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Abstract

Human gaze behavior while reading text reflects a variety of strategies for precise and efficient
ing. Nevertheless, the possibility of extracting and importing these strategies from gaze date
natural language processing technologies has not been explored to any extent. In this resea
a first step in this investigation, we examine the possibility of extracting reading strategies thrc
the observation of word-based fixation behavior. Using existing gaze data, we train conditi
random field models to predict whether each word is fixated by subjects. The experimental re
show that, using both lexical and screen position cues, the model has a prediction accuracy
tween 73% and 84% for each subject. Moreover, when focusing on the distribution of fixation/:
behavior of subjects on each word, the total similarity between the predicted and observed c
butions is 0.9462, which strongly supports the possibility of capturing general reading strate
from gaze data.
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1 Introduction

Natural language processing (NLP) technologies have long been explored and some hav
proached close to satisfactory performance. Nevertheless, even for such sophisticated techno
there are still various issues pending further improvement. For example, in parsing technolo
over 90% parsing accuracy has been achieved, yet some coordination structures or modifier ¢
dencies are still analyzed incorrectly.

Humans, on the other hand, can deal with such issues relatively effectively. We expect that

could clarify the mechanism used by humans, the performance of NLP technologies could b
proved by incorporating such mechanisms in their systems. To clarify these mechanisms, anal
human reading behavior is essential, while gaze data should strongly reflect this behavior. W
human reads a piece of text, especially for the first time, it is important that his/her eye moverr
are optimized for rapid understanding of the text. Humans typically perform this optimizat
unconsciously, which is reflected in the gaze data.

Eye movements while reading text have long been explored in the field of psycholinguis
(Rayner 1998, and the accumulated knowledge of human eye movements has been reflect
various eye movement modeR¢dichle et al.1998 2003 2006. Reinterpretation of the knowl-
edge from an NLP perspective, however, has not been thoroughly investiyiitest( and Nivre
2009 201Q Martinez-Gomez et gl2012). One possible reason for this could be that eye mow
ments inevitably contain individual differences among readers as well as unstable moven
caused by various external or internal factors, which make it difficult to extract general reac
strategies from gaze data obtained from different readers or even from a single reader.

In this research, we explore whether this difficulty can be overcome. We aim to predict whe
each word in the text is fixated by training conditional random field (CRF) models on exist
gaze dataKennedy 2003, and then examining whether such fixation behavior can be sufficien
explained from the viewpoint of NLP-based linguistic features.

In the experiments, the trained CRF models predicted word fixations with 73% to 84% accu
for each subject. While the accuracy does not seem high enough to explain human gaze beha
CRF model trained on the merged gaze data of all the subjects can predict the fixation distrib
across subjects for each word with a similarity of 0.9462 to the observed distribution, which sh
be high enough to extract a general distribution regardless of individual differences or unst
movements in the gaze data. The experimental results also show that to capture human re
behavior correctly, both lexical and screen position features are essential, which would sugge:«
we need to adequately distinguish the effects of these two kinds of features on gaze data
incorporating certain strategies from gaze data into NLP technologies.

In Section2, we discuss related work on analyzing gaze data obtained while reading text.
Section3, we briefly explain the fundamental concepts of gaze data by introducing existing g
data in the form of the Dundee Corpus, and also introduce the CRF model, which is traine
predict word-based fixations. In Sectidnwe discuss preprocessing and observation of the Dund
Corpus in designing our model. Finally, in Sectidand6, we explain how to predict word-based
fixations in the corpus and analyze the performance of our model, respectively.

2 Related work

In the field of psycholinguistics, eye movements while reading text is a well established rese
field (Rayner 1998, and the accumulated knowledge has resulted in various models for eye m«
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ments. E-Z ReadeRgichle et al.1998 2003 2006 is one such model. The E-Z Reader was de
veloped to explain how eye movements are generated for the target gaze data, and not to pred
movements when reading text for the first time. These models are optimized for the target gaze
by adjusting certain parameters without including any machine learning approaches. On the
hand, the work presented iNi{sson and Nivre2009 was, as the authors stated, the first work the
incorporated a machine learning approach to model human eye movements. The authors pre
word-based fixations for unseen text using a transition-based modélildsgn and Nivre2010,
temporal features were also considered to predict the duration of fixations.

There are important differences between the two approaches mentioned above, other than tk
in which the parameters are adjusted and the purpose of the modeling. The former approach
eled the average eye movement of the subjects, while the latter trained the model for each sL
The key point here is that the former approach attempts to generalize human eye-movement ¢
gies, while the latter attempts to capture individual characteristics. Our final goal is not onl
explain or predict human eye movements, but rather to extract from gaze data, reading stral
that can be imported into NLP technologies. Since it is not clear whether extracting indivic
or averaged strategies is better for this purpose, we set out to train our models to predict
word-based fixations for each subject and the total distribution of the behavior across the sub

An image-based approach was proposedartinez-Gémez et gl2012) to clarify the position in
the text that should be fixated in order to understand the text more quickly. The authors repres
words in the text as bounding boxes, and visualized each of the linguistic features of words ¢
image by setting the pixel values of the word-bounding boxes according to the magnitude o
feature values of the words. They then attempted to explain the target gaze data represen
the image using a linear sum of the weighted feature images. This work also incorporated st
position features of words by representing each linguistic feature in a text image, which meant
the screen position and linguistic features were considered to be strongly connected. In our m
on the other hand, these two features are described separately and then paired, since we r
exclude the contribution of screen position features when incorporating captured reading strat
into NLP technologies, where screen positions are rarely considered.

