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ABSTRACT

We describe  our  participation  in  the   MTPIL Hindi  Parsing Shared  Task-2012.  Our  system 
achieved the following results: 82.44% LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS 
(gold). Our parser is based on the linear classification, which is suboptimal as far as the accuracy 
is concerned. The strong point of our approach is its speed. For parsing development the system 
requires 0.935 seconds, which corresponds to a parsing speed of 1318 sentences per second. The 
Hindi Treebank contains much less different part of speech tags than many other treebanks and 
therefore it was absolutely necessary to use the additional morphosyntactic features available in 
the treebank. We were able to build classifiers predicting those, using only the standard word 
form and part of speech features, with a high accuracy.
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1 Introduction

In this paper we describe our participation in the MTPIL Hindi Parsing Shared Task-2012. We 
have  participated  in  both  auto and  gold tracks  and  achieved  the  following  results:  82.44% 
LAS/90.91% UAS (auto)  and 85.31% LAS/92.88% UAS (gold).  In the  gold track,  the input 
contains tokens with gold standard morphological analysis, part-of-speech tags, chunks and some 
additional features. In the auto track, the input contains tokens only with the part-of-speech tags 
from an automatic tagger. For both track the requirement was that the same approach/system is  
used. 

The Hindi dependency treebank, which was provided to the participants, was of an average size: 
the training data contained 12041 sentences (268,093 words) and the development data had 1233 
sentences (26416 words). However,  the training data contained 91 different dependency edge 
labels, which is much more than many other treebanks, e.g. English has 56 or German has 46. At 
the same time Hindi has 34 different parts of speech, whereas as other treebanks usually have 
more:  e.g.  English – 48 and German – 56. Therefore,  the additional features (morphological,  
chunk and sentence-level features) available in the treebank are of a very significant importance, 
since  the dependency edges  are  harder  to  predict,  because  there  are  so  many types  and  the 
information available, i.e. parts of speech, are not so diverse and thus less discriminative.

In this paper we will describe the system MDParser used for the participation. We will therefore 
provide details on the parsing and learning approaches used in the system, as well as discuss the  
features, especially the additional ones, that we have integrated into our models. We think it is  
also important to point out that we have no knowledge of Hindi, we were not able to read the 
script or analyse the quality of our output. Therefore that was more or less a blind unmodified 
application of our parser, which was primarily designed for English and German, to Hindi.
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2 Parsing Approach

Almost all dependency parsers can be roughly split into two groups: graph-based and transition-
based.  The graph-based parsers assign scores to all possible dependency edges and then search 
for  the  highest-scoring  dependency  graph.  Transition-based  systems  start  at  some  initial 
configuration and perform a sequence of transitions to some final configuration, such that the 
desired dependency graph is derived in the process. For languages like English and German both 
approaches seem to be quite similar as far as accuracies are concerned, however, the speed of 
transition-based systems is higher (Volokh and Neumann, 2012). Therefore we have developed a 
transition-based parser.

There are a lot of different transition-based algorithms, which are able to perform the task, and 
they  differ  in  many  properties.  Some  of  the  most  important  properties  are  the  efficiency, 
complexity,   projectivity,  determinism and incrementality.  We use an algorithm based on the 
Covington's parsing strategy  (Covington, 2000), which to our mind has particularly appealing 
properties.  It  is deterministic,  i.e. its decisions during the processing are always final and are 
never revised. It is incremental, i.e. there is no need for the whole input to be read in prior to the  
computation and only a small look-ahead is necessary for computations, on the contrary to some 
other  approaches,  which  consider  the  whole  sentence,  when  computing  the  solution.  The 
projectivity can  be allowed or  disallowed by changing  a  single  parameter  and  no additional  
solutions are necessary, as it is the case with some other  algorithms, which are able to process  
projective structures only (e.g. pseudo-projective parsing (Nivre et al., 2005). In case of the Hindi 
treebank, which contained a significant amount of non-projective edges, we have allowed non-
projectivity.  The complexity of Covington's parsing strategy is O(n2), which is worse than of 
some other algorithms in the field, which have linear complexity, e.g. Nivre's arc-standard and 
arc-eager algorithms (Nivre, 2006). However, the efficiency of the Covington's algorithm is still 
higher, because  the worst-case complexity occurs rarely and Covington's parsing strategy allows 
an extremely efficient feature extraction (Volokh and Neumann, 2012).

