Noun]' and '[Verb]', also need no declara-
tion and are automatically stored using code point
values taken from a Unicode Private Use Area.

The dot (.) denotes any character, and it translates
non-trivially into reserved arc labels that represent
OTHER (i.e. unknown) characters.10

5 Status

5.1 Currently Working

As of the date of writing, Kleene is an advanced beta
project offering the following:

• Compilation of regular expressions, right-
linear phrase-structure grammars, and several
alternation-rule variations into FSMs.

• Robust handling of Unicode, including sup-
plementary characters, plus support for user-
defined multi-character symbols.

• Variables and maintenance of symbol tables in
a frame-based environment.

• Pre-defined and user-defined functions.

• Handling of lists of FSMs, iteration over lists,
and functions that handle and return lists.

• A graphical user interface, including tools to
draw FSMs and test them manually.

• File I/O of FSMs in an XML format.

• Interpretation of arithmetic expressions,
arithmetic variables and functions, including
boolean functions; and if-then statements
and while loops that use boolean operators
and functions.

10The treatment of FSM-specific alphabets and the handling
of OTHER characters is modeled on the Xerox/PARC implemen-
tation (Beesley and Karttunen, 2003, pp. 56–60).

5.2 Future Work
The work remaining to be done includes:

• Completion of the implementation of
alternation-rule variations.

• Writing of runtime code and APIs to apply
FSMs to input and return output.

• Conversion of FSMs into stand-alone exe-
cutable code, initially in Java and C++.

• Expansion to handle semirings other than the
default Tropical Semiring of OpenFst.

• Testing in non-trivial applications to determine
memory usage and performance.

6 History and Licensing

Kleene was begun informally in late 2006, became
part of a company project in 2008, and was under
development until early 2011, when the project was
canceled. On 4 May 2012, SAP AG released Kleene
as free, open-source code under the Apache License,
Version 2.0.11

The Kleene source code will be repackaged ac-
cording to Apache standards and made available for
download by August of 2012 at http://www.
kleene-lang.org. A user manual, currently
over 100 pages, and an engineering manual will also
be released. Precompiled versions will be provided
for Linux, OS X and, if possible, Windows.

Acknowledgments

Sincere thanks are due to the OpenFst team and
all who made that library available. A special per-
sonal thanks goes to Måns Huldén, who graciously
released his algorithms for interpreting alternation
rules and language-restriction expressions, and who
went to great lengths to help me understand and re-
implement them. I also acknowledge my SAP Labs
colleagues Paola Nieddu and Phil Sours, who con-
tributed to the design and implementation of Kleene,
and my supervisor Michael Wiesner, who supported
the open-source release. Finally, I thank Lauri Kart-
tunen, who introduced me to finite-state linguistics
and has always been a good friend and mentor.

11http://www.apache.org/licenses/
LICENSE-2.0.html

53



References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-

ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Proceedings of the Ninth International
Conference on Implementation and Application of Au-
tomata (CIAA 2007), volume 4783 of Lecture Notes in
Computer Science, pages 11–23. Springer.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Palo Alto, CA.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper and Row, New York.

Tom Copeland. 2007. Generating Parsers with JavaCC.
Centennial Books, Alexandria, VA.

Måns Huldén. 2009a. Finite-State Machine Construc-
tion Methods and Algorithms for Phonology and Mor-
phology. Ph.D. thesis, The University of Arizona,
Tucson, AZ.

Måns Huldén. 2009b. Foma: a finite-state compiler and
library. In Proceedings of the EACL 2009 Demonstra-
tions Session, pages 29–32, Athens, Greece.

Brian Roark and Richard Sproat. 2007. Computa-
tional Approaches to Morphology and Syntax. Oxford
Surveys in Syntax & Morphology. Oxford University
Press, Oxford.

Helmut Schmid. 2005. A programming language for
finite state transducers. In FSMNLP’05, Helskinki.

54


