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Preface

The workshop “Eye-tracking and Natural Language Processing” (ETNLP) is an exploratory ½ 
satelite workshop in the context of Coling 2012, Mumbai. Over the last decades, eye-tracking  
system have been used for reading research,  human-computer  interaction,  user  modeling and 
usability studies, system evaluation and feature extraction, as well  as for on-line applications 
such as real-time human-machine interaction, intelligent user adaptation and gaze-based control. 

The ETNLP workshop sets out to explore the state of the art in eye-tracking techniques and  
Natural  Language Processing.  Given the interdisciplinary nature of the workshop, we invited 
papers  on  all  topics  related  to  gaze-based  language  and/or  reading  research,  gaze-based 
computational  psycholinguistics,  eye  movements  and  attention  in  natural  language 
understanding, corpora of gaze data in language processing and other, so as to foster and explore  
eye-tracking methods in modeling natural language processing. 

We received eight submissions relevant to the theme of the workshop from different part of the  
world. All submissions were reviewed in a double-blind process by three reviewers and finally 
five papers were accepted for presentation. In addition to the five papers, we invited Matthew 
Crocker,  Saarland  University,  to  talk  about  his  eye-tracking  research  on  spoken interaction.  
These presentations cover a broad area of topics, including processing effort in reading, parsing 
and translation, models on linguistic complexity and surprisal, investigation into classification of  
scanpaths  and  systematic  error  correction,  as  well  as  gaze  behavior  in  dialog  and  spoken 
interaction. A plethora of experimental and computational methods are used and introduced to  
analyze the gaze data, such as a morpho-syntactic surprisal index, a scasim measure, the dirac  
delta and conditional random fields. Many of the contributions show a tendency to enlarge the 
scope of the processing units, moving from single word fixations to scan paths, syntactic chunks,  
the reading line,  usage  of  micro  and  macro  units,  etc.  so as  to  capture  more  general  gaze-
movement and text processing strategies.

The workshop provides an opportunity for researcher to present their work and to interact with 
peers  around  the  world  in  this  emerging  field  of  research.  It  is  an  opportunity  for  people 
working  in  different  field  such  as  Computational  Linguistics,  Psycholinguistics,  and 
Computational  Psycholinguistics to come together  and share their views on Eye-tracking and 
Natural Language Processing. 

The  workshop  organizers  would  like  to  thank  the  authors  for  their  contributions  and  the 
programme committee for their review work. Special thanks goes to the Coling organizers, who 
made this event possible.

We look forward to seeing you all at ETNLP 2012

Michael Carl, Pushpak Bhattacharyya,  Kamal Kumar Choudhary 

ETNLP 2012 Workshop Organizers 
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Grounding spoken interaction with real-time gaze in 
dynamic virtual environments

Matthew Crocker 
Saarland University

crocker@coli.uni-saarland.de

ABSTRACT

Gaze is an important cue in visually situated dialog, grounding referring expressions to objects in 
the environment.  We present  a  new technique which demonstrates  that  monitoring real-time 
listener gaze – and giving appropriate feedback – enhances reference resolution by the listener: In 
a 3D virtual environment, users followed directional instructions, including pressing a number of 
buttons  that  were  identified  using  referring  expression  generated  by  the  system  (see  GIVE; 
Koller et al., 2010). Gaze to the intended referent following a referring expression was taken as 
evidence of successful understanding and elicited positive feedback; by contrast, gaze to other  
objects triggered early negative feedback.

We compared this eye movement-based feedback strategy with two baseline systems, revealing 
that the eye-movement based feedback leads to significantly more successful button presses than 
the other two strategies. Our findings suggest that listener gaze immediately following a referring 
expression reliably indicates how a listener resolved the expression.

KEYWORDS : visually situated dialog, spoken interaction, referring expressions, eye-tracking 
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Introduction
The interactive nature of dialogue entails that interlocutors are constantly anticipating what will 
be said next and speakers are monitoring the effects of their utterances on listeners. Gaze is an 
important cue in this task, providing listeners with information about the speaker’s next referent 
(Hanna & Brennan, 2007) and offering speakers some indication about whether listeners 
correctly resolved their references (Clark & Krych, 2004). However, investigating listener gaze 
in response to spoken referring expression and, importantly, the benefit of listener gaze for the 
speaker, is non-trivial and requires a dynamic setting. Specifically, it requires s a shared task, a 
sufficiently complex environment, the systematic production of referring expressions and an 
appropriate reaction to listener gaze. 

We present a new technique with which we successfully demonstrate that monitoring 
listener gaze and giving appropriate feedback enhances reference resolution by the listener. This 
technique employs a visually-situated, interactive natural language generation (NLG) system that 
exploits real-time user gaze. Users must following directional instructions, including pressing a 
number of buttons in the 3D environment that are identified using referring expression generated 
by the system, in order to find a trophy (see GIVE; Koller et al., 2010). Users’ eye movements 
are remotely monitored for signs of referential success by mapping them to objects in the virtual 
environment. Gaze to the intended referent during or shortly after a referring expression is taken 
as evidence of successful understanding and elicits positive feedback; by contrast, gaze to other 
objects triggers negative feedback.

We compare this eye movement-based strategy of giving feedback with a system that 
generates feedback based on visibility of objects on the screen and the user’s movements towards 
an object, as well as with a system that generates no such feedback. Performance measures reveal 
that the eye-movement based feedback leads to significantly more successful button presses than 
both the movement-based strategy and the no-feedback strategy. Further, confusion – as 
indicated by the overall number of requests for help – is significantly lower for eye movement-
based feedback than for the two other strategies. This suggests that listener gaze between a 
referring expression and the intended button press indeed indicates how a listener resolved the 
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expression and that giving appropriate feedback can encourage or correct the listener for more 
efficient grounding of references.

Finally, user eye movements further reveal that the speaker’s feedback to listener gaze 
(in contrast to movement-based feedback) generally increases looks towards all potential 
referents. Given that post-experiment questionnaires suggest that users did not take notice of 
being eye-tracked, we consider this to show that eye-movement based feedback implicitly 
increases visual attention to all potential targets. In conclusion, this study demonstrates that 
referential gaze findings from the visual world paradigm do appear to scale to dynamic and task-
centered environments, and further suggest that listener gaze can be used in real-time to improve 
situated spoken language interaction.

References

Hanna, J. and Brennan, S. (2007) Speakers’eye gaze disambiguates referring expressions early 
during face-to-face conversation. Journal of Memory and Language, 57, 596-615.

Clark, H.H. and Krych, M.A. (2004). Speaking while monitoring addressees for understanding. 
Journal of Memory and Language, 50(1), 62-81.

Koller, A., Striegnitz, K., Byron, D., Cassell, J., Dale, R., Moore, J., et al. (2010). The First  
Challenge on Generating Instructions in Virtual Environments. In E. Krahmer & M. Theune 
(Eds.), Empirical Methods in Natural Language Generation (pp. 337–361). Springer.
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IDENTIFYING INSTANCES OF PROCESSING 
EFFORT IN TRANSLATION THROUGH HEAT MAPS: 

an eye-tracking study using multiple input sources 

Fabio ALVES1, José Luiz GONÇALVES2, Karina SZPAK1 
(1) FEDERAL UNIVERSITY OF MINAS GERAIS (UFMG), Av. Antonio Carlos 6627,                    

Belo Horizonte/MG, 31.270-901, Brazil 
(2) FEDERAL UNIVERSITY OF OURO PRETO (UFOP), Rua do Seminário, S/N,  

Mariana/MG, 35.420-000, Brazil 
fabio-alves@ufmg.br, zeluizvr@ichs.ufop.br,kszpak@ufmg.br 

 

ABSTRACT 

Drawing on the seminal work of Just and Carpenter (1980), eye fixations have been used 
extensively to analyse instances of processing effort in studies of reading and writing 
processes. More recently, eye tracking has also been applied to experimental studies in 
translation process research (Jakobsen and Jensen 2008, Pavlović and Jensen 2009, 
Alves, Pagano and Silva 2009, Hvelplund 2011, Carl and Kay 2011, Carl and Dragsted 
2012, among others). In most of these works, eye-tracking data have provided input for 
quantitative analyses of fixation count and duration in areas of interest in source and 
target texts. From a linguistic perspective, however, studies using eye-tracking data are 
considered rather complex since eye fixations tend to vary considerably among subjects. 
This paper attempts to tackle this issue by proposing a methodological approach that 
uses overlapped heat maps of different subjects to select and analyse translation 
problems. The results yield relevant findings for eye-tracking research in translation. 

 

KEYWORDS: translation process research, eye-tracking research, eye-mind assumption, 
processing effort in translation, micro/macro translation units.  
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1 Introduction 

According to Hvelplund (2011), the allocation of cognitive resources in translation is 
essentially an information-processing task and research using eye-tracking data as 
indicators of cognitive processing (Just and Carpenter 1980, Rayner 1998, Duchowski 
2007) rests on the overall assumption that eye-tracking data can be interpreted as 
correlates of on-going cognitive processing of source and/or target texts. Building on 
Just and Carpenter’s (1980) seminal work, analyses based on the eye-mind assumption 
suggest that eye fixations can be used as a window into instances of effortful cognitive 
processing. In more recent years, eye tracking has been used in translation process 
research to try to locate instances of effortful processing in translation. The works of 
Jakobsen and Jensen (2008), Pavlović and Jensen (2009), Alves, Pagano and Silva 
(2009), Alves, Pagano, Neumann, Steiner and Hansen-Schirra (2010), Hvelplund 
(2011), Carl and Kay (2011), and Carl and Dragsted (2012), among others, have shown 
that eye fixations differ in areas of interest (AOIs) found in source and/or target texts 
and, thus, suggest interesting implications in terms of reading/writing for translation. 

Jakobsen and Jensen (2008) examined differences in reading for different purposes, 
namely reading for understanding, for translating, for sight translation and for written 
translation. Their results indicate that, as measured in terms of fixation duration, 
translators allocate more cognitive effort to target text (TT) processing rather than to 
correlated instances in source texts (ST). The results of Jakobsen and Jensen suggest 
that there is some evidence, although preliminary, that TT processing requires more 
cognitive effort than ST processing. 

Pavlović and Jensen’s (2009) investigated directionality in translation by observing the 
performance of professional and novice translators. They employed three eye-movement 
indicators, namely, total gaze time, fixation duration during ST and TT processing, and 
pupil dilation, to measure cognitive effort. Corroborating Jakobsen and Jensen’s (2008) 
results, Pavlović and Jensen have also shown that TT processing requires more cognitive 
effort than ST processing and that ST comprehension and TT production are two 
processes which differ in terms of the cognitive effort. 

The studies reported above used relatively small samples of eye-tracking data and, 
therefore, their statistical analyses are based on very small populations. As a word of 
caution, Jakobsen and Jensen (2008: 108) point out that “with such a small sample, any 
free variable can cause havoc in the data”. More recent studies have thus tried to use 
larger population samples to increase the statistical significance of their results. 

Hvelplund (2011), for instance, looked at differences between professional and novice 
translators and found that cognitive effort was higher for the latter than for the former 
group during ST and TT processing. Hvelplund builds on the concept of attention units 
(AU) to measure fixation duration and pupil dilation to gain insights into the allocation 
of cognitive effort in translation. His results indicate that professional translators rely 
more on automatic processing than novice translators. The results also show that 
switching attention between different types of cognitive processes is more demanding 
for novice translators than for professionals.  
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Carl and Kay (2011) also analysed shifts of attention with respect to the segment being 
processed and segments that lie ahead. They report that a production pause of more 
than 1000ms in text production is likely to represent a shift of attention towards another 
segment. Their results have shown that professional translators are capable of typing a 
translation while already reading ahead in the ST, whereas novice translators often 
resort to a sequential mode and can only carry out one activity at the same time, thus 
alternating between actions related to reading and writing.  

Carl and Dragsted (2012) have used eye-tracking data to investigate differences between 
copying and translations tasks. They have shown that translators often resort to 
sequential reading and writing patterns that seem to be triggered through TT production 
problems. Carl and Dragsted found evidence of more processing effort during 
translation than during copying tasks. This indicates more sequential reading/writing 
processes in translation, whereas parallel reading and writing activities appear to be 
more prevalent during copying tasks.  

In these recent works, eye-tracking data have been studied with a focus on statistical 
significance and have provided relevant insights into how the translation process unfolds 
in terms of the allocation of processing effort. However, as Alves, Pagano and Silva 
(2009) have shown, a fine-grained linguistic analysis of translation problems may also 
shed light onto relevant aspects of cognitive processing in translation. They claim that 
such analyses require an account provided by a pertinent linguistic theory. This point 
has also been addressed by Alves, Pagano, Neumann, Steiner and Hansen-Schirra 
(2010) in their analysis of micro/macro translation units (cf. Alves and Vale 2009). 
Alves and Gonçalves (forthcoming) have drawn on Relevance Theory (Sperber and 
Wilson 1986/1995) and its effort/effect relation to offer an insightful alternative for such 
fine-grained linguistic analysis by investigating the allocation of effort from a relevance-
theoretic perspective. However, Alves and Gonçalves only analysed key-logged data 
although eye-tracking data had also been collected in their experimental design. 

From a linguistic perspective, studies using eye-tracking data are still incipient and 
considered rather complex since eye fixations tend to vary considerably among subjects. 
In this paper, we attempt to fill this gap by using eye-tracking data to supplement Alves 
and Gonçalves’s (forthcoming) analyses of macro translation units and propose a 
methodological framework that extracts individually gaze-relevant data and combines 
them into sets of overlapped heat maps which highlight instances where processing 
effort is greater for a given number of subjects. We claim that this methodological 
approach can offer an alternative to carry out linguistic analyses of eye-tracking data in 
translation process research. 

2 Theoretical underpinnings 

Relevance Theory (Sperber and Wilson 1986/1995) has been applied to the study of 
processing effort in translation, mainly by using the relevance-theoretic concepts of 
conceptual and procedural encodings proposed by Blakemore (2002) in order to identify 
a relation between processing effort and cognitive effect.  
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In relevance-theoretic terms, the function of conceptual expressions (i.e., open lexical 
categories, such as nouns, adjectives and verbs) is to convey conceptual meaning which 
is propositionally extendable and contributes to expanding the inferential processing of 
an utterance, whereas the function of procedural expressions is to activate domain-
specific cognitive procedures (i.e., morph-syntactic constraints in utterance processing) 
and contributes to constraining the inferential processing of these same utterances. 
Relevance Theory assumes that the conceptual-procedural distinction guides inferential 
processing. And since most content words also carry some procedural meaning (Wilson 
2011), therefore, processing effort in translation should concentrate more on instances of 
procedural than conceptual encodings.  

The studies of Alves (2007) and Alves and Gonçalves (2003) have show there is a 
relation between processing effort and cognitive effect in translation and also that the 
conceptual-procedural distinction plays a role in such processes. However, these were 
small-scale studies that only offered qualitative results. Using a larger population, Alves 
and Gonçalves’s (forthcoming) have tried to build on the previous relevance-theoretic 
findings and corroborate them by means of statistical analyses. They have used key-
logged data to map instances of conceptual and procedural encodings onto micro/macro 
translation units (cf. Alves and Vale 2009, 2011). Their results show that procedural 
encodings demand more processing effort both in direct and inverse translation tasks. 

