
Second ML4HMT Workshop, pages 65–76,
COLING 2012, Mumbai, December 2012.

Neural Probabilistic Language Model for System
Combination

Tsuyoshi Okita1

(1) Dublin City University, Glasnevin, Dublin 9
tokita@computing.dcu.ie

ABSTRACT
This paper gives the system description of the neural probabilistic language modeling (NPLM)
team of Dublin City University for our participation in the system combination task in the Sec-
ond Workshop on Applying Machine Learning Techniques to Optimise the Division of Labour
in Hybrid MT (ML4HMT-12). We used the information obtained by NPLM as meta information
to the system combination module. For the Spanish-English data, our paraphrasing approach
achieved 25.81 BLEU points, which lost 0.19 BLEU points absolute compared to the standard
confusion network-based system combination. We note that our current usage of NPLM is very
limited due to the difficulty in combining NPLM and system combination.

KEYWORDS: statistical machine translation, neural probabilistic language model, system com-
bination.
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1 Introduction

This paper describes a new extension to our system combination module developed in Dublin
City University (Du and Way, 2010a,b; Okita and van Genabith, 2012). We have added a neu-
ral probabilistic language model (NPLM) (Bengio et al., 2000, 2005) to our system combina-
tion module and tested it in the system combination task at the ML4HMT-2012 workshop.

A neural probabilistic language model (NPLM) (Bengio et al., 2000, 2005) and the distributed
representations (Hinton et al., 1986) provide an idea to achieve the better perplexity than n-
gram language model (Stolcke, 2002) and their smoothed language models (Kneser and Ney,
1995; Chen and Goodman, 1998; Teh, 2006). Recently, the latter one, i.e. smoothed language
model, has had a lot of developments in the line of nonparametric Bayesian methods such as
hierarchical Pitman-Yor language model (HPYLM) (Teh, 2006) and Sequence Memoizer (SM)
(Wood et al., 2009; Gasthaus et al., 2010), including an application to SMT (Okita and Way,
2010a,b, 2011). A NPLM considers the representation of data in order to make the probability
distribution of word sequences more compact where we focus on the similar semantical and
syntactical roles of words. For example, when we have two sentences “The cat is walking in
the bedroom” and “A dog was running in a room”, these sentences can be more compactly
stored than the n-gram language model if we focus on the similarity between (the, a), (bed-
room, room), (is, was), and (running, walking). Thus, a NPLM provides the semantical and
syntactical roles of words as a language model. A NPLM of Bengio et al. (2000) implemented
this using the multi-layer neural network and yielded 20% to 35% better perplexity than the
language model with the modified Kneser-Ney methods (Chen and Goodman, 1998).

There are several successful applications of NPLM (Schwenk, 2007; Collobert and Weston,
2008; Schwenk, 2010; Collobert, 2011; Collobert et al., 2011; Deschacht et al., 2012;
Schwenk et al., 2012). First, one category of applications include POS tagging, NER tag-
ging, and parsing (Collobert et al., 2011; Bordes et al., 2011). This category uses the fea-
tures provided by a NPLM in the limited window size.1 It is often the case that there is no
such long range effects that the decision cannot be made beyond the limited windows which
requires to look carefully the elements in a long distance. Second, the other category of ap-
plications include Semantic Role Labeling (SRL) task (Collobert et al., 2011; Deschacht et al.,
2012). This category uses the features within a sentence. A typical element is the predi-
cate in a SRL task which requires the information which sometimes in a long distance but
within a sentence. Both of these approaches do not require to obtain the best tag sequence,
but these tags are independent. Third, the final category includes MERT process (Schwenk,
2010) and possibly many others where most of them remain undeveloped. The objective
of this learning in this category is not to search the best tag for a word but the best se-
quence for a sentence. Hence, we need to apply the sequential learning approach.2 Al-
though most of the applications described in (Collobert and Weston, 2008; Collobert, 2011;
Collobert et al., 2011; Deschacht et al., 2012) are monolingual tasks, the application of this
approach to a bilingual task introduces really astonishing aspects, which we can call “cre-
ative words” (Veale, 2012), automatically into the traditional resource constrained SMT com-
ponents. For example, the training corpus of word aligner is often strictly restricted to the

1It is possible to implement a parser in the way of the second category. However, we adopt the categorization
which was implemented by (Collobert et al., 2011).

