Urdu — Roman Transliteration via Finite State Transducers

Tina Bogel
University of Konstanz
Konstanz, Germany
Tina.Boegel@uni-konstanz.de

Abstract

This paper introduces a two-way Urdu-
Roman transliterator based solely on a non-
probabilistic finite state transducer that solves
the encountered scriptural issues via a partic-
ular architectural design in combination with
a set of restrictions. In order to deal with the
enormous amount of overgenerations caused
by inherent properties of the Urdu script, the
transliterator depends on a set of phonologi-
cal and orthographic restrictions and a word
list; additionally, a default component is im-
plemented to allow for unknown entities to be
transliterated, thus ensuring a large degree of
flexibility in addition to robustness.

1 Introduction

This paper introduces a way of transliterating Urdu
and Roman via a non-probabilistic finite state trans-
ducer (TURF), thus allowing for easier machine
processing.! The TUREF transliterator was originally
designed for a grammar of Hindi/Urdu (Bogel et al.,
2009), based on the grammar development platform
XLE (Crouch et al., 2011). This grammar is writ-
ten in Roman script to serve as a bridge/pivot lan-
guage between the different scripts used by Urdu
and Hindi. It is in principle able to parse input from
both Hindi and Urdu and can generate output for
both of these language varieties. In order to achieve
this goal, transliterators converting the scripts of
Urdu and Hindi, respectively, into the common Ro-
man representation are of great importance.

'T would like to thank Tafseer Ahmed and Miriam Butt
for their help with the content of this paper. This research
was part of the Urdu ParGram project funded by the Deutsche
Forschungsgemeinschaft.

25

The TURF system presented in this paper is con-
cerned with the Urdu—Roman transliteration. It
deals with the Urdu-specific orthographic issues by
integrating certain restrictional components into the
finite state transducer to cut down on overgener-
ation, while at the same time employing an ar-
chitectural design that allows for a large degree
of flexibility. The transliterator is based solely
on a non-probabilistic finite state transducer im-
plemented with the Xerox finite state technology
(XFsT) (Beesley and Karttunen, 2003), a robust and
easy-to-use finite state tool.

This paper is organized as follows: In section 2,
one of the (many) orthographic issues of Urdu is in-
troduced. Section 3 contains a short review of ear-
lier approaches. Section 4 gives a brief introduction
into the transducer and the set of restrictions used to
cut down on overgeneration. Following this is an
account of the architectural design of the translit-
eration process (section 5). The last two sections
provide a first evaluation of the TURF system and a
final conclusion.

2 Urdu script issues

Urdu is an Indo-Aryan language spoken mainly in
Pakistan and India. It is written in a version of the
Persian alphabet and includes a substantial amount
of Persian and Arabic vocabulary. The direction of
the script is from right to left and the shapes of most
characters are context sensitive; i.e., depending on
the position within the word, a character assumes a
certain form.

Urdu has a set of diacritical marks which ap-
pear above or below a character defining a partic-
ular vowel, its absence or compound forms. In total,
there are 15 of these diacritics (Malik, 2006, 13);

Proceedings of the 10th International Workshop on Finite State Methods and Natural Language Processing, pages 25-29,
Donostia—San Sebastidn, July 23-25, 2012. (©2012 Association for Computational Linguistics

the four most frequent ones are shown in Table 1 in

combination with the letter o ‘b’.

o +diacritic | Name | Roman transliteration
< Zabar ba
- Zer bi
g;’ Pesh bu
< Tashdid bb

Table 1: The four most frequently used diacritics

When transliterating from the Urdu script to another
script, these diacritics present a huge problem be-
cause in standard Urdu texts, the diacritics are rarely
used. Thus, for example, we generally are only con-

fronted with the letter o ‘b’ and have to guess at
the pronunciation that was intended. Take, e.g., the

following example, where the word S kuttA ‘dog’
is to be transliterated. Without diacritics, the word
consists of three letters: k, t and A. If in the case of
transliteration, the system takes a guess at possible
short vowels and geminated consonants, the output
contains multiple possibilities ((1)).