According to Alves and Vale (2011: 107), a micro translation unit (TU) is defined as “[…] 
the flow of continuous target text production – which may incorporate the continuous 
reading of source and target text segments – separated by pauses during the translation 
process as registered by key-logging and/or eye-tracking software. It can be correlated to 
a source text segment that attracts the translator’s focus of attention at a given moment.” 
A macro TU, on the other hand, is “[…] defined as a collection of micro TUs that 
comprises all the interim text productions that follow the translator’s focus on the same 
ST segment from the first tentative rendering to the final output that appears in the TT.” 
Alves and Vale classify macro TUs with editing procedures taking place only in the 
drafting phase as P1. Those macro TUs that are produced once in the drafting phase and 
changed only in the revision phase are classified as P2. Finally, those macro TUs that 
undergo editing procedures both during drafting and revision are classified as P3. Alves 
and Gonçalves’s (forthcoming) have broadened Alves and Vale’s (2011) taxonomy to 
include a P0 unit, corresponding to micro TUs that do not undergo any editing at all 
and, therefore, are also considered macro TUs for annotation purposes.  

In their attempt to map instances of conceptual and procedural encodings onto 
translation process data, Alves and Gonçalves’s (forthcoming) have also annotated more 
detailed editing procedures inside each macro TU. Their distinctions were based on two 
types of annotation parameters: (a) the level of linguistic complexity in an editing 
procedure; and (b) the distance between this change and the respective initial micro TU. 
Alves and Gonçalves assumed that both parameters are related to processing effort and 
that the higher the linguistic complexity involved in the editing procedure and the 
farther it is from the respective initial micro TU, the greater the processing effort 
required.  

 

8



The results of Alves and Gonçalves’s (forthcoming) suggest that the allocation of 
cognitive resources in translation can be illustrated as P0>P1>P3>P2. Drawing on 
relevance-theoretic assumptions, the authors argue that subjects concentrate editing 
procedures within or very close to the respective initial micro TU and systematically 
attempt to reduce processing effort in order to optimize the resources in their cognitive 
environments. If they postpone the solution to a problem, or only fully realize this 
problem later on, the required processing effort needed to re-activate relevant 
information will be counter-productive in terms of cognitive processing economy. This is 
consistent with the relevance-theoretic framework, since additional processing effort 
diminishes the relevance of the cognitive effects.  

Alves and Gonçalves have also found that the total number of occurrences for conceptual 
and procedural encoding editing procedures is highest in P1, followed by P3. They 
assume that this can be interpreted in terms of allocation of processing effort to phases 
in the translation process, indicating where this effort is greater. In P1, subjects interrupt 
the cognitive flow to deal with more immediate processing problems. In P3, however, 
problem solving is postponed to the end-revision phase. Their results point to 
prevalence of processing effort for procedural encodings in absolute terms, particularly 
in P1 and P3 where processing effort seems to be concentrated. 

An interesting question that emerges from the study of Alves and Gonçalves’s 
(forthcoming) is whether an analysis of eye-tracking data from the same subjects would 
also corroborate the assumption that eye fixations should be higher and longer in 
instances of P1 and P3. It would also be interesting to find out if the number of eye 
fixations would be higher in instances of procedural encodings. However, this would be 
extremely time-consuming if the whole set of data were to be analysed. In this paper, we 
propose a methodology to analyse selected instances of translation problems on the 
basis of overlapped heat maps to provide a fine-grained analysis on the basis of a smaller 
but yet relevant set of data. 

3 Methodology 

Eight Brazilian translators with at least five years of professional experience were asked 
to translate two sets of comparable STs, each set comprising a text to be translated from 
English (L2) into Portuguese (L1) – direct translation (DT) – and another text to be 
rendered from Portuguese (L1) into English (L2) – inverse translation (IT). The first set 
consisted of abstracts of approximately 250 words each, one in English and the other 
one in Portuguese, both dealing with the topic of sickle cell disease. The second set of 
STs of approximately 200 words each consisted of popular science texts, namely an 
English ST about the physics of crumpling paper and a Portuguese ST about the 
properties of an electronic tongue. For the translation of the first set of STs translators 
had free access to the Internet and were allowed to use different sources of 
documentation. Task order was randomized in order to control for a likely facilitating 
effect. For the translation of the second set of STs, translators were allowed to use only 
one electronic dictionary (Babylon). Subjects were instructed by a brief with a detailed 
description of the task at hand and no time pressure was applied.  
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The overall goal was to investigate whether subject’s performance differed in terms of 
processing conceptual and procedural encodings while performing a DT and an IT task. 
As explained in the theoretical section, the same data set was analysed by Alves and 
Gonçalves (forthcoming) to investigate processing effort in translation from a relevance-
theoretic perspective. Their results showed that instances of procedural encodings 
require more processing effort than cases of conceptual encodings. However, Alves and 
Gonçalves only analysed key-logged data. As the replication of their methodology using 
eye-tracking data would be extremely time consuming for the whole data set, we propose 
here a methodological alternative that focuses on a smaller set of selected examples to 
see if they yield similar results in relevance-theoretic terms. 

3.1 Internal and external support as input for eye-tracking data 
A major methodological problem in the analysis of conceptual and procedural encodings 
would be the impact of external support in the complete data set. During task execution, 
subjects often deviate their gaze from the computer screen or open other windows to 
look up dictionary entries and/or perform web searches. These actions are an integral 
part of the translation process but are of no particular interest for the investigation of 
conceptual and procedural encodings. Therefore, data related to external support had to 
be filtered out from data related to internal support, i.e, those instances when translators 
effectively dealt with the linguistic processing of conceptual and procedural encodings.  

3.1.1 Filtering out external support from eye-tracking data 

As a first step into that direction, the eye-tracking recordings from Jane, Cycy, Adam, 
Jim, Will, Mona, Tess, and Rui, the fictitious names for the 8 professional translators 
who volunteered as subjects, were screened using the software Tobii Studio. Altogether 
there were 32 recordings, 8 from each DT or IT task. As shown in Figure 1, each 
recording was edited to create a set of scenes which only contained eye-tracking data 
directly related to internal support. In other words, the filtered data did not show 
instances of consultations or gaze deviations from the screen and provided access to the 
linguistic processing of instances of conceptual and procedural encodings. 

 
FIGURE 1 – preparation of individual eye-tracking data with internal support only 
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Using the Tobii Studio replay mode, we selected those stretches of the translation 
process which related to internal support only. This can be seen in the centre of Figure 1. 
On the bottom part of the screen, one can visualize the process time line shown in the 
selection bar. One can click on the white parts of the cursor and drag the mouse to create 
the desired scenes which are then shown in red and stored by the software. The set of 
scenes from each subject can be retrieved by clicking on the icon scenes on the bottom 
part of the computer screen. As a second step, sets of scenes of internal support from 
each subject were combined to create a set of scenes from the eight subjects for each of 
the four translation tasks. Thus, the Tobii Studio Add Selection to Scene tool was used to 
group eye-tracking data of all eight subjects and generate four sets of eye-tracking data, 
two pertaining DT tasks (DT_1 and DT_2) and two others related to IT tasks (IT_1 and 
IT_2). 

3.2 Extracting heat maps  
The creation of individual and group scenes related to internal support aimed at 
identifying through heat maps those areas of STs and TTs where eye fixations were 
longer. We expected subjects to show idiosyncratic gaze patterns and, therefore, heat 
maps would differ among them. However, by overlapping eight correlated sets of scenes, 
we were able to generate heat maps which are representative of each task in terms of eye 
fixations. Heat maps provided by Tobii Studio show both fixation count and fixation 
duration from a graphic perspective according to visual activity. Areas with higher 
fixation count and longer duration are shown in red and shades become orange, yellow 
or green as visual activity decreases in intensity. Such activities are easily identified in 
both ST and TT areas. Instances where those fixations were longer were then considered 
to be potential candidates for translation problems that were cognitively relevant for all 
subjects in terms of processing effort. For the purposes of this paper, we would argue 
that fixation count is a reliable measure for assessing cognitive effort since there is a 
tendency for fixations to converge to an average duration when dealing with a great deal 
of occurrences. 

3.2.1 Extracting individual heat maps 

From the individual scene sets that had been created by filtered data of internal support 
only, heat maps were generated for each subject. Using the Tobii Studio visualization 
mode, we selected the desired scenes and clicked on the heat map icon to generate them 
automatically. Figure 2 shows individual heat maps for the data set 1, comprising DT 
task 1 and DT task 2 while Figure 3 displays the individual heat maps for data set 2, 
comprising IT task 1 and IT task 2. 

Figures 2 and 3 show idiosyncratic gaze patterns. One notices that red areas, where eye 
fixations are longer, appear at disparate places in data sets 1 and 2, respectively the DT 
and IT tasks. The upper part of each screen shot relates to the ST area of interest (AOI) 
whereas the lower part of each screen shot refers to the TT AOI. In some screen shots 
one notices a white area separating these two blocks, clearly identifying gaze activity 
pertaining to STs and TTs.  
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FIGURE 2 – Individual heat maps for data set 1.  

 

The same procedure was repeated for the filtered data related to the execution of IT 
tasks. Figure 3 shows individual heat maps for the data set 2, comprising IT task 1 and IT 
task 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 – individual heat maps for data set 2. 
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3.2.2 Extracting overlapped heat maps 

A methodological alternative to avoid the undesired impact of idiosyncratic patterns is to 
overlap the eight individual heat maps for each of the four translation tasks. Using the 
Tobii Studio Add Selection to Scene tool, used to group eye-tracking data, it is possible to 
generate heat maps which show where eye fixations are longer for all the eight subjects 
together. These red areas are then considered potential candidates for translation 
problems which are cognitively relevant in terms of processing effort for the eight 
subjects on the whole. 

Figure 4 shows heat maps for the data set 1, comprising DT tasks 1 and 2. In both tasks 
eye fixations are longer at the beginning of the English STs and on the first paragraph of 
the TT area which corresponds to the rendering of the translation into Portuguese. In 
our approach, we are not particularly concerned whether fixations are longer in ST or TT 
AOIs. Our interest lies explicitly on the linguistic encodings related to areas of stronger 
visual activity and to the features they convey. 

 

 

 

 

 

 

 

 

 

FIGURE 4 – overlapped heat maps for DT – data sets 1 and 2. 

Looking at the heat maps, one notices that some parts at the bottom of TT in DT_2 seem 
uncovered. It is important to point out that this is not related to eye-tracking data 
quality. It happens because, when heat maps are overlapped, the generated image shows 
the occurrences of all fixations statically. Individual heat maps displayed in Figures 2 
and 3 show that such areas were indeed covered. The overlapped heat maps for TTs 
serve as an approximate indicator of the common region for the identification of 
problems while the translations were being drafted. Complementarily, the ST heat maps 
indicate the common problems among the eight subjects with respect to their reading 
patterns.  

Figure 5 shows heat maps for the data set 2, comprising IT tasks 1 and 2. Similar to what 
was illustrated by Figure 4, eye fixations are longer at the beginning of the STs and on 
the first paragraph of each TT area which corresponds to the rendering of the translation 
into English. As for DT tasks, the overlapped heat maps for TTs serve as an approximate 
indicator of the common region for the identification of problems while the ST heat 
maps indicate the common problems with respect to the subjects’ reading patterns.  
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FIGURE 5 – complete heat maps for IT – data sets 1 and 2. 

In Figures 4 and 5, the heat maps are meant to illustrate how we have chosen the 
excerpts to be analyzed. The aim is not necessarily to show precisely the respective 
passages in the text, but rather to illustrate the inductive methodology applied in the 
paper in order to identify the problems under scrutiny. 

Analysing the complete set of heat maps for DT and IT data sets 1 and 2, we notice that 
what had been observed for Figure 4 also applies to Figure 5. In both tasks eye fixations 
are long at the beginning of the STs and even longer on the first paragraph of each TT 
area which corresponds to the rendering of translation into English. Other areas of 
interest with higher visual activity are also found in the middle of the STs for DT and IT 
tasks and appear as pontential candidates for equally relevant translation problems in 
terms of processing effort.  

3.3 Identifying potential translation problems through heat maps 
Our next methodological step was to create areas of interest (AOI) for the selected 
instances with higher visual activity in order to extract statistically relevant information 
using the AOI Tool provided by Tobii Studio. Selecting the Statistics tab in the software, 
we can activate the desired metrics to obtain measures for fixation count, fixation 
duration, percentage of fixations, number of visits, etc.), and generate tables and 
graphics automatically.  

We assume that there is no visual heat dispersion in the data. Tobii records and displays 
eye movements by using the center of the pupil and infrared to create corneal reflections 
that are tracked one or two degrees of the visual angle, known as foveal vision. The 
vector between the pupil center and the corneal reflections provide the right point of the 
gaze being tracked. Before data collection we carried out a calibration procedure for all 
subjects. Therefore, we eliminated the likelihood of visual dispersion in the data. 

3.3.1 Potential translation problems for DT and IT 

The selected areas in the heat maps displayed in Figures 4 and 5 point to interesting 
examples and suggest that they are considered to be complex issues by the majority of 
subjects.  
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This inductive approach offers a methodological solution for data extraction to be used 
in a more refined linguistic analysis. For the DT tasks, the first set of problems, located 
in the beginning of the English STs, corresponds to the title (see example 1) in DT_1 and 
to the first clause in DT_2 (see example 2). 

(1) Coagulation activation and inflammation in sickle cell disease-associated pulmonary 
hypertension 

(2) Crumpling a sheet of paper […] 

The second set of problems, located in the middle of the English STs, corresponds to the 
noun phrases shown in (3) for DT_1 and in (4) for DT_2. 

(3) chronic fibrotic pulmonary parenchymal damage […] 

(4) a mass of conical points connected by curved ridges […] 

For the IT tasks, the third set of problems was located in the beginning of the Portuguese 
STs and corresponds to the title (see example 5) in IT_1, quite similar to the occurrence 
of (1) in DT_1, and to the first clause in IT_2 (see example 6), also similar to the 
occurrence of (2) in DT_2. 

(5) Hidroxiuréia em pacientes com síndromes falciformes acompanhados no Hospital 
Hemope, Recife-PE […] 

(6) Avaliar um bom café […] 

Finally, last set of problems in the IT tasks was located in the middle of the Portuguese 
STs and corresponds to noun phrases in IT_1 and in IT_2 (see example 7 and 8). 

(7) leucemia mielóide crônica e policitemia vera […] 

(8) uma camada fina de polímeros condutores […] 

One can observe a series of similarities for the problems selected in both DT and IT 
tasks. Problems (1) and (5) refer to the title of the STs and had, respectively, 11 and 12 
words. They dealt with the same terminological problem (anemia falciforme/sickle cell 
disease). (1) and (5) are both complex noun phrases that seem to demand a lot of 
processing effort for their renderings. 

