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ABSTRACT 

Lexical networks can be used with benefit for semantic analysis of texts, word sense 
disambiguation (WSD) and in general for graph-based Natural Language Processing.  
Usually strong relations between terms (e.g.: cat --> animal) are sufficient to help for the 
task, but quite often, weak relations (e.g.: cat --> ball of wool) are necessary. Our 
purpose here is to acquire such relations by means of online serious games as other 
classical approaches seems impractical. Indeed, it is difficult to ask the users (non 
experts) to define a proper weighting for the relations they propose, and then we decided 
to relate weights with the frequency of their propositions. It allows us to acquire first the 
strongest relations, but also to populate the long tail of an already existing network. 
Furthermore, trying to get an estimation of our network by the very users thanks to a tip 
of the tongue (TOT) software, we realized that they rather tend to favor the relations of 
the long tail and thus promote their emergence. Developing the long tail of a lexical 
network with standard and non-standard relations of low weight can be of advantage for 
tasks such that words retrieval from clues or WSD in texts. 
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Introduction 

Lexical/semantic networks are very precious resources for NLP applications in general 
and for Word Sense Disambiguation (WSD) in particular. Their construction is delicate 
as automated approaches from corpora may have various shortcomings (mainly high 
noise level and/or low recall) and a manual approach may be long, tedious, costly and of 
unsatisfactory quality or coverage. A way of handling the building of such resources can 
be direct crowdsourcing (as contributive approaches) or indirect crowdsourcing through 
for instance serious games. 

What is a long tail in a lexical network? 

A lexical/semantic network (thereafter dubbed JDM) for French is under construction 
with methods based on popular consensus by means of games with a purpose named 
JeuxDeMots (Lafourcade 2007). Thus, in 5 years, a high number of players lead to the 
construction a large scale lexical network for the French language (currently more than 
240 000 terms with around 1.4 million semantic relations) representing a common 
general knowledge but also including word senses referred as word usages (Lafourcade 
and Joubert, 2010). The relations of the lexical networks created this way are directed 
and typed, with classical ontological relations (like hypernym, hyponyms, part-of, whole, 
material/substance, ...), lexical relations (synonyms, antonyms, lexical family, ...); 
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semantic roles (agent, patient, instrument, ...) and less standard relations (typical 
location and time, cause, consequence, ...). Furthermore, relation occurrences are 
weighted which constitutes a quite original aspect in the lexical network domain 
exemplified by (for example) WordNet (Miller, 1990). The interpretation of a weight 
might by difficult but can be related to the strength of the relation as collectively 
perceived by speakers/players. The weight computation is done by emergence along with 
the gaming activity. Obviously by intuition, the relation cat--> animal is stronger than 
cat --> ball of wool, none withstanding their types. 

The lexical network has been made available (at http://jeuxdemots.org) and free to use 
by their authors, giving the research community a resource to play with. The question of 
the evaluation of its quality, usability in WSD and word recollection (Tip of the Tongue 
problem), and distributional properties are the main subjects of this article. One specific 
question is whether low weight but still important relations can be captured by some 
similar approaches and to which extend they are useful. 

We observed that many (if not most) relations in JDM are “frontal/direct/obvious” 
relations (e.g.: chat-->-feline), but some others are more farfetched/indirect. We wish to 
evaluate but also find practical ways to densify the network increasing the number of 
“indirect” relations (e.g.: chat --> allergy) belonging to the long tail. To do so, we use a 
TOT tool in a taboo mode, that is, refraining from using the strongest relations. 

In a first section, we will briefly remind to the reader the principles of long tail and the 
link with the network construction. Then, we introduce our TOT (tip of the tongue) tool, 
named AKI and we will explain the taboo mode, and show how it leads to densifying the 
JDM network. An evaluation of the long tailed network obtained is done for AKI and for 
a simplified WSD task. 

1 Long tailed lexical networks 

Lexical networks, either general or specialized, are quite well known, especially with the 
advent of WordNet (Fellbaum, 1998). But relations in those lexical networks are not 
weighted, that is to say relations between terms are just enumerated and being viewed as 
equivalent in their influence (not considering their type). Introducing weights to 
relations to discriminate between strong and loose relations seems interesting but leads 
to also critical issues like: how it could be done in practice and how to evaluate the 
obtained lexical network relatively to weights? Propagation algorithms in WSD can 
take advantage of weighted relations, and especially in case of loose but numerous 
connexions between words of the text.  