3 The target gaze data and the model used to analyze them

3.1 The Dundee Corpus

The Dundee Corpuennedy 2003 is a corpus of eye movement data obtained while readir
English and French text. For each language, 20 texts from newspaper editorials (each of v
contained around 2,800 words) were selected, and each of the texts was divided into 40 five
screens containing 80 characters per line. While 10 native speakers read the texts displayed
screen, an eye tracker was used to record the gaze points on the text every millisecond. Th
their screen settings, patient calibration of the eye tracker, and post-adjustment of gaze dat
authors successfully controlled the error of each gaze point to be within a character. The gaz¢
included in the corpus, therefore, consisted of character-based fixations. Consecutive gaze
on a single character were reduced to a single fixation point with the combined duration igur

Generally, an eye movement from one fixation point to another is cabed@adeand backward
saccades are calledgressions In a saccade action, the human gaze usually moves several cl
acters forward in the text, which means that some characters are not fixated. The reason for
that humans can see and process the areas around fixated points, refereetighesal fields
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Figure 1:Character-based gaze data in the Dundee Corpus

3.2 Conditional random fields

CRFs (afferty et al, 2001) are a type of discriminative undirected probabilistic graphical mode
Theoretically, CRFs can deal with various types of graph structures although we use CRF
sequential labeling of whether each word is fixated. We therefore, explain CRFs with respe
sequences only, borrowing the explanation fr@hg and Pereir2003.

CRFs define the conditional probability distributiop€Y|X) of label sequence¥ given input
sequenceX. We assume that random variable sequeitaadY have the same length, and that
the generic input and label sequences»are x, - - - x, andy =y, --- y,, respectively. A CRF on
(X,Y) is specified by a vectaf of local featuresand a correspondingeight vectoid. Each local
feature is either a state featuflg/, x, i) or a transition feature(y, y’, x, i) wherey, y’ are labels,

x is an input sequence, amds an input position. Typically, features depend on the inputs aroul
the given position, although they may also depend on global properties of the input.

The CRF's global feature vector for input sequercend label sequencgeis given byF(y,x) =

> f(y,x,1), wherei ranges over the input positions. The conditional probability distribution d
fined by the CRF is thep, (Y|X) = (1/Z;(X))exp A-F(Y,X), whereZ,(x) = Zy expA-F(y,x).
The most likely label sequence foris then given by = argmax, p, (y|x) = argmax, A-F(y, x).

In our casex represents the words in the text andenotes whether each word is fixated.

4 Pre-processing and observation of the Dundee Corpus

In this section, we extract first-pass word-based fixations from the Dundee Corpus as the
step in our investigation. We then observe what types of information seem to determine v
fixations/skips, which will help us to design feature sets for our CRF model in Setion

4.1 Extraction of first-pass word-based fixations from the Dundee Corpus

As a first step toward extracting reading strategies, we focus on word-based fixations ignoring
duration information, as examined iNi{sson and Nivre2009. By merging consecutive fixations
within a word into a single fixation, the resolution of the gaze data is reduced from a per char:
to a per word basis. Even after the merging, however, considering various types of obsen
behaviors at a time seems too complicated for the first step. We therefore further narrow our t
by excluding regressions and saccades crossing lines from the gaze data as follows.

[Step 1] Each word-fixation is dealt with according i and(ii) .
(i) Omit the fixation from the gaze data and move to the next fixation if a fixated word
(a) is labeled Visited or (b) is in a different line from a previously-fixated word.
(ii) Else, allocate Visited' labels to the fixated word and all the preceding words in the text.
[Step 2] A sequence of gaze data is reconstructed using the remaining fixations.

For the gaze data in Figute for example, character-based fixations are first merged into woi
based fixations, the fixation after the regression fuemyto their is then ignored, and thereafter the
gaze data are reconstructed as shown in Figuwith the data obtained from the above operatior
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Figure 2:First-pass word-based fixations in the Dundee Corpus

. Total no. of No. of words in word sequence skipped by saccade
Subject | accades 0 1 3 4 5 6 7
A 31,431 17,683 8,831 3,928 77 144 30 16 8
B 36,248 24,669 8,900 2,118 419 106 28 3 1
C 37,657 26,348 9,369 1,704 168 32 16 12 3
D 36,570 24,560 10,044 1,750 143 40 14 10 4
E 32,442 18,896 9,023 3,672 755 77 16 2 1
F 38,982 28,561 8,859 1,351 159 36 10 3 1
G 38,910 28,640 8,324 1,732 160 25 13 7 2
H 33,910 20,540 10,068 2,807 384 78 18 8 1
| 36,717 24,957 9,117 2,393 216 23 8 1 0
J 37,738 26,479 9,297 1,774 136 32 12 2 2
36,060.5 24,133.3 9,183.2 2,322.9 331.7 59.3 16.5 6.4 23 .-
Avg. (100.00%) | (66.91%) (25.46%) (6.44%) (0.92%) (0.16%) (0.05%) (0.02%)  (0.01%)--

Table 1:Frequency of number of words in skipped sequence per subject

we can focus only on word-fixations involved in first-pass forward saccades within single lines

4.2 Observation of skipped words in the Dundee Corpus

When observing the gaze data obtained in the previous section, we can see that for each s
many words were skipped by saccades, that is, not fixated at all. We consider that such skips\
reduce the time for word-fixations and therefore lead to more effective human reading, the
faster reading without sacrificing understanding. Here we explore this word-skip behavior in
gaze data in order to utilize the characteristics thereof to model word-fixations in the experime

Table 1 shows the number of saccades per subject for the 20 texts of the Dundee Corpus
ond column), and classifies these saccades according to how many consecutive words the <
skipped (third column onwards). The numbers in parentheses at the bottom of the table sho
ratios of the number of saccades skipping a particular number of words against the total numk
saccades. According to this table, the number of saccades skipping up to three words cons
99.73% of the total number of saccades. Even if we omit the number of saccades that move 1
next word (shown in the third column) from our calculations, the number of saccades skipping
to three words constitutes 99.18%. Based on this observation, the assumption that each s¢
action skips at most three consecutive words appears to be realistic. If there is a common regt
within the skipped sequences that can determine whether a target sequence is skipped, pre
whether a target word is skipped would require lexical information on the preceding or follow
two words from the target word.