2The first and second approaches do not often appear in the context of SMT, while the third category includes most
of the decoding algorithm appeared in SMT including MAP decoding, MBR decoding, and (monotonic) consensus
decoding. The latter two decoding appears in system combination.
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given parallel corpus. However, a NPLM allows this training with huge monolingual corpus.
Although most of this line has not been even tested mostly due to the problem of compu-
tational complexity of training NPLM, Schwenk et al. (2012) applied this to MERT process
which reranks the n-best lists using NPLM. This paper aims at different task, a task of sys-
tem combination (Bangalore et al., 2001; Matusov et al., 2006; Tromble et al., 2008; Du et al.,
2009; DeNero et al., 2009; Okita and van Genabith, 2012). This category of tasks employs
the sequential method such as Maximum A Posteriori (MAP) inference (Viterbi decoding)
(Koller and Friedman, 2009; Sontag, 2010; Murphy, 2012) on Conditional Random Fields
(CRFs) / Markov Random Fields (MRFs). 3

The remainder of this paper is organized as follows. Section 2 describes our algorithms. In
Section 3, our experimental results are presented. We conclude in Section 4.

2 Our Algorithms

The aim of NPLM is to capture the semantically and syntactically similar words in a way that
a latent word depends on the context. There would be many ways to use this language model.
However, one difficulty resides in how such information can be incorporated to the module of
system combination. Due to this difficulty, we present here a method which is rather restricted
despite the power of NPLM.

This paper presents two methods based on the intuitive observation that we will get the variety
of words if we condition on the fixed context, which would form paraphrases in theory. Then,
we present the second method that we examine the dependency structure of candidates sen-
tence replaced with alternative expressions (or paraphrases). Our algorithms consist of three
steps shown in Algorithm 1. The details of Step 1 and 2 will be explained in Section 2.1 and
Step 3 will be explained in Section 2.2.

Algorithm 1 Our Algorithm

Given: For given testset g, prepare N translation outputs {s1, . . . , sN} from several systems.
Step 1: Train NPLM with monolingual corpus. Note that this monolingual corpus would be
better in the same domain as the testset g.
Step 2: Modify the translation outputs {s1, . . . , sN} replaced with alternative expressions (or
paraphrases).
Step 3: Augment the sentences of translation outputs prepared in Step 2.
Step 4: Run the system combination module.

2.1 Paraphrasing using NPLM

2.1.1 Plain Paraphrasing

We introduce our algorithm via a word sense disambiguation (WSD) task which selects the
right disambiguated sense for the word in question. This task is necessary due to the fact that
a text is natively ambiguous accommodating with several different meanings. The task of WSD
(Deschacht et al., 2012) can be written as in (1):

P(synseti |featuresi ,θ ) =
1

Z(features)

∏
m

g(synseti , k) f (featurek

i ) (1)

3Note that the (monotonic) consensus decoding in system combination is the subset of this.
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where k ranges over all possible features, f (featurek
i ) is an indicator function whose value is

1 if the feature exists, and 0 otherwise, g(synseti , k) is a parameter for a given synset and
feature, θ is a collection of all these parameters in g(synseti , k), and Z is a normalization
constant. Note that we use the term “synset” as an analogy of the WordNet (Miller, 1995):
this is equivalent to “sense” or “meaning”. Note also that NPLM will be included as one of the
features in this equation. If features include sufficient statistics, a task of WSD will succeed.
Otherwise, it will fail.

