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Abstract
Human gaze behavior while reading text reflects a variety of strategies for precise and efficient read-
ing. Nevertheless, the possibility of extracting and importing these strategies from gaze data into
natural language processing technologies has not been explored to any extent. In this research, as
a first step in this investigation, we examine the possibility of extracting reading strategies through
the observation of word-based fixation behavior. Using existing gaze data, we train conditional
random field models to predict whether each word is fixated by subjects. The experimental results
show that, using both lexical and screen position cues, the model has a prediction accuracy of be-
tween 73% and 84% for each subject. Moreover, when focusing on the distribution of fixation/skip
behavior of subjects on each word, the total similarity between the predicted and observed distri-
butions is 0.9462, which strongly supports the possibility of capturing general reading strategies
from gaze data.

Title and Abstract in Japanese

人の一般的な文章理解戦略を捉えるための
CRFモデルを用いた文章中の単語注視予測

人間が文章を読む際の視線行動には、正確かつ効率的に読むための様々な戦略が反映されて

いる。しかしながら、その戦略を視線データから抽出し、自然言語処理技術に取り入れると

いう可能性に関しては、これまでほとんど研究されて来なかった。本研究では、この可能性を

研究するための第一歩として、単語ベースの注視行動の観察を通して文章理解戦略の抽出可

能性を調査する。我々は既存の視線データを用い、各単語が被験者によって注視されるかど

うかを予測する条件付き確率場モデルを訓練する。実験では、語彙情報と画面位置情報を手

がかりにすることで、このモデルが各被験者に対して 73%から 84%の予測精度を与えること
が示される。さらに、各単語に対する被験者間の注視／スキップの分布に着目すると、予測

された分布と実際に観察された分布との全体的な近似度は 0.9462であることが示され、視線
データから一般的な文章理解戦略を捉えうる可能性を強く裏付ける実験結果となっている。

Keywords:eye-tracking, gaze data, reading behavior, conditional random field (CRF).

Keywords in Japanese:視線追跡、視線データ、読解行動、条件付き確率場 (CRF).
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1 Introduction

Natural language processing (NLP) technologies have long been explored and some have ap-
proached close to satisfactory performance. Nevertheless, even for such sophisticated technologies,
there are still various issues pending further improvement. For example, in parsing technologies,
over 90% parsing accuracy has been achieved, yet some coordination structures or modifier depen-
dencies are still analyzed incorrectly.

Humans, on the other hand, can deal with such issues relatively effectively. We expect that if we
could clarify the mechanism used by humans, the performance of NLP technologies could be im-
proved by incorporating such mechanisms in their systems. To clarify these mechanisms, analyzing
human reading behavior is essential, while gaze data should strongly reflect this behavior. When a
human reads a piece of text, especially for the first time, it is important that his/her eye movements
are optimized for rapid understanding of the text. Humans typically perform this optimization
unconsciously, which is reflected in the gaze data.

Eye movements while reading text have long been explored in the field of psycholinguistics
(Rayner, 1998), and the accumulated knowledge of human eye movements has been reflected in
various eye movement models (Reichle et al., 1998, 2003, 2006). Reinterpretation of the knowl-
edge from an NLP perspective, however, has not been thoroughly investigated (Nilsson and Nivre,
2009, 2010; Martínez-Gómez et al., 2012). One possible reason for this could be that eye move-
ments inevitably contain individual differences among readers as well as unstable movements
caused by various external or internal factors, which make it difficult to extract general reading
strategies from gaze data obtained from different readers or even from a single reader.

In this research, we explore whether this difficulty can be overcome. We aim to predict whether
each word in the text is fixated by training conditional random field (CRF) models on existing
gaze data (Kennedy, 2003), and then examining whether such fixation behavior can be sufficiently
explained from the viewpoint of NLP-based linguistic features.

In the experiments, the trained CRF models predicted word fixations with 73% to 84% accuracy
for each subject. While the accuracy does not seem high enough to explain human gaze behavior, a
CRF model trained on the merged gaze data of all the subjects can predict the fixation distribution
across subjects for each word with a similarity of 0.9462 to the observed distribution, which should
be high enough to extract a general distribution regardless of individual differences or unstable
movements in the gaze data. The experimental results also show that to capture human reading
behavior correctly, both lexical and screen position features are essential, which would suggest that
we need to adequately distinguish the effects of these two kinds of features on gaze data when
incorporating certain strategies from gaze data into NLP technologies.

In Section2, we discuss related work on analyzing gaze data obtained while reading text. In
Section3, we briefly explain the fundamental concepts of gaze data by introducing existing gaze
data in the form of the Dundee Corpus, and also introduce the CRF model, which is trained to
predict word-based fixations. In Section4, we discuss preprocessing and observation of the Dundee
Corpus in designing our model. Finally, in Sections5 and6, we explain how to predict word-based
fixations in the corpus and analyze the performance of our model, respectively.

2 Related work

In the field of psycholinguistics, eye movements while reading text is a well established research
field (Rayner, 1998), and the accumulated knowledge has resulted in various models for eye move-
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ments. E-Z Reader (Reichle et al., 1998, 2003, 2006) is one such model. The E-Z Reader was de-
veloped to explain how eye movements are generated for the target gaze data, and not to predict eye
movements when reading text for the first time. These models are optimized for the target gaze data
by adjusting certain parameters without including any machine learning approaches. On the other
hand, the work presented in (Nilsson and Nivre, 2009) was, as the authors stated, the first work that
incorporated a machine learning approach to model human eye movements. The authors predicted
word-based fixations for unseen text using a transition-based model. In (Nilsson and Nivre, 2010),
temporal features were also considered to predict the duration of fixations.