Since transition-based systems deliver their result after a series of transitions, it is important to  
know what the inventory of possible transition types is. According to this approach in every  
transition the system has to decide whether for a pair of words under consideration there is a 
dependency relation or not. This usually corresponds to two possible transitions in case there is a  
dependency relation, namely one when the left  word is the head of the right word (we will this 
transition right-arc) and another one when the right word is the head of the left word (we will call 
this transition left-arc). In case there is no dependency relation there are usually also two possible 
transitions: one changes  the left  word to some next word and the other one changes the  right 
word to the next word. Thus, overall there are four basic transition types.

However, since every dependency relation has to be subsequently labelled with a dependency 
type, there are a lot of additional transition types, which are responsible for the labelling process.  
There are two fundamental ways how the labelling is done in transition-based systems. The first 
one  is  to  treat  the  tasks  of  finding  dependency  edges  and  labelling  them as  separate  tasks. 
Therefore several models are trained in this case. The second one is to combine the tasks and use 
one model for both predicting the basic transitions and labelling the edges. Usually, many labels 
can be assigned only for left-arc or right-arc transitions, but not for both (e.g. suffixes are always  
to the right of their head or the conjunction is always to the right of the first conjunct, whereas  
the title is always to the left etc.). When labelling edges is an independent process, this kind of  
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information  is  lost,  unless  there  are  two models,  one  for  labelling  edges  of  each  direction. 
However, this means that there are overall three models and three classifiers, which makes the 
system much slower than when the second option is used and everything is done in one step. We 
have used the latter option in our system. This resulted in overall 99 possible transitions for our 
parsing algorithm.

3 Learning Approach

During the training phase a transition-based system uses the available gold standard in order to  
construct  the  correct  dependency  tree  and  at  the  same  time  it  learns  in  which  state  which 
transition is taken. In the application phase, when the gold standard is not available, the system 
uses this learned model in order to guide the algorithm during the computation of the result.

There  are  countless  classification  approaches,  which  can  be  applied  to  this  task.  The  most 
important properties of classifiers used for dependency parsing are: a) whether they are binary or 
support real multi-class classification,  i.e. do not simply apply a series of binary classifiers for 
solving a multi-class task and b) whether they are linear or non-linear.

Most classification approaches support only binary classification and multi-class classification is 
solved by constructing a complex classifier with one-vs-all or one-vs-one strategies. As already 
mentioned, dependency parsing not only is a multi-class classification task, but also has a very 
big number of classes, e.g. 99 in case of this shared task. Constructing a multi-class classifier out  
of binary classifiers is tedious and the application is slow. Therefore, it is better to use a real  
multi-class classification approach.

A linear classifier identifies the class by a linear combination of all features in a feature vector,  
which does not require a lot of computation. One can visualise its operation as dividing one class 
from another by drawing a line between them. Of course this assumes that  such line can be 
drawn, i.e. that the data is linearly separable. Usually this is not the case. A non-linear classifier 
often makes use of the method called kernel  trick  (Aizerman et  al.,  1964). According to this 
method a linear classifier solves a non-linear problem by mapping the original observations into a 
higher-dimensional  space,  where  the  linear  classifier  is  subsequently  used.  The  mapping  is 
achieved by applying a kernel function to the feature space. Wherever a dot product is used, it is 
replaced  with  the  kernel  function.  This  is  much  more  expensive,  but  guarantees  better  
separability. 