Now we assume that the above WSD component was trained. We would like to consider
the paraphrasing in connection with this. We consider a sentence with some words re-
placed by the alternative surface form. In this context, we are interested in the words which
share the same synset (or meaning) but the realized surface form is different. Let us de-
note P(surfacei |synset j , featuresk,θ ) by the probability of such words. Then, we suppose that
we compare P(surfacei=x i|synset j ,featuresk,θ) and P(surfacei=x ′i|synset j ,featuresk,θ) under
the condition that synset j , featuresk, and θ are the same, and that the relationships below hold
as in (2):

P(surfacei = x i |synset j , featuresk,θ ) > P(surfacei = x ′i |synset j , featuresk,θ ) (2)

Then, the alternative surfaces form x i in higher probability will be chosen instead of the other
one x ′i among paraphrases {x i , x ′i} of this word.

On the one hand, the paraphrases obtained in this way have attractive aspects that can be
called “a creative word” (Veale, 2012). This is since the traditional resource that can be used
when building a translation model by SMT are constrained on paralell corpus. However, NPLM
can be trained on huge monolingual corpus. On the other hand, unfortunately in practice, the
notorious training time of NPLM only allows us to use fairly small monolingual corpus although
many papers made an effort to reduce it (Mnih and Teh, 2012). Due to this, we cannot ignore
the fact that NPLM trained not on a huge corpus may be affected by noise. Conversely, we
have no guarantee that such noise will be reduced if we train NPLM on a huge corpus. It is
quite likely that NPLM has a lot of noise for small corpora. Hence, this paper also needs to
provide the way to overcome difficulties of noisy data. In order to avoid this difficulty, we limit
the paraphrase only when it includes itself in high probability.

2.1.2 Paraphrasing with Modified Dependency Score

Although we modified a suggested paraphrase without any intervention in the above algorithm,
it is also possible to examine whether such suggestion should be adopted or not. If we add
paraphrases and the resulted sentence has a higher score in terms of the modified dependency
score (Owczarzak et al., 2007) (See Figure 1), this means that the addition of paraphrases is a
good choice. If the resulted score decreases, we do not need to add them. One difficulty in this
approach is that we do not have a reference which allows us to score it in the usual manner.
For this reason, we adopt the naive way to deploy the above and we deploy this with pseudo
references. First, if we add paraphrases and the resulted sentence does not have a very bad
score, we add these paraphrases since these paraphrase are not very bad (naive way). Second,
we do scoring between the sentence in question with all the other candidates (pseudo references)
and calculate an average of them. Thus, our second algorithm is to select a paraphrase which
may not achieve a very bad score in terms of the modified dependency score using NPLM.
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S
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                    PERS     3
PRED         resign
TENSE       past
ADJ            ([PRED yesterday])
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PERS    3
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TENSE   past

ADJ          ([PRED yesterday])

Different structure Same representation
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in c−structure in f−structure

Figure 1: By the modified dependency score (Owczarzak et al., 2007), the score of these two
sentences, “John resigned yesterday” and “Yesterday John resigned”, are the same. Figure
shows c-structure and f-structure of two sentences using Lexical Functional Grammar (LFG)
(Bresnan, 2001).

Modified Dependency Score We mention here the reason why we use the modified de-
pendency score. First, unlike BLEU or NIST, the modified dependency score can capture
the syntactical construction and grammaticality of sentences. Second, our current dataset
seems to be interesting since it includes Lucy LT RBMT outputs. (The last year’s ML4HMT-11
(Okita and van Genabith, 2011) also included the translation output of Lucy LT RBMT out-
puts.) If we choose the entire Lucy’s output as a backbone and run a system combination,
the resulted score is the highest among various system combination strategies we tried (See
“s2 backbone” in Table 2). These two facts suggest us the following strategy: if we have prior
knowledge that the Lucy backbone will obtain a high score, it would be interesting to start from
the Lucy backbone and pursue whether we can improve the overall score further by adding
paraphrases. As is evident from the fact that the Lucy backbone is good, our interest will not
be BLEU or NIST, but MODIFIED DEPENDENCY SCORE. This may lead to a higher BLEU score than
the system combination results with Lucy backbone. Note that in order to make it a universal
algorithm, we need to remove Lucy backbone from this algorithm. Hence, only the modified
dependency score remains, which forms the algorithm already mentioned.

system translation output precision recall F-score
s1 these do usually in a week . 0.080 0.154 0.105
s2 these are normally made in a week . 0.200 0.263 0.227
s3 they are normally in one week . 0.080 0.154 0.105
s4 they are normally on a week . 0.120 0.231 0.158
ref the funding is usually offered over a one-week period .