There are important differences between the two approaches mentioned above, other than the way
in which the parameters are adjusted and the purpose of the modeling. The former approach mod-
eled the average eye movement of the subjects, while the latter trained the model for each subject.
The key point here is that the former approach attempts to generalize human eye-movement strate-
gies, while the latter attempts to capture individual characteristics. Our final goal is not only to
explain or predict human eye movements, but rather to extract from gaze data, reading strategies
that can be imported into NLP technologies. Since it is not clear whether extracting individual
or averaged strategies is better for this purpose, we set out to train our models to predict both
word-based fixations for each subject and the total distribution of the behavior across the subjects.

An image-based approach was proposed in (Martínez-Gómez et al., 2012) to clarify the position in
the text that should be fixated in order to understand the text more quickly. The authors represented
words in the text as bounding boxes, and visualized each of the linguistic features of words as an
image by setting the pixel values of the word-bounding boxes according to the magnitude of the
feature values of the words. They then attempted to explain the target gaze data represented in
the image using a linear sum of the weighted feature images. This work also incorporated screen
position features of words by representing each linguistic feature in a text image, which meant that
the screen position and linguistic features were considered to be strongly connected. In our models,
on the other hand, these two features are described separately and then paired, since we need to
exclude the contribution of screen position features when incorporating captured reading strategies
into NLP technologies, where screen positions are rarely considered.

3 The target gaze data and the model used to analyze them

3.1 The Dundee Corpus

The Dundee Corpus (Kennedy, 2003) is a corpus of eye movement data obtained while reading
English and French text. For each language, 20 texts from newspaper editorials (each of which
contained around 2,800 words) were selected, and each of the texts was divided into 40 five-line
screens containing 80 characters per line. While 10 native speakers read the texts displayed on the
screen, an eye tracker was used to record the gaze points on the text every millisecond. Through
their screen settings, patient calibration of the eye tracker, and post-adjustment of gaze data, the
authors successfully controlled the error of each gaze point to be within a character. The gaze data
included in the corpus, therefore, consisted of character-based fixations. Consecutive gaze points
on a single character were reduced to a single fixation point with the combined duration (Figure1).

Generally, an eye movement from one fixation point to another is called asaccade, and backward
saccades are calledregressions. In a saccade action, the human gaze usually moves several char-
acters forward in the text, which means that some characters are not fixated. The reason for this is
that humans can see and process the areas around fixated points, referred to asperipheral fields.
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t h r e a t e n i n g t h e i r v e r y e x i s t e n c e ?
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: fixation

: saccade

: regression

Figure 1:Character-based gaze data in the Dundee Corpus

3.2 Conditional random fields

CRFs (Lafferty et al., 2001) are a type of discriminative undirected probabilistic graphical model.
Theoretically, CRFs can deal with various types of graph structures although we use CRFs for
sequential labeling of whether each word is fixated. We therefore, explain CRFs with respect to
sequences only, borrowing the explanation from (Sha and Pereira, 2003).

CRFs define the conditional probability distributionsp(Y |X) of label sequencesY given input
sequencesX . We assume that random variable sequencesX andY have the same length, and that
the generic input and label sequences arex = x1 · · · xn andy = y1 · · · yn, respectively. A CRF on
(X , Y ) is specified by a vectorf of local featuresand a correspondingweight vectorλ. Each local
feature is either a state features(y, x , i) or a transition featuret(y, y ′, x , i) wherey, y ′ are labels,
x is an input sequence, andi is an input position. Typically, features depend on the inputs around
the given position, although they may also depend on global properties of the input.

The CRF’s global feature vector for input sequencex and label sequencey is given byF(y , x ) =∑
i f (y , x , i), wherei ranges over the input positions. The conditional probability distribution de-

fined by the CRF is thenpλ(Y |X) = (1/Zλ(X))expλ·F(Y , X), whereZλ(x ) =
∑

y expλ·F(y , x ).
The most likely label sequence forx is then given bŷy = argmaxy pλ(y |x ) = arg maxyλ·F(y , x ).
In our case,x represents the words in the text andy denotes whether each word is fixated.

4 Pre-processing and observation of the Dundee Corpus

In this section, we extract first-pass word-based fixations from the Dundee Corpus as the first
step in our investigation. We then observe what types of information seem to determine word
fixations/skips, which will help us to design feature sets for our CRF model in Section5.

4.1 Extraction of first-pass word-based fixations from the Dundee Corpus

As a first step toward extracting reading strategies, we focus on word-based fixations ignoring their
duration information, as examined in (Nilsson and Nivre, 2009). By merging consecutive fixations
within a word into a single fixation, the resolution of the gaze data is reduced from a per character
to a per word basis. Even after the merging, however, considering various types of observable
behaviors at a time seems too complicated for the first step. We therefore further narrow our target
by excluding regressions and saccades crossing lines from the gaze data as follows.

[Step 1]Each word-fixation is dealt with according to(i) and(ii) .
(i) Omit the fixation from the gaze data and move to the next fixation if a fixated word

(a) is labeled “visited” or (b) is in a different line from a previously-fixated word.
(ii) Else, allocate “visited” labels to the fixated word and all the preceding words in the text.

[Step 2]A sequence of gaze data is reconstructed using the remaining fixations.

For the gaze data in Figure1, for example, character-based fixations are first merged into word-
based fixations, the fixation after the regression fromveryto their is then ignored, and thereafter the
gaze data are reconstructed as shown in Figure2. With the data obtained from the above operation,
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threatening their very existence?

● ● ●

: word-based fixation

: saccade

Figure 2:First-pass word-based fixations in the Dundee Corpus
Total no. of No. of words in word sequence skipped by saccade

Subject saccades 0 1 2 3 4 5 6 7 · · ·
A 31,431 17,683 8,831 3,928 777 144 30 16 8 · · ·
B 36,248 24,669 8,900 2,118 419 106 28 3 1 · · ·
C 37,657 26,348 9,369 1,704 168 32 16 12 3 · · ·
D 36,570 24,560 10,044 1,750 143 40 14 10 4 · · ·
E 32,442 18,896 9,023 3,672 755 77 16 2 1 · · ·
F 38,982 28,561 8,859 1,351 159 36 10 3 1 · · ·
G 38,910 28,640 8,324 1,732 160 25 13 7 2 · · ·
H 33,910 20,540 10,068 2,807 384 78 18 8 1 · · ·
I 36,717 24,957 9,117 2,393 216 23 8 1 0 · · ·
J 37,738 26,479 9,297 1,774 136 32 12 2 2 · · ·

36,060.5 24,133.3 9,183.2 2,322.9 331.7 59.3 16.5 6.4 2.3 · · ·
Avg. (100.00%) (66.91%) (25.46%) (6.44%) (0.92%) (0.16%) (0.05%) (0.02%) (0.01%)· · ·

Table 1:Frequency of number of words in skipped sequence per subject

we can focus only on word-fixations involved in first-pass forward saccades within single lines.