Table2(a) shows the top 30 word sequences skipped by saccades in order of the number o
times, averaged over the 10 subjects (leftmost values in the middle column). From this tab
seems that closed-class words such as determiners, prepositions, conjunctions, auxiliary verk
so on, are often skipped by saccades. When considering the ratio of skip times against total nt
of appearances of the target sequence (shown in the rightmost column), however, the freqt
skipped sequences were not skipped with high frequencies. For exahmleas skipped most
often, although its skip rate was only 26.56%.

Table2(b) shows the top 30 sequences in order of skip rates against number of appearance:
for sequences that appeared times in the corpus. As observed in TaBl@), we can see that
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(a) Frequently observed skips (b) Sequences skipped with high rate (c) Skipped 2 or 3 word sequences

(which appeareg: 5 times) (which appearett 5 times)
Word #skips/#ap-  Ratio Word #skips/#ap-  Ratio Word #skips/#ap-  Ratio
sequence| pearances (%) sequence| pearances (%) sequence pearances (%)
the 774112915  26.56 His 48/ 8 60.00 ora 46/10 46.00
of 592.9/1613 36.76 Its 46/ 8 57.50 -in 30/ 7 42.86
to 525.1/1442 36.41 How 3.3/ 6 55.00 ofa 30.7/73  42.05
and 430.4/1079  39.89 of 6.7/ 13 5154 -is 25/ 6 41.67
a 402.7 /1260 31.96 From 3.9/ 8 48.75 asa 20.9/52  40.19
in 320.7/ 934  34.34 A 2171 46  47.17 -a 3.6/ 9 40.00
that 201.7/ 731 27.59 ora 4.6/ 10  46.00 toa 13.4/34 39.41
is 185.8/ 625 29.73 No 41/ 9 4556 and so 19/ 5 38.00
for 146.6/ 436  33.62 I'd 4.1/ 9 4556 ina 229/64 35.78
The 134.9/ 319 42.29 Ms 3.1/ 7 4429 -the 45/13 34.62
on 121.3/ 364 33.32 We 144/ 33 4364 of us 31/ 9 3444
as 107.2/ 348  30.80 led 26/ 6 4333 Ina 241 7 34.29
of the 106.3/ 371  28.65 -in 3.0/ 7 4286 upa 1.7/ 5 34.00
are 99.5/ 318 31.29 Most 3.4/ 8 4250 thana 44/13 33.85
be 92.8/ 372 24.95 The 1349/ 319 42.29 and to 20/ 6 33.33
with 92.4/ 347 26.63 de 3.8/ 9 4222 tobea 2.8/11 25.45
was 87.2/ 351 24.84 & 38/ 9 4222 many of the 04/ 5 8.00
it 845/ 330 25.61 or 705/ 167  42.22 to do with 04/ 5 8.00
| 79.5/ 257 30.93 ofa 30.7/ 73 4205 isnota 04/ 5 8.00
by 76.7/ 220 34.86 Is 21/ 5 4200 would be a 06/ 8 7.50
- 725/ 257 28.21 -is 25/ 6 4167 itisa 05/ 7 7.14
have 714/ 327 21.83 It's 6.1/ 15 4067 is that the 04/ 6 6.67
or 70.5/ 167 42.22 asa 209/ 52 40.19 to make a 03/ 5 6.00
in the 68.6/ 271 2531 "We 24/ 6 40.00 have been a 03/ 5 6.00
at 67.4/ 220 30.64 Those 24/ 6 40.00 itis the 04/ 7 571
has 64.8/ 208 31.15 he’s 24/ 6  40.00 thatitis 03/ 7 4.29
from 63.1/ 215 29.35 -a 36/ 9 40.00 as much as 02/ 5 4.00
he 59.7/ 182 32.80 He 19.6/ 49  40.00 in order to 0.2/ 5 4.00
but 56.7/ 170  33.35 25 24/ 6 40.00 because of the| 02/ 6 3.33
an 51.8/ 174  29.77 and 430.4/1079  39.89 in the same 0.2/ 6 3.33

Table 2:Word sequences skipped by saccades in the Dundee Corpus

closed-class words are once again in the majority while first (capitalized) words in sentences
frequently skipped, although their skip rates were, as before, not that high.Hisanthe top of
the table was skipped with a rate of only 60.00%. Ta{ls shows the top 15 sequences base
on the same criteria used in Talféb), but only for two- and three-word sequences. The tab
suggests that word sequences connecting something like NP chunks tended to be skipped, al
their skip rates were not that high.

These observations suggest that target word sequences themselves seem to be related to
they are skipped, while other factors, such as relations with surrounding words, and so on, sl
also be considered in skip decisions. Based on the above, we aim to capture factors for worc
behaviors using features in the CRF models. Using CRF models trained on the gaze dat:
examine how well the factors implemented as features can explain gaze behaviors.

The main purpose of this research was to capture some generality in human reading strategie
an NLP perspective. From this point of view, it is desirable to be able to explain gaze beha\
mainly using combinations of lexical information, in the normal way for NLP. For example, t
width of peripheral fields and the range of saccades, which are given by human eye mechar
have long since been shown to control gaze behavior in psycholinguistic fields, whereas we a
interpret them in terms of window size, word length, and so on.