In (Sigman and Cecchi, 2002), a study of the organisation of the WordNet lexicon 
showed that the statistical distribution of the relation shows long tail behaviour, 
although they are not weighted. In fact, the study focused on the relations distribution 
amongst terms of WordNet, not of the distribution of the relations weights. Gaume 
(2008) studied various lexical networks and particularly graph of synonyms, and 
showed that they are "Small worlds graphs", and as such amongst other properties, 
having a long tail in the relation distribution relatively to terms. But again, such long tail 
doesn't relate to the strength of the relations by themselves, even they are highly 
applicable between synonyms. 
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Some works aim at introducing weights in lexical network and especially WordNet. 
generally weights are added to synsets (and not relations betweens synsets) for handling 
default cases in WSD tasks. Such approaches relate generally to term frequency or 
various evaluation of terms pairs computed in the basis of the network itself. For 
instance (Boyd-Graber , 2006) and (Budanitsky & Hirst, 2001) amongst others, added 
numerically evaluated WordNet relations, weights being computed from various 
similarity measures. Weights are generally added either by asking people to evaluate the 
strength of term pairs, or 3-uples (when a relation type is added, like hypernym, 
synonymy, cause, consequence, etc) by giving a value on a closed scale (between 0 and 
100, for example), or automatically by counting occurrences of such pairs from corpora. 

1.1 Which Tail to Look at in Weighted and Typed Lexical Network? 

The concept of long tail has been first popularized by (Zipf, 1965) for word occurrences 
in texts. Also in different domains, (Anderson, 2004) actually coined the phrase long tail 
about selling strategies of providing a large number of unique items in small quantities 
of each, usually combined to selling less popular items in large quantities. More precisely 
in our context, a long tail is a statistical property that a large share of a population 
belong to the tail of a probability distribution (larger than a normal "Gaussian" 
distribution)  usually related to a power-law distribution. 

The tail in a weighted lexical network is  

the lower part of the distribution of relation weights for a given term 

It is not the distribution of relations amongst terms, nor the distribution of term weights 
(if there is any). The tail can be considered with advantage separately for incoming or 
outgoing relations, as relations or even free associations are seldom symmetric. A 
question arises as when does the tail start in the distribution? The answer to this 
question is highly debatable and falls outside the scope of this paper. A simple (if not 
simplistic) approach is to consider that the tail starts at the point where  

the cumulated weight of the relations of the tail equals  
the cumulated weights of the relations which do not belong to the tail. 

For example, in figure 1 is shown the distribution of outgoing relation weights for the 
term chat (eng. cat) in the JDM network. The pike (at around 45 on the x-axis, around 
9,5% of the relation number) is an indication of the limit where the surface below the 
curve at the left of the pike is equal to the surface below the curve at the right. In this 
case, the first 45 relations have together the same importance than the rest of 405 
relations.  

However, in WSD we generally consider than the strongest relations (those on the left of 
the pike, in what is called the belly zone) are able to disambiguate around 70-75% on the 
ambiguity. The 25-30% could be solved with relations of the long tail, of course only if 
they are available in the knowledge base. None withstanding these figures (some 
literature would rather refer to the 20/80 rule), capturing the long tail is not only a 
challenge but a requirement to increase resolution percentage of WSD. 
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Figure 1a: distribution of outgoing relations for the term chat (eng. cat) The x-axis is the 
rank of the relations, the y-axis if the strength (weight). The frontier between belly and 
the tail of the curve is indicated by the pike. On the left, the belly part of the curve stops 
after the first 9.5% of strongest relations. The tail in this case covers the 90.5% weakest 

relations. 

 

Figure 1b : the log-log version of the Figure 1a. 

 

Put another way, Figure 1 can be interpreted, that the descriptive impact (in terms of 
weights) of the remaining 90.5% of the relations is equivalent that that of the first 9.5%. 
The curve reminds a zipfian power law (and is usually presented under a doubly-
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logarithmic scale, but the issue here is to pinpoint the frontier pike between the belly 
and the tail) or perhaps more precisely a Mandelbrot law of the form : K/(a+bn)c . 
However, we should stress this is not because such a curve is zipfian in shape that the 
data are actually related to a power law. Moreover, knowing the actual distribution law 
of the relations is by no mean any help in either the construction of the lexical network 
nor its use in lexical assistance or WSD. The question of lexical assistance have been 
largely presented in (Zock et al., 2010) as a difficult problem by itself. Indeed, it is not 
that a word is contained in such a resource that it is de facto easy to retrieve either by a 
speaker native of not, nor by any automated process. 