Table 1: An example of modified dependency score for a set of translation outputs.

2.2 System Combination

As is mentioned at the beginning of this section, the interface between the NPLM and sys-
tem combination has some difficulties. This contrasts with the task of n-best reranking
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(Schwenk et al., 2012). In the case of n-best reranking, the probability provided by NPLM
can be used immediately in the re-evaluation of the n-best lists.

Difficulties of Interface In our case, due to the reason below despite the advantage of word
varieties it is difficult to incorporate this into the translation outputs in a straight forward way.
The two decoding strategies used by a confusion network-based system combination, i.e. MBR
decoding and (monotonic) consensus decoding, have difficulties in each step.

First, in MBR decoding in the first step, the inputs, i.e. each translation outputs, are quantified
by the loss function with its score in the sentence level. This mechanism does not allow us
to add fragments freely in the word level. Therefore, it requires us to increase the number of
sentences with only a slight replacement in the sentence level. This paper takes this strategy
for the first step to circumvent this difficulty.

Second, in (monotonic) consensus decoding in the second step, the word posterior probabil-
ities in the confusion network do not reflect the probability quantified globally, but is rather
locally in accordance with other probability of words in the same position. Similarly, one way
would be to augment in the sentence level.

Inputs to System Combination Module We check the possibilities whether the word can
have alternative expression and whether the probability of such expression is bigger than that
of the original word or not. If this holds, we replace such words with alternative expressions.
This will make a new sentence.

3 Experimental Results

ML4HMT-2012 provides four translation outputs (s1 to s4) which are MT outputs by two RBMT
systems, APERTIUM and LUCY, PB-SMT (MOSES) and HPB-SMT (MOSES), respectively. The tun-
ing data consists of 20,000 sentence pairs, while the test data consists of 3,003 sentence pairs.

Our experimental setting is as follows. We use our system combination module (Du and Way,
2010a,b; Okita and van Genabith, 2012), which has its own language modeling tool, MERT
process, and MBR decoding. We use the BLEU metric as loss function in MBR decoding. We
use TERP4 as alignment metrics in monolingual word alignment. We trained NPLM using
500,000 sentence pairs from English side of EN-ES corpus of EUROPARL5.

(a) the Government wants to limit the torture of the " witches " , as it published in a
brochure

(b) the Government wants to limit the torture of the " witches " , as it published in the
proceedings

(a) the women that he " return " witches are sent to an area isolated , so that they do
not hamper the rest of the people .

(b) the women that he " return " witches are sent to an area eligible , so that they do
not affect the rest of the country .

Table 2: Table includes two examples of plain paraphrase.

The results show that the first algorithm of NPLM-based paraphrased augmentation, that is

4http://www.cs.umd.edu/~snover/terp
5http://www.statmt.org/europarl
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NPLM plain, achieved 25.61 BLEU points, which lost 0.39 BLEU points absolute over the stan-
dard system combination. The second algorithm, NPLM dep, achieved slightly better results
of 25.81 BLEU points, which lost 0.19 BLEU points absolute over the standard system combi-
nation. Note that the baseline achieved 26.00 BLEU points, the best single system in terms
of BLEU was s4 which achieved 25.31 BLEU points, and the best single system in terms of
METEOR was s2 which achieved 0.5853.