One can also observe that (2) and (6) share similarities with (1) and (5). Like them, (2), 
the first clause in the English ST, is a verbal phrase that functions as a title, whereas (6) 
is an infinitive clause which also has the same function. Problems (2) and (6) have 5 and 
4 words respectively, a relation they share with (1) and (5) which, with 11 and 12 words, 
also showed a similar pattern in terms of number of words. Problems (4) in DT_1, (5) in 
DT_2, (7) in IT_1 and (8) in IT_2 constitute a second set of translation problems with a 
middle location in the respective STs. Their extension ranges from 5 to 9 words. They are 
all noun phrases, (3) and (7) being related to the medical domain, whereas (4) and (8) 
belong to the domain of physics. In our methodological approach, the eight selected 
problems are deemed to be representative items for a linguistic analysis since they deal 
with conceptual and procedural encodings mapped onto micro/macro translation units. 
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In the next section, we analyse the data based on Alves and Gonçalves’s (forthcoming) 
taxonomy to see if the results of eye-tracking data corroborate the findings obtained 
through the analysis of key-logged data. If they do, this would validate the use of smaller 
data sets of eye-tracking data selected for a fine-grained linguistic analysis. 

4 Analysis and discussion 

Our analysis builds on the results of Alves and Gonçalves (forthcoming) for key-logged 
data and compares them with the number of eye fixations for the selected AOIs that were 
analysed manually with respect to the type of macro TUs (P0, P1, P2, P3) and the type of 
linguistic editing procedure (t = typos, c = conclusion of a lexical item, l = lexical change, 
m = morph-syntactic change, p = changes at phrase level). The analysis focuses on the 
number of occurrences in STs and TTs in both DT and IT tasks. As shown in Alves, 
Pagano and Silva (2009) and in Alves and Gonçalves (forthcoming), directionality was 
not an intervening factor in the experimental design. Therefore, the number of fixations 
was counted for all tasks together irrespective of directionality. Building on Alves and 
Gonçalves (forthcoming), we decided to count conceptual encodings as the sums of [l+p] 
because each instance of [p] includes at least one instance of conceptual encoding. We 
have also decided to count procedural encoding as the sums of [m+p] because each 
instance of [p] also includes at least one instance of procedural encoding. 

In Alves and Gonçalves (forthcoming), there were 504 occurrences of P0 macro TUs, 
followed by 410 occurrences of P1, 119 occurrences of P3 and, finally, 47 occurrences of 
P2 macro TUs. In other words, P0>P1>P3>P2; a progression which was interpreted as a 
sign of cognitive complexity and higher processing effort in translation. 

Table 1 shows the absolute and relative numbers of eye fixations in the selected AOIs 
containing the eight examples described in the previous section. As stated in the 
methodology, we assume that these AOIs are relevant indicators of cognitive complexity 
and higher processing effort and show similar patterns found for key-logged data, 
namely, P0>P1>P3>P2 for both ST and TT AOIs, and for the complete set of data on the 
whole. 

Type of Macro TU P0 P1 P2 P3 

Source Text (ST) 1800 

(64.9%) 

1387 

(51.2%) 

101 

(22.0%) 

129 

(16.9%) 

Target Text (TT) 973 

(35.1%) 

1324 

(48.8%) 

358 

(78.0%) 

635 

(83.1%) 

TOTAL 2773 2711 459 764 

TABLE 1 – Number of eye fixations in macro TUs in ST and TT AOIs 

 

16



Alves and Gonçalves (forthcoming) consider P0 as an indicator of low difficulty as 
processing effort unfolds without interruption in the flow of TT production. With 2773 
fixation counts, P0 shows the highest number of eye fixations, namely 64.9% of counts 
(1800) in the ST AOI in comparison with the 35.1% of counts (973) in the TT AOI, i.e., 
nearly twice more eye fixations in the ST than in the TT. For P1 macro TUs, which also 
occur very close to the cognitive flow of TT production, the results in Table 1 show a very 
similar number of fixations (1387/1324) with 51.2% of them occurring in ST AOI and 
48.4% in the TT AOI. When compared to the number of eye fixations for P0 macro TUs, 
we notice a decrease in the number of fixations in the ST from 64.9% down to 51.2%, and 
an increase in the number of fixations in the TT, from 35.1% up to 48.4%.  

Considering that P1 macro TUs account mainly for online revisions carried out in the 
sequential flow of cognitive processing, a balanced focus of attention in eye fixations 
between ST and TT suggests that P1 macro TUs are cognitively more demanding that P0 
macro TUs. On the other hand, the patterns for P2 and P3 macro TUs show a completely 
different picture. The number of P3 macro TUs (764) is significantly higher than the 
number of P2 macro TUs (459). Both P2 and P3 also show another congruent pattern 
with a much higher number of eye fixations occurring in the TT AOI. Bearing in mind 
that P3 is cognitively more demanding than P2, it is interesting to observe that there are 
over five times more eye fixations in the TT AOI for P3 than in the ST AOI (129/635), 
and over three times more eye fixations in the TT AOI for P2 than in the ST AOI 
(101/358).  

All these results are statistically significant when the Student t-test is applied. They 
provide evidence that subjects tend to concentrate their focus of attention on the ST AOI 
when renderings unfold in the cognitive flow of TT production without interruption. 
Results also show a balanced focus of attention with alternations between ST and TT 
AOIs in cases of P1 macro TUs. And, as the translation process become more demanding 
in terms of cognitive complexity, subjects tend to focus their gaze on the TT AOI for both 
P2 and P3 macro TUs.  

These results corroborate the findings of Alves and Gonçalves (forthcoming), for key-
logged data. They are also in line with Carl and Dragsted (2012) when the authors claim 
that problem solving in translation seem to be triggered through TT production 
problems. In their analysis of key-logged data, Alves and Gonçalves (forthcoming) have 
also shown that, as far as the type of linguistic encoding is concerned, processing effort 
in translation is greater for procedural encodings than for conceptual encodings. Table 2 
displays the number of eye fixations for typos [t], completion of lexical items [c], 
changes of lexical items [l], editing of a morph-syntactic nature [m], and modifications 
on the phrase level [p] in the selected AOIs. As shown in Alves and Gonçalves 
(forthcoming), encodings of [t] and [c] types tend to occur in the flow of TT production 
and are more prevalent in P1 macro TUs. It is interesting to observe that, with 1637 
counts, [t] has the highest number of eye fixations in the whole set of data whereas, with 
470 counts, [c] shows the lowest number of fixations. Nevertheless, both [t] and [c] show 
a somewhat balanced pattern in the number of eye fixations with, respectively, 846 and 
791 counts in ST and TT AOIs for [t] and 224 and 246 counts in ST and TT AOIs for [c]. 
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Type of Encoding t c l m p 

Source Text (ST) 846 

(51.7%) 

224 

(47.7%) 

134 

(27.2%) 

254 

(36.1%) 

159 

(25.2%) 

Target Text (TT) 791 

(48.3%) 

246 

(52.3%) 

359 

(72.8%) 

449 

(63.3%) 

472 

(74.8%) 

TOTAL 1637 470 493 703 631 

TABLE 2 – Number of eye fixations for types of encodings in ST and TT AOIs 

This balanced distribution can be interpreted as evidence that [t] and [c] are actions not 
necessarily related to the translation process per se but rather entail typing activities 
such as correcting typing mistakes or finishing typing a word after looking for the right 
key on the keyboard. Since most subjects were not touch typists, this type of action is 
expected and should be filtered out from an analysis of processing effort. The pattern is 
altogether different when [l], [m], and [p] editing procedures are analysed.  

Table 2 shows that in terms of fixation counts [m]>[p]>[l] in ST and TT AOIs. This 
result is statistically significant when the Student t-test is applied. Following Alves and 
Gonçalves (forthcoming), if [l]+[p] and [m]+[p] are grouped together, the number of eye 
fixations confirm the claim that processing effort in translation is higher in instances of 
procedural encodings.  

Conclusions and perspectives 
The picture emerging from our analyses is manifold. The results point to the validity of 
the proposed methodology for the selection of translation problems that seem to be 
relevant for a fine grained linguistic analysis of eye-tracking data. The selected AOIs 
have proved to be a valid choice which not only confirmed the findings of Alves and 
Gonçalves’s (forthcoming) key-logging analysis for the same set of data, but also 
corroborated Carl and Dragted’s (2012) claim that problem solving in translation is TT 
driven.  

This can be shown by the different patterns of eye fixations for P0, P1, P2 and P3 macro 
TUs, whereas P1 shows a balanced distribution in the number of eye fixations in ST and 
TT AOIs and P2 and P3 clearly indicate that eye fixations are more prevalent in the TT 
AOIs with an even much higher difference when P3 macro TUs are compared with P2 
macro TUs. The number of eye fixations observed in the analysis of linguistic encodings 
also reveals striking differences between two groups of editing procedures, with [t] and 
[c] showing a completely different picture from [l], [m], and [p]. From a relevance-
theoretic perspective these differences point to instances where effortful TT production 
is greater and show that procedural encodings require more processing effort than 
conceptual encodings. 
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ABSTRACT
We present in this paper a robust method for predicting reading times. Robustness first comes
from the conception of the difficulty model, which is based on a morpho-syntactic surprisal index.
This metric is not only a good predictor, as shown in the paper, but also intrinsically robust
(because relying on POS-tagging instead of parsing). Second, robustness also concerns data
analysis: we propose to enlarge the scope of reading processing units by using syntactic chunks
instead of words. As a result, words with null reading time do not need any special treatment
or filtering. It appears that working at chunks scale smooths out the variability inherent to the
different reader’s strategy. The pilot study presented in this paper applies this technique to a
new resource we have built, enriching a French treebank with eye-tracking data and difficulty
prediction measures.

KEYWORDS: Linguistic complexity, difficulty models, morpho-syntactic surprisal, reading time
prediction, chunks.
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1 Introduction

Eye-tracking data are now often used in the study of language complexity (e.g. difficulty
metrics evaluation) as well as finer syntactic studies (e.g. relative complexity of alternative
constructions). However, only few resources exist, for a small number of languages. We describe
in this paper a pilot study aiming at developing a high-level resource enriching a treebank with
physiological data and complexity measures. This work have been done for French, with several
objectives : (1) building a new large resource for French, freely available, associating syntactic
information, eye-tracking data and difficulty prediction at different levels (tokens, chunks and
phrases) (2) validating a difficulty model for French in the line of what has been done for other
languages (Demberg and Keller, 2008), (Boston et al., 2008) relying on a robust surprisal index
described in (Blache and Rauzy, 2011).

This pilot study, on top of building a new resource, had important side-effects. First, this work led
us to examine carefully the question of data analysis. In particular, we found that working with
larger units (syntactic chunks) instead of tokens makes it possible to take into consideration the
entire set of data. In other words, it is not anymore necessary to eliminate data that are usually
considered for different reasons as problematic (tokens ending lines, before punctuations, etc.).
This result is important for several reasons. First, it avoids the use of truncated data (which is
problematic in a statistical point of view). Second, it supports the hypothesis that chunks are
not only functional, but can also be defined in linguistic terms by means of syntactic relation
strength. Another interesting result is the influence of the syntactic parameter on the global
model: we show that (morpho)syntax has modest impact in comparison with word frequency
and word length. Finally, at the technical level, we have developed an entire experimental
setup, facilitating data acquisition when using Tobii devices. Our environment proposes tools for
the preparation of the experimental material (slide generation) as well as data post-processing
(e.g. lines model detection).

2 Background

The study of language complexity first relies on theoretical difficulty models. Several proposals
can be found in the literature, exploring the influence of different parameters on the parsing
mechanism (Gibson, 1998, 2000), (Hawkins, 2001), (Vasishth, 2003). One important problem
is the possibility to quantify the difficulty level: some metrics have been proposed such as
Dependency Locality Theory (Gibson, 1998) which uses the number of new discourse referents in
an integration region. Evaluating such models relies on the comparison of similar constructions,
one being known to be more difficult than another (for example, object vs. subject relative
clauses). Prototypical examples of such alternations are built and the model applied incremen-
tally, estimating at each word the integration costs. Such models rely on high-level linguistic
information, capable of bringing together syntactic and lexical semantic information, as well as
integrating frequency information. In such cases, difficulty estimation is done manually, the
validation applied only to few examples.

Recently, the development of probabilistic NLP techniques opened a new way in difficulty
estimation. The idea consists in using the probability of the integration of a word into a partial
parse as a predictor for human difficulty. The Surprisal index (Hale, 2001) implements this
proposal: the mechanism consists in evaluating at each word the difference between probability
of the set of trees before the word and that integrating the word. Several works such as
(Demberg and Keller, 2008) have shown that Surprisal can be a predictor for reading time and,
as a consequence, for language processing difficulty. The interest in these experiments is that,
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thanks to automatic difficulty evaluation, it becomes possible to work on larger amounts of
data, offering the possibility to study language in more natural contexts.

We present in the remaining of this section an overview of different works addressing this
question and propose an analysis of their characteristics, in particular with respect to the kind
of data they use.

2.1 Experimental evaluations of complexity models

(Demberg and Keller, 2008) proposes an evaluation of two syntactic complexity theories
(DLT and Surprisal) for the prediction of readers difficulty. Linear mixed effects models are
experimented, taking into account non-syntactic predictors besides complexity measures. Such
predictors are low-level variables known to have an impact on reading times1: word frequency,
word length, position in the sentence (final words in the sentence are read faster). Oculomotor
variables also have to be considered: fixation of a previous word, number of characters between
two fixations, position of the fixation in the word. Higher level contextual variables are also
proposed: forward transitional probability (probability of a word knowing the previous one)
and backward transitional probability (probability of a word knowing the next one). As for
the surprisal parameter, two different version have been used: one calculating surprisal taking
into consideration the word forms, the other the POS tags. The experimental data rely on the
English part of the Dundee corpus (Kennedy et al., 2003). This corpus comprises 51,502 tokens,
from 20 newspaper articles (from The Independent). Eye-tracking data have been acquired for
10 subjects. Different eye-tracking measures are considered: first fixation duration (FFD) in a
region, first pass duration (FPD) (total of all the fixations in a region when reading it for the first
time) and total reading time (TRD) of a region (all the fixations, including those when going
back into a region that has already been read).

In the experiment, (Demberg and Keller, 2008) eliminates from the original corpus several data:
first and last tokens of each line, token followed by a punctuation, region of 4 words with no
fixations and words with zero value for FFD and FPD . Finally, this experiment retains a total of
200,684 data points, which means 20,068 tokens read by 10 subjects.

The results of this study show that unlexicalized surprisal can predict reading times, whereas
the lexicalized formulation does not. However, (Monsalve et al., 2012) pointed out recently
that when using independent sentences, both lexicalized and unlexicalized surprisal measures
are significant predictors of reading time (measures done with corpus of around 2,500 words
and 54 participants).

These different studies focus on lexical and syntactic effects. In a complementary direction,
(Pynte et al., 2009) analyzed the influence of superficial lexical semantics on fixation duration.
(Mitchell et al., 2010) integrates this parameter into Surprisal. This work shows the effect of
semantic costs in addition to syntactic surprisal for reading time prediction. It also addresses in
a specific way the question of modeling: experimental studies usually use linear mixed effect
models, including random effects (e.g. participants characteristics) and fixed ones (e.g. word
frequency). In these approaches, many different parameters are brought together. As authors
pointed out, the use of a unique measure for predicting complexity is preferable than a set of
factors, not only for simplicity, but also because it is difficult to analyze the effective contribution
of a factor: one can evaluate whether adding it into a model improves it fits, but cannot explain
the reasons.