Early in this section we assumed that the length of each skipped sequence is at most three \
We then attempt to predict a fixation or skip behavior for each word using lexical information
the word and the preceding and following two words, which implies a window size of five wor
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Subject

No. of skipped / all words (rate)

A 20,048 /51,501 (38.93%)
15,224 / 51,501 (29.56%)
13,817 /51,501 (26.83%)
14,890/ 51,501 (28.91%)
19,039 /51,501 (36.97%)
12,490/ 51,501 (24.25%)
12,570/ 51,501 (24.41%)
17,563 / 51,501 (34.10%)

(No. of words)

Condition for agreement

Total (rate) = Skipped + Fixated

> 6 subjects displaying same behavior
> 7 subjects displaying same behavior
> 8 subjects displaying same behavior
> 9 subjects displaying same behavior
10 (all) subjects displaying same behavi

47,320 (91.88%) = 10,109 + 37,211
39,439 (76.58%) = 6,484 + 32,955
31,855 (61.85%) = 3,473 + 28,382
24,219 (47.03%) = 1,385 + 22,834

br16,313 (31.68%) = 314 + 15,999

Total words in all texts

51,501

14,763 /51,501 (28.67%)
13,736 /51,501 (26.67%)

C—IOTMMUO®

Table 4:Agreement on gaze behavior for each word
Table 3:Rate of skipped words

The level of lexical information can vary, such as surface form, POS, length, probability, etc., w
various combinations of these can also be considered. On the other hand, since text is disg
on a screen, optical factors must also be considered. In this research, we consider one of the
likely factors, that is, the screen position of each word. In the experiments in SeStons, we

examine the contribution of these factors by representing them as features in the CRF models

4.3 Observation of commonality in gaze behaviors among subjects

This section investigates a method for capturing generality in gaze behavior among subjects. |
the gaze data (obtained in Sectiéri), Table3 gives the number of words that were skipped by
each subject. From this table, we can roughly see some variability in gaze behavior among suk
Table 4 shows the degree of agreement among the subjects on whether each word is fixat
skipped. For each row, the table shows the number of words for which a minimum numbe
subjects displayed the same behavior. For example, words for which all the subjects displaye
same behavior comprised only 31.68% of the texts. The low agreement given in the table w
suggest that it is not a good idea to specify a single common behavior for each word.

Based on this observation, we attempted instead to capture the distribution of how many sut
fixated or skipped each target word. We trained a CRF model on the merged gaze data for :
subjects, using the same feature set as in the model for each subject, and then used the ot
model to predict the distribution of each word in a target text.

5 Experimental settings

Based on the observation in the previous section, we examine whether word-fixations can be
dicted using CRF models, which are trained on the gaze data. In this section, we explair
experimental settings mainly of features that are utilized to train CRF models.

5.1 General settings

For the experiments, we trained a CRF model on the gaze data for each subject to predic
fixation/skip behavior of the subject for each word. In addition, we also trained a CRF mode
the merged data for all subjects, to predict the fixation/skip distributions of each word across
subjects. The evaluation metrics for the models are given in Se&iBon

For gaze data, we utilized the Dundee Corpus. As introduced in S&:tipthe Dundee Corpus

consists of gaze data for 20 texts, each of which was read by 10 subjects. We then divide
data into training data, consisting of the data for 18 texts, and test data, comprising data fo
remaining two texts. All the gaze data were converted into first-pass saccade data accordi
Section4.1, where each word was labeled “skipped” or “fixated” for each of the subjects. In 1
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Figure 3:Word length features

Dundee Corpus, symbols such as quotation marks, periods, and commas are concatenated v
nearest words. Considering the effect of this on gaze behavior, words in other tools were treat
the same manner. For the same reason, we left the capitalization of words unchanged.

To train the CRF models, we utilizedRFsuite(Okazakj 2007) ver. 0.12. We used a sentence a:
an input/output unit, since many of the existing NLP technologies are based on sentence-leve
cessing, and we intend to associate outputs of the CRF models with NLP technologies in our f
work. To obtain input sentences, five 80-character lines in each screen were split into sent
using the sentence splitter implemented in Ergu parser Ninomiya et al, 2007*. In training

the CRF models, we selected the option of maximizing the logarithm of the training data witt
L1 regularization term, since this would effectively eliminate useless features, thereby highligh
those features that really contributed to capturing the gaze data. The coefficient for L1 regule
tion in each model was adjusted in the test data to examine to what extent we could explail
given data using our features. We next explain the features utilized for training our CRF mode

5.2 Features utilized for training CRF models

Based on the observation in Sectir2, we set up features to capture the reading strategies. T
examined features can be classified into two types: lexical features and screen position fea
For each target word, we considered the features on the target word, the preceding two word:
the following two words, which implies a window size of five words. Within the window size, w
considered all possible uni-, by-, and trigrams for each feature, excep®Gférand3G-B.

[Lexical features]

- WORD: word surface(s).

- POS part(s) of speech obtained applying the POS tagbsuruoka et aJ2005 to each sentence.

- L-POIS, L-PROB, L-RECI : information on surprisal of word length (real-value featurds).
POIS assumes that the word length probability follows a Poisson distribution, and takes the
arithm of the probability of the target word length. The logarithmic values are normalized o
the words in the texts (Figurg(a)). L-PROB calculates the actual word length probability in the
training data, takes the logarithm of the obtained probability, and then normalizes the logar
(Figure3(b)). L-RECI merely takes the reciprocal of the word length (Fig8fe)). For all of the
above three features, when obtaining bi- and trigrams, we summed the length of each of the \
and single space characters inserted between them.