1.2 Long Tailed Lexical Network Construction  

The basic principles of JeuxDeMots (thereafter JDM) software, the game design, as well 
as the incremental construction of the lexical network, have already been described in 
(Lafourcade and Joubert, 2010). A game takes place between two players, in an 
asynchronous way. For the same target term1 T and a same instruction (synonyms, 
domains, free associations …), the answers common to both players are recorded. 
Validations are thus made by concordance of the propositions between pairs of players.  

This validating process is similar to the one used by (von Ahn and Dabbish, 2004) to 
index images and by (Liberman et al., 2007) to collect common sense knowledge. As far 
as we know, this is the first time it is done for lexical/semantic networks. However, using 
games for collecting resources of use in NLP is nowhere new, as (Chamberlain et al.) 
used it for anaphora annotations and (Mihalcea and Chklovski, 2003) for annotating 
corpora, to name a few. 

The structure of the lexical network built in JDM relies on the nodes and relations 
between nodes, as it was initially introduced by (Collins and Quillian, 1969) and more 
recently explicited by (Polguère, 2006). More precisely, JDM game leads to the 
construction of a lexical network connecting terms by typed and weighted relations2, 
some of them being quite non-classical. These relations are labelled by the instruction 
given to the players and they are weighted according to the number of pairs of players 
who proposed them. Also similar at first sight, this a strong departure from collecting 
concurrences (typed or not) form corpora. Indeed, there is less guarantee, if any, that 
term associations extracted from corpora faithfully reflect what people have in their 
mind than asking them directly. 

In a similar way to JDM, a PtiClic game (Zampa and Lafourcade, 2009) takes place in an 
asynchronous way between two players. A target term T, origin of relations, as well as a 
cluster of words resulting from terms connected with T in the lexical network produced 
by JDM are proposed to a first player. Several instructions corresponding to types of 
relations are also displayed. The player associates words of the cluster with instructions 
he thinks correspond by a drag and drop. The same term T, as well as the same cluster of 
words and the same instructions, are also proposed to a second player. According to a 

                                                             

1 A term can be a compound word (for example: Christmas tree) 
2 A relation can be thus considered as a quadruplet: origin term, destination term, type and weight of the relation. 
Between two same terms, several relations of different types can exist. 
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principle similar to that set up for JDM, only the propositions common to both players 
are taken into account, thus strengthening the relations of the lexical network. Contrary 
to JDM, the players of PtiClic cannot suggest new terms, but are forced to choose among 
those proposed. This design choice should allow to reduce the noise due to misspelt 
terms or to meaning confusion. There are at least two aims to this game: 1)  to make the 
weights of the relation more reliable, and 2) to cast freely associated terms to more 
specific relations when possible. The first one is crucial as it counterbalances a strong 
bias in JDM: people tend to over propose terms to be associated. 

It is generally assumed that when a relation holds between two terms, it is of only one 
type. However this should be mitigated as polysemy comes into play. For example, café 
can be located in a café (the beverage and the place, respectively), café can be made of 
café (beverage and the plant/grain). Some relation might not always be clearly distinct : 
is a seat  part of a car or located in a car, or both? For semantic roles, it is quite common 
that an agent can also be the patient of a predicate (an animal can kill or be killed). 

With the help of more than 3000 players, relations between pairs of terms have been 
collected, most of them being spontaneous, and thus “frontal” ones. Other "indirect" 
relations, are more uncommon, which seems quite logical considering the network 
creating mode (consensus filtered by player pairs). More formally, a clue can be said to 
as frontal for a target term if it belong to the belly of the distribution curve of that target. 

Finally, looking at actual weight values isolated is of little significance. Instead 
comparing at least two values, for the same term and the same relation is of interest and 
may have meaning. Some terms are more played than others for various reasons 
(popularity, funniness, etc.), and tend to have higher strength values. The more played a 
term, the more reliable are the distribution of its relations and their relative values.  