4.2 Observation of skipped words in the Dundee Corpus

When observing the gaze data obtained in the previous section, we can see that for each subject
many words were skipped by saccades, that is, not fixated at all. We consider that such skips would
reduce the time for word-fixations and therefore lead to more effective human reading, that is,
faster reading without sacrificing understanding. Here we explore this word-skip behavior in the
gaze data in order to utilize the characteristics thereof to model word-fixations in the experiments.

Table1 shows the number of saccades per subject for the 20 texts of the Dundee Corpus (sec-
ond column), and classifies these saccades according to how many consecutive words the subject
skipped (third column onwards). The numbers in parentheses at the bottom of the table show the
ratios of the number of saccades skipping a particular number of words against the total number of
saccades. According to this table, the number of saccades skipping up to three words constitutes
99.73% of the total number of saccades. Even if we omit the number of saccades that move to the
next word (shown in the third column) from our calculations, the number of saccades skipping one
to three words constitutes 99.18%. Based on this observation, the assumption that each saccade
action skips at most three consecutive words appears to be realistic. If there is a common regularity
within the skipped sequences that can determine whether a target sequence is skipped, predicting
whether a target word is skipped would require lexical information on the preceding or following
two words from the target word.

Table2(a) shows the top 30 word sequences skipped by saccades in order of the number of skip
times, averaged over the 10 subjects (leftmost values in the middle column). From this table, it
seems that closed-class words such as determiners, prepositions, conjunctions, auxiliary verbs, and
so on, are often skipped by saccades. When considering the ratio of skip times against total number
of appearances of the target sequence (shown in the rightmost column), however, the frequently
skipped sequences were not skipped with high frequencies. For example,the was skipped most
often, although its skip rate was only 26.56%.

Table2(b) shows the top 30 sequences in order of skip rates against number of appearances only
for sequences that appeared≥ 5 times in the corpus. As observed in Table2(a), we can see that
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(a) Frequently observed skips

Word # skips / # ap- Ratio
sequence pearances (%)
the 774.1 / 2915 26.56
of 592.9 / 1613 36.76
to 525.1 / 1442 36.41
and 430.4 / 1079 39.89
a 402.7 / 1260 31.96
in 320.7 / 934 34.34
that 201.7 / 731 27.59
is 185.8 / 625 29.73
for 146.6 / 436 33.62
The 134.9 / 319 42.29
on 121.3 / 364 33.32
as 107.2 / 348 30.80
of the 106.3 / 371 28.65
are 99.5 / 318 31.29
be 92.8 / 372 24.95
with 92.4 / 347 26.63
was 87.2 / 351 24.84
it 84.5 / 330 25.61
I 79.5 / 257 30.93
by 76.7 / 220 34.86
- 72.5 / 257 28.21
have 71.4 / 327 21.83
or 70.5 / 167 42.22
in the 68.6 / 271 25.31
at 67.4 / 220 30.64
has 64.8 / 208 31.15
from 63.1 / 215 29.35
he 59.7 / 182 32.80
but 56.7 / 170 33.35
an 51.8 / 174 29.77

(b) Sequences skipped with high rate
(which appeared≥ 5 times)

Word # skips / # ap- Ratio
sequence pearances (%)
His 4.8 / 8 60.00
Its 4.6 / 8 57.50
How 3.3 / 6 55.00
Of 6.7 / 13 51.54
From 3.9 / 8 48.75
A 21.7 / 46 47.17
or a 4.6 / 10 46.00
No 4.1 / 9 45.56
I’d 4.1 / 9 45.56
Ms 3.1 / 7 44.29
We 14.4 / 33 43.64
led 2.6 / 6 43.33
- in 3.0 / 7 42.86
Most 3.4 / 8 42.50
The 134.9 / 319 42.29
de 3.8 / 9 42.22
& 3.8 / 9 42.22
or 70.5 / 167 42.22
of a 30.7 / 73 42.05
Is 2.1 / 5 42.00
- is 2.5 / 6 41.67
It’s 6.1 / 15 40.67
as a 20.9 / 52 40.19
’We 2.4 / 6 40.00
Those 2.4 / 6 40.00
he’s 2.4 / 6 40.00
- a 3.6 / 9 40.00
He 19.6 / 49 40.00
25 2.4 / 6 40.00
and 430.4 / 1079 39.89

(c) Skipped 2 or 3 word sequences
(which appeared≥ 5 times)

Word # skips / # ap- Ratio
sequence pearances (%)
or a 4.6 / 10 46.00
- in 3.0 / 7 42.86
of a 30.7 / 73 42.05
- is 2.5 / 6 41.67
as a 20.9 / 52 40.19
- a 3.6 / 9 40.00
to a 13.4 / 34 39.41
and so 1.9 / 5 38.00
in a 22.9 / 64 35.78
- the 4.5 / 13 34.62
of us 3.1 / 9 34.44
In a 2.4 / 7 34.29
up a 1.7 / 5 34.00
than a 4.4 / 13 33.85
and to 2.0 / 6 33.33
to be a 2.8 / 11 25.45
many of the 0.4 / 5 8.00
to do with 0.4 / 5 8.00
is not a 0.4 / 5 8.00
would be a 0.6 / 8 7.50
it is a 0.5 / 7 7.14
is that the 0.4 / 6 6.67
to make a 0.3 / 5 6.00
have been a 0.3 / 5 6.00
it is the 0.4 / 7 5.71
that it is 0.3 / 7 4.29
as much as 0.2 / 5 4.00
in order to 0.2 / 5 4.00
because of the 0.2 / 6 3.33
in the same 0.2 / 6 3.33

Table 2:Word sequences skipped by saccades in the Dundee Corpus

closed-class words are once again in the majority while first (capitalized) words in sentences were
frequently skipped, although their skip rates were, as before, not that high. EvenHis at the top of
the table was skipped with a rate of only 60.00%. Table2(c) shows the top 15 sequences based
on the same criteria used in Table2(b), but only for two- and three-word sequences. The table
suggests that word sequences connecting something like NP chunks tended to be skipped, although
their skip rates were not that high.