NIST BLEU METEOR WER PER
s1 6.4996 0.2248 0.5458641 64.2452 49.9806
s2 6.9281 0.2500 0.5853446 62.9194 48.0065
s3 7.4022 0.2446 0.5544660 58.0752 44.0221
s4 7.2100 0.2531 0.5596933 59.3930 44.5230

NPLM plain 7.6041 0.2561 0.5593901 56.4620 41.8076
NPLM dep 7.6213 0.2581 0.5601121 56.1334 41.7820

BLEU-MBR 7.6846 0.2600 0.5643944 56.2368 41.5399
min ave TER-MBR 7.6231 0.2638 0.5652795 56.3967 41.6092
DA 7.7146 0.2633 0.5647685 55.8612 41.7264
QE 7.6846 0.2620 0.5642806 56.0051 41.5226
s2 backbone 7.6371 0.2648 0.5606801 56.0077 42.0075
modDep precision 7.6670 0.2636 0.5659757 56.4393 41.4986
modDep recall 7.6695 0.2642 0.5664320 56.5059 41.5013
modDep Fscore 7.6695 0.2642 0.5664320 56.5059 41.5013

modDep precision modDep recall modDep Fscore
average s1 0.244 (586) 0.208 0.225
average s2 0.250 (710) 0.188 0.217
average s3 0.189 (704) 0.145 0.165
average s4 0.195 (674) 0.167 0.180

Table 3: This table shows single best performance, the performance of two algorithms in
this paper (NPLM plain and dep), MBR-decoding with BLEU loss function and TER loss
function, the performance of domain adaptation (Okita et al., 2012b) and quality estimation
(Okita et al., 2012a), the performance of Lucy backbone, and the performance of the selection
of sentences by modified dependency score (precision, recall, and F-score each). The four lines
at the bottom marked with average s1 to s4 indicates the average performance of s1 in terms
of precision, recall, and F-score (from the 2nd to 4th columns) when we make the backbone
by choosing the maximum score in terms of the modified dependency score. For example, the
first line of “modDep precision” shows when we chose a backbone by the maximum modified
dependency score in terms of precision. 586 sentences were selected from s1, 710 sentences
were from s2, and so forth. The average BLEU score of these 586 sentences was 24.4.

Conclusion and Perspectives

This paper deployed meta information obtained by NPLM into a system combination module.
NPLM captures the semantically and syntactically similar words in a way that a latent word
depends on the context. First, we interpret the information obtained by NPLM as paraphrases
with regard to the translation outputs. Then, we incorporate the augmented sentences as
inputs to the system combination module. Unfortunately, this strategy lost 0.39 BLEU points
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absolute compared to the standard confusion network-based system combination. A revised
strategy to assess the quality of paraphrases achieved 25.81 BLEU points, which lost 0.19 BLEU
points absolute.

There are many further avenues. First, as already mentioned, this paper only scratched the
surface of NPLM. One problem was the interface between NPLM and system combination. Our
motivation behind using NPLM was the possibility that NPLM would supply the semantically
and syntactically rich synonyms and similar words to the rather restricted translation outputs,
as well as the traditional functions as LM, which are to be supplied to the system combination
module. For this reason, we believe that paraphrases generated using NPLM will not be a bad
direction. However, there would be other approach as well. Collobert and Weston (2008) and
Bordes et al. (2011) integrate NPLM in their software. When we integrate our approach, one
way would be to implement it without employing the knowledge of paraphrases. It would
be interesting to compare this and our approaches in this paper. Alternatively, prior knowl-
edge about the speriority of Lucy output can be embedded into system combination by prior
(Okita et al., 2010b,a; Okita, 2012).

Second, we show some positive results about the modified dependency score (Owczarzak et al.,
2007). We used this as sentence-based criteria to select a backbone in three ways: maximum
precision, recall, and F-score. Results are shown in Table 3. Indeed, these criteria worked quite
well. Unfortunately, these scores were still lower than that of Lucy’s backbone. The lower
parts of this table show statistics when we select a backbone by the modified dependency
score. Interestingly, the modified dependency score of s2 (Lucy) was the best in precision
score, but was not the best in recall or in F-score. This shows that the selection of backbone
by the modified dependency score did not work as much as that of the (fixed) Lucy backbone.
We need to search another explanation why the Lucy backbone obtained the highest score.

Third, this paper did not mention much about noise. Understanding the mechanism of noise
on NPLM may be related to the learning mechanism of NPLM, if we draw an analogy from the
case when we examined the noise of word alignment (Okita, 2009; Okita et al., 2010b). This
may also be related to the smoothing mechanism (Okita and Way, 2010a,b, 2011).
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