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ABSTRACT 
This paper describes our submission to the First Workshop on Reordering for Statistical 
Machine Translation. We have decided to build a reordering system based on tree-to-
string model, using only publicly available tools to accomplish this task. With the 
provided training data we have built a translation model using Moses toolkit, and then 
we applied a chart decoder, implemented in Moses, to reorder the sentences. Even 
though our submission only covered English-Farsi language pair, we believe that the 
approach itself should work regardless of the choice of the languages, so we have also 
carried out the experiments for English-Italian and English-Urdu. For these language 
pairs we have noticed a significant improvement over the baseline in BLEU, Kendall-Tau 
and Hamming metrics. A detailed description is given, so that everyone can reproduce 
our results. Also, some possible directions for further improvements are discussed. 
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1 Introduction 

As participants of the First Workshop on Reordering for SMT, we were required to build 
a system to reorder words in a source English sentence in such way, that it would match 
the order of words in a translation of that sentence into the target language (which could 
be Farsi, Urdu or Italian in our case). 
After receiving the training data, we have noticed many common patterns in the 
sentences. For example, Farsi turned out to have constituent word order of “subject-
object-verb” and noun order of (usually) “noun-modifier”, which is different from 
English “subject-verb-object” and “modifier-noun” respectively. Considering a very small 
amount of training data (5000 sentences), we have decided that making a lexical-only 
model would be unreasonable, but such amount can still be enough for building a 
reliable syntax-based model (Quirk and Corston-Oliver, 2006), so we have decided to 
build such model with rules being automatically extracted from the training corpus. 

2 Model training 

2.1 Model description 
We have used a model, often referred to as “tree-to-string” (Nguyen et al., 2008) to find 
the best reordering candidate. In this model some sequences of consecutive words 
(further referred to as word spans) are assigned syntax labels. These labels could either 
be syntax entities (like predicate) or part of speech tags. If the labels are induced by a 
syntax parse, they form a tree structure, i.e. if two labelled spans share common words, 
then one of them is enclosed inside the other one. 

For our purposes we can assume, that every word has its own label (i.e. part of speech 
tag). The model uses an assumption that we may assemble the reordering for the whole 
sentence from permutations of its syntax blocks (Hwa et al., 2002). More formally, we 
can describe this process using synchronous context-free grammar (further abbreviated 
as SCFG) (Chiang, 2007). Let’s say that each of the possible labels is matched by a class 
within the grammar. Then the rules describing expansions of non-terminals will define a 
reordering iff there is a perfect matching between symbols on the source side of the rule 
and the target side (i.e. matching symbols should strictly coincide). It should be noted, 
that such expansion can include both terminals (single words) and non-terminals (syntax 
classes). 

FIGURE 1 – EXAMPLES OF CORRECT AND INCORRECT SPAN LABELLING 
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2.2 Dropping words 
However, in the data that we have been provided with, some words from the source 
sentences may have been dropped and, thus, there were no words from the target 
sentences matching them. At this point, we have found two ways of adjusting the initial 
model to account for this peculiarity of the data. One possible approach is to remove 
some words after the reordering without changing the model itself. Another approach is 
to allow certain deletions inside the rules. Since we have had an “a priori” knowledge 
about the words that are to be dropped, we can enable the decoder to use this 
knowledge, so that the language model can estimate translation hypotheses become 
more precisely. We have assumed that only the syntax properties of dropped words 
matter for reordering of the rest of the sentence, so we have simply substituted these 
words with a special symbol that is guaranteed not to occur anywhere else in the data 
sets. The second approach has demonstrated significantly better performance on the 
development set, so we have decided not to include the results of the first one into our 
final submission. 

2.3 Data preparation 
The training set required some pre-processing for Moses to read it. We needed to convert 
the parse file into XML format accepted by Moses and also to provide the alignments 
between source and target sentences. The alignments have been derived directly from 
the data, whereas the XML was obtained from the parse escaping all special symbols and 
then applying the following substitution rules: 

[{class} <tree label=“{class}”> 

{class}] </tree> 

{word}_{pos} <tree label=“{pos}”> {word} </tree> 

TABLE 1 – SUBSTITUTION RULES FOR PROCESSING THE PARSE 

2.4 Training steps 
Moses training pipeline consists of nine steps: 

1. Prepare data 
2. Run GIZA++ 
3. Align words 
4. Get lexical translation table 
5. Extract phrases 
6. Score phrases 
7. Build lexicalized reordering model 
8. Build generation models 
9. Create configuration file 

In our case the data have been prepared separately and the alignments were given 
explicitly, so it was not required for us to run the first three steps. Also since we are 
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training a hierarchical model, step 7 (lexicalized reordering model) is not applicable, and 
since we know exact translations of each word, it isn’t reasonable to build a generation 
model either. Therefore we are only left with steps 4-6 and 9. It is worth noting, though, 
that step 4 can be done separately as well, because single words are always left 
unchanged during the translation process (except for special symbol standing for 
dropped words), and step 9 isn’t really configurable, so further we will only focus on 
extraction and scoring of the rules. 