These observations suggest that target word sequences themselves seem to be related to whether
they are skipped, while other factors, such as relations with surrounding words, and so on, should
also be considered in skip decisions. Based on the above, we aim to capture factors for word-skip
behaviors using features in the CRF models. Using CRF models trained on the gaze data, we
examine how well the factors implemented as features can explain gaze behaviors.

The main purpose of this research was to capture some generality in human reading strategies from
an NLP perspective. From this point of view, it is desirable to be able to explain gaze behaviors
mainly using combinations of lexical information, in the normal way for NLP. For example, the
width of peripheral fields and the range of saccades, which are given by human eye mechanisms,
have long since been shown to control gaze behavior in psycholinguistic fields, whereas we aim to
interpret them in terms of window size, word length, and so on.

Early in this section we assumed that the length of each skipped sequence is at most three words.
We then attempt to predict a fixation or skip behavior for each word using lexical information on
the word and the preceding and following two words, which implies a window size of five words.
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Subject No. of skipped / all words (rate)
A 20,048 / 51,501 (38.93%)
B 15,224 / 51,501 (29.56%)
C 13,817 / 51,501 (26.83%)
D 14,890 / 51,501 (28.91%)
E 19,039 / 51,501 (36.97%)
F 12,490 / 51,501 (24.25%)
G 12,570 / 51,501 (24.41%)
H 17,563 / 51,501 (34.10%)
I 14,763 / 51,501 (28.67%)
J 13,736 / 51,501 (26.67%)

Table 3:Rate of skipped words

(No. of words)
Condition for agreement Total (rate) = Skipped + Fixated
≥ 6 subjects displaying same behavior 47,320 (91.88%) = 10,109 + 37,211
≥ 7 subjects displaying same behavior 39,439 (76.58%) = 6,484 + 32,955
≥ 8 subjects displaying same behavior 31,855 (61.85%) = 3,473 + 28,382
≥ 9 subjects displaying same behavior 24,219 (47.03%) = 1,385 + 22,834
10 (all) subjects displaying same behavior 16,313 (31.68%) = 314 + 15,999
Total words in all texts 51,501

Table 4:Agreement on gaze behavior for each word

The level of lexical information can vary, such as surface form, POS, length, probability, etc., while
various combinations of these can also be considered. On the other hand, since text is displayed
on a screen, optical factors must also be considered. In this research, we consider one of the most
likely factors, that is, the screen position of each word. In the experiments in Sections5 and6, we
examine the contribution of these factors by representing them as features in the CRF models.

4.3 Observation of commonality in gaze behaviors among subjects

This section investigates a method for capturing generality in gaze behavior among subjects. Using
the gaze data (obtained in Section4.1), Table3 gives the number of words that were skipped by
each subject. From this table, we can roughly see some variability in gaze behavior among subjects.
Table4 shows the degree of agreement among the subjects on whether each word is fixated or
skipped. For each row, the table shows the number of words for which a minimum number of
subjects displayed the same behavior. For example, words for which all the subjects displayed the
same behavior comprised only 31.68% of the texts. The low agreement given in the table would
suggest that it is not a good idea to specify a single common behavior for each word.

Based on this observation, we attempted instead to capture the distribution of how many subjects
fixated or skipped each target word. We trained a CRF model on the merged gaze data for all 10
subjects, using the same feature set as in the model for each subject, and then used the obtained
model to predict the distribution of each word in a target text.

5 Experimental settings

Based on the observation in the previous section, we examine whether word-fixations can be pre-
dicted using CRF models, which are trained on the gaze data. In this section, we explain the
experimental settings mainly of features that are utilized to train CRF models.

5.1 General settings

For the experiments, we trained a CRF model on the gaze data for each subject to predict the
fixation/skip behavior of the subject for each word. In addition, we also trained a CRF model on
the merged data for all subjects, to predict the fixation/skip distributions of each word across the
subjects. The evaluation metrics for the models are given in Section5.3.

For gaze data, we utilized the Dundee Corpus. As introduced in Section3.1, the Dundee Corpus
consists of gaze data for 20 texts, each of which was read by 10 subjects. We then divided the
data into training data, consisting of the data for 18 texts, and test data, comprising data for the
remaining two texts. All the gaze data were converted into first-pass saccade data according to
Section4.1, where each word was labeled “skipped” or “fixated” for each of the subjects. In the
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Figure 3:Word length features

Dundee Corpus, symbols such as quotation marks, periods, and commas are concatenated with the
nearest words. Considering the effect of this on gaze behavior, words in other tools were treated in
the same manner. For the same reason, we left the capitalization of words unchanged.

To train the CRF models, we utilizedCRFsuite(Okazaki, 2007) ver. 0.12. We used a sentence as
an input/output unit, since many of the existing NLP technologies are based on sentence-level pro-
cessing, and we intend to associate outputs of the CRF models with NLP technologies in our future
work. To obtain input sentences, five 80-character lines in each screen were split into sentences
using the sentence splitter implemented in theEnju parser (Ninomiya et al., 2007)1. In training
the CRF models, we selected the option of maximizing the logarithm of the training data with an
L1 regularization term, since this would effectively eliminate useless features, thereby highlighting
those features that really contributed to capturing the gaze data. The coefficient for L1 regulariza-
tion in each model was adjusted in the test data to examine to what extent we could explain the
given data using our features. We next explain the features utilized for training our CRF models.