2 A Tip of the Tongue System: AKI 

The questions we answer are the following: for a given term are its relations with other 
terms able to characterize it in a unique way? When it is the case, is it useful for a Tip of 
the Tongue Software? Such a tool aimed at helping someone retrieving a word that is "on 
the tip of the tongue" by the help of clue words. As the user is supposedly unable to 
retrieve the target word, he can only provide words that are related. Those words are the 
clues given to the system. 

If the answer to the first question is positive, any term may be found via one or several 
reduced sets of typed clues. A tool helping the resolution of "word on the tip of the 
tongue" is a way to undertake the evaluation of the lexical network. Through such a tool 
made available on the web, the evaluation can thus be made permanent in time and rely 
on a large number of evaluators (not necessarily knowing that they are part of a global 
evaluation process). 

The system we developed (named AKI) is a tool for helping retrieving some word on the 
tip of the tongue. Alternatively, it can be viewed as a game, whose goal is to make the 
system find a given word through clue, or to trick it. 
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Figure 2 (a and b): examples of AKI plays. In the first play (on the left), the clues given 
are cinéma (movie), ville (town) and Bollywood, leading the system to propose in turn 

film, place and finally Bombay. In the second play (on the right), the clues are film, salle 
(room), and pop-corn leading in the end to cinéma (as movie theater). 

Figures 2 are typical AKI games. At the stages displayed, the player, can either click on 
the button "C'est la bonne réponse" (Eng. This is the proper answer)  if the proposition 
made by the system is the target term, or introduce another clue to get another 
proposition. The second plays, lead to a specific meaning of the word cinéma which may 
relate in French  to movie or theater. 

Players can introduce typed clues. A type relates to the king of relation holding between 
the clue and the target word. For example, a clue of the form :isa town, indicates that 
the target word is a town. When the clues are not typed (as in the above plays), they are 
assumed to be related to the target no considering any specific relation type. The 
available relations types that can be chosen by players are as follows: 

:isa  
:hypo 

:syn 
:anto 

:subst  
:loc  

:locfor  
:carac  

:part  
 :partof 

:do  
:patientof 

:cause 
:hascause 

Hypernym, :isa dog means the target word is a dog 
Hyponym, :hypo eagle, means that the target word is an hypernym of eagle 
Synonym, the target word and clue are synonyms. 
Antonym, the target word is antonym of clue. For example, :anto cold 
The target word has clue as substance. For example, :subst silver 
The target word can be found in clue. For example, :loc garden, :loc desert 
The target word is a location for clue. For example, :locfor money 
The target word has clue as a property. For example, :carac cold 
The target word has clue as part. For example, :part wheel 
The target word is a part of clue. For example, :partof car 
The target word can do clue. For example, :do roar 
The target word can be an patient of clue. For example, : patientof paint 
The target word can cause clue. For example, :cause disease. 
The target word is a consequence of clue. For example, : hascause virus 

The reader can refer for example to (Morris and Hirst, 2004) for a discussion of non-
classical semantic relations and their relevance for NLP. 

11



2.1 Principle and General Algorithm 

When viewing AKI as a game, the user tries consciously to make the computer guess a 
term, supplying, one by one, a succession of typed clues. After each clue, AKI makes the 
most probable proposition. If it corresponds to the searched term, the user confirms the 
proposition as the proper one; otherwise he introduces a new clue. This dialogue goes 
on, until either AKI finds the target term, or gives up asking the user to supply the 
solution. The algorithm relies both on the intersection of sets of terms activated by the 
clues and the fuzzy set of concepts linked to the clues. 

The algorithm is based on manipulating sets of weighted words (named thereafter 
lexical signatures). We call a clue a term proposed by the user for the system to guess 
what could be the term to be found (called thereafter target term). Finally, we call a 
proposition, a term returned by the system from a set of clues. 

From the first clue i1, a lexical signature is computed on the basis of what can be found in 
the lexical network: S(i1) = S1 = t1, t2, … where the ti are the terms related to the clue and 
sorted by descending activation (weight). By default, we consider all terms in the lexical 
network to be eligible as propositions and potential target terms. Put another way, t1 is 
the term for which the sum of all relations related to the clue i1 is the strongest. The first 
proposition made by AKI, p1 is this term. The player is supposed to acknowledge it, if it is 
the target term, otherwise he/she is invited to propose another clue. In this case, the clue 
and the proposition is removed from the signature : S’1 = S1 – {p1, i1}.  