Considering these properties we have chosen a classification approach, which satisfies our needs 
most. The learning strategy MCSVM_SC (linear multi-class support vector machines (Keerthi et 
al., 2008) from the package LibLinear  (Lin et al., 2008) is to our mind particularly suitable for 
dependency parsing. It is particularly fast because it is a linear classifier, which supports real  
multi-class classification. 

4 Features 

Feature models are a major factor for both accuracy and efficiency of a parser. The more features  
are present in the training data the better the chance that the learner will find good discriminative 
features necessary for accurate predictions. However, the bigger the number of features the more 
intensive is the training and the slower the processing. The ideal scenario is thus that the training 
data should contain only a relatively small amount of very good features. 
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For many treebanks, e.g. English or German, word form and POS features are usually sufficient 
in order to achieve high accuracies. Hindi is different in this respect. The amount of different  
POS tags is much smaller and therefore a good system also has to make use of morphological 
and other features in order to compensate for that. The different auto and gold tracks visualise the 
gap  very  well:  the  performance  of  systems  which  have  the  additional  features  available  is 
significantly higher.

Therefore  it  was  obvious  that  we  want  to  use  these  features.  In  the  gold  track  it  was 
straightforward,  since  the  corresponding  features  are  available.  For  the  auto  track  we  have 
constructed classifiers, which are able to predict the following features: pers, cat, num, case, gen, 
tam, vib, stype and voicetype. The classifiers used the word form and POS information about the 
token, for which the features were predicted, as well as the same information for three words 
before and after this token. The features usually could be predicted with an accuracy of 97-98% 
for all of the above-mentioned functions.

As far as the model for parser is concerned here is the complete list of features we have used 
(except  for  the  already  mentioned  pers,  cat,  num,  case,  gen,  tam,vib,  stype  and  voicetype  
features):

1. wfj → returns the word form of the token j; 2. pj → returns the part of speech of the token j; 3. 
wfjp1  → returns the word form of the token j+1; 4. pjp1  → returns the part of speech of the 
token j+1; 5. wfjp2  → returns the word form of the token j+2; 6. pjp2  → returns the part of 
speech of the token j+2; 7. wfjp3 → returns the word form of the token j+3; 8. pjp3 → returns 
the part of speech of the token j+3; 9. wfi  → returns the word form of the token  i; 10. pi  → 
returns the part of speech of the token i; 11. pip1 → returns the part of speech of the token i+1; 
12. wfhi → returns the word form of the head of the token i; 13. phi → returns the part of speech 
of the head of the token i; 14. depi →   returns the dependency label of the head of the token i; 
15. depldi →  returns the dependency label of the left-most dependent of the token i; 16. deprdi 
→ returns the dependency label of the right-most dependent of the token i; 17. depldj →  eturns 
the dependency label of the left-most dependent of the token j; 18. dist  → returns the distance 
between the tokens j and i. For i=0 the feature returns 0, for the distance 1  the feature returns 1,  
for distances 2 or 3 the feature returns 2, for distances 4 or 5 the value 3 is returned, for distances  
6, 7, 8 or 9 the value 4 and for all other distances the value 5 is returned; 19. merge2(pi,pip1) → 
returns the concatenation of pi and pip1 features. 20. merge2(wfi,pi) → returns the concatenation 
of wfi and pi features; 21. merge3(pjp1,pjp2,pjp3) → returns the concatenation of pjp1, pjp2 and 
pjp3 features; 22. merge2(depldj,pj)  → returns the concatenation of depldj and pj features; 23. 
merge3(pi,deprdi,depldi)  → returns  the  concatenation  of  pi,  deprdi  and  depldi  features;  24. 
merge2(depi,wfhi)  →  returns  the  concatenation  of  depi  and  wfhi  features;  25. 
merge3(phi,pjp1,pip1)  →  returns  the  concatenation  of  phi,  pjp1  and  pip1  features;  26. 
merge3(wfj,wfi,pjp3)  →  returns  the  concatenation  of  wfj,  wfi  and  pjp3  features,  27. 
merge3(dist,pj,wfjp1) →  returns the concatenation of dist, pj and pjp1 features.