1See (Demberg and Keller, 2008) p.196 for a precise description.

23



2.2 Parameters and data

The different experiments have shown that Surprisal can play a significant role in a complexity
model. All such models bring together different parameters at different levels: oculomotor
(positions of the fixations), lexical (properties of the lexical items) and syntactic (contextual
characteristics). Moreover, surprisal presents the advantage to be calculated for lexical items
(taking into account the specific properties of each token, including co-occurrence) as well as
POS, the last case being apparently more robust.

The complexity models in these different studies are linear mixed-effects and make use of many
predictors. The following table recapitulates the main parameters used in the different studies2:

Demberg08 Mitchell10 McDonald03 Monsalve12 Boston08 Roark09
Word length + + + + + +
Word freq. + + + + + +
Sentence position + +
Word position +
Landing position + + +
Launch distance + +
Previous word RT + + +
Lexicalized surp. + + +
Unlexicalized surp. + + +
Bigram prob. + + +
Forward trans. + + +
Backward trans. + + +
Integration costs +
Lexical surp. entropy +
Synt supr. entropy +
Derivation steps +
Semantic +
Predictability + +
Retrieval +

Arbitrarily, we distinguish in this table between low and high level predictors, the first usually
being the baseline. As expected, word length and word frequency are used in all considered
models, other predictors being less systematic. One can observe that the combinatory is very
important and many different models have been experimented.

By another way, these experiments have shown the importance of input data. Until recently,
studies on linguistic complexity was done on controlled material (artificially built sentences,
out of context, small corpora). Surprisal relying on well-known NLP techniques, it offers the
advantage to be applied to unrestricted corpora. (Demberg and Keller, 2008) evaluates this
measure against a large corpus of newspaper articles, which constitutes an important step
towards the treatment of natural data (even though the idea of contextualized material has
been challenged by (Monsalve et al., 2012)). However, the main problem with the size of input
data is that only few corpora with eye-tracking data are available. The Dundee corpus is, to the
best of our knowledge, the only one with a reasonable size in a NLP perspective. Other existing
corpora are much smaller, such as the Embra (McDonald and Shillcock, 2003) which comprises
around 2,600 words. Another problem when dealing with large amount of data is the sensibility
of the measures to parsers efficiency. No precise indication is given in these works, in spite of
the fact that this constitutes a big issue (parsers F-scores being usually close to 85%).

A last feature shared by these different experiments lies in data cleaning. For different reasons,
large part of the input material is excluded: position in the line, fixation duration, even in some

2For sake of place, these predictors are not described here. Their definition can be found in the corresponding
papers.
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cases morpho-syntactic category. Even though such pre-processing is usual in psycholinguistics,
it constitutes a problem, in particular in terms of data analysis, as it will be explained later.

3 Experiment

As shown in the previous section, corpus used in the different experiments are very different
in size and nature. (Demberg and Keller, 2008) explicitly focuses on naturalistic data. On the
opposite, (Boston et al., 2008) relies on a very small corpus, but with large amount of subjects.
The following table presents the main features of the different corpora. It mentions the number
of token presented to the readers, the number of subjects participating to the experiment, the
number of data points (roughly speaking fixation points) taken into account in the evaluation
(after eliminating problematic data), the average number of tokens read by the subjects and
taken into account after data filtering (data points are more or less the number of participants
times the number of remaining tokens) and the experimental method.

Tokens Participants Data points Remaining tokens Method
Demberg08 51,502 10 200,684 20,000 Eye-tracking
Mitchell10 5,370 10 53,704 5,300 Eye-tracking
McDonald03 2,262 23 31,242 1,350 Eye-tracking
Monsalve12 ? 54 132,298 2,449 Self-paced reading
Boston08 1,138 222 167,499 754 Eye-tracking
Roark09 883 23 20,309 883 Self-paced reading

For similar study on French, there exists only one resource (the French part of the Dundee
corpus (Kennedy et al., 2003)), but which is not publically available. This situation leads
us to the project to build a new large resource for French, associating syntactic information,
eye-tracking data and difficulty prediction. The pilot study presented hereafter has been realized
in order to check the viability of the overall project.

3.1 Experimental design

One of our goal is to validate the experimental design. Our pilot study consisted in acquiring
eye-movement data for 13 subjects reading an extract of the French Treebank (herefater FTB,
(Abeillé et al., 2003)). The FTB is a set of articles from the newspaper Le Monde. Most of these
articles are in the economical field, which does not fit well with the idea of natural reading.
However, we selected from this corpus several extracts that seemed to us less technical in terms
of semantic contents.

The eye-tracking device is a Tobii 60 Hz 3. The selected subcorpus used in this experiment
is made of 6 articles of variable length (from 3 to 6 minutes of reading time), each of them
presented to the reader as a succession of slides. Participants have to press a key to access to the
next slide. Once the key pressed, an empty frame with a target cursor indicating the position of
the first line beginning the next slide is presented during three seconds, followed by the text
slide. A calibration of the Tobii machine is proposed before reading each article and a three
minutes pause between articles has been observed, filled by an informal discussion with the
experimenter about the content of the article. The overall session last 45 minutes in average for
each participant.

Each slide contains from 4 to 7 lines. Sentences were constrained to appear on a single slide,
and the text is not right justified, tokens too long to enter the current line are printed on the

3In parallel, we will compare our data with their counterparts obtained using an Eye-link II system (these data are
on the process to be acquired at LLF by B. Hemforth).
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Figure 1: An example of the slides presented. Red dots give the gaze positions recorded by the Tobii
system at a 17 milliseconds rate. Horizontal lines represent the lines model fitted to the slide. The
lines model allows to associate the gaze fixations (the clusters of points appearing on the figure)
with the words of the text.

next line. The text is printed on 800× 600 pixels slides using an Arial font of size 18 with line
spacing of size 26 pixels (an example is presented figure 1). The participant is positioned at
a 60 cm distance of the screen, which implies a 30 pixels precision on Tobii measurements or
equivalently a two characters horizontal precision and half line spacing in vertical precision.

The design of the experiment has been done thanks to a software we have developed (the
generic designing software coming with Tobii being not suited for a full-text reading experiment).
Our system automatically generates the slides and associates to each word its size in pixels as
well as its precise spatial location. This renders straightforward the specification of each word
(or set of words) as “area-of-interest” for the eye-tracking system. The overall corpus is made of
80 slides, 198 sentences split on 549 lines, which contains 6, 572 tokens (5, 696 words and 876
punctuation marks), which comes to 75,077 data points (a reasonable size in comparison with
existing resources, see previous section).

3.2 Data post-processing

Our software also takes in charge data post-processing. In particular, one of the main problem
consists in associating a sequence of eye movements with a line: the fact that backward
movements (i.e. regressions) as well as line jumps are frequent renders difficult the association
of a fixation aera with a word. We developed a specific algorithm to fit a line model to gaze
measurements (see figure 1). The lines model allows to establish a geometrical relation between
the set of fixations and the tokens of the slide. A parameter measures the quality of the fit. It is
used to discard the slides for which the matching between fixations and tokens is problematic.
For the present pilot experiment, the ratio of discarded slides reaches 12%. However, all the
slides presented possess valid measurements for at least 9 participants over the group of 13
subjects.

Fixations are formed from individual gaze measurements by use of standard clustering tech-
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niques4. The minimal duration time has been fixed to 85 ms and a maximal clustering length
of 30 pixels has been adopted (or a two characters length, which is the precision of the Tobii
device). First and last fixations of the slide are trimmed if problematic (e.g. at the end of the
reading, it is not rare that the reader’s gaze wanders over the slide before pressing the next slide
key). We therefore obtain the list of fixations and their associated parameters (position, starting
time, ending time, ...). Thanks to the lines model (which gives the line the fixation belongs to)
and the horizontal coordinate of the fixation, the closest token is associated with the fixation.
Herein, we choose to associate fixation only to words, so by construction punctuation marks
have zero reading time.

From the fixations list, we collect for each token of the slide and for each participant the
oculomotor quantities of interest such as the first pass duration time, total reading time, number
of fixations, and so on. This information is enriched for each token by metric and positioning
information (length in pixels, number of characters, line index, position index in the line,
...) and later on in the analysis with linguistic information (morphosyntactic category, lexical
frequency, ...). For the overall 6, 572 tokens of the corpus, we finally obtain 75, 077 oculomotor
measurements for the set of 13 participants (10, 359 over 85, 436 have been discarded due to
lines model problem). Among them, 34, 598 have a null total duration time (11, 388 correspond
to punctuation marks, the 23, 210 remaining correspond to skipped words, i.e. words with no
associated fixation). The ratio of skipped words (over the total number of words) is around
36% for our corpus of french newspaper articles.

The comparison of our pilot experiment with similar works (e.g. the french part of the Dundee
corpus (Kennedy et al., 2003)) does not reveal significant difference concerning the global
reading parameters such the mean fixation duration, saccade ratio, regression ratio, ... It means
that the experimental setup chosen (e.g. large font size, spacious layout, ...), even if far from
ecological reading condition, does not pertube the participant reading task. Similarly, the low
sampling rate (one measurement each 17 milliseconds) and the relatively poor spatial precision
of the Tobii device does not affect the average values of the global reading parameters. An
accurate comparison of the Tobii and Eye-link II results will be conducted as soon as the Eye-link
II data will be available for our reading material.

4 Analysis

The analysis relies on the paradigm that the reading times are a tracer of the linguistic complexity.
In the present pilot study, our main objective restricts to study what can we learn about linguistic
difficulty from reading time measurements. In particular, to model the reading strategy (e.g.
when and where fixations occur) is out of the scope of the analysis. Therefore, the model we
propose does not contain low-level variables describing reading strategy except the word length
which accounts for the time spent to decode the characters of the words.

Motivations leading us to choose this strategy are twofold. First, we desire to draw robust
conclusions concerning the linguistic difficulty, independent of a peculiar choice for the model
describing the reading strategy. Second, as far as possible, we will try to limit the number of
variables entering the statistical model. Indeed, the difficulty to interpret the resulting fitted
values of a linear model (mixed or not) increases with the number of dimensions (i.e. the
number of variables), especially when all these variables are strongly statistically dependent.

4A complete presentation of the algorithms implemented herein as well as a comparison with the state-of-the-art
(see (Holmqvist et al., 2011)) will be proposed in a forthcoming paper.
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In that case, the parameters space becomes highly instable, and the addition (or removal) of
one variable in the model may dramatically change the resulting fitted coefficients. This effect
has to be avoided since the final interpretation eventually relies on the values of these fitted
coefficients.

In the following subsection, we introduce the basic ingredients of the model. The multivariate
regression analysis is performed subsection 4.2 where the main results are discussed.

4.1 The variables of the model

4.1.1 Reading time

In the present study, we will focus on the total reading time measurement, defined as the sum
of duration lengths for all the fixations on the area spanned by the token, including backward
fixations.

In order to compare the token reading times measured for the different participants, we will first
proceed to a normalization. Each participant P possess its own reading velocity V (P) which can
be estimated on the corpus. For each participant, the sum over the slides not discarded of the
tokens total reading time D(P) and tokens length L(P) (for example the length in pixels) are
computed. The mean reading velocity of the participant is then given by V (P) = L(P)/D(P). By
introducing the average reading velocity over the participants V , we can form the normalized
total reading time for token t and participant P :

D(t, P) =
V (P)

V
× total reading time(t, P) (1)

Note that this transformation affects also the minimal threshold of 85 milliseconds (i.e. the
minimal duration for a fixation).

Since participants were asked to read the same texts, it could be interesting to introduce the
notion of average reader. The token reading time of the average reader D(t) is defined as
the average of the normalized reading times over the participants (when this measurement is
available) :

D(t) =
∑
P

D(t, P)

,∑
P

1 (2)

It has been observed (Lorch and Myers, 1990) that averaging over participants is source of
information loss for the low-level variables describing reading strategy (e.g. landing position,
launch distance, ...). However, we are herein not concerned by this potential problem since
low-level variables are not included in our model.

4.1.2 Word length

Reading times are known to depend on the word lengths (see (Rayner, 1998) for a review of
the literature). For a token t, we choose to include this metric information by considering the
number of characters of the token :

L(t) = number of characters(t) (3)

The L(t) variable accounts for the time spent to decode the characters of the token. Other
metric information (landing position, previous word fixated, ...) is herein not considered.
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4.1.3 Lexical information

The frequency of the word is another variable of our model. Frequent words are red faster,
which can be interpreted either as a lexical access facility or as a predictability effect. The
variable used herein is minus the logarithm of the lexical probability of the token form :

F(t) =− log P(form(t)) (4)

This quantity is computed from the frequencies obtained in the LPL French lexicon augmented
by the words of the French Treebank. Tokens not in the lexicon (punctuation marks, numbers,
...) have received a special treatment.

4.1.4 Morphosyntactic surprisal

The classical surprisal model being very sensitive to the parser performance, we use a new
measure relying on morphosyntactic analysis (Blache and Rauzy, 2011). The idea consists
in making the same kind of differential measure as for surprisal (Hale, 2001), but using
POS-tagging instead of parsing.

POS-tagging builds during the process a set of solutions for the sequence of tokens. Each
solution corresponds to an alternative when associating the set of morphosyntactic categories
(tags) to the lexical form of the token (POS). Let’s call Soli(t) the i th solution at position t,

Soli(t) = c1,i ...ct,i (5)

where ct,i is the morphosyntactic category associated to the token at position t for solution
Soli(t). The probability of the solution Soli(t) is obtained recursively by Bayes formulae :

P(Soli(t)) = P(ct,i |Soli(t − 1))× P(Soli(t − 1)) (6)

where P(Soli(t − 1)) is the probability of the solution i at position t − 1 and P(ct,i |Soli(t − 1))
is the conditional probability of category ct,i given the left context Soli(t − 1) = c1,i ...ct−1,i . The
relative contribution of each solution can be obtained thanks to the introduction of the density
function ρi(t) :

ρi(t) =
P(Soli(t))

A(t)
, with A(t) =
∑

i

P(Soli(t)) (7)

Following (Hale, 2001), the morphosyntactic surprisal at position t for each solution Soli(t) is :

Si(t) =− log
P(Soli(t))

P(Soli(t − 1))
=− log P(ct,i |c1,i ...ct−1,i) (8)

and the overall surprisal is :
S(t) =
∑

i

ρi(t)Si(t) (9)

The morphosyntactic surprisal is an unlexicalized surprisal (see (Demberg and Keller, 2008))
in the sense that it does not capture the lexical probability of the form (that information is
however included in the model section 4.1.3). The morphosyntactic surprisal accounts for two
distinct types of difficulty: one related to the predictability of the proposed tag in context (high
predictibility leads to low surprisal), the other coming from the effective number of solutions
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maintained in parallel due lexical form ambiguity (the higher is this effective number, the higher
is the surprisal).