(D fst[1]:
kuttd
Kuth,
kitth
k1th
katth
kath

up La$

In addition to the correct transliteration kuttA, the
transliterator proposes five other possibilities for the
missing diacritics. These examples show that this
property of the Urdu script makes it extremely dif-
ficult for any transliterator to correctly transliterate
undiacriticized input without the help of word lists.

3 Earlier approaches

Earlier approaches to Urdu transliteration almost
always have been concerned with the process of
transliterating Urdu to Hindi or Hindi to Urdu (see,
e.g., Lehal and Saini (2010) (Hindi — Urdu), Ma-
lik et al. (2009) (Urdu — Hindi), Malik et al.
(2010) (Urdu — Roman) or Ahmed (2009) (Roman
— Urdu). An exception is Malik (2006), who ex-
plored the general idea of using finite state transduc-
ers and an intermediate/pivot language to deal with

26

the issues of the scripts of Urdu and Hindi.

All of these approaches are highly dependent on
word lists due to the properties of the Urdu script and
the problems arising with the use of diacritics. Most
systems dealing with undiacriticized input are faced
with low accuracy rates: The original system of Ma-
lik (2006), e.g., drops from approximately 80% to
50% accuracy (cf. Malik et al. (2009, 178)) — others
have higher accuracy rates at the cost of being uni-
directional.

While Malik et al. (2009) have claimed that the
non-probabilistic finite state model is not able to
handle the orthographic issues of Urdu in a satisfy-
ing way, this paper shows that there are possibilities
for allowing a high accuracy of interpretation, even
if the input text does not include diacritics.

4 The TUREF Transliterator

The TUREF transliterator has been implemented as
a non-probabilistic finite state transducer compiled
with the lexc language (Lexicon Compiler), which is
explicitly designed to build finite state networks and
analyzers (Beesley and Karttunen, 2003, 203). The
resulting network is completely compatible with one
that was written with, e.g., regular expressions, but
has the advantage in that it is easily readable. The
transliteration scheme used here was developed by
Malik et al. (2010), following Glassman (1986).

As has been shown in section 1, Urdu transliter-
ation with simple character-to-character mapping is
not sufficient. A default integration of short vowels
and geminated consonants will, on the other hand,
cause significant overgeneration. In order to reduce
this overgeneration and to keep the transliterator as
efficient as possible, the current approach integrates
several layers of restrictions.

4.1 The word list

When dealing with Urdu transliteration it is not pos-
sible to not work with a word list in order to ex-
clude a large proportion of the overgenerated out-
put. In contrast to other approaches, which depend
on Hindi or Urdu wordlists, TURF works with a Ro-
man wordlist. This wordlist is derived from an XFST
finite state morphology (Bogel et al., 2007) indepen-
dently created as part of the Urdu ParGram devel-
opment effort for the Roman intermediate language
(Bogel et al., 2009).

4.2 Regular expression filters

The regular expression filters are based on knowl-
edge about the phonotactics of the language and are
a powerful tool for reducing the number of possi-
bilities proposed by the transliterator. As a concrete
example, consider the filter in (2).

@ [~[yAlalifulll

In Urdu a combination of [y A short vowel] is not
allowed (~). A filter like in (2) can thus be used to
disallow any generations that match this sequence.

4.3 Flag diacritics

The XFST software also provides the user with a
method to store ‘memory’ within a finite state net-
work (cf. Beesley and Karttunen (2003, 339)).
These so-called flag diacritics enable the user to en-
force desired constraints within a network, keeping
the transducers relatively small and simple by re-
moving illegal paths and thus reducing the number
of possible analyses.

5 The overall TURF architecture

However, the finite state transducer should also be
able to deal with unknown items; thus, the con-
straints on transliteration should not be too restric-
tive, but should allow for a default transliteration as
well. Word lists in general have the drawback that a
matching of a finite state transducer output against a
word list will delete any entities not on the word list.
This means that a methodology needs to be found
to deal with unknown but legitimate words with-
out involving any further (non-finite state) software.
Figure 1 shows the general architecture to achieve
this goal. For illustrative purposes two words are

transliterated: LS kitAb ‘book’ and .S, which
transliterates to an unknown word k#, potentially
having the surface forms kut, kat or kit.

