CUNI: Feature Selection and Error Analysis of a
Transition-Based Parser

Daniel ZEMAN
(1) Charles University in Prague, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics, Malostranské ndmésti 25, Praha, Czechia
zemanQufal .mff.cuni.cz

ABSTRACT

We describe the parsing system used at the Charles University (CUNI) for the Hindi Parsing
Shared Task 2012. We used the publicly available Malt Parser, which is highly config-
urable. A substantial part of the paper describes the configuration that we selected. The
parser performs reasonably well in identifying the head nodes. The main weakness is in
labeling the dependency relations. We identify the most prominent error types, which
should help to improve the parsing accuracy in future.

TITLE AND ABSTRACT IN CZECH

CUNI: Vybér rysu a analyza chyb parseru zaloZeného na
piechodech

Popisujeme systém pro syntaktickou analyzu pouZzity na Univerzité Karlové (CUNI)
pro Hindi Parsing Shared Task 2012. Pouzili jsme vefejné dostupny ndstroj Malt Parser,
ktery poskytuje mnoho mozZnosti konfigurace. Podstatna ¢ast ¢lanku se zabyva pravé
konfiguraci, kterou jsme zvolili. Parser dosahuje dobré uspésnosti pfi identifikaci
rodi¢ovskych uzli. Jeho hlavni slabinou je znackovani zavislostnich vztahti. Popisujeme
nejbéznéjsi druhy chyb, coZ by mélo pomoci v budoucnosti zvysit GispéSnost parseru.

KEYWORDS: parsing, dependency, SOV language, malt parser.
CZECH KEYWORDS: syntakticka analyza, zavislost, jazyk SOV, malt parser.

Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages (MTPIL-2012), pages 143-148,
COLING 2012, Mumbai, December 2012.

143

1 Introduction

Dependency parsing has gradually become standard way of parsing for many languages
during the past decade. There have been three multilingual shared tasks in dependency
parsing at CoNLL (2006, 2007 and 2009) and two focused on Indian languages, orga-
nized at ICON (2009 and 2010). This work on parsing Hindi loosely follows from our
contribution to ICON (Zeman, 2009).

2 Data

The data provided are split to three parts: training, development and test. During the
preparatory stage, we trained the parser on the training dataset and tested it on the de-
velopment dataset. Then the blind test data were released. We retrained the parser on
both the training and the development datasets, and applied it to the test data. Note that
at this stage, we did not have access to the gold-standard syntactic annotation of the test
data and we could not measure the accuracy on the test set. Later on, after the official
results were announced, the full test set was released.

From now on, we will refer to the original training data as dtrain, to the development data
as dtest, to the combination of dtrain + dtest as etrain and to the final test data as etest.

| Tokens Sentences
dtrain | 268096 12041

dtest 26416 1233
etrain | 294512 13274
etest 39775 1828

Table 1: Size of the various datasets.
The data were provided in two file formats and two encodings of the Devanagari script.
We work exclusively with the CoNLL data format (Buchholz and Marsi, 2006) and the
UTF-8 encoding.

Two versions of morphological annotation were provided, corresponding to two tracks of
the shared task: Gold and Auto. As suggested by its name, the Gold version contains more
information and more accurate information. In the Auto version, values of some token
attributes were assigned using automated tools, and values of the (many!) remaining
attributes were empty because no automatic tool was available to assign them.

An example of one token from the Gold training data follows (including transliteration):

Index Token Lemma CPOS POS Features Head index Dep label
32 [ERI B VM v lex-®{|cat-... 0 main
32 kiya kara VM v lex-kara|cat-... 0O main

Wherein the features consist of a long, vertical-bar-delimited list (here displayed as a
table):

lex cat gen num pers case vib tam chunkld chunkType stype
1 v m sg any . yA VGF head declarative’ >

voicetype
active

144

The corresponding line of the same token in the Auto data is much simpler:

Index Token Lemma CPOS POS Features Headindex Dep label
32 [Exll VM 0 main

32 kiya _ VM 0 main

Slightly more than 1% of the tokens in Hindi are attached non-projectively. As a distinct
feature of the Hyderabad treebank, there are special NULL nodes covering words deleted
from surface, e.g. in deficient coordinations, as in:

Tamr & T e Wd WR NULL X ¥ @ glea #
divali ke din jud khele magar NULL ghar mé ya hotal me.
Diwali of day gambling play but [do-so] house in or hotel in
“They do gamble on Diwali but they do so in house or in hotel.”

The NULL nodes are present also in test input and it is not the task of the parser to
introduce them. Approximately 0.4% of all nodes are NULL nodes.

3 Parser

We use Malt Parser v. 1.7.1! (Nivre et al., 2007). It is a deterministic shift-reduce parser
where input words can be either put to the stack or taken from the stack and combined
to form a dependency. The decision which operation (transition) to perform is made by
an oracle based on various features of the words in the input buffer and the stack. The
default machine learning algorithm used to train the oracle is a sort of SVM (support
vector machine) classifier (Cristianini and Shawe-Taylor, 2000).

Malt Parser has participated in several CoNLL shared tasks in multilingual dependency
parsing (2006, 2007 and 2009), as well as in the ICON 2009 NLP tools contest in parsing
Indian languages. It achieves state-of-the-art accuracy (or close to it) for many languages,
provided its settings, algorithm and feature space are optimized for the given language
and dataset. Malt Parser is reasonably fast and it is open-source, freely available for
download.