- 3G-F, 3G-B: surprisal of a forward or backward word trigram (real-value features). We fil
obtained the probabilistic distribution of forward or backward trigrams by training the trigram ¢

http://mww.nactem.ac.uk/enju/index.html
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Figure 4:Screen position features
Subjects A B C D E F G H T J
# fixated words 3,076 3,366 3,716 3,761 3,225 3,906 3,878 3,389 3,443 3,679
(Rate (%)) (62.67) (68.58) (75.71) (76.63) (65.71) (79.58) (79.01) (69.05) (70.15)  (74.96)
# words in test data] 4,908 (100.00%)

Table 5:Baseline rates for fixated words in the test data

guage model using SRILMStolcke 2002 on the section of “Agence France-Presse, English Se
vice” in the fourth edition of English GigawordPérker et al.2009, which contains 466,718,000
words. The obtained probabilities for target trigrams were then converted into logarithmic val
and thereafter normalized over the trigrams in the texts.

[Screen position features]

- LF: line- or screen-feed. This examines whether the target word is at the beginning or end
line (Lg;qre / Leng) OF the screeny,q, / Senq) (€€ Figurel(a).

- SC: screen coordinates. This divides each screen irt® §rids and examines in which grid the
beginning of the word falls. Each screen in the Dundee Corpus consists of five 80-character |
and therefore, one grid has the capacity to hotd @ characters (see Figu4b)).

5.3 Evaluation metrics and baselines

To evaluate the model trained on the gaze data for each subject, we counted the number of
in the test data for which the model correctly predicted the subject’'s behavior. Based on the o
vation that words were more often fixated than skipped for all subjects (see3)able regarded

the rate of fixated words in the gaze data for each subject as the baseline accuracy (s8e Tabl

For the model trained on the merged data of all subjects, we first predicted the fixation/skip
tributions of each word across the subjects for the test set. For each predicted distributior
similarity based on Kullback-Leibler divergence was calculated against the distribution obse
in the gaze data. Then, we took the average of the similarities over all words in the test set.

More precisely, we calculateskp{—(1/|T) Y,c; > pilog.(p;¢/q:.)} where sel represents a
target text in which each worde T is identified with its position in the tex{.T| is accordingly
the number of words in text, i € {“fixated”,”skipped”} is the label given to eache T, andp; ,
andg; , are the “fixated” / “skipped” distributions of target wordacross the subjects, predicted
by the CRF model and observed in the gaze data, respectively. This similarity measure re
values betweef0, 1]; it returns 1 if the two distributions are the same. Using this similarity, w
examined how well our model could capture generality in the reading strategies of all subje
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Subjects

Utilized feature types Merged A B c D E E G H | 3
(Baseline) 8131 [ 62.67 6858 7571 7663 6571 79.58 79.01 69.05 70.15 74.96
WORD .8803 68.42 70.88 76.65 80.05 70.50 79.58 79.20 70.19 72.21 77.16
POS .8683 | 67.24 69.80 7561 78.02 69.58 79.65 79.07 69.09 7162 76.10
3G-F .8505 64.57 68.79 75.08 75.53 66.91 79.60 79.01 67.95 69.95 75.16
3G-B .8489 | 64.85 68.68 7451 7500 66.10 79.65 79.01 67.69 69.82 75.08
L-POIS .8321 63.18 68.62 75.75 76.63 65.71 79.58 79.03 69.05 70.40 74.98
L-PROB .8591 67.60 68.95 75.81 77.81 69.34  79.58 79.05 69.38 71.35 75.31
L-RECI .8798 67.22 70.17 77.30 80.44 69.72 79.56 79.18 70.42 72.51 75.67
LF .8663 60.96 68.58 75.65 76.83 63.12 79.58 79.01 68.38 70.44 74.96
SsC .8725 | 64.28 69.09 76.00 7698 66.69 79.63 79.07 69.60 7131 7545
(Using all of the above)| .9462 75.24  74.37 81.05 83.94  76.51 80.48 82.62 72.98 77.69 81.11
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skif

Table 6:Prediction accuracy of word fixation/skip behavior (using individual features)

Utilized feature types| Merged A B c D E SUb]eC'ES G H | 3

(All individual types) 9462 75.24 7437 81.05 83.94 76.51 80.48 82.62 7298  77.69 81.11
—WORD .9460 75.06 7467 80.75 8399 76,51 8050 8238 7284 7751 80.58
—POS .9457 75.02 74.33 80.91 83.99 76.24 80.34 82.46 72.72 77.71 80.81
—3G-F .9460 7539 7437 80.85 8380 7643 80.54 8280 7266 77.73 81.50
—3G-B 9463 75.04 74.49 81.03 83.88 76.47 80.48 82.58 7284 7773 81.48
—L-POIS .9462 75.18 74.35 80.70 83.96 76.49 80.52 82.62 7288  77.67 81.46
—L-PROB .9453 7545 7439 8097 8362 7649 8056 8240 7262 77.63 81.50
—L-RECI .9453 74.90 74.49 80.79 83.09 76.49 80.30 82.27 72.96 78.63 81.56
—LF .9447 7457 7463 8101 8376 7649 80.70 8280 73.11 77.89 81.48
—SC .9439 74.19 74.29 80.70 83.88 76.41 80.26 81.11 72.96 77.18 81.21

“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skif

Table 7:Contribution of individual features to prediction accuracy

For the baseline of this similarity measure, we averaged over the training data the fixation
distributions of each word across the subjects, giving 0.8131.