With the second clue i2, the next lexical signature is computed : S2 = (S’1 ∩ S(i2)) – i2. The 
generalized formula at stage n is :  

Sn = (S’n-1 ∩ S(in)) – in   and   S’n = Sn – pn 

where in is the n-th clue given by the user and pn the n-th  proposition returned by AKI. 
With such a process, the size of signatures steadily diminishes as clues are added. The 
weight of each term of the signature is then the geometric mean of the weight of this 
term in the previous signatures. 

If the signature becomes empty, the system has not found the target term. We could stop 
the process at this stage, but it is more valuable to set a recovering procedure which will 
try a simple heuristic. In this case, a boolean union of signatures are made instead of 
intersections: 

Sn = (S’n-1 + S(in)) – in   and   S’n = Sn – pn 

The weight if a term is the signature is then the sum of its occurrences in the previous 
signatures. This is a form of majority vote, where the proposal with the most votes is 
returned by AKI. This recovery induce a form of learning for the system as if the target 
term is found this way, as unlinked clues are added in the lexical network. We have 
found that using the recovering procedure two times before making AKI giving up, leads 
to satisfactory results. Be more lenient then the system tends to propose very general 
and too loosely related terms, be more strict the system tend to learn less or not at all. 

About ¼ of the games concern common words and are played with “indirect” clues. The 
other games concern non common words, often connected to the current events, and are 
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played with “frontal” clues. Thus, as with JDM, most of the created relations are 
“frontal” ones. 

2.2 AKI in Taboo Mode  

As we find out, the JDM network contains mainly “frontal” relations, and we wish to 
extend it by creating or reinforcing “indirect” ones. In other words, we would like to 
increase the population of the long tail. 

The aim of this work is to make the system guess a target term, without using clue terms 
which are the most strongly connected with the target term in the lexical network. We 
generally limit this list of forbidden (or taboo) terms to the first 20. It means clues given 
by the user cannot be any of these terms, and thus the user has to give other clues, less 
strong connected with the target term and belonging to the long tail. Using this network 
extension, it increases the recall of the system. 

How to play in the taboo mode? In AKI, players has access to a list of recently played 
words, guessed or not. They can then choose one of these terms to make AKI guess it, 
avoiding as clues the terms indicated as taboos (forbidden by the system). These are in 
fact the terms in the belly in the lexical network. Alternatively, the player can send by 
email a term of its choice to be played to another person. Tabooing allows either to 
create new relations, or to strengthen already existing but relatively weak relations. 

Figure 3 (a and b) shows a typical game under taboo mode. The target term along with 
the forbidden clues is first presented to the user. The player succeeded in making the 
system find the term Bollywood not using the forbidden clues. 

How the taboo approach affect the relation frequency (or strength)? We can wonder that 
explicitly excluding the most common terms we might as well influence the natural 
strength in an artificial way. In the experiments we conducted, it has been observed that 
people do not only play in taboo mode, and that strongest and most immediate relations 
have their weight increased as well. The distribution curve (as exemplified in Figure 1)  is 
globally pushed upward, revealing new more distant and low weight relations. 
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Figure 3 (a and b): AKI play with taboo words. On the left, the target term is Bollywood 
and the forbidden clues are Bombay, Inde (India), cinéma (movie), danse, indien 

(indian), cinéma>art (cinema as art), film, bollywood (no upercase) cinéma indien 
(indian movies) and Hollywod. On the right, the user made the system find the target 
term without using those forbidden clues, but with acteur (actor), hindi and Mumbai. 

3 Evaluation for the long Tailed Network 

With AKI, more 15000 games were played creating more than original 80000 relations 
that were not part of the network beforehand. Also, around 1500 new terms have been 
introduced. We evaluated the impact of long tail relations in two contexts: 1) the 
evolution over time of the retrieving capability of AKI and 2) under a WSD task. 