5.2 Features utilized for training CRF models

Based on the observation in Section4.2, we set up features to capture the reading strategies. The
examined features can be classified into two types: lexical features and screen position features.
For each target word, we considered the features on the target word, the preceding two words, and
the following two words, which implies a window size of five words. Within the window size, we
considered all possible uni-, by-, and trigrams for each feature, except for3G-F and3G-B.

[Lexical features]
·WORD: word surface(s).
· POS: part(s) of speech obtained applying the POS tagger (Tsuruoka et al., 2005) to each sentence.
· L-POIS, L-PROB, L-RECI : information on surprisal of word length (real-value features).L-
POIS assumes that the word length probability follows a Poisson distribution, and takes the log-
arithm of the probability of the target word length. The logarithmic values are normalized over
the words in the texts (Figure3(a)). L-PROB calculates the actual word length probability in the
training data, takes the logarithm of the obtained probability, and then normalizes the logarithm
(Figure3(b)). L-RECI merely takes the reciprocal of the word length (Figure3(c)). For all of the
above three features, when obtaining bi- and trigrams, we summed the length of each of the words
and single space characters inserted between them.
· 3G-F, 3G-B: surprisal of a forward or backward word trigram (real-value features). We first
obtained the probabilistic distribution of forward or backward trigrams by training the trigram lan-

1http://www.nactem.ac.uk/enju/index.html
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Figure 4:Screen position features

Subjects A B C D E F G H I J
# fixated words 3,076 3,366 3,716 3,761 3,225 3,906 3,878 3,389 3,443 3,679
(Rate (%)) (62.67) (68.58) (75.71) (76.63) (65.71) (79.58) (79.01) (69.05) (70.15) (74.96)

# words in test data 4,908 (100.00%)

Table 5:Baseline rates for fixated words in the test data

guage model using SRILM (Stolcke, 2002) on the section of “Agence France-Presse, English Ser-
vice” in the fourth edition of English Gigaword (Parker et al., 2009), which contains 466,718,000
words. The obtained probabilities for target trigrams were then converted into logarithmic values,
and thereafter normalized over the trigrams in the texts.

[Screen position features]
· LF : line- or screen-feed. This examines whether the target word is at the beginning or end of a
line (Lstar t / Lend ) or the screen (Sstar t / Send ) (see Figure4(a)).
· SC: screen coordinates. This divides each screen into 5×5 grids and examines in which grid the
beginning of the word falls. Each screen in the Dundee Corpus consists of five 80-character lines,
and therefore, one grid has the capacity to hold 1×16 characters (see Figure4(b)).

5.3 Evaluation metrics and baselines

To evaluate the model trained on the gaze data for each subject, we counted the number of words
in the test data for which the model correctly predicted the subject’s behavior. Based on the obser-
vation that words were more often fixated than skipped for all subjects (see Table3), we regarded
the rate of fixated words in the gaze data for each subject as the baseline accuracy (see Table5).

For the model trained on the merged data of all subjects, we first predicted the fixation/skip dis-
tributions of each word across the subjects for the test set. For each predicted distribution, the
similarity based on Kullback-Leibler divergence was calculated against the distribution observed
in the gaze data. Then, we took the average of the similarities over all words in the test set.

More precisely, we calculatedexp{−(1/|T |)∑t∈T

∑
i pi,t loge(pi,t/qi,t)} where setT represents a

target text in which each wordt ∈ T is identified with its position in the text.|T | is accordingly
the number of words in textT , i ∈ {′′fixated′′, ′′skipped′′} is the label given to eacht ∈ T , andpi,t
andqi,t are the “fixated” / “skipped” distributions of target wordt across the subjects, predicted
by the CRF model and observed in the gaze data, respectively. This similarity measure returns
values between(0,1]; it returns 1 if the two distributions are the same. Using this similarity, we
examined how well our model could capture generality in the reading strategies of all subjects.
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Subjects
Utilized feature types Merged A B C D E F G H I J
(Baseline) .8131 62.67 68.58 75.71 76.63 65.71 79.58 79.01 69.05 70.15 74.96
WORD .8803 68.42 70.88 76.65 80.05 70.50 79.58 79.20 70.19 72.21 77.16
POS .8683 67.24 69.80 75.61 78.02 69.58 79.65 79.07 69.09 71.62 76.10
3G-F .8505 64.57 68.79 75.08 75.53 66.91 79.60 79.01 67.95 69.95 75.16
3G-B .8489 64.85 68.68 74.51 75.00 66.10 79.65 79.01 67.69 69.82 75.08
L-POIS .8321 63.18 68.62 75.75 76.63 65.71 79.58 79.03 69.05 70.40 74.98
L-PROB .8591 67.60 68.95 75.81 77.81 69.34 79.58 79.05 69.38 71.35 75.31
L-RECI .8798 67.22 70.17 77.30 80.44 69.72 79.56 79.18 70.42 72.51 75.67
LF .8663 60.96 68.58 75.65 76.83 63.12 79.58 79.01 68.38 70.44 74.96
SC .8725 64.28 69.09 76.00 76.98 66.69 79.63 79.07 69.60 71.31 75.45
(Using all of the above) .9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 6:Prediction accuracy of word fixation/skip behavior (using individual features)

Subjects
Utilized feature types Merged A B C D E F G H I J
(All individual types) .9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
−WORD .9460 75.06 74.67 80.75 83.99 76.51 80.50 82.38 72.84 77.51 80.58
−POS .9457 75.02 74.33 80.91 83.99 76.24 80.34 82.46 72.72 77.71 80.81
−3G-F .9460 75.39 74.37 80.85 83.80 76.43 80.54 82.80 72.66 77.73 81.50
−3G-B .9463 75.04 74.49 81.03 83.88 76.47 80.48 82.58 72.84 77.73 81.48
−L-POIS .9462 75.18 74.35 80.70 83.96 76.49 80.52 82.62 72.88 77.67 81.46
−L-PROB .9453 75.45 74.39 80.97 83.62 76.49 80.56 82.40 72.62 77.63 81.50
−L-RECI .9453 74.90 74.49 80.79 83.09 76.49 80.30 82.27 72.96 78.63 81.56
−LF .9447 74.57 74.63 81.01 83.76 76.49 80.70 82.80 73.11 77.89 81.48
−SC .9439 74.19 74.29 80.70 83.88 76.41 80.26 81.11 72.96 77.18 81.21
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 7:Contribution of individual features to prediction accuracy

For the baseline of this similarity measure, we averaged over the training data the fixation/skip
distributions of each word across the subjects, giving 0.8131.