2.4.1 Extraction 
Extraction has been carried out using an extract-rules tool in Moses. Since default 
parameters in this tool are tuned assuming phrase-based translation, we have needed 
some adjustments. Here is the list of used non-default parameters: 

Parameter Value Comments 

GlueGrammar N/A 
This parameter enables creation of rules to glue any two spans 
together without changing their order. When no rules can be 
applied, this one will always guarantee that at least one 
translation will be produced. 

MinHoleSource 1 Default value is 2, which is good for hierarchical models, but too 
strict for syntax models. 

MaxSymbolsSource 4 Greater values have proved to slow down the process of rule 
extraction and scoring too much. 

MaxSpan 999 This means that we can extract rules spanned over the whole 
sentence. 

MaxNonTerm 4 Default is 2, and we actually want to generate rules where all 
symbols could be non-terminals. 

NonTermConsecSource N/A This allows two non-terminals on source side to appear adjacent 
to each other. 

MinWords 0 
This specifies the minimum number of terminals. Reasons for 
selection of this value are the same as in MaxNonTerm 
parameter. 

TABLE 2 – EXTRACT TOOL CONFIGURATION 
Here are some examples of the extracted rules: 

Source phrase Target phrase Alignment 

[ADJP][X] [NN][X] [NP] [NN][X] [ADJP][X] [X] 1-0 0-1 

having political [NNS][X] [VP] having [NNS][X] political [X] 0-0 2-1 1-2 

$ [CD][X] billion [QP] [CD][X] billion $ [X] 1-0 2-1 0-2 

TABLE 3 – EXAMPLES OF EXTRACTED RULES 
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2.4.2 Scoring  
Rules are then assigned weights using score tool. In order to be able to restore the 
alignment of the target phrase into the source phrase, we have specified 
“WordAlignment” flag (otherwise it would only print alignments of the non-terminals). 
Also we have decided to utilize Good-Turing frequency estimation (Good, 1953) due to 
low amount of available parallel sentences and the resulting data sparseness. 

2.4.3 Language model 
We have decided to build a simple 3-gram language model based on the target sentences 
as a corpus using IRSTLM toolkit (Federico, Bertoldi and Cettolo, 2008). The necessary 
steps exactly follow Moses tutorial on building a baseline system (Koehn, 2012). Briefly 
speaking, we have added sentence boundary symbols and have counted n-grams with 
Kneser-Ney smoothing (Chen and Goodman, 1996). 

3 Decoding 

Decoding has been performed using a chart decoder, implemented in Moses. Data 
preparation has involved building an XML representation of the parse tree, as in section 
2.3. 

3.1 Printing alignments 
At the time we started carrying out the task, alignments output didn’t work in the chart 
decoder: even though the corresponding option could be specified, the decoder would 
fail at loading time if word alignments were present in the rule table. It turned out that 
the decoder had relied heavily on the alignments being listed for non-terminals only, so 
the source code needed some enhancements to lift this restriction. 
Then in order to print the alignments for a given translation we have recursively built 
alignments for each constituting hypothesis. Also we have needed to pay some attention 
to the unknown words, because the alignments would be explicitly set for them, which is 
always “0-0” assuming that words in the sentences are zero-indexed. 
Since the option to print the alignments in chart decoder was highly demanded by the 
community, these changes have been integrated into the public Moses repository. 

3.2 Decoding parameters 
Since we have needed to generate the best possible translations, we have decided to lift 
most of the constraints in the decoder. Also we have manually added an entry into the 
rules table in order to delete the words that shouldn’t be present in the target sentence 
(if we are substituting all these words with a special symbol as described in section 2.1). 
The parameters that we have changed from the default configuration, generated by 
training pipeline, are listed in Table 4. 
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Parameter name Value Comment 

ttable-limit 0 Lifts the constraint on number of possible load translations per 
source phrase in rules table. 

cube-pruning-
pop-limit 

100000 Number of top hypotheses to consider for each span. 

max-chart-
span 

1000, 1000 
Allows each rule to span across literally the whole sentence, thus 
enabling the decoder to move words from the beginning to the 
very end of even a long sentence. 

TABLE 4 – DECODER CONFIGURATION  

4 Tuning 

4.1 Technics 
We have performed the tuning with the tools coming with Moses: MERT (Och, 2003) and 
MIRA (Venkatapathy and Joshi, 2007), both using only BLEU score for optimization. The 
tuned weights have corresponded to one feature in the language model and five features 
in the translation model (descriptions of each specific feature in the translation model 
can be found in Moses tutorial). It’s worth noting, that the default value of using 100 
best translations on each step hasn’t been very efficient, because Moses has tended to 
generate 100 absolutely equal translations of one sentence using different rules and, for 
some reason, hasn’t merged them while decoding, so we have used a limit of 2000. First, 
we have trained a model with removal of unneeded words after the translation process, 
and tuned it with MERT. However, when we decided to remove the words during 
decoding, all suggested metrics (which will be discussed further) have shown an increase 
of reordering quality on the development set even without any further tuning. 
The tuning for the second model was not converging when MERT was used (actually, it 
seemed to be oscillating heavily), so we have utilized MIRA, which has recently been 
integrated into Moses. The changes occurring at every iteration have become less 
dramatic than with MERT, but on the other side number of iterations, required to get 
some stable result, has increased. The quality actually increased, but only by a small 
margin. 