3.1 Performances as a Tip of the Tongue Tool 

The performance of the AKI tool in properly guessing terms is found to be around 75% 
with an evaluation undertaken during around 18 months. That is to say 11545 out of the 
15895 game sessions played ended by AKI successfully guessing the target term of the 
player. On a smaller scale (3000 games) , we proposed the very same games where 
people were supposed to replace AKI in order to try to find target terms from clues. The 
global performance of people was only 48%. This is very interesting especially 
considering that the clues given to people, were exactly those given by people to AKI. It 
can be interpreted that the system is better at guessing from clues given by people, than 
people to guess their own clues. The question that remains is to know if achieving 75% 
success rate is enough for a useful Tip of the Tongue Tool? 

In fact, when used as a tool, people tend to give frontal (more straightforward) clues and 
were not willingly trying to tick the system. I this case, actual performances are much 
higher than 75%. Nevertheless, these facts have been collected from people that were 
using AKI as a TOT tool and a large scale planned experiment might be quite difficult to 
set up. 

Another question, left open, is whether 75% of success rate is by itself a limit. Certainly, 
we cannot expect to achieve a 100% rate, considering new incoming words over time. 
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Figure 4: Evolution of AKI success over time. The x-axis is the number of games (by 
segment of 157 games). The curve shows the success rate at guessing the proper term 

that a user has in mind from the clues he/she giving to the system. 
 

3.2 Performances  for WSD 

The purpose of the evaluation on WSD was to access the impact of the network in the 
case of WSD when viewing this task as a guessing problem almost identical to the 
guessing game presented above. A full presentation of various WSD techniques is 
beyond the scope of this paper, the interested reader can refer to (Navigli, 2009) and for 
a more general account of graph-based NLP to (Mihalcea and Radev, 2011). 

We selected, from the French version of Wikipedia, a set of 250 sentences containing 
polysemous words (restricted to common nouns) that are going to be used as target 
words to be disambiguated. The number of different target nouns was 48 (there was 5.20 
sentence per target word has a mean). Not all meanings for each target word were 
represented, but we ensure that at least two meanings were proposed for each of them. 
We then asked to French native speakers to be volunteers for enumerating typed clues 
that seemed relevant for guessing the proper usage of the polysemous target words. 

For example, the word mine in French has, amongst others, the meanings of: 
appearance, explosive device, mineral exploitation (coalmine, gold mine), and the 
graphite part of a pencil. In the following sentences, they have been asked to select the 
proper meaning above all to produce clues (as given in below). The figures correspond to 
the number of time this clues has been given by volunteers. 

(1) La première mine antipersonnel, hautement explosive et dotée d'un 
détonateur mécanique moderne fut employée par les troupes confédérés. (Eng. 
The first antipersonnel mine, highly explosive and provided with a mechanical 
detonator was used by confederate troops.) 

Target term : mine > charge explosive (mine as explosive) 
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:carac antipersonnel (4) 
bataille (2) 

:carac explosive (4) 
:patientof employer 

:part détonateur (3) 
:part détonateur mécanique 

(2) Une mine est un gisement exploité de matériaux. (Eng. A mine is a field 
exploited for materials.)   

Target term : mine > gisement (mine as field) 

:isa gisement (3) :carac exploité (2) 
exploité 

:locof matériaux (3) 
matériaux(2) 

(3) On trouve la trace dès la très haute antiquité de l'exploitation des mines 
d'argent du Laurion. (Eng. We find evidence since antiquity of exploitation of the 
Laurion silver mines.)   

Target term : mine > gisement (mine as field) 

exploitation (5) argent (3) 
:locof argent 

Laurion (2) 
:loc Laurion 

(4) La mine noire est réalisée à partir d'un mélange de graphite en poudre 
combiné à un mélange de kaolin et de bentonite. (Eng. The black mine is realized 
from a mixture of graphite powder combined to a mixture of kaolin and 
bentonite.)   

Target term : mine > dessiner (mine as drawing/pencil) 

:carac noire (3) 
noire (2) noir (2) 

graphite (4) 
:subst graphite 

kaolin (3) 
bentonite 

First, some few remarks are worthy. The annotators were free to choose their clues (and 
the type if any) but only from the words present in the sentences. They were not asked 
the type of the clues to follow any syntactic/semantic constraints present in the 
sentence. This last point could be discussed, but this constraint was felt as too 
complicated to the majority of volunteers. The clues could be given in the form occurring 
in the text or in a lemmatized version (like noire/noir). Terms of clues could be given 
several time with different types. Multiword terms could be used as long they are present 
in the text and known to the system, that is to say, existing in the lexical network).  