Without entering into details (a complete presentation can be found in (Blache and Rauzy,
2011)), the contextual probabilities entering equations 6 and 8 are learned on the GraceLPL
French corpus augmented by the French Treebank. Adding the corpus under treatment allows to
avoid infinite value for surprisal (e.g. the cases present in the corpus to tag but no met in the
training corpus).

4.2 Model and results

The aim is herein to quantify the relative effects of the variables mentioned above on reading
time measurements. At first approximation, a simple linear model is assumed :

D = αL L+αF F +αS S+ D0 + ε (10)

where the slopes αL , αF and αS measure the strength of the effect of the explanatory variables
L, F and S respectively, D0 is the intercept of the model and the residuals ε account for what
remains unexplained by the model.

4.2.1 Analysis at the token scale

We applied a multivariate linear regression to the 75, 077 individual normalized reading time
measurements. For convenience, the explanatory variables have been previously scaled (zero
mean and unit variance), in such way that the slope gives directly the strength of the effect on
the duration time. All the slopes are found positive (which was expected) and highly significant.
However, a closer analysis reveals that the residuals of the model are strongly dependent on the
predicted values (see figure 2).

Figure 2: For individual reading time measurements, the residuals of the linear model fit are
plotted versus the fitted values. For a valid fit, the moving average of residuals (blue curve) is
expected to match the x-axis within its error bars. The minimal fixation duration is represented by
the vertical red line. The histogram of the normalized reading times and of the fitted values are
also shown.

The inspection of the normalized reading times and predicted values histograms of figure
2 explains why the linear model fails to fit reading time measurements. About 46% of the
tokens have null reading time ( 67% of them are skipped words, the remaining 33% consists in
punctuation marks which have null reading time by construction). The explanatory variables
entering the right term of equation 10 does not present such discrete bimodal distribution.
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There is therefore little hope that a linear combination of these variables can successfully
describe the data.

In order to minimize the problem of null reading times, two modifications are brought to the
model. First, a binary parameter Npm which specify whether the token is a punctuation mark or
not is added to the linear model, i.e.

D = αL L+αF F +αS S+αpm Npm + D0 + ε (11)

The second modification concerns the reading times to fit. Because of the average over the
participants, the average reading times introduced section 4.1.1 is less susceptible to present a
bimodal distribution. The multivariate regression is thus applied on the 6, 572 average reading
times of the corpus including the binary parameter to deal with punctuation marks. The results
are presented figure 3. The modified linear model is unable to describe the average reading
times distribution. As expected, the distribution of the average reading times does not present
the bimodal trend of the individual reading times histogram. However, the same dependency
is found between the predicted values and residuals of the fit: short predicted reading times
are predicted not enough short and long ones not enough long. This observation suggests that
skipped words are not just skipped because they are frequent and short (in that case, the model
will have explained the effect) and that this skipping word strategy is shared by the group of
participants. The linear model misses an ingredient to account for this effect.

Figure 3: Same plots as figure 2 for the average reading times over the participants.

The problem is mainly due the presence of null reading time measurements in the data. One
solution could be to remove them from the analysis. However statistics on truncated data, even
if feasible in theory (see for example (Breen, 1996)), are often a tricky business in practice.
Because a part of the genuine distribution has been removed, standard statistical recipes do
not apply securely and the estimators of the model parameters are found biased in general.
While some techniques exist to correct on these bias, they may require a full knowledge of
the explanatory variables distributions and their dependencies, which is difficult to achieve in
practice. We will not pursue this way.

A second solution could be to make use of a reading model which account for the skipped word
phenomena. However again, our original aim was to make use of reading time measurements to
learn about the syntactic complexity. As far as it is possible, we would like that our conclusions
remain independent of a particular choice concerning the reading model used. We propose next
subsection an alternative solution.
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4.2.2 Analysis at larger scale

Our alternative solution is based on the following remark. All the variables entering the linear
model are extensive variables5, which means that they are globally additive under scale change.
For example, the total duration time for a group of N tokens is the sum of the individual total
reading time of the N tokens. Similarly, the property holds for the tokens length, the tokens
frequency and as mentioned by (Smith and Levy, 2008), for the surprisal measure. Therefore,
nothing prevents us to change the scale of the analysis, by considering group of adjacent tokens
rather than working at the token scale.

We experimented this approach by forming groups of consecutive tokens (with the additional
constraint that the tokens belong to the same line). The mutivariate regressions were per-
formed on the summed quantities (summed average reading times, summed lengths, ...). The
dependency between the predicted values of the fit and the residuals decreases as the size of
the group increases. The fit becomes acceptable above the scale of 5 tokens. At this scale, it
seems that the erroneous predicted reading times compensate each others (i.e. short versus
long reading times) and provide us with a valid prediction for the reading time of the group as
a whole.

This observation leads us to search for a natural scale grounded on linguistic information. Figure
4 displays for each morphosyntactic categories the boxplot of the number of participants having
fixated the tokens. We remark that two populations emerges: the content words (adjectives,
adverbs, nouns and verbs) with a high fixated count and the function words (determiners,
auxiliaries, prepositions, ...) with a low fixated count.

Figure 4: Boxplot of the number of participants having fixated the tokens in function of the
morphosyntactic category of the tokens.

In the field of syntax, there exists a unit which groups the function words with their associated
content word: the chunk (Abney, 1991). It remains to check whether the chunk scale is a good
candidate for our analysis. Because chunks have variable sizes, we added to the linear model
the variable N which represents the number of tokens in the chunk. The equation becomes :

D = αL L+αF F +αS S+αpm Npm +αN N + D0 + ε (12)

Our corpus contains 2, 842 chunks, the average number of tokens by chunk is 2.31. The results
of the multivariate regression fit are shown figure 5. A slight dependency of the residuals is still

5The notion of extensive versus intensive variables comes from Thermodynamics and Statistical Physics.
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Figure 5: Same plots as figure 2 for average reading times at the chunk scale. The grey envelope
represents 1-σ error bars on the moving average.

Variable Estimate Std. Error Pr(>|t|)
(Intercept) 422.775 2.307 <2e-16 ***
Lscaled 89.388 2.798 <2e-16 ***
Fscaled 91.527 4.429 <2e-16 ***
Sscaled 22.345 2.696 <2e-16 ***
Nscaled -35.382 4.618 2.51e-14 ***
Npunctuation -37.156 4.248 <2e-16 ***

Table 1: The slopes, standard errors and statistical significance for the variables entering the
linear fit.

present (the maximal amplitude is about 7 milliseconds on residuals), but its effect has been
considerably lessening if compared with the analysis at the token scale (see figure 3).

Table 1 summarizes the amplitudes of the effect for each variable of the linear model. The
residuals standard error is of 101 ms and the multiple R-squared of 0.687. In average, a chunk
is red in 422 ms. The influence of the chunk length and the chunk frequency are of the same
order (around 90 ms, or 20% of the average reading time). The contribution of morphosyntactic
surprisal is slighter, 22 ms or 5% of the signal. A negative effect is found for the number of
tokens. At equal values for length, frequency and morphosyntactic surprisal, chunks containing
more tokens are red slower. Note that the amplitudes of all these effects are considerably larger
than the 7 ms maximal dependency bias remaining in the fit. We can thus conclude securely
that these effects are real.

5 Results and perspectives

The first goal of this work was to develop and evaluate a difficulty model based on morpho-
syntactic surprisal. The results obtained with eye-tracking data show that our model is a good
reading time predictor. This result is interesting for several reasons. First, it replicates for
French similar results obtained for other languages. Second, it shows that morpho-syntactic
surprisal is a good predicting variable. Because this difficulty measure is very robust and
independent from any syntactic formalism, it is possible to use for any linguistic material,
including spoken language: this opens the way to future experiments on predicting difficulty in
natural interaction.

Evaluating this model led us to other interesting theoretical, methodological and technical
results. In particular, we have shown that it is possible to keep all original data, including null
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reading time tokens. Variables of the linear model being additive under scale change, it becomes
possible to take into consideration set of tokens as fixation area. Interestingly, considering
syntactic chunks as fixation area provides very good result (reducing in a considerable extent
the dependency of the residuals). This observation allows to avoid the important data reduction
usually applied by other works. Moreover, it gives an experimental support to the idea that
reading is done at he level of chunks instead of words.

More generally, these results has to be situated in the perspective of the development of a
generic difficulty model that would integrate (1) parameters from different linguistic domains
and (2) high level effects such as cumulativity (Keller, 2005) or compensation (Blache, 2011),
increasing or decreasing difficulty. Our objective with such a generic model is to answer at three
questions: where, how and why difficulties occur. This long-term goal is based on the idea that
the basic elements of the integration process are variable in granularity: this process can indeed
relies on words, but also on larger units such as phrases, prosodic units or discursive segments.

Last, but not least, this study led to the construction of a high-level linguistic resource: a
treebank enriched with eye-tracking data plus difficulty measures. Such resource will be of
great interest in the perspective of the new field of experimental syntax.
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ABSTRACT
Scanpaths, sequences of fixations of the eyes, have historically played an important role
in eyetracking research but their use has remained highly limited until recently. Here, we
summarize earlier research and argue that scanpaths are a valuable source of information for
reading research, specifically in the study of sentence comprehension. We also discuss a freely
available, open source scanpath analysis method that we used to evaluate theoretical claims
about human parsing and about how the parser guides the eyes during reading. This scanpath
analysis is shown to yield new information that was missed when traditional approaches
were used to study theories about eye guidance during garden-pathing. We also show how
relatively subtle scanpath effects can be detected when we report the scanpath analysis of
a large eyetracking corpus. In sum, we argue that scanpath analyses are likely to serve as
an increasingly important tool in reading research, and perhaps also in other areas where
eyetracking is used, e.g., in studies using the visual world paradigm.

KEYWORDS: scanpaths, reading, eye movements, parsing.
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1 Introduction

Over the last decades, eyetracking has been established as one of the most important tools
for studying human language processing. Eyetracking studies contributed to the investigation
of the lexical retrieval of words and the processing of syntax, semantics, and discourse. The
two dominant experimental paradigms that have been used are reading studies and visual
world studies. In reading studies, the movements of the eyes are recorded as sentences are
read. Typical dependent variables are word-based duration measures such as the time the eyes
dwell on a word before proceeding to the next word or the probability to move backwards
from a word (regression probability). Increased dwell times and rates of regressions on a
particular word are commonly interpreted as reflecting difficulty to process that word or one of
the previous words (Rayner, 1998; Clifton et al., 2007; Vasishth et al., 2012). In visual word
experiments, participants hear recordings of sentences while watching visual scenes. Typically,
a scene is displayed in which one object is a target that is mentioned in the sentence; other
objects serve as distractors. The amount of looks to the target object and their timing can
uncover when various types of information come into play during comprehension (Huettig
et al., 2011). For instance, if the target word is a pronoun ("him" vs "her"), the speed at which
people converge with their gaze to the visual representation of the antecedent of the pronoun
and the proportion of looks to distractors can be informative about the mechanisms underlying
reference resolution (e.g., Kaiser et al., 2009).

Common to all these approaches is the fact that they considerably reduce the recorded in-
formation about eye movements. In reading studies, a word or small region is singled out
for which a duration measure or a regression probability is computed, that is, the measure is
aggregated across trials and participants. Eye movements that occurred before the eyes entered
this region and after they left it are discarded. This approach is entirely reasonable if the effect
of the experimental manipulation is focused to a particular critical region and if the effect of
the manipulation is expected to be largely the same in all participants. In many cases, these
assumptions may be reasonable; in this paper, however, we argue that they can be problematic
in certain important situations. The issue is not limited to reading studies; information may be
similarly lost in analyses of data acquired in visual world experiments. Eye movements in this
type of experiment are most often evaluated using the percentage of looks to a region in the
visual stimulus (target or distractor) as a function of time. This involves aggregating the data
of all trials in a condition and the individual fixation sequences are lost. If there were several
qualitatively different fixation patterns, reflecting different cognitive processes, these would not
be identifiable in the aggregate. The purpose of these simplifications of the eyetracking data is
(i) to get rid of irrelevant variance which could mask the effects of interest and (ii) to extract a
dependent measure that can be analyzed using standard statistical tools. Clearly, simplification
of the data is a trade-off: the raw data is difficult to interpret but an over-simplified signal can
be misleading.

In this paper, we will focus on eye movements in reading and show that some theoretically
important eye movement phenomena are not captured by the traditional eyetracking measures.
These measures can therefore be misleading in some circumstances. In recent work, we
introduced a new method for analyzing eye movements that addresses some of the issues with
traditional measures. We will explain which problem exactly this method aims to solve and how
the method works. Next, we will discuss how we used this method in (i) a reading experiment
and (ii) an analysis of a large-scale eyetracking corpus. Before we start to describe this new
method, it is useful to have a closer look at the data we are dealing with.
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1.1 Eye movements in reading: What do they look like?

In this paper, we discuss our analyses of two sets of eyetracking data (these analyses are reported
in von der Malsburg and Vasishth, 2012; von der Malsburg et al., 2012). The first data set
was collected in a reading experiment that investigated the processing of Spanish garden-path
sentences (von der Malsburg and Vasishth, 2012). The 70 Spanish native speakers tested in
this study came from a relatively homogeneous population and the experimental sentences
all followed a particular syntactic construction (average number of words: 18.5). Because
of a temporary attachment ambiguity of an adverbial clause these sentences were somewhat
difficult to process, but they still constitute an easy type of garden-path sentence. The design
of the study resembles that of typical reading studies in sentence processing research: the
conditions were minimally different from each other, the sentences had comparable length,
and the presentation of items (pseudo-randomly intermixed with fillers) was counterbalanced
in the standard manner. The second data set is the Potsdam Sentence Corpus (henceforth,
the PSC), a database of eye movements recorded from 230 participants reading a set of 144
sentences (Kliegl et al., 2004). The participants ranged from teenagers to pensioners and came
from diverse socioeconomic backgrounds. The sentence material consisted of simple German
sentences (ranging from 5 to 11 words, average: 7.9) that were designed to represent a large
variety of syntactic constructions. Thus, the PSC can be regarded as a representative sample of
how the general population reads common sentence types.

How would a machine direct its eyes when reading a sentence? One obvious strategy would
be to scan the words from left to right one at a time, looking on each word until it is fully
processed and to move to the next when finished. The spatial pattern of fixations generated
by such a reader would not be interesting because it would always be the same regardless of
the sentence being read: a monotonic movement in one direction. All information about the
underlying processes would be conveyed by the temporal dynamics. While human readers use a
similar reading strategy, the targets of their saccades are far from being as predictable as those
of our hypothetical reading machine. In the PSC, for instance, 19% of the saccades skip the
next word (skipped words are typically short and have high frequency), 17% of the saccades
result in another fixation on the current word, and 14% of the saccades are directed at previous
words. Hence, only 50% of the saccades target the next word in the sentence. This means that
even when people read simple sentences that do not pose any larger difficulties, they deviate
considerably from a monotonous left-to-right reading style. Several factors have been shown
to causes these deviations from a straight eye movement trajectory. They include oculo-motor
constraints, lexical processing, and higher-level language processing (Rayner, 1998; Bicknell
and Levy, 2011).