6 Prediction of word-based fixation or skip behavior using CRF models

In the experiments, we first examine whether word fixation/skip behaviors in the test set can be
explained using the trained CRF models. We then explore the individual contribution of each of
the types of lexical and screen position features, and combinations of these features to prediction
accuracy. We further observe which features are heavily weighted in the trained CRF model.

6.1 Individual contribution of each type of feature

Table6 gives the prediction accuracy of the CRF models using each feature individually on the test
data, as well as the CRF model using all of the given features. Each of the columns “A” to “J” gives
the prediction accuracy for the target subject, given by the CRF models trained on training data
for the target subject, while the “Merged” column gives a similarity-based evaluation of the CRF
models trained on the merged gaze data of all subjects (see Section5.3).

Using all the features, the trained CRF model gives between 0.90% and 12.57% higher accuracy
than the baselines for each subject, and higher accuracy than using only individual features. The
degree of contribution of each individual feature, however, seems to vary among subjects. For
subjects A and E, the accuracy improvement over the baselines when using individual features
is relatively higher than for other subjects. For subjects B, D, I, and J, an improvement is also
observed, but this is less than for subjects A and E. For subjects F and G, on the other hand, barely
any improvement is observed for all individual features. From these observations, although there
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Subjects
Utilized feature types Merged A B C D E F G H I J
(All individual types) 0.9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11

−WORD, POS, 3G-F/-B 0.9437 74.53 74.39 80.52 83.68 75.94 80.42 82.23 72.82 77.63 80.56
−L-POIS/-PROB/-RECI 0.9353 73.63 73.98 80.38 82.86 75.59 80.22 82.09 72.58 77.53 81.03
−all lexical features 0.8748 64.61 68.97 75.86 76.87 66.40 79.60 79.07 69.27 71.03 75.45

−LF 0.9447 74.57 74.63 81.01 83.76 76.49 80.70 82.80 73.11 77.89 81.48
−SC 0.9439 74.19 74.29 80.70 83.88 76.41 80.26 81.11 72.96 77.18 81.21
−LF, SC 0.8940 68.93 70.90 77.49 81.09 71.11 79.54 79.67 70.48 72.84 78.26
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 8:Contribution of lexical (upper part) and screen position (lower part) features to prediction

are individual differences in the degree of improvement among subjects, it seems that some of the
characteristics of word-fixation behavior can be captured using our features. However, the 72% to
84% prediction accuracy obtained using all individual features is not high enough to adequately
explain each subject’s behavior. This is discussed further in Section6.5.

For the CRF models trained on the merged gaze data of all subjects (“Merged” column), on the
other hand, each of the individual features drastically improves the distribution similarity to the test
data, and when using all features, the distribution similarity is 0.9462, which is an improvement of
0.1331 over the baseline similarity. This similarity bodes well in terms of our expectation that this
CRF model can explain some generality on word-fixation behavior across all subjects.

When we go back to the prediction for each subject, each ofWORD, POS, L-PROB, andL-
RECI individually seem to be able to capture some characteristics in the gaze data, whileL-POIS
and the screen position featuresLF andSC do not improve the prediction accuracy that much.
Table7 examines the contribution of each individual feature to prediction accuracy, by training
CRF models using all feature types except the target feature type. The table seems to show that
removing the respective individual feature does not lead to a noticeable decrease in accuracy. This
would suggest that each individual feature is complemented by the remaining features.

6.2 Contribution of lexical and screen position features

In order to explore the complementary characteristics of feature types, we start by focusing on the
feature classification given by our definition: lexical and screen position features. Table8 exam-
ines the contribution of lexical and screen position features to prediction accuracy. By removing all
lexical features, that is, using only screen position featuresLF andSC (see “−all lexical features”
row), the distribution similarity drops drastically by 0.0714, and prediction accuracy for each sub-
ject also decreases by between 0.88% and 10.63%. We observe similar characteristics by removing
all screen position features; distribution similarity drops by 0.0522 (see “−LF , SC” row), while
prediction accuracy for each subject also decreases by between 0.94% and 6.31%.

These observations suggest that both the lexical features and screen position features capture cer-
tain information that can only be captured by those features. In addition, the prediction accuracy
obtained by removing all lexical features is similar to the baseline accuracy, regardless of the re-
maining screen position features. This would suggest that screen position features work well only
in conjunction with lexical features. In other words, humans do not seem to be able to decide
whether they fixate a word solely based on the word position.