Malt Parser provides several parsing algorithms. They differ in the data structures they
use, in the sets of transition operations they allow, and in the precedence of transition
types when converting a training tree to a sequence of transitions. The algorithms are as
follows: nivrestandard, nivreeager, covproj, covnonproj, stackproj, stackeager, stacklazy, pla-
nar, 2planar. We need one of the non-projective algorithms because there are occasional
non-projective dependencies in the data. Based on dtest scores, we selected the stacklazy
algorithm.

Malt Parser is also highly configurable with respect to the features considered when se-
lecting the next transition. Table 2 gives an overview of features that we used.

Training times depend on the number of features, thus it is much faster to train on the Auto
data than on the Gold data. Training Malt parser on the full etrain dataset takes about 2
hours in the Auto version and about 6 hours in the Gold version (tested on 2GHz 64bit Intel
Xeon processors with 29GB RAM dedicated to the Java Virtual Machine). Parsing etest
took between 30 (Auto) and 45 (Gold) minutes. For the sake of quick probing experiments

Ihttp://wuw.maltparser.org/

145

FORM LEMMA POS FEATS DEPREL
Stack: top 1 2 3 4
Stack: top — 1 5 6 7
Stack: top — 2 8 9
Stack: top — 3 10
Input: next 11
Lookahead: next 12 13 14 15
Lookahead: next+ 1 16 17 18 19
Lookahead: next + 2 20 21 22
Lookahead: next + 3 23
Lookahead: next+4 24
Tree: leftmost dep of top 25 26
Tree: leftmost dep of top — 1 27
Tree: leftmost dep of top — 2 28
Tree: rightmost dep of top 29
Tree: rightmost dep of top — 1 30
Tree: rightmost dep of top — 2 31
String: predecessor of top 32 33

Table 2: Feature pool for optimization with columns representing data fields and rows
representing tokens relative to the stack, input buffer / lookahead, partially built tree,
and input string. Features are numbered.

we also used the subset of the first 1000 training sentences. With such limited training
corpus, accuracy dropped about 12 percent points down and processing times dropped to
just a few minutes.

4 Results
Morphology | UAS LA LAS
Auto 89.96 84.09 81.48
Gold 95.19 91.27 89.48

Table 3: The official results as measured by the organizers of the shared task. UAS =
unlabeled attachment score; LA = labeling accuracy; LAS = labeled attachment score.
5 Error Analysis

In our assessment of typical error patterns we will focus on the Gold track. The (unlabeled)
attachment score is very high, which implies that it is difficult to pull out frequent errors.
Nevertheless, there is some evidence that coordinations, commonly perceived as hard to
parse, still correlate with errors in our data.

If we break up tokens by their coarse part of speech, then the most successful classes
(in terms of finding their correct parent) will be PSP (postposition), VAUX (auxiliary
verb) and DEM (demonstrative), all scoring (almost) 100%. At the other end of the scale,
coordinating conjunctions (CC) only achieve 83%. The conjunction serves as the head
node of the coordination. The parser probably feels uncertain about the type of the subtree
of the conjunction, which makes it difficult to find the correct parent for the conjunction.

146

Besides conjunctions, the second most difficult part of speech is RB (adverb of manner;
89%). If we look at word forms, again, conjunctions are most risky: 3ﬁ“(, o, 4.

Not surprisingly, attachments to the artificial root node are more difficult (96%) to recog-
nize that dependencies inside the tree. For tree-internal arcs, length 1 has 99% accuracy
and longer links decrease down to 92%.

While the parser rarely confuses parent selection, its weakness lies in labeling of the
dependencies. The nature of the label set used in the Hyderabad treebank excludes certain
combinations of dependencies under one parent; in particular, there should not be two
siblings both labeled k1. However, the parser has only limited means of learning such
constraints. We cannot define a feature that would tell whether we already labeled k1
anything anywhere in the current tree. Labels with the lowest precision and recall are k1
(87%), k2 (76%), k7 (80%), k7t (88%), pof (82%), r6 (92%) and ccof (93%; again, this is
coordination). Most of these are typical verb complements.

The most frequent label confusion occurred between r6-k2 (karma of a conjunct verb)
and r6 (possessive), presumably because both occur with the postposition %l. Another
relatively frequent confusion is between k7p (location-place) and k7 (location other than
place).

6 Conclusion

We described our configuration of the Malt Parser used to parse Hindi part of the Hy-
derabad Dependency Treebank ver. 0.51. Feature engineering is the key to success in
discriminative parsing. One of the main advantages of Malt Parser is that many differ-
ent features can be used to describe tokens in the various data structures of the parser.
Later in the paper, we evaluated the output of the parser and identified the most frequent
error types. Future work should focus on two separate problems: 1. How to improve
attachment of coordinations, and 2. How to improve labeling accuracy. For example,
coordinations might improve by introducing features that would better port the phrase
type to the higher levels. As for dependency labels, a self-standing tagger applied during
post-processing could be tested.

Acknowledgements

The work on this project was supported by the grants P406,/11/1499 of the Czech Science
Foundation (GACR), FP7-ICT-2009-4-249119 (MetaNet) and by research resources of the
Charles University in Prague (PRVOUK).

147

References

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural Language Learning
(CoNLL-X), pages 149-164, New York City. Association for Computational Linguistics.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kiibler, S., Marinov, S., and Marsi,
E. (2007). MaltParser: A language-independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95-135.

Zeman, D. (2009). Maximum spanning malt: Hiring world’s leading dependency parsers
to plant indian trees. In Proceedings of ICONO9 NLP Tools Contest: Indian Language De-
pendency Parsing, pages 18-23, Hyderabad, India. International Institute of Information
Technologies, Hyderabad.

148