6 Prediction of word-based fixation or skip behavior using CRF models

In the experiments, we first examine whether word fixation/skip behaviors in the test set ca
explained using the trained CRF models. We then explore the individual contribution of eac
the types of lexical and screen position features, and combinations of these features to pred
accuracy. We further observe which features are heavily weighted in the trained CRF model.

6.1 Individual contribution of each type of feature

Table6 gives the prediction accuracy of the CRF models using each feature individually on the
data, as well as the CRF model using all of the given features. Each of the columns “A’ to “J” gi
the prediction accuracy for the target subject, given by the CRF models trained on training
for the target subject, while the “Merged” column gives a similarity-based evaluation of the C
models trained on the merged gaze data of all subjects (see Se@jon

Using all the features, the trained CRF model gives between 0.90% and 12.57% higher acc
than the baselines for each subject, and higher accuracy than using only individual features
degree of contribution of each individual feature, however, seems to vary among subjects.
subjects A and E, the accuracy improvement over the baselines when using individual fea
is relatively higher than for other subjects. For subjects B, D, I, and J, an improvement is
observed, but this is less than for subjects A and E. For subjects F and G, on the other hand, |
any improvement is observed for all individual features. From these observations, although 1
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Subjects
E F G H | J
(All individual types) 0.9462 | 75.24  74.37 81.05 83.94  76.51 80.48 82.62 72.98 77.69 81.11

—WORD, POS, 3G-F/-B| 0.9437 | 7453 7439 8052 8368 7594 8042 8223 7282 7763 80.56
—L-POIS/-PROB/-RECI | 0.9353 | 73.63 73.98 80.38 8286 7559 8022 8209 7258 7753 81.03

Utilized feature types Merged A B c D

—all lexical features 0.8748 | 64.61 6897 7586 76.87 66.40 79.60 79.07 69.27 71.03 75.45
—LF 0.9447 | 7457 7463 8101 8376 76.49 80.70 8280 7311 77.89 8148
-SC 0.9439 | 7419 7429 80.70 8388 76.41 80.26 8111 7296 77.18 81.21
—LF, SC 0.8940 | 6893 7090 7749 81.09 7111 7954 7967 7048 72.84 78.26

“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/ski

Table 8:Contribution of lexical (upper part) and screen position (lower part) features to predict

are individual differences in the degree of improvement among subjects, it seems that some «
characteristics of word-fixation behavior can be captured using our features. However, the 7z
84% prediction accuracy obtained using all individual features is not high enough to adequi
explain each subject’s behavior. This is discussed further in Segtion

For the CRF models trained on the merged gaze data of all subjects (“Merged” column), or
other hand, each of the individual features drastically improves the distribution similarity to the
data, and when using all features, the distribution similarity is 0.9462, which is an improvemer
0.1331 over the baseline similarity. This similarity bodes well in terms of our expectation that"
CRF model can explain some generality on word-fixation behavior across all subjects.

When we go back to the prediction for each subject, eactWoiRD, POS, L-PROB, andL-
RECI individually seem to be able to capture some characteristics in the gaze datd, ARIOIS
and the screen position featureE and SC do not improve the prediction accuracy that much
Table 7 examines the contribution of each individual feature to prediction accuracy, by train
CRF models using all feature types except the target feature type. The table seems to sho
removing the respective individual feature does not lead to a noticeable decrease in accuracy
would suggest that each individual feature is complemented by the remaining features.

6.2 Contribution of lexical and screen position features

In order to explore the complementary characteristics of feature types, we start by focusing o
feature classification given by our definition: lexical and screen position features. Sakéen-
ines the contribution of lexical and screen position features to prediction accuracy. By removin
lexical features, that is, using only screen position featuFeandSC (see “-all lexical features”
row), the distribution similarity drops drastically by 0.0714, and prediction accuracy for each s
ject also decreases by between 0.88% and 10.63%. We observe similar characteristics by ren
all screen position features; distribution similarity drops by 0.0522 (sdd~ SC’ row), while
prediction accuracy for each subject also decreases by between 0.94% and 6.31%.

These observations suggest that both the lexical features and screen position features capt
tain information that can only be captured by those features. In addition, the prediction accu
obtained by removing all lexical features is similar to the baseline accuracy, regardless of th
maining screen position features. This would suggest that screen position features work well
in conjunction with lexical features. In other words, humans do not seem to be able to de
whether they fixate a word solely based on the word position.

The “~WORD, POS 3G-F/-B,” and “—L-POIS/-PROB/-RECI" rows in the table show that
removing either the features on word length surprisal or all lexical features other than these
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Mer Subjects