Fig. 1 shows eye movements from the PSC that were recorded when participants read the
sentence in (1). This sentence has long words (easy to target) and canonical word order (easy
to process). Of all sentences in the PSC, this one elicited the most regular reading patterns.
The scanpaths in fig. 1 can therefore be seen as marking the lower bound on irregularity in
scanpaths. Although the participants read this sentence mostly from left to right, the plot shows
that in almost all trials words were skipped and that in several trials material was revisited.

(1) Wolfgangs
Wolfgang’s

Töchter
daughters

studieren
study

Literatur
literature

und
and

Maschinenbau.
engineering.

When a sentence contains words that are difficult to integrate into the syntactic or semantic
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Figure 1: Eye movement as recorded in 24 trials in which participants read the sentence
“Wolfgang’s daughters study literature and engineering.” Each panel shows how a specific
participant read the sentence. Words are on the x-axis, time is on the y-axis, and the lines shows
the trajectory of the eyes. In only three trials (7, 17, 20), the eyes proceeded strictly from word
to word. In most trials the short word “and” was skipped. In several trials the eyes returned to
earlier material (1, 3, 4, 21, 22, 26).

interpretation of the sentence, reading patterns can deviate even more from a straight uni-
directional reading pattern. Quite early in psycholinguistic research, Frazier and Rayner (1982)
demonstrated that encountering the disambiguating word in a garden-path sentence such as
(2) can cause multi-fixation regressive eye movements which they interpreted as reflecting
syntactic reanalysis. For instance, when reading the sentence in (2), readers have a tendency
to interpret the noun phrase “the sock” initially as the object of “mending”. However, when
“fell” is encountered, it becomes clear that this role assignment cannot be maintained and the
interpretation of the sentence has to be revised.

(2) While Mary was mending the sock fell off her lap.

At the time when Frazier and Rayner carried out their study, no statistical tools were available
for analyzing the fixation patterns that ensued when the critical word was read. Therefore,
they analyzed the data qualitatively. Later studies used quantitative measures to confirm that
syntactic reanalysis causes complex regression patterns but the precise nature of these patterns
could not be resolved (Meseguer et al., 2002; Mitchell et al., 2008). To illustrate what kind of
data the authors of these studies were dealing with we selected 24 representative trials from
an experiment that we conducted to investigate the same questions as those that Frazier and
Rayner pursued (von der Malsburg and Vasishth, 2012). These trials are shown in fig. 2. In
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Figure 2: Eye movement as recorded in 24 trials in which participants read the sentences in (3)
(“El profesor dijo . . . ”). Each panel shows how a specific participant read the sentence. Words
are on the x-axis, time is on the y-axis, and the lines shows the trajectory of the eyes.

about 50% of the trials, the participants of this experiment produced regressive eye movements
after they read the critical word in the sentence showing that sentence processing can have
a dramatic impact on the gaze trajectory. In the vast majority of cases, these regressive eye
movements consisted of several fixations, which rules out a trivial numerical representation of
the gaze trajectory. The measures devised by earlier authors (Meseguer et al., 2002; Mitchell
et al., 2008) reduced these fixation sequences (the scanpaths) to only the first backwards
directed saccade following the fixation on the critical word. The benefit of this approach is that
the distribution of landing sites of this saccade can be modeled using standard statistical tools;
the drawback is that information about eye movement events following this first regressive
saccade is lost. One goal of this paper is to show that this loss of information can have a critical
impact on the inferences drawn from eye movement data.

Summarizing this section, we can say that, despite the linear nature of text, reading patterns are
quite complex, and that they may contain important information about the cognitive processes
underlying reading. The next section will describe a method that can be used to leverage that
information.

2 Analyzing Scanpaths

The central problem when analyzing eye movement patterns (scanpaths) is that they are
complex. A scanpath can consist of an arbitrary number of fixations and these fixations are
described in three dimensions: two spatial dimensions (e.g. coordinates on the screen) and time
(duration of a fixation). When we analyze traditional measures such as the first pass reading
time of a word, we can compare all measurements by simply calculating their differences and
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we can calculate means, standard deviations, and confidence intervals to make inferences. In
contrast to that it is unclear how two measurements should be compared if they consist of
scanpaths. What is the mean of a set of scanpaths and how can we describe the variance? These
questions could be answered if there was a vector representation of scanpaths in a common
vector space but deriving such a representation is not trivial due to the variable length of
scanpaths ranging from two fixations to an unbounded number of fixations. One way to derive
a vector representation has been proposed by Josephson and Holmes (2002). The procedure is
as following: calculate all pair-wise similarities of the scanpaths in a data set. Next, set up an
n-dimensional vector space and for each scanpath randomly place a vector in this space. Then,
use an iterative procedure that optimizes the positions of these vectors until their distances
in the vector space approximate the previously calculated similarities of the corresponding
scanpaths as well as possible (this procedure is called non-metric multidimensional scaling,
Kruskal, 1964). These vector representations—we call them maps of scanpath space—have
various desirable properties: scanpaths that are similar are located close to each other in the
vector space and dissimilar scanpaths are far apart. This property allows us to apply clustering
procedures to the map of scanpaths in order to identify categories of scanpath patterns. We can
also calculate the variance in the scanpaths, identify an "average" scanpath (i.e., the scanpath
in the center of gravity of a set), and locate the areas of highest density in order find scanpath
patterns that occurred often.

The missing ingredient for these things to work is an appropriate similarity measure that captures
the relevant properties of scanpaths. One proposal has been to use the Levenshtein distance
(Brandt and Stark, 1997; Salvucci and Anderson, 2001) which quantifies the (dis)similarity of
two sequences of symbols as the number of edit-operations that have to be performed on one
sequence to transform it into the other (Levenshtein, 1966). These operations are deletion and
insertion of a symbol and substitution of a symbol by another symbol. This measure can be
applied to eye movements in the following way: partition the visual stimulus into regions and
uniquely label each region with a letter. A sequence of fixations can then be represented by a
sequence of letters in which the n-th letter specifies the location of the n-th fixation (see fig. 3
for an illustration).

The Levenshtein metric has many desirable properties such as the ability to deal with sequences
of unequal length and being relatively cheap to compute.1 However, it also has some important
limitations. First, reading times are ignored completely because they are not part of the
representation on which the Levenshtein metric operates (strings of letters). So whether a
fixation in one scanpath that is not present in the other is long or short does not have any impact
on the similarity score for these two scanpaths. The second limitation is that the similarity of
two fixation sequences depends on how the visual stimulus was partitioned. If the regions are
large, the scanpaths in a data set will on average be more similar to each other than when they
are small because the probability that fixations coincide in the same region is higher if these
regions are large. What is a reasonable partitioning? In reading, words serve reasonably well
as regions of interest but there is no general answer to this question. The third limitation of
the Levenshtein metric is that a deviation between two scanpaths in one fixation leads to an
increase of the dissimilarity of 1 irrespective of whether the deviation is spatially large or small.
That means that if a fixation in one scanpath is on a word and the corresponding fixation is not
on the same word but really close, the two fixations will be counted as being as dissimilar as two

1The Needleman-Wunsch algorithm is commonly used to do the computation and takes processing time and memory
resources proportional to the product of the lengths of the two sequences (Needleman and Wunsch, 1970).
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Figure 3: Two graphs illustrating how the Levenshtein metric and the Scasim measure calculate
the similarity of two scanpaths. For the Levenshtein metric the stimulus has to be partitioned
into regions (A, B, C, . . . ) so that the scanpaths can be represented as symbol sequences. The
blue scanpath is represented as AEFCH, the red one as FFGH. For every mismatch in these
sequences the Levenshtein metric increases by one. The Scasim measure, on the other hand,
does not require a partitioning of the stimulus. The coordinates and durations of the fixations
are represented as continuous variables. The mismatch in the two scanpaths can then be
quantified as a function of the spatial and temporal differences between the matching fixations.
Differences in fixation durations (represented as the size of the circles) and spatial distances
both contribute to the overall (dis)similarity of two scanpaths.

fixations that are really far apart. Research on oculo-motor control in reading has found that a
word can be processed even if it is not in the center of the fovea (the high-resolution center of
the visual field) but also when it is in the parafovea (Rayner, 1975). This means that a fixation
close to a word can have similar consequences as a fixation on the word. Treating fixations close
to a word as if they were far apart is therefore undesirable. In sum, the Levenshtein metric is a
relatively crude measure for scanpath similarity because it deprives scanpaths of their temporal
information and because it uses a very coarse-grained model of space. This situation prompted
us to develop a new similarity measure for scanpaths, called Scasim, that is highly sensitive to
the spatio-temporal properties of scanpaths (von der Malsburg and Vasishth, 2007, 2011).

2.1 The Scasim measure

Our measure uses the same general approach as the Levenshtein distance. The difference is
the way we account for deviations in two scanpaths. Where the Levenshtein distance assigns a
“cost” of 1 for every fixation that differs in two scanpaths, we assign a cost that is a function of
the spatial locations and the fixation durations: if a fixation has to be deleted in one scanpath,
the cost for that deletion is the duration of that fixation. Deleting a long fixation therefore
leads to a larger overall dissimilarity between two scanpaths than deleting a short fixation.
Similarly, the cost of inserting a fixation is simply the duration of the inserted fixation. The cost
for substituting one fixation by another fixation depends on the durations and locations of the
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two fixations. If they have the same location, the cost of the substitution is simply the difference
in their fixation durations. If the two fixations are extremely far apart, the cost is given by the
sum of the fixation durations. There are two reasons for this choice. First, if the two fixations
are long, this means that the spatial deviation between them is temporally longer and should
therefore lead to increased overall dissimilarity. Second, this choice means that substituting two
fixations that are extremely far apart amounts to the same dissimilarity as deleting one of the
fixation and inserting the other. This property avoids discontinuities in the similarity function,
e.g., when the duration of one fixation converges to zero. What is the dissimilarity when the
two fixations are neither at the same location nor extremely far apart, i.e., if they are only
somewhat spatially separated? In this case, the cost of the substitution is a weighted sum of the
difference of the fixation durations and the sum of the fixation durations. The weights are a
function of the spatial distance and are determined by a function that mimics the exponential
drop in visual acuity of human vision (Daniel and Whitteridge, 1961; Rovamo et al., 1978).

Some useful properties of the resulting similarity measure that follow from these definitions
are: (i) Partitioning of the stimulus in more or less arbitrary regions is not necessary because
the measures is a continuous function of the coordinates and durations of the fixations in two
scanpaths. (ii) The measure is theory-agnostic, i.e., it does not make any assumptions about
the significance of certain types of eye movements, e.g., a regression in reading is not treated
any different than any other eye movement pattern. (iii) Similarity scores can be efficiently
computed with a variant of the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970).
See von der Malsburg and Vasishth (2011) for a detailed discussion of Scasim. See fig. 3 for an
illustration showing how the similarity of two scanpaths is computed with Scasim.

There is not one true similarity measure for scanpaths and our measure constitutes only one
possible way to quantify differences between scanpaths. What’s similar and what’s not really
depends on the question being asked and while our measure may be useful in one type of
analysis it may not be suitable in other types. Given that, it is not surprising that quite a few
other similarity measures have recently been proposed which all have different properties and
applications (Salvucci and Anderson, 2001; Cristino et al., 2010; Jarodzka et al., 2010; Mathôt
et al., 2012; Coco and Keller, 2012). Unfortunately, there is no space here to describe these
measures, but some are discussed and compared with Scasim in von der Malsburg and Vasishth
(2011).

The next sections will describe two different ways in which we used the Scasim measure to
analyze eye movements in reading.

3 Case study 1: Regression patterns during reanalysis

In von der Malsburg and Vasishth (2011, 2012) we investigated scanpaths in response to the
disambiguation of Spanish garden-path sentences such as (3) (adapted from Meseguer et al.,
2002).

(3) El
The

profesor
teacher

dijo
said

que
that

los
the

alumnos
students

se levantaran
had to stand up

. . .

. . .

a. [AdvC
[AdvC

cuando
when

los
the

directores
directors

entraron
came

en la clase].
into the classroom].

b. [AdvC
[AdvC

cuando
when

los
the

directores
directors

entraran
come

en la clase].
into the classroom].
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c. [AdvC
[AdvC

si
if

los
the

directores
directors

entraban
come

en la clase].
into the classroom].

Sentences (3a) and (3b) contain an adverbial clause (“cuando los directores . . . ”) which
can initially be attached to the main verb of the sentence (“dijo”) or to the embedded verb
(“levantaran”). The correct attachment site is only determined when the verb of the adverbial
phrase is read (“entraron” / “entraran”) because the mood of this verb (indicative or subjunctive)
agrees with either the main verb or the embedded verb. Low attachment to the embedded verb
is preferred in Spanish in agreement with the late-closure principle (Frazier, 1979). Therefore
the sentence processor experiences difficulty at “entraron” in (3a) because this word indicates
that the initial attachment was incorrect. A revision of the attachment has to be carried out. In
sentence (3c), the attachment is unambiguously clear at all times because the “si”-clause can
only attach to “levantaran”.

The main question that we investigated was: which strategy does the parser use to revise the
interpretation of the sentence? Three hypotheses about the mechanisms underlying revision
have been proposed in the literature (see Frazier & Rayner, 1982, for a detailed discussion). The
forward reanalysis hypothesis states that reanalysis is carried out by means of normal parsing
routines. The parser is assumed to return to the beginning of the sentence and to re-parse
the sentence while looking for choice points at which the misanalysis can be prevented. The
backward reanalysis hypothesis states that the parser switches to reverse gear, undoing parsing
decisions word-by-word until the crucial choice point is reached (Kaplan, 1972). The selective
reanalysis hypothesis posits that the parser intelligently identifies the problem and that it deploys
targeted repair mechanisms (Frazier and Rayner, 1982). Under the additional assumption that
the eyes are tightly coupled to the sentence processor (the eyes look at the word that is currently
being processed; Just and Carpenter, 1980) these hypotheses afford clearly distinguishable
predictions about scanpath patterns. According to forward reanalysis, the eyes should return to
the beginning of the sentence and start a second pass over the material so far. According to
backward reanalysis, the eyes should reverse the direction going backwards until the beginning
of the ambiguous region is reached (“cuando”) and should then switch back to normal forward
operation. According to selective reanalysis, the eyes should perform targeted saccades to words
that are affected by the reanalysis: the ambiguous region, the main, and the embedded verb.

To test for these patterns, we recorded eye movements from 70 participants who read sentences
as in (3). Since no reanalysis is required in (3b) where the critical word (“entraran”) only
supports the preferred interpretation, any regressive scanpath patterns that occur more often
in (3a) than in (3b) can be interpreted as reflecting reanalysis. Thus, one way to address the
question about reanalysis strategies is to perform a cluster analysis of scanpath patters with the
goal to identify qualitatively different types of scanpaths and to see if one or several of these
types occur more often in condition (3a) than in (3b).