The “−WORD, POS, 3G-F/-B,” and “−L-POIS/-PROB/-RECI ” rows in the table show that
removing either the features on word length surprisal or all lexical features other than these does
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Mer Subjects
Utilized feature types ged A B C D E F G H I J
Baseline .8131 62.67 68.58 75.71 76.63 65.71 79.58 79.01 69.05 70.15 74.96
All individual types (AIT) .9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
WORD, POS .8805 68.58 70.64 76.55 79.97 70.64 79.60 79.18 69.89 72.07 76.81
WORD∗POS,WORD,POS .8802 68.56 70.60 76.67 80.26 70.74 79.60 79.18 69.99 72.00 76.87
AIT, WORD∗POS .9461 75.26 74.31 80.91 84.01 76.59 80.48 82.58 72.90 77.63 81.38
LF, SC .8748 64.61 68.97 75.86 76.87 66.40 79.60 79.07 69.27 71.03 75.45
LF∗SC, LF, SC .8750 64.98 69.01 75.92 76.85 66.50 79.60 79.01 69.32 71.03 75.45
AIT, LF∗SC .9463 75.18 74.71 80.83 84.01 76.57 80.44 82.60 72.84 77.85 81.46
WORD, LF .9322 73.08 73.61 80.11 82.76 75.49 80.64 80.48 72.62 77.24 80.50
WORD∗LF, WORD, LF .9336 73.43 73.78 80.15 83.01 76.08 80.70 80.46 72.70 77.28 80.46
AIT, WORD∗LF .9470 75.04 74.23 80.97 83.92 76.69 80.44 82.72 72.90 77.67 81.72
WORD, SC .9328 73.02 73.92 80.56 82.93 75.71 80.75 82.19 73.19 77.26 81.05
WORD∗SC, WORD, SC .9333 72.98 73.90 80.58 82.95 75.86 80.73 82.21 73.17 77.44 80.99
AIT, WORD∗SC .9468 75.35 74.47 80.73 83.96 76.65 80.50 82.62 72.82 77.77 81.48
POS, LF .9187 72.09 72.94 78.93 80.79 74.65 79.50 79.93 71.35 76.10 78.93
POS∗LF, POS, LF .9201 73.11 73.08 78.79 80.93 75.26 79.16 79.56 71.31 76.14 79.03
AIT, POS∗LF .9475 75.06 74.71 80.62 83.99 76.77 80.54 82.46 72.90 77.75 81.52
POS, SC .9190 72.39 73.08 79.30 80.93 75.06 79.73 80.73 71.84 76.43 79.60
POS∗SC, POS, SC .9196 72.56 73.04 79.69 80.97 75.08 79.75 80.75 71.84 76.49 79.60
AIT, POS∗SC .9473 75.18 74.71 80.68 83.99 76.63 80.46 82.64 72.76 77.79 81.09
AIT, all combination .9481 74.96 74.61 80.66 83.94 76.63 80.54 82.64 72.98 77.77 81.28
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 9:Prediction accuracy of word fixation/skip behavior (using combined features)

not bring about a serious decline in prediction accuracy. Considering that lexical features other
than the word length features, such asWORD, can implicitly capture a great deal of information
on word length, most of the lexical information affecting word fixations/skips seems to be word
length surprisal. The “−LF ” and “−SC” rows in the table, on the other hand, show that removing
either screen coordinate features or line-/screen-feed features does not bring about a serious decline
in prediction accuracy. Considering that most of the line-/screen-feed information is implicitly
contained in the screen coordinate information, most of the screen position information affecting
word fixations/skips seems to be whether a target word is at the beginning or end of a line/screen.

6.3 Contribution of combined features

We also considered combinations of two feature types. Table9 shows the contribution of each
combination of features to prediction accuracy. In the table,A∗B represents the combination of
feature typesA andB, which means that this combined feature is fired only when bothA andB are
fired. Some feature types are real-value features, and cannot easily be combined with other feature
types. We therefore, omitted the real-value features as candidates for combination. When using
each combined feature, we also added the respective individual features for smoothing.

From the table, we can see that adding each of the combined features barely contributes to any
accuracy improvement. Even when using all the individual and combined features (see the bottom
row of the table), the improvement over using only all the individual features is barely noticeable.
These observations seem to imply that combining the features does not capture any extra informa-
tion than when using the features separately. Owing to a lack of gaze data, these results may be
misleading, and further investigation would be required in order to continue this discussion.

6.4 Observation of heavily weighted features

From the heavily weighted features in the CRF model, we observed which features were regarded
as important for explaining the gaze data. Table10shows the heavily weighted features in the CRF
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Features (for fixations) Weight Features (for fixations) Weight
L-PROB[0] 5.7808 L-RECI[-1] 0.1651
LF[0]= Lend 1.3306 SC[-2,-1]=(5,4),(5, 4) 0.1639
LF[0]= Lstart 1.3210 LF[-1,0]= Lmid, Lend 0.1519
LF[0]= Send 1.2605 SC[+2]=(1,5) 0.1454
L-POIS[-1,0] 1.2218 SC[+1,+2]=(1,3),(1,3) 0.1347
L-PROB[-1] 0.7899 SC[0,+1,+2]=(5, 3),(5,3),(1,4) 0.1299
L-RECI[-2,-1] 0.5393 WORD[-1]=But 0.1284
SC[+1]=(1,5) 0.4001 SC[-2,-1]=(5,1),(5, 1) 0.1258
LF[+1]= Lstart 0.3422 LF[-1]= Lend 0.1248
LF[0,+1]= Lend, Lstart 0.3422 LF[-1,0]= Lend, Lstart 0.1248
LF[0,+1]= Lstart, Lmid 0.3265 LF[0,+1]= Send, Sstart 0.1232
SC[+1]=(1,3) 0.2987 LF[+1]= Sstart 0.1232
SC[+1]=(1,4) 0.2776 SC[+2]=(1,2) 0.1182
L-PROB[-2,-1,0] 0.2310 SC[+2]=(1,3) 0.1146
3G-F[-2,-1,0] 0.2090 LF[-2]= Lmid 0.1092
SC[0]=(5,5) 0.1867 SC[0,+1]=(5,5),(1,1) 0.1079
SC[+1,+2]=(1,1),(1, 1) 0.1832 POS[0]=CD 0.1047
SC[-1]=(5,5) 0.1721 SC[-1]=(5,4) 0.1029
SC[+1,+2]=(1,2),(1, 2) 0.1718 POS[0,+1]=NN, NNS 0.1014
SC[+1]=(1,2) 0.1695 SC[-2,-1]=(5,5),(5, 5) 0.1012
SC[+1,+2]=(1,4),(1, 4) 0.1660 SC[0,+1]=(1,4),(1,4) 0.1006