5.1 Step 1: Transliteration Part 1

The finite state transducer itself consists of a net-
work containing the Roman—Urdu character map-
ping with the possible paths regulated via flag dia-
critics. Apart from these regular mappings, the net-
work also contains a default Urdu and a default Ro-
man component where the respective characters are

27

simply matched against themselves (e.g. kik, rir).
On top of this network, the regular expression filters
provide further restrictions for the output form.

Transliterator Default Urdu
1| (Urdu - Roman)
Default Roman
kitAib l l

Uscript+_, |8 U.-script+£.-s

kithub

k1ithb

kotthab kot
kattAib kit
kattAub kut

2 Roman Wordlist:

| Filter: [Uscript+ | +match] |

' '

kitAb+match U.Iscript+C.-5’
Uscript+ |

3 Urdu Wordlist: Delete Uscript+

| Filter: Delete tags |

' !

kitAb oS

Default Urdu
Filter: no +Uscript

Transliterator
(Urdu - Roman)

Default Roman

'

. kat
kitAb kit
kut

d

Figure 1: Transliteration of =S and S

The Urdu script default 1-1 mappings are marked
with a special identification tag ([+Uscript]) for
later processing purposes. Thus, an Urdu script
word will not only be transliterated into the corre-
sponding Roman script, but will also be ‘transliter-
ated’ into itself plus an identificational tag.

The output of the basic transliterator shows part
of the vast overgeneration caused by the underspec-
ified nature of the script, even though the restricting
filters and flags are compiled into this component.

5.2 Step 2: Word list matching and tag deletion

In step 2, the output is matched against a Roman
word list. In case there is a match, the respective
word is tagged [+match]. After this process, a

filter is applied, erasing all output forms that contain
neither a [+match] nora [Uscript+] tag. This

way we are left with two choices for the word S~
— one transliterated ‘matched’ form and one default
Urdu form — while the word S"is left with only the
default Urdu form.

5.3 Step 3: Distinguishing unknown and
overgenerated entities

The Urdu word list applied in step 3 is a translitera-
tion of the original Roman word list (4.1), which was
transliterated via the TURF system. Thus, the Urdu
word list is a mirror image of the Roman word list.
During this step, the Urdu script words are matched
against the Urdu word list, this time deleting all the
words that find a match. As was to be expected from
matching against a mirror word list of the original
Roman word list, all of the words that found a match
in the Roman word list will also find a match in the
Urdu word list, while all unknown entities fail to
match. As a result, any Urdu script version of an al-
ready correctly transliterated word is deleted, while
the Urdu script unknown entity is kept for further
processing — the system has now effectively sepa-
rated known from unknown entities.

In a further step, the tags of the remaining entities
are deleted, which leaves us with the correct translit-
eration of the known word kitAb and the unknown
Urdu script word &S~

5.4 Step 4: Transliteration Part 2

The remaining words are once again sent into the
finite state transducer of step 1. The Roman translit-
eration kitAb passes unhindered through the Default
Roman part. The Urdu word on the other hand is
transliterated to all possible forms (in this case three)
within the range of the restrictions applied by flags
and filters.

5.5 Step 5: Final adjustments

Up to now, the transliterator is only applicable to
single words. With a simple (recursive) regular ex-
pression it can be designed to apply to larger strings
containing more than one word.

The ouput can then be easily composed with a
standard tokenizer (e.g. Kaplan (2005)) to enable
smooth machine processing.

28

6 Evaluation

A first evaluation of the TURF transliterator with
unseen texts resulted in an accuracy of 86%, if the
input was not diacriticized. The accuracy rate for
undiacriticized text always depends on the size of
the word list. The word list used in this application
is currently being extended from formerly 20.000 to
40.000 words; thus, a significant improvement of the
accuracy rate can be expected within the next few
months.