3.1 Analysis
The complete analysis was carried out in GNU-R (R Development Core Team, 2009). We
first extracted from all trials regressive scanpaths that occurred after the critical word was
read. Next, we used our Scasim measure to calculate the pair-wise similarities of all these
regression patterns. This can be done with a function called Scasim which is freely available
from the authors.2 This function takes a data frame (basically a table) as input which contains,

2http://www.ling.uni-potsdam.de/~malsburg
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Figure 4: Three projections of the 7-dimensional map of scanpaths calculated for the analysis of
scanpaths recorded in our Spanish experiment. Each point is a scanpath. The colors indicate
membership to the three clusters (A, B, C) that were identified in the cluster analysis.

chronologically ordered, a line for every fixation in the data set. One column identifies the trial
to which a fixation belongs, other columns specify the x and y coordinates and the duration of a
fixation. The resulting matrix of similarity scores was then used to fit a map of scanpath space,
i.e., a n-dimensional vector space with a vector for each regressive scanpath (see fig. 4). This
was done using the function isoMDS from the package MASS which performs multidimensional
scaling. Once the vector representation of scanpaths is available, a large range of statistical
methods can be used to analyze the variance in scanpaths. We chose mixture of Gaussian
modeling for the cluster analysis. Mixture models describe the distribution of data points using
a set of multivariate Gaussians each of which represents one cluster. One important benefit over
other clustering procedures, such as k-means, is that mixture models can identify overlapping
clusters based on their distributional properties. The parameters of the Gaussians (position,
spread, orientation) were calculated using expectation maximization (package mclust, Fraley
and Raftery, 2002, 2007). A Bayesian information criterion was used to determine the optimal
number of clusters (Schwarz, 1978).

The cluster analysis identified three broad classes of scanpath patterns which can be seen in the
map of scanpaths in fig. 4. What scanpath pattern do these classes represent? A distribution
of reaction times can be characterized by calculating its mean. Similarly we can characterize
a cluster by identifying its center of gravity (the mean of the multivariate Gaussian). The
scanpaths that are closest to that center can be seen as being prototypical for that cluster. Fig. 5
shows one prototypical scanpath for each of the three clusters that we found. In one pattern
(A), the eyes reread the sentence as predicted by the forward reanalysis hypothesis. In another
pattern (B), the eyes returned from the disambiguating region (“entraron/entraran”) to the
ambiguous region. In the third pattern (C), the eyes returned from the spill-over region (“en la
clase”) to the disambiguating region.

Pattern A (rereading) occurred more often in sentences as in (3a) in which the preferred
interpretation is invalidated, suggesting that rereading reflects a reanalysis strategy. It was
also found that readers with high working memory capacity produced this pattern more often
than readers with a low working memory score. In the context of other results obtained in
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Figure 5: Prototypical scanpaths for three clusters identified in the cluster analysis of the
scanpaths recorded in our Spanish study. These scanpaths were located at the center of gravity
of the three clusters shown in fig. 4. In A, the eyes returned to the beginning of the sentences
after having read the disambiguating word in region 8 and then reread the sentence. In B, the
eyes rapidly regressed from the disambiguating word to the ambiguous region 7. In C, the eyes
returned from the spill-over region 9 to the disambiguating region.

that study, this was interpreted as showing that high-capacity readers commit more eagerly to
an attachment decision—and consequently have to revise these decisions more often—than
low-capacity readers who were hypothesized to leave the attachment occasionally unspecified
in order to preserve resources. Pattern C (revisiting the disambiguating word) occurred equally
often in the temporarily ambiguous conditions (3a,b) but less often in the unambiguous
condition (3c). The difference between sentences in conditions (3a) and (3b) was only one
letter (“entraron” vs. “entraran”) and it seems likely that type C regressions served to increase
the certainty about what has been read in cases were the targeted word was decisive for the
attachment of the adverbial clause (c.f. Bicknell and Levy, 2010). See von der Malsburg and
Vasishth (2012) for more details.

Various aspects of these results suggest that analyses of scanpath patterns can contribute
substantially to the interpretation of eyetracking data. We will briefly discuss two ways in which
an analysis of traditional eyetracking measures would have missed important information in
the eyetracking record.

First, Meseguer et al. (2002) found a high rate of regressions from the postdisambiguation
region to regions close to the beginning of the sentence in an experiment that used almost the
same sentences as ours. Their study also found that these regressions occurred more often in
the garden-path condition. Meseguer and colleagues suspected that these regressions were
targeted at the main verb of the sentence (“dijo”) which was the true attachment site in these
sentences and therefore argued in support of selective reanalysis which predicts these eye
movements. However, examining scanpaths in cluster A (rereading), shows that regions close to
the beginning of the sentence were often used as a stepping-stone on the way to the first word.
This suggests that the main verb may not have been the actual target of regression triggered by
disambiguation; rather, saccades to the main verb may have been the result of an undershoot
on the way to the first word where rereading was initiated. This shows that the functional

47



interpretation of saccades analysed in isolation can be problematic and it shows that scanpath
analyses can help to avoid misinterpretations.

Second, working memory was found to modulate the rate of pattern A scanpaths (rereading)
and pattern B scanpaths (regressions to the disambiguating region). However, the effects were
different for these two types of scanpaths. There was no effect of working memory on the rate
of pattern C scanpaths (revisiting the disambiguating region). A traditional regression measure
such as regression probability conflates these effects by aggregating across the three functionally
different types of scanpaths. The resulting pattern of effects is difficult to interpret. Indeed,
if only regression probability were to be analyzed in the above case, qualitatively different
effects of working memory on scanpaths may cancel each other out so that no influence of
working memory would be detected at all. This shows that separating qualitatively different eye
movement phenomena can in some situations reveal effects that would otherwise go unnoticed.

4 Case study 2: Scanpath variance in general reading

Our scanpath analysis of regressions in response to garden-pathing has shed new light on the
mechanisms underlying the processing of ambiguous material. Can scanpaths also be informa-
tive about other processes involved in reading? One way to answer this question empirically is
to analyze a database containing eye movements for a variety of constructions (e.g., the Potsdam
Sentence Corpus, PSC) and to investigate the factors that influence scanpaths. These factors
may include oculo-motor, sentence processing constraints, and individual difference in readers.
In von der Malsburg et al. (2012), we reviewed the literature and identified three variables that
should influence scanpath patterns. The effects of these variables have previously only been
shown using simplifying, word-based eyetracking measures such as regression probability. The
first variable is the syntactic processing difficulty of a sentence. In a wide range of studies, it
has been found that if a word is difficult to integrate with the sentence fragment read so far, the
result is often an increased rate of regressive eye movements (see Clifton et al., 2007, for a
review). The second variable influencing scanpaths is the length of words. The literature on
oculo-motor control in reading has found that short words are skipped more often (Brysbaert
and Vitu, 1998; Kliegl et al., 2004; Drieghe et al., 2005) and that the eyes often return to
skipped words (Vitu and McConkie, 2000; Engbert et al., 2005). The third variable is the age of
readers: older readers skip words more often and also regress more often than young readers
(Kliegl et al., 2004; Rayner et al., 2006). The effects of all three variables have also been
documented for the PSC (Kliegl et al., 2004; Boston et al., 2008).

The goals of our scanpath analysis of the PSC were two-fold: First, we wanted to validate
our scanpath measure. If the measure does what it is supposed to do, it should recover the
scanpath effects that the literature hinted at. Analyzing the PSC can be seen as a particularly
hard test because, as we reported above, the sentences were easy and the eyes went relatively
straightforwardly from left to right; in other words, the scanpath effects in the PSC are
presumably relatively subtle. The second goal of this study was to model, for the first time, the
joint effects of the three variables, which had been studied in separate research fields (research
on sentence processing, oculo-motor control, and cognitive aging), and their interactions.

In contrast to the scanpath analysis of syntactic reanalysis, we were not interested in identifying
categories of scanpaths but in the degree to which the eyes deviate from a regular reading
pattern. This irregularity of the scanpath can be quantified on the basis of maps of scanpaths
similar to those described above. We used a similar procedure to calculate 144 of these maps,
one for each of the 144 sentences in the PSC. Each of the 230 points on a map represents how
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Figure 6: Two maps of scanpaths. For plotting the first two principal components of the
4-dimensional maps were used as the axes. Left, the map for the sentence that elicited the
most regular scanpaths (‘Wolfgang’s daughters study literature and engineering’) and on the
right for the sentence that elicited the most irregular scanpaths (‘The artist gave the clay to
his apprentice’). Each point represents a scanpath that was produced by a different reader.
Distances between the points reflect the dissimilarities of the corresponding scanpaths. The
first sentence has canonical word order while the second has non-canonical word order and a
lexical ambiguity which can lead to garden-pathing (“Ton” can mean sound or clay).

one of 230 readers read the sentence. Fig. 6 shows the maps for the following two sentences:

(4) Wolfgangs
Wolfgang’s

Töchter
daughters

studieren
study

Literatur
literature

und
and

Maschinenbau.
engineering.

(5) Den
The

Ton
clay

gab
gave

der
the

Künstler
artist

seinem Gehilfen.
to his apprentice.

‘The artist gave the clay to his apprentice.’

The first sentence has canonical word order and long words. Hence, it should elicit relatively
regular scanpaths. The second sentence has non-canonical word order, contains a lexical
ambiguity (“Ton” can mean clay or sound), and has short words, which should result in
relatively irregular scanpaths. Looking at the maps in fig. 6, we see that the density of scanpaths
is higher for the first sentence and lower for the second sentence. This follows from the fact that
scanpaths for sentence (4) were more similar to each other than those recorded for sentence (5)
(distance on the map reflects dissimilarity according to our Scasim measure). Thus we can
use density on the map to quantify the regularity of scanpaths: if a scanpath is located in a
low-density area of a map it is relatively irregular (i.e., there were few similar scanpaths). If,
however, a scanpath is located in a high-density area it followed a common pattern and more
regular pattern.
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In order to calculate density, we again used mixture models, this time however to derive a
density function for each of the 144 maps. The density scores of the scanpaths were then
modeled as a function of syntactic difficulty of sentences, average word length in sentences, age
of readers, and the interactions of these factors (linear mixed models, Bates, 2005). Syntactic
difficulty was measured as the average surprisal (Hale, 2001) and the average retrieval cost
in a sentence Lewis and Vasishth (2005). Surprisal quantifies the unexpectedness of a word
given the preceding words and retrieval cost the difficulty of retrieving dependents of a word
from working memory assuming temporal decay and similarity-based interference between
memory items. These two measures thus capture different aspects of sentence processing. Both
measures were taken from Boston et al. (2011) and added to the model as separate predictors.

All predictions were confirmed. Older readers produced more irregular scanpaths than younger
readers. Sentences with short words, high surprisal, or high retrieval cost elicited more irregular
scanpath patterns. Additionally, both syntactic measures interacted with age to the effect that
older readers had weaker effects of syntax than younger readers. The results thus show that
our scanpath measure is sensitive to effects attributable to different levels of processing. Also
they show that scanpath analyses can be informative not only when the effects are relatively
pronounced, as typically seen in garden-path sentences, but also when the eyes move relatively
straight from left to right, that is, when the effects are relatively subtle.

How would an analysis based on traditional eyetracking measures have fared? We have not
done a formal comparison but it is easy to see how, for instance, an analysis of regression
probability could be problematic: a short word length and a high syntactic difficulty both
increase the rate of regressions and therefore increase irregularity. The type of regression may
be different, though. In the case of word length, we expect a regression back to the skipped
word directly following the skip. Thus, at the short word the eyes hit a snag but that leads
only to a small detour in the gaze trajectory. In the case of a syntactic obstacle, the detour
may be larger—perhaps the eyes revisit earlier material for rereading? Syntax may therefore
have a different impact on scanpaths than word length. Yet, this difference would not be
reflected in regression probability. Of course, the difference in this particular example can be
captured in other measures, e.g., total reading time, but these measures will fail to distinguish
other patterns. Thus, classical eyetracking measures present a puzzle that is difficult to solve.
Compared to that, our scanpath metric is a compound measure of all aspects in a scanpath. All
spatial and temporal deviations from a regular reading pattern are captured and distinguishable.

5 Conclusions

Scanpaths have been in the focus of pioneering eyetracking studies in the research on reading
(Frazier and Rayner, 1982) and visual scene perception (Yarbus, 1967). Nevertheless, analyses
of scanpaths have not gained much traction, perhaps because of a lack of suitable methods
for analyzing them. Particularly in reading research, scanpaths have not played an important
role. Here, we summarized our previous work showing that scanpaths are analytically tractable
and informative about the processes involved in reading. It remains to been seen how the
proposed methods can be applied to other types of data such as eye movements in the visual
world paradigm.
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Abstract
Human gaze behavior while reading text reflects a variety of strategies for precise and efficient read-
ing. Nevertheless, the possibility of extracting and importing these strategies from gaze data into
natural language processing technologies has not been explored to any extent. In this research, as
a first step in this investigation, we examine the possibility of extracting reading strategies through
the observation of word-based fixation behavior. Using existing gaze data, we train conditional
random field models to predict whether each word is fixated by subjects. The experimental results
show that, using both lexical and screen position cues, the model has a prediction accuracy of be-
tween 73% and 84% for each subject. Moreover, when focusing on the distribution of fixation/skip
behavior of subjects on each word, the total similarity between the predicted and observed distri-
butions is 0.9462, which strongly supports the possibility of capturing general reading strategies
from gaze data.

Title and Abstract in Japanese

人の一般的な文章理解戦略を捉えるための
CRFモデルを用いた文章中の単語注視予測

人間が文章を読む際の視線行動には、正確かつ効率的に読むための様々な戦略が反映されて

いる。しかしながら、その戦略を視線データから抽出し、自然言語処理技術に取り入れると

いう可能性に関しては、これまでほとんど研究されて来なかった。本研究では、この可能性を

研究するための第一歩として、単語ベースの注視行動の観察を通して文章理解戦略の抽出可

能性を調査する。我々は既存の視線データを用い、各単語が被験者によって注視されるかど

うかを予測する条件付き確率場モデルを訓練する。実験では、語彙情報と画面位置情報を手

がかりにすることで、このモデルが各被験者に対して 73%から 84%の予測精度を与えること
が示される。さらに、各単語に対する被験者間の注視／スキップの分布に着目すると、予測

された分布と実際に観察された分布との全体的な近似度は 0.9462であることが示され、視線
データから一般的な文章理解戦略を捉えうる可能性を強く裏付ける実験結果となっている。

Keywords:eye-tracking, gaze data, reading behavior, conditional random field (CRF).

Keywords in Japanese:視線追跡、視線データ、読解行動、条件付き確率場 (CRF).
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1 Introduction

Natural language processing (NLP) technologies have long been explored and some have ap-
proached close to satisfactory performance. Nevertheless, even for such sophisticated technologies,
there are still various issues pending further improvement. For example, in parsing technologies,
over 90% parsing accuracy has been achieved, yet some coordination structures or modifier depen-
dencies are still analyzed incorrectly.

Humans, on the other hand, can deal with such issues relatively effectively. We expect that if we
could clarify the mechanism used by humans, the performance of NLP technologies could be im-
proved by incorporating such mechanisms in their systems. To clarify these mechanisms, analyzing
human reading behavior is essential, while gaze data should strongly reflect this behavior. When a
human reads a piece of text, especially for the first time, it is important that his/her eye movements
are optimized for rapid understanding of the text. Humans typically perform this optimization
unconsciously, which is reflected in the gaze data.