Prior to the experiment, we made a large number of people to plays with AKI in taboo 
mode for the target words. Those players were not those who volunteering for producing 
clues, and they were not aware of the global experiment nor the sentences we would be 
using as test corpus. 

The evaluation experiment was conducted has follow. For a given target word, the initial 
lexical signature was composed of its word senses (usages) with an equal weight equal to 
1. The learning mechanism (adding new relations to the network) was disabled. All clues 
were given at the same time, reading the proposal made by the system only after. 
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The obtained figures are the following when considering all clues (typed or not) : 

  Random Belly only no weight Belly + tail no weight Belly only Belly + tail 

  count % count % count % count % count % 

OK 69 27,6 158 63 176 70 195 78 245 98 

NOK 181 72,4 92 37 74 30 29,6 12 5 2 

The OK line refers to when the system has found the proper meaning/usage, and the 
NOK when the system proposed any other inadequate usage. The Random column refers 
to a totally random choice amongst senses. Columns with the mention belly only refers 
to when only relations concerning the target terms and belonging to the belly are 
considered. In that case, we ignore all relations of the tail. Column with no weight 
means that weights are ignored (they are all equal to 1). The mention of belly + tail 
means that all relations in the lexical network are taken into account. 

We made also a comparison of the performances with ignoring the type of the clue. For 
example, the set of clues of sentence (1) given above is reduced to : 

antipersonnel (4) 
bataille (2) 

explosive (4) 
employer 

détonateur (3) 
détonateur mécanique 

The obtained figures are the following when clue types are ignored : 

 
belly only no type Belly + tail no type 

 
count % count % 

OK 165 66 223 89,2 

NOK 85 34 27 10,8 

As we said earlier, this experiment doesn't mean to prove anything as a new WSD 
approach but rather to assess the impact of the contents of the lexical network with a 
very simple approach. The experiment, although slightly reminiscent of (Véronis and 
Ide, 1990), is by itself far too limited (a very small set of terms and sentences and only 
limited to nouns) to pretend to have any insight in general large scope WSD. 
Nevertheless, the obtained results seem to show that relations belonging to the tail have 
a positive effect in guessing what could be the proper meaning in the context of a 
sentence. Moreover, the explicit use of strength (weights) for relations does improve the 
overall performance. Ignoring types for clues does reduce performance but to a less 
extend than ignoring weights. This can be explained by the large proportion of specific 
relations that are also existing as associated ideas (the basic relations without particular 
type in JDM). 

A large scale experiment would be desirable, especially including verbs. A fully 
automatic handling of the process, that is to say not asking people to produce the clues, 
is also certainly a way to go, but at this stage the lack of a French analyzer able to 
produce the proper typed clues remains an obstacle. In any case, asking people to 
produce clues for WSD is by itself interesting for assessing the relative usefulness of the 
various relation types. Annotating this way a large collection of sentences may be worth 
the effort. 
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Conclusion 

The lexical network (JDM) created under the JeuxDeMots project is large scaled and has 
a wide coverage. From this network, we have conceived a prototype that can be viewed 
both as a game and as a Tip of the Tongue (TOT) tool, and whose purpose is to increase 
the number of low weight relations, thus making the JDM lexical network long tailed. 
We have in this paper considered the long tail property as a global property of the edge 
weights, and not the frequency distribution of terms nor the distribution of relation 
number linking terms. Globally, for a given term the cumulated weight of the first 20% 
stronger relations is equivalent to the 80% remaining. Depending on terms and of their 
lexical richness and usage, the long tail can start in a range from 10% to 30% of the 
cumulated relation weight. Under the game process with intersection by pairs, the 
construction of dense long tail can be slow (in an inverse quadratic way), because they 
are not “frontal” ones and users do not spontaneously think to them. We saw in this 
paper how a TOT game, used in a taboo mode, can help create such “indirect” relations 
in a more efficient way, while retaining the principle of typed and weighted relations. 
Beside presenting the approach for increasing the long tail, the second objective of this 
paper was to try to assess if this work had any usefulness. We evaluated the impact of the 
long tail in two different contexts. First, it does help the retrieval process of a TOT 
software as evaluated in a quite large number of occurrences (more than 15000 plays) 
over more than a year time span. Secondly, the long tailed of typed and weighed 
relations seems to have a positive effect on a WSD task. 
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