4.2 Analysis 
Three of the features in translation model have been assigned negative weights. Since 
this is a rather strange event, we have tried to provide some explanation for it. One of 
those features corresponds to glue rules. Since glue rules actually have positive feature 
scores, it’s pretty reasonable for them to be assigned negative weights, since their usage 
during translation results in unchanged order regardless of other rules. Another negative 
weight corresponds to phrase penalty. This means that decoder should attempt to use as 
few rules as possible, like in phrase-based translation, where using longer phrases would 
provide more reliable translation. The third weight is inverse phrase translation 
probability (conditional probability of source phrase provided the target phrase).  While 
this could seem really strange for phrase-based translation, in syntax-based translation 
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models having negative weight assigned to inverse translation probability results in 
taking additional syntax-based language model as a supplementary feature: 

      ( | )       ( | )
      ( | )

      ( )
      ( | )

      (
   ( )

   ( )
)

  

    ( )
   

In this formula     stands for probabilities estimated by translation model, while     
stands for language model approximation.   is the sentence with Farsi word order, and   
is the source English sentence. Note that this differs from the notation commonly used in 
other statistical machine translation works, where   would be source language and   
would be target language. 
In our case    is negative, but    and    are positive. Moreover,       is positive too. 
Notice that    ( ) is can be treated as another language model, which is syntax-aware. 
Therefore, we can come to a conclusion, that inverse translation probability actually 
would be assigned a positive weight if our language model was syntax-based. Also, 
cumulative weight of the language model is equal to      , which in our case is 
approximately     times higher than cumulative weight of the translation model – 
     . Thus, we can conjecture that having a better language model could considerably 
increase the quality of our reordering. 

5 Evaluation 

Model training has been carried out on a 3 sets of 5000 English sentences each (all sets 
corresponding to different language pairs). Regardless of the target languages we 
followed exactly the same procedure for model training as described above in section 2. 
Both development and testing sets have consisted of 500 sentences each. As a baseline 
we have taken the unaltered word order. 

5.1 Metrics 
Three metrics have been used for the evaluation: BLEU, Kendall’s tau distance, and 
Hamming distance (Birch and Osborne, 2010). It should be noted though, that the last 
two are measured in fraction remaining to maximum value (i.e. if distance is 0 the 
metric would be 1.0, and if distance is maximal possible the metric equals 0.0). 

5.2 Results for development set 

Model 
English – Farsi English – Italian English – Urdu 

BLEU (%) / Kendall tau / Hamming 

Baseline 51.29 / 0.761 / 0.435 69.0 / 0.867 / 0.723 39.5 / 0.52 / 0.274 

Delete words after translation; 
tuned with MERT 67.1 / 0.795 / 0.532 N/A N/A 

Delete words during translation; 
tuned with MERT 69.5 / 0.805 / 0.567 N/A N/A 
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Model English – Farsi English – Italian English – Urdu 

Delete words during translation; 
tuned with MIRA 69.8 / 0.807 /0.567 78.3 / 0.884 / 0.779 55.7 / 0.649 / 0.431 

TABLE 5 – SCORES FOR THE DEVELOPMENT SET 
As you can see, although we have only optimized BLEU, all other metrics increase at the 
same time. The results for different models are only included for English-Farsi because it 
has been our primary language pair for this shared task, while English-Italian and 
English-Urdu results have only qualified as post-submission experiments. 

5.3 Results for testing set 
For the testing set only BLEU scores are known. 

Model English – 
Farsi  

English – 
Italian 

English – 
Urdu 

Baseline 50.0 66.4 39.0 

Delete words during translation; tuned 
with MERT 65.24 N/A N/A 

Delete words during translation; tuned 
with MIRA 65.56 76.65 55.79 

TABLE 6 – SCORES FOR THE TESTING SET 

Conclusion and perspectives 

We have managed to build a reordering system without any prior knowledge of the 
target language. The model has been built with Moses training pipeline and then has 
been applied to the testing data using chart decoder. We could observe a significant 
increase in all quality metrics comparing to a simple baseline (not reordered sentences). 
Under the time constraints of the workshop, we haven’t been able to try all of the 
options, so there are some ways for improvements. First of all it may be worth changing 
some of the parameters in learning, such as length of generated rules or smoothing 
options. Another way is to relax syntax constraints to allow more aggressive reordering 
when the parse tree is very sparse (i.e. some nodes have many children). As far as we 
could see after manually inspecting errors in our reordering, this will potentially boost 
the quality of reordering, however it will require some changes in Moses training scripts. 
Also, our analysis shows, that it may be very useful to utilize a better language model 
during decoding. 
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