Utilized feature types ged A B c D E E G H | J

Baseline .8131 | 62.67 68.58 7571 76.63 65.71 79.58 79.01 69.05 70.15 74.96
All'individual types (AIT) .9462 | 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
WORD, POS .8805 | 68.58 70.64 76.55 79.97 70.64 79.60 79.18 69.89 72.07 76.81
WORD«POS,WORD,POS| .8802 | 68.56 70.60 76.67 80.26 70.74 79.60 79.18 69.99 72.00 76.87
AIT, WORD+POS 9461 | 75.26 7431 8091 84.01 7659 8048 8258 7290 77.63 81.38
LF, SC .8748 | 64.61 68.97 75.86 76.87 66.40 79.60 79.07 69.27 71.03 75.45
LF«SC, LF, SC .8750 | 6498 69.01 7592 76.85 6650 79.60 79.01 69.32 71.03 7545
AlT, LF«SC .9463 | 75.18 74.71 80.83 84.01 76.57 80.44 82.60 72.84 77.85 81.46
WORD, LF .9322 | 73.08 73.61 80.11 82.76 75.49 80.64 80.48 72.62 77.24 80.50
WORD«LF, WORD, LF .9336 | 73.43 73.78 80.15 83.01 76.08 80.70 80.46 72.70 77.28 80.46
AIT, WORD«LF 9470 | 75.04 7423 80.97 8392 7669 8044 8272 7290 77.67 8172
WORD, SC .9328 | 73.02 73.92 80.56 82.93 75.71 80.75 82.19 73.19 77.26 81.05
WORD+SC, WORD, SC 9333 | 7298 73.90 80.58 8295 7586 80.73 8221 73.17 77.44 80.99
AIT, WORD«+SC .9468 | 75.35 74.47 80.73 83.96 76.65 80.50 82.62 72.82 77.77 81.48
POS, LF .9187 | 72.09 72.94 78.93 80.79 74.65 79.50 79.93 71.35 76.10 78.93
POS:LF, POS, LF 9201 | 73.11 73.08 78.79 80.93 75.26 79.16 79.56 71.31 76.14 79.03
AIT, POS:LF 9475 | 75.06 7471 80.62 8399 76.77 80.54 8246 7290 77.75 8152
POS, SC 9190 | 72.39 73.08 79.30 80.93 75.06 79.73 80.73 71.84 76.43 79.60
POSSC, POS, SC 9196 | 7256 73.04 79.69 8097 7508 79.75 80.75 71.84 76.49 79.60
AIT, POS«SC .9473 | 75.18 74.71 80.68 83.99 76.63 80.46 82.64 72.76 77.79 81.09
AIT, all combination .9481 | 74.96 74.61 80.66 83.94 76.63 80.54 82.64 72.98 77.77 81.28
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/ski

Table 9:Prediction accuracy of word fixation/skip behavior (using combined features)

not bring about a serious decline in prediction accuracy. Considering that lexical features ¢
than the word length features, such'®RD, can implicitly capture a great deal of information
on word length, most of the lexical information affecting word fixations/skips seems to be w
length surprisal. The=LF” and “—SC" rows in the table, on the other hand, show that removin
either screen coordinate features or line-/screen-feed features does not bring about a serious
in prediction accuracy. Considering that most of the line-/screen-feed information is implic
contained in the screen coordinate information, most of the screen position information affec
word fixations/skips seems to be whether a target word is at the beginning or end of a line/scr

6.3 Contribution of combined features

We also considered combinations of two feature types. Taldlkows the contribution of each
combination of features to prediction accuracy. In the taBleB represents the combination of
feature type#\ andB, which means that this combined feature is fired only when BaihdB are
fired. Some feature types are real-value features, and cannot easily be combined with other fi
types. We therefore, omitted the real-value features as candidates for combination. When
each combined feature, we also added the respective individual features for smoothing.

From the table, we can see that adding each of the combined features barely contributes t
accuracy improvement. Even when using all the individual and combined features (see the bc
row of the table), the improvement over using only all the individual features is barely noticea
These observations seem to imply that combining the features does not capture any extra infi
tion than when using the features separately. Owing to a lack of gaze data, these results m
misleading, and further investigation would be required in order to continue this discussion.

6.4 Observation of heavily weighted features

From the heavily weighted features in the CRF model, we observed which features were regi
as important for explaining the gaze data. Taklshows the heavily weighted features in the CRI
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Features (for fixations) | Weight Features (for fixations) Weight Features (for skips) Weight
-PROB[0] 5.7808 || L-RECI-1] 0.1651 L-RECI[0] 2.0020
LF[0]= Leng 1.3306 || SC[-2,-1]45,4),(5,4) 0.1639 L-POIS[+1] 0.2691
LF[0]= Lgyre 1.3210 LF[-1,0]= Lipigs Leng 0.1519 Beginning of sentence 0.2657
LF[0]= Scnq 1.2605 || SC[+2]H1,5) 0.1454 End of sentence 0.2071
L-POIS[-1,0] 1.2218 || SC[+1,+2]€1,3),(1,3) 0.1347 POS[-1]=_COLON_ 0.2023
L-PROB[-1] 0.7899 || SC[0,+1,+2]%5,3),(5,3),(1,4) | 0.1299 WORD[0]=it's 0.1904
L-RECI[-2,-1] 0.5393 WORDI[-1]=But 0.1284 WORDI-1]=- 0.1829
SC[+1](1,5) 0.4001 || SC[-2,-1]%5,1),(5,1) 0.1258 WORD[-1]=! 0.1793
LF[+1]= Lytare 0.3422 || LF[-1]= Leyq 0.1248 LF[-2,-1,0]=Lyyiq» Linid» Lmia 0.1756
LF[0,41]= Leng, Lyart 0.3422 || LF[-1,0]= Leng, Lotare 0.1248 L-PROB[-1,0] 0.1716
LF[0,+1]= Ltare Linia 0.3265 || LF[0,+1]=Scnq Ssart 0.1232 WORDI[0]=than 0.1599
SC[+1]<1,3) 0.2987 || LF[+1]= S 0.1232 LF[0,+1]= Lynig» Linia 0.1584
SC[+1](1,4) 0.2776 || SC[+2]«1,2) 0.1182 WORD[0]=that 0.1493
L-PROB[-2,-1,0] 0.2310 || SC[+2]H1,3) 0.1146 LF[0,+1,+2]=Lyyig, Liias Lmia | 0.1463
3G-F[-2,-1,0] 0.2090 || LF[-2]= Lpig 0.1092 WORD[0]=and 0.1452
SC[0]=(5,5) 0.1867 || SCI[0,+1]%5,5),(1,1) 0.1079 WORDI-1]=of 0.1289
SC[+1,+2]1,1),(1,1) | 0.1832 || POS[0]=CD 0.1047 WORD[-1,0]=as, a 0.1271
SC[-1]5,5) 0.1721 || SC[-1]<5,4) 0.1029 WORDI[0]=from 0.1267
SC[+1,+2]K1,2),(1,2) | 0.1718 || POS[0,+1]=NN, NNS 0.1014 WORD[0]=which 0.1235
SC[+1](1,2) 0.1695 || SC[-2,-1]%5,5),(5,5) 0.1012 SC[-1,0,+1]%1,1),(1,1),(1,1) | 0.1224
SC[+1,+2]%1,4),(1,4) | 0.1660 || SC[0,+1]<1,4),(1,4) 0.1006 LF[0]= Lyyia 0.1157