Indexes j and i refer  to the right and left  words,  respectively,  examined in each state of the  
Covington's algorithm. 

5 Performance

As we have  already mentioned our system has achieved  the  following results  in  the  tracks: 
82.44% LAS/90.91% UAS (auto) and 85.31% LAS/92.88% UAS (gold).
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These results are quite worse than  what  the top systems were able to achieve  (up to 93.99% 
UAS/87.84% LAS gold; 90.83% LAS/96.37% UAS auto). However, one should keep in mind 
that our parser is based on the linear classification, which is suboptimal as far as the accuracy is 
concerned. The strong point of our approach is its speed. For parsing development the system 
requires 0.935 seconds, which corresponds to a parsing speed of 1318 sentences per second. We 
have a used a machine with a dual-core 2.4 GHz processor for computing. The system supports 
multithreading and therefore both cores could be used. The speed with one thread only is 1.648  
seconds.

Furthermore, probably the lack of knowledge of the language also negatively affected the result, 
because we did not understand the meaning of many morphosyntactic features and labels, and 
thus  a  better  performance  probably  could  have  been  achieved  with  our  approach  if  applied 
properly.

6 Conclusion

We have applied our very fast parser MDParser to the Hindi Treebank. We were able to achieve 
a competitive result and a very good parsing speed. The MTPIL Hindi Parsing Shared Task-2012 
was a great opportunity for us test our system in a completely new scenario and demonstrate that 
it is truly multilingual, since we have had absolutely no knowledge of Hindi. Furthermore, it was 
the first time when we had to run the system in the non-projective mode, because the languages  
with which we worked before, did not contain enough non-projective edges and it has never been 
worth it to increase the search space in order to capture them so far. It was also the first time we  
have  worked  with  a  language  where,  beyond  the  usual  word  form  and  POS  features,  the 
morphosyntactic information was necessary in order to achieve good results. We were able to  
automatically predict those additional features using the standard word form and POS features 
with a very good accuracy.

Acknowledgments
The work presented here was partially supported by a research grant from the German 

Federal Ministry of Education and Research (BMBF) to the DFKI project Deependance 
(FKZ. 01IW11003).
References

A. Aizerman, E. M. Braverma and L. I. Rozoner, 1964. Theoretical foundations of the potential  
function method in pattern recognition learning. Automation and Remote Control  vol. 25, pp. 
821—837.

Michael  A.  Covington,  2000.  A  Fundamental  Algorithm  for  Dependency  Parsing.  In 
Proceedings of the 39th Annual ACM Southeast Conference. 

C.-J. Lin, R.-E. Fan, K.-W. Chang, C.-J. Hsieh and X.-R. Wang.  LIBLINEAR: A library for  
large linear classification. Journal of Machine Learning Research 9(2008), pp. 1871-1874. 

Joakim Nivre  and Jens Nilsson, 2005. Pseudo-projective dependency parsing. Proceedings of 
the 43rd Annual Meeting on Association for Computational Linguistics 2005. pp. 99—106.

Nivre,  J,  2006.  Inductive  Dependency  Parsing (Text,  Speech  and  Language  Technology). 
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

153



S. Sathiya Keerthi,S. Sundararajan, Kai-Wei, Chang, Hsieh, Cho-Jui, Lin and Chih-Jen, 2008. 
A sequential  dual method for large scale multi-class linear SVMs.  Proceedings of the 14th 
ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 408—
416.

Alexander Volokh and Günter  Neumann,  2012.  Dependency Parsing with Efficient  Feature  
Extraction. KI 2012. pp. 253-256.

154