Features (for skips) Weight
L-RECI[0] 2.0020
L-POIS[+1] 0.2691
Beginning of sentence 0.2657
End of sentence 0.2071
POS[-1]=_COLON_ 0.2023
WORD[0]=it’s 0.1904
WORD[-1]=- 0.1829
WORD[-1]=I 0.1793
LF[-2,-1,0]=Lmid, Lmid, Lmid 0.1756
L-PROB[-1,0] 0.1716
WORD[0]=than 0.1599
LF[0,+1]= Lmid, Lmid 0.1584
WORD[0]=that 0.1493
LF[0,+1,+2]=Lmid, Lmid, Lmid 0.1463
WORD[0]=and 0.1452
WORD[-1]=of 0.1289
WORD[-1,0]=as, a 0.1271
WORD[0]=from 0.1267
WORD[0]=which 0.1235
SC[-1,0,+1]=(1,1),(1, 1),(1,1) 0.1224
LF[0]= Lmid 0.1157

Table 10:Features that were heavily weighted in the “Merged” model using all individual features

model that was trained using all individual features on the merged training data of all subjects. The
left and right tables show the features weighted for fixations and skips, respectively. A number
in square brackets [ ] represents a word whose feature was captured, and identified with an offset
from a target word. A sequence of two or three numbers in [ ] represents bi- or trigram features.

The tables suggest that surprisal based on word length probability and the reciprocal word length
of a target word (L-PROB[0] and L-RECI[0] , respectively) have a large influence on whether
subjects fixate or skip the word, respectively. ForL-PROB[0] , according to Figure3(b), longer
words tend to give greater surprisal. This may be because the longer length possibly suggests that
the word is a content word and sometimes even an unknown word. In addition, it may be possible
that a longer word cannot be skipped easily by a single saccade. The heavy weight for fixations
thus seems reasonable. ForL-RECI[0] , a large value for the reciprocal word length means that
the word length is short, and a shorter length possibly suggests that the word is a functional word
or easily skipped by a single saccade. The weight for skips thus seems reasonable. From the
viewpoint of the human eye mechanism, these features would have been fired without a fixation on
a target word, using information on the word obtained by peripheral fields of the eyes or guessed
from surrounding information.

For WORD features, most of the heavily weighted features are for skips and on target words
(WORD[0] ) that belong to a closed-class, such asthan, from, andwhich. These words are not
content words and tend to be short, and therefore were likely weighted heavily for skips. On the
other hand,WORD[-1]=But was heavily weighted for fixations. The reason for this may be that
when a sentence starts withBut, it attracts the reader’s interest to focus on the next word.

For SC features, almost all of the heavily weighted features were located in the leftmost (1,*) or
rightmost (5,*) coordinates, which is consistent with our analysis in Section6.2. Many of these
features were weighted for fixations for the simple reason that the next word was in the leftmost
coordinate (SC[+1]=(1,*)), which would mean that subjects tended to fixate last words in a line
before their linefeed eye movements.SC[0]=(5,*) with conditions similar toSC[+1]=(1,*) were
not weighted that highly, probably because the first character of the last word in a line does not
always appear in position (5,*).
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6.5 Discussion on the experimental results

The experimental results in Section6 show that the CRF model trained for each subject does not
have high prediction accuracy. When we analyzed the prediction errors, we found many long spans
in the gaze data where all words were fixated. The subjects seem to have read the spans very
precisely, which differed from the behavior displayed in other areas. It is natural that subjects do
not maintain the same level of concentration or understanding throughout a text, yet our model was
not able to capture this. We believe that this is the main reason why the CRF model for each subject
does not exhibit high prediction accuracy. This issue will be addressed in our future work.

On the other hand, the experimental results also suggest that we can predict the distribution of
fixation/skip behavior of each word across subjects with very high similarity to the gaze data, re-
gardless of individual differences among subjects (see Table4) and the above unstable movements
in gaze data. This would imply the possibility of capturing and explaining generality in human
reading strategies from an NLP perspective.

It should also be noted that our results also depend on the preprocessing of the gaze data in Sec-
tion 4.1. The authors in (Nilsson and Nivre, 2009) also used the Dundee Corpus, and trained and
examined their model to predict word-based fixation behavior for each subject. Similar to our
method, they applied some preprocessing to the gaze data to remove irregular eye movements,
whereas, unlike our case, they also took regressions and revisits as well as first-pass forward sac-
cades into consideration. Since the experimental settings differed, we cannot directly compare the
prediction accuracy of our results with those in (Nilsson and Nivre, 2009). However, considering
that our baselines seem to be higher than those in (Nilsson and Nivre, 2009), we could say that our
additional preprocessing simplified the problem and made the gaze behavior easier to capture.

We found that both lexical features and screen position features contributed to explaining the gaze
data. Our final goal is to obtain some reading strategies from the gaze data, which can then be im-
ported into NLP technologies. Considering this goal, we need to remove the screen position factors
from the gaze data, since most NLP technologies consider sentence-based processing without any
position information. The experimental results suggest that combined features of screen position
and lexical information do not capture any extra characteristics. If this is true, we may be able to
separate the two factor types without considering their mutual interaction.

Conclusion

In this research, we examined the possibility of extracting reading strategies by observing word-
based fixation behavior. We trained CRF models on gaze data to predict the gaze behavior of each
subject and the distribution of gaze behavior across all subjects. Using lexical and screen position
features, the CRF models could predict word fixation/skip behaviors for each subject with 73% to
84% accuracy as well as the distribution of word fixation/skip behaviors across the subjects with a
0.9462 similarity to the original gaze data.

In our future work, we would like to collect gaze data on specific linguistic phenomena, such
as coordination and prepositional attachment, and then attempt to extract some general reading
strategies from this gaze data. Having achieved this, we aim to import the obtained strategies into
NLP technologies such as parsing, to realize further progress in these fields.
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