If the optional inclusion of short vowels is re-
moved from the network, the accuracy rate for di-
acriticized input is close to 97%.

When transliterating from Roman to Urdu, the ac-
curacy rate is close to a 100%, iff the Roman script is
written according to the transliteration scheme pro-
posed by Malik et al. (2010).

Transliteration U—R U—R R—U
Input diacritics no diacritics

Diacritics opt. / compuls. optional

Accuracy 86% | 97% 86% ~ 100%

Table 2: Accuracy rates of the TURF transliterator

7 Conclusion

This paper has introduced a finite state transducer
for Urdu <+ Roman transliteration. Furthermore,
this paper has shown that it is possible for appli-
cations based only on non-probabilistic finite state
technology to return output with a high state-of-the-
art accuracy rate; as a consequence, the application
profits from the inherently fast and small nature of
finite state transducers.

While the transliteration from Roman to Urdu is
basically a simple character to character mapping,
the transliteration from Urdu to Roman causes a
substantial amount of overgeneration due to the
underspecified nature of the Urdu script. This was
solved by applying different layers of restrictions.

The specific architectural design enables TURF to
distinguish between unknown-to-the-word-list and
overgenerated items; thus, when matched against
a word list, unknown items are not deleted along
with the overgenerated items, but are transliterated
along with the known items. As a consequence,
a transliteration is always given, resulting in an
efficient, highly accurate and robust system.

References

Tafseer Ahmed. 2009. Roman to Urdu transliteration
using wordlist. In Proceedings of the Conference on
Language and Technology 2009 (CLT09), CRULP, La-
hore.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Stanford, CA.

Tina Bogel, Miriam Butt, Annette Hautli, and Sebastian
Sulger. 2007. Developing a finite-state morpholog-
ical analyzer for Urdu and Hindi. In T. Hanneforth
und K. M. Wiirzner, editor, Proceedings of the Sixth
International Workshop on Finite-State Methods and
Natural Language Processing, pages 86-96, Potsdam.
Potsdam University Press.

Tina Bogel, Miriam Butt, Annette Hautli, and Sebas-
tian Sulger. 2009. Urdu and the modular architec-
ture of ParGram. In Proceedings of the Conference
on Language and Technology 2009 (CLT09), CRULP,
Lahore.

Dick Crouch, Mary Dalrymple, Ron Kaplan,
Tracy King, John Maxwell, and Paula New-
man. 2011. XLE Documentation. Palo
Alto Research Center, Palo Alto, CA. URL:
http://www?2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html.

Eugene H. Glassman. 1986. Spoken Urdu. Nirali
Kitaben Publishing House, Lahore, 6 edition.

Ronald M. Kaplan. 2005. A method for tokenizing text.
In Festschrift in Honor of Kimmo Koskenniemi’s 60th
anniversary. CSLI Publications, Stanford, CA.

Gurpreet S. Lehal and Tejinder S. Saini. 2010. A
Hindi to Urdu transliteration system. In Proceedings
of ICON-2010: 8th International Conference on Nat-
ural Language Processing, Kharagpur.

Abbas Malik, Laurent Besacier, Christian Boitet, and
Pushpak Bhattacharyya. 2009. A hybrid model for
Urdu Hindi transliteration. In Proceedings of the 2009
Named Entities Workshop, ACL-IJCNLP, pages 177—
185, Suntec, Singapore.

Muhammad Kamran Malik, Tafseer Ahmed, Sebastian
Sulger, Tina Bogel, Atif Gulzar, Ghulam Raza, Sar-
mad Hussain, and Miriam Butt. 2010. Transliter-
ating Urdu for a Broad-Coverage Urdu/Hindi LFG
Grammar. In Proceedings of the Seventh Conference
on International Language Resources and Evaluation
(LREC 2010). European Language Resources Associ-
ation (ELRA).

Abbas Malik. 2006. Hindi Urdu machine transliteration
system. Master’s thesis, University of Paris.

29