Table 10:Features that were heavily weighted in the “Merged” model using all individual featu:

model that was trained using all individual features on the merged training data of all subjects.
left and right tables show the features weighted for fixations and skips, respectively. A nun
in square brackets [ ] represents a word whose feature was captured, and identified with an
from a target word. A sequence of two or three numbers in [ ] represents bi- or trigram feature

The tables suggest that surprisal based on word length probability and the reciprocal word le
of a target word I(-PROB[0] and L-RECI[O] , respectively) have a large influence on whethe
subjects fixate or skip the word, respectively. EePROBJ[0], according to Figur&(b), longer
words tend to give greater surprisal. This may be because the longer length possibly sugges
the word is a content word and sometimes even an unknown word. In addition, it may be pos
that a longer word cannot be skipped easily by a single saccade. The heavy weight for fixa
thus seems reasonable. RoRECI[0] , a large value for the reciprocal word length means th:
the word length is short, and a shorter length possibly suggests that the word is a functional
or easily skipped by a single saccade. The weight for skips thus seems reasonable. Fro
viewpoint of the human eye mechanism, these features would have been fired without a fixatic
a target word, using information on the word obtained by peripheral fields of the eyes or gue
from surrounding information.

For WORD features, most of the heavily weighted features are for skips and on target wc
(WORDI[0]) that belong to a closed-class, suchtlaan from, andwhich These words are not

content words and tend to be short, and therefore were likely weighted heavily for skips. Or
other handWORDI-1]=But was heavily weighted for fixations. The reason for this may be th
when a sentence starts wiut, it attracts the reader’s interest to focus on the next word.

For SC features, almost all of the heavily weighted features were located in the leftmost (1,*
rightmost (5,*) coordinates, which is consistent with our analysis in Seé&ianMany of these
features were weighted for fixations for the simple reason that the next word was in the leftr
coordinate $C[+1]=(1,*)), which would mean that subjects tended to fixate last words in a lii
before their linefeed eye movementC[0]=(5,*) with conditions similar taSC[+1]=(1,*) were
not weighted that highly, probably because the first character of the last word in a line does
always appear in position (5,*).
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6.5 Discussion on the experimental results

The experimental results in Sectiérshow that the CRF model trained for each subject does n
have high prediction accuracy. When we analyzed the prediction errors, we found many long ¢
in the gaze data where all words were fixated. The subjects seem to have read the span
precisely, which differed from the behavior displayed in other areas. It is natural that subject
not maintain the same level of concentration or understanding throughout a text, yet our mode
not able to capture this. We believe that this is the main reason why the CRF model for each st
does not exhibit high prediction accuracy. This issue will be addressed in our future work.

On the other hand, the experimental results also suggest that we can predict the distributi
fixation/skip behavior of each word across subjects with very high similarity to the gaze data
gardless of individual differences among subjects (see Bldad the above unstable movement:
in gaze data. This would imply the possibility of capturing and explaining generality in hurr
reading strategies from an NLP perspective.

It should also be noted that our results also depend on the preprocessing of the gaze data i
tion 4.1 The authors inNilsson and Nivre2009 also used the Dundee Corpus, and trained ar
examined their model to predict word-based fixation behavior for each subject. Similar to
method, they applied some preprocessing to the gaze data to remove irregular eye mover
whereas, unlike our case, they also took regressions and revisits as well as first-pass forwar
cades into consideration. Since the experimental settings differed, we cannot directly compai
prediction accuracy of our results with those Miléson and Nivre2009. However, considering

that our baselines seem to be higher than thosHilegon and Nivre2009, we could say that our

additional preprocessing simplified the problem and made the gaze behavior easier to captur

We found that both lexical features and screen position features contributed to explaining the
data. Our final goal is to obtain some reading strategies from the gaze data, which can then t
ported into NLP technologies. Considering this goal, we need to remove the screen position fa
from the gaze data, since most NLP technologies consider sentence-based processing withc
position information. The experimental results suggest that combined features of screen po
and lexical information do not capture any extra characteristics. If this is true, we may be ab
separate the two factor types without considering their mutual interaction.

Conclusion

In this research, we examined the possibility of extracting reading strategies by observing w
based fixation behavior. We trained CRF models on gaze data to predict the gaze behavior o
subject and the distribution of gaze behavior across all subjects. Using lexical and screen po
features, the CRF models could predict word fixation/skip behaviors for each subject with 73¢
84% accuracy as well as the distribution of word fixation/skip behaviors across the subjects w
0.9462 similarity to the original gaze data.

In our future work, we would like to collect gaze data on specific linguistic phenomena, s
as coordination and prepositional attachment, and then attempt to extract some general re
strategies from this gaze data. Having achieved this, we aim to import the obtained strategie:
NLP technologies such as parsing, to realize further progress in these fields.
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