Eye movements while reading text have long been explored in the field of psycholinguistics
(Rayner, 1998), and the accumulated knowledge of human eye movements has been reflected in
various eye movement models (Reichle et al., 1998, 2003, 2006). Reinterpretation of the knowl-
edge from an NLP perspective, however, has not been thoroughly investigated (Nilsson and Nivre,
2009, 2010; Martínez-Gómez et al., 2012). One possible reason for this could be that eye move-
ments inevitably contain individual differences among readers as well as unstable movements
caused by various external or internal factors, which make it difficult to extract general reading
strategies from gaze data obtained from different readers or even from a single reader.

In this research, we explore whether this difficulty can be overcome. We aim to predict whether
each word in the text is fixated by training conditional random field (CRF) models on existing
gaze data (Kennedy, 2003), and then examining whether such fixation behavior can be sufficiently
explained from the viewpoint of NLP-based linguistic features.

In the experiments, the trained CRF models predicted word fixations with 73% to 84% accuracy
for each subject. While the accuracy does not seem high enough to explain human gaze behavior, a
CRF model trained on the merged gaze data of all the subjects can predict the fixation distribution
across subjects for each word with a similarity of 0.9462 to the observed distribution, which should
be high enough to extract a general distribution regardless of individual differences or unstable
movements in the gaze data. The experimental results also show that to capture human reading
behavior correctly, both lexical and screen position features are essential, which would suggest that
we need to adequately distinguish the effects of these two kinds of features on gaze data when
incorporating certain strategies from gaze data into NLP technologies.

In Section2, we discuss related work on analyzing gaze data obtained while reading text. In
Section3, we briefly explain the fundamental concepts of gaze data by introducing existing gaze
data in the form of the Dundee Corpus, and also introduce the CRF model, which is trained to
predict word-based fixations. In Section4, we discuss preprocessing and observation of the Dundee
Corpus in designing our model. Finally, in Sections5 and6, we explain how to predict word-based
fixations in the corpus and analyze the performance of our model, respectively.

2 Related work

In the field of psycholinguistics, eye movements while reading text is a well established research
field (Rayner, 1998), and the accumulated knowledge has resulted in various models for eye move-
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ments. E-Z Reader (Reichle et al., 1998, 2003, 2006) is one such model. The E-Z Reader was de-
veloped to explain how eye movements are generated for the target gaze data, and not to predict eye
movements when reading text for the first time. These models are optimized for the target gaze data
by adjusting certain parameters without including any machine learning approaches. On the other
hand, the work presented in (Nilsson and Nivre, 2009) was, as the authors stated, the first work that
incorporated a machine learning approach to model human eye movements. The authors predicted
word-based fixations for unseen text using a transition-based model. In (Nilsson and Nivre, 2010),
temporal features were also considered to predict the duration of fixations.

There are important differences between the two approaches mentioned above, other than the way
in which the parameters are adjusted and the purpose of the modeling. The former approach mod-
eled the average eye movement of the subjects, while the latter trained the model for each subject.
The key point here is that the former approach attempts to generalize human eye-movement strate-
gies, while the latter attempts to capture individual characteristics. Our final goal is not only to
explain or predict human eye movements, but rather to extract from gaze data, reading strategies
that can be imported into NLP technologies. Since it is not clear whether extracting individual
or averaged strategies is better for this purpose, we set out to train our models to predict both
word-based fixations for each subject and the total distribution of the behavior across the subjects.

An image-based approach was proposed in (Martínez-Gómez et al., 2012) to clarify the position in
the text that should be fixated in order to understand the text more quickly. The authors represented
words in the text as bounding boxes, and visualized each of the linguistic features of words as an
image by setting the pixel values of the word-bounding boxes according to the magnitude of the
feature values of the words. They then attempted to explain the target gaze data represented in
the image using a linear sum of the weighted feature images. This work also incorporated screen
position features of words by representing each linguistic feature in a text image, which meant that
the screen position and linguistic features were considered to be strongly connected. In our models,
on the other hand, these two features are described separately and then paired, since we need to
exclude the contribution of screen position features when incorporating captured reading strategies
into NLP technologies, where screen positions are rarely considered.

3 The target gaze data and the model used to analyze them

3.1 The Dundee Corpus

The Dundee Corpus (Kennedy, 2003) is a corpus of eye movement data obtained while reading
English and French text. For each language, 20 texts from newspaper editorials (each of which
contained around 2,800 words) were selected, and each of the texts was divided into 40 five-line
screens containing 80 characters per line. While 10 native speakers read the texts displayed on the
screen, an eye tracker was used to record the gaze points on the text every millisecond. Through
their screen settings, patient calibration of the eye tracker, and post-adjustment of gaze data, the
authors successfully controlled the error of each gaze point to be within a character. The gaze data
included in the corpus, therefore, consisted of character-based fixations. Consecutive gaze points
on a single character were reduced to a single fixation point with the combined duration (Figure1).

Generally, an eye movement from one fixation point to another is called asaccade, and backward
saccades are calledregressions. In a saccade action, the human gaze usually moves several char-
acters forward in the text, which means that some characters are not fixated. The reason for this is
that humans can see and process the areas around fixated points, referred to asperipheral fields.
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t h r e a t e n i n g t h e i r v e r y e x i s t e n c e ?
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: fixation

: saccade

: regression

Figure 1:Character-based gaze data in the Dundee Corpus

3.2 Conditional random fields

CRFs (Lafferty et al., 2001) are a type of discriminative undirected probabilistic graphical model.
Theoretically, CRFs can deal with various types of graph structures although we use CRFs for
sequential labeling of whether each word is fixated. We therefore, explain CRFs with respect to
sequences only, borrowing the explanation from (Sha and Pereira, 2003).

CRFs define the conditional probability distributionsp(Y |X) of label sequencesY given input
sequencesX . We assume that random variable sequencesX andY have the same length, and that
the generic input and label sequences arex = x1 · · · xn andy = y1 · · · yn, respectively. A CRF on
(X , Y ) is specified by a vectorf of local featuresand a correspondingweight vectorλ. Each local
feature is either a state features(y, x , i) or a transition featuret(y, y ′, x , i) wherey, y ′ are labels,
x is an input sequence, andi is an input position. Typically, features depend on the inputs around
the given position, although they may also depend on global properties of the input.

The CRF’s global feature vector for input sequencex and label sequencey is given byF(y , x ) =∑
i f (y , x , i), wherei ranges over the input positions. The conditional probability distribution de-

fined by the CRF is thenpλ(Y |X) = (1/Zλ(X))expλ·F(Y , X), whereZλ(x ) =
∑

y expλ·F(y , x ).
The most likely label sequence forx is then given bŷy = argmaxy pλ(y |x ) = arg maxyλ·F(y , x ).
In our case,x represents the words in the text andy denotes whether each word is fixated.

4 Pre-processing and observation of the Dundee Corpus

In this section, we extract first-pass word-based fixations from the Dundee Corpus as the first
step in our investigation. We then observe what types of information seem to determine word
fixations/skips, which will help us to design feature sets for our CRF model in Section5.

4.1 Extraction of first-pass word-based fixations from the Dundee Corpus

As a first step toward extracting reading strategies, we focus on word-based fixations ignoring their
duration information, as examined in (Nilsson and Nivre, 2009). By merging consecutive fixations
within a word into a single fixation, the resolution of the gaze data is reduced from a per character
to a per word basis. Even after the merging, however, considering various types of observable
behaviors at a time seems too complicated for the first step. We therefore further narrow our target
by excluding regressions and saccades crossing lines from the gaze data as follows.

[Step 1]Each word-fixation is dealt with according to(i) and(ii) .
(i) Omit the fixation from the gaze data and move to the next fixation if a fixated word

(a) is labeled “visited” or (b) is in a different line from a previously-fixated word.
(ii) Else, allocate “visited” labels to the fixated word and all the preceding words in the text.

[Step 2]A sequence of gaze data is reconstructed using the remaining fixations.

For the gaze data in Figure1, for example, character-based fixations are first merged into word-
based fixations, the fixation after the regression fromveryto their is then ignored, and thereafter the
gaze data are reconstructed as shown in Figure2. With the data obtained from the above operation,
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threatening their very existence?

● ● ●

: word-based fixation

: saccade

Figure 2:First-pass word-based fixations in the Dundee Corpus
Total no. of No. of words in word sequence skipped by saccade

Subject saccades 0 1 2 3 4 5 6 7 · · ·
A 31,431 17,683 8,831 3,928 777 144 30 16 8 · · ·
B 36,248 24,669 8,900 2,118 419 106 28 3 1 · · ·
C 37,657 26,348 9,369 1,704 168 32 16 12 3 · · ·
D 36,570 24,560 10,044 1,750 143 40 14 10 4 · · ·
E 32,442 18,896 9,023 3,672 755 77 16 2 1 · · ·
F 38,982 28,561 8,859 1,351 159 36 10 3 1 · · ·
G 38,910 28,640 8,324 1,732 160 25 13 7 2 · · ·
H 33,910 20,540 10,068 2,807 384 78 18 8 1 · · ·
I 36,717 24,957 9,117 2,393 216 23 8 1 0 · · ·
J 37,738 26,479 9,297 1,774 136 32 12 2 2 · · ·

36,060.5 24,133.3 9,183.2 2,322.9 331.7 59.3 16.5 6.4 2.3 · · ·
Avg. (100.00%) (66.91%) (25.46%) (6.44%) (0.92%) (0.16%) (0.05%) (0.02%) (0.01%)· · ·

Table 1:Frequency of number of words in skipped sequence per subject

we can focus only on word-fixations involved in first-pass forward saccades within single lines.

4.2 Observation of skipped words in the Dundee Corpus

When observing the gaze data obtained in the previous section, we can see that for each subject
many words were skipped by saccades, that is, not fixated at all. We consider that such skips would
reduce the time for word-fixations and therefore lead to more effective human reading, that is,
faster reading without sacrificing understanding. Here we explore this word-skip behavior in the
gaze data in order to utilize the characteristics thereof to model word-fixations in the experiments.

Table1 shows the number of saccades per subject for the 20 texts of the Dundee Corpus (sec-
ond column), and classifies these saccades according to how many consecutive words the subject
skipped (third column onwards). The numbers in parentheses at the bottom of the table show the
ratios of the number of saccades skipping a particular number of words against the total number of
saccades. According to this table, the number of saccades skipping up to three words constitutes
99.73% of the total number of saccades. Even if we omit the number of saccades that move to the
next word (shown in the third column) from our calculations, the number of saccades skipping one
to three words constitutes 99.18%. Based on this observation, the assumption that each saccade
action skips at most three consecutive words appears to be realistic. If there is a common regularity
within the skipped sequences that can determine whether a target sequence is skipped, predicting
whether a target word is skipped would require lexical information on the preceding or following
two words from the target word.

Table2(a) shows the top 30 word sequences skipped by saccades in order of the number of skip
times, averaged over the 10 subjects (leftmost values in the middle column). From this table, it
seems that closed-class words such as determiners, prepositions, conjunctions, auxiliary verbs, and
so on, are often skipped by saccades. When considering the ratio of skip times against total number
of appearances of the target sequence (shown in the rightmost column), however, the frequently
skipped sequences were not skipped with high frequencies. For example,the was skipped most
often, although its skip rate was only 26.56%.

Table2(b) shows the top 30 sequences in order of skip rates against number of appearances only
for sequences that appeared≥ 5 times in the corpus. As observed in Table2(a), we can see that
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(a) Frequently observed skips

Word # skips / # ap- Ratio
sequence pearances (%)
the 774.1 / 2915 26.56
of 592.9 / 1613 36.76
to 525.1 / 1442 36.41
and 430.4 / 1079 39.89
a 402.7 / 1260 31.96
in 320.7 / 934 34.34
that 201.7 / 731 27.59
is 185.8 / 625 29.73
for 146.6 / 436 33.62
The 134.9 / 319 42.29
on 121.3 / 364 33.32
as 107.2 / 348 30.80
of the 106.3 / 371 28.65
are 99.5 / 318 31.29
be 92.8 / 372 24.95
with 92.4 / 347 26.63
was 87.2 / 351 24.84
it 84.5 / 330 25.61
I 79.5 / 257 30.93
by 76.7 / 220 34.86
- 72.5 / 257 28.21
have 71.4 / 327 21.83
or 70.5 / 167 42.22
in the 68.6 / 271 25.31
at 67.4 / 220 30.64
has 64.8 / 208 31.15
from 63.1 / 215 29.35
he 59.7 / 182 32.80
but 56.7 / 170 33.35
an 51.8 / 174 29.77

(b) Sequences skipped with high rate
(which appeared≥ 5 times)

Word # skips / # ap- Ratio
sequence pearances (%)
His 4.8 / 8 60.00
Its 4.6 / 8 57.50
How 3.3 / 6 55.00
Of 6.7 / 13 51.54
From 3.9 / 8 48.75
A 21.7 / 46 47.17
or a 4.6 / 10 46.00
No 4.1 / 9 45.56
I’d 4.1 / 9 45.56
Ms 3.1 / 7 44.29
We 14.4 / 33 43.64
led 2.6 / 6 43.33
- in 3.0 / 7 42.86
Most 3.4 / 8 42.50
The 134.9 / 319 42.29
de 3.8 / 9 42.22
& 3.8 / 9 42.22
or 70.5 / 167 42.22
of a 30.7 / 73 42.05
Is 2.1 / 5 42.00
- is 2.5 / 6 41.67
It’s 6.1 / 15 40.67
as a 20.9 / 52 40.19
’We 2.4 / 6 40.00
Those 2.4 / 6 40.00
he’s 2.4 / 6 40.00
- a 3.6 / 9 40.00
He 19.6 / 49 40.00
25 2.4 / 6 40.00
and 430.4 / 1079 39.89

(c) Skipped 2 or 3 word sequences
(which appeared≥ 5 times)

Word # skips / # ap- Ratio
sequence pearances (%)
or a 4.6 / 10 46.00
- in 3.0 / 7 42.86
of a 30.7 / 73 42.05
- is 2.5 / 6 41.67
as a 20.9 / 52 40.19
- a 3.6 / 9 40.00
to a 13.4 / 34 39.41
and so 1.9 / 5 38.00
in a 22.9 / 64 35.78
- the 4.5 / 13 34.62
of us 3.1 / 9 34.44
In a 2.4 / 7 34.29
up a 1.7 / 5 34.00
than a 4.4 / 13 33.85
and to 2.0 / 6 33.33
to be a 2.8 / 11 25.45
many of the 0.4 / 5 8.00
to do with 0.4 / 5 8.00
is not a 0.4 / 5 8.00
would be a 0.6 / 8 7.50
it is a 0.5 / 7 7.14
is that the 0.4 / 6 6.67
to make a 0.3 / 5 6.00
have been a 0.3 / 5 6.00
it is the 0.4 / 7 5.71
that it is 0.3 / 7 4.29
as much as 0.2 / 5 4.00
in order to 0.2 / 5 4.00
because of the 0.2 / 6 3.33
in the same 0.2 / 6 3.33

Table 2:Word sequences skipped by saccades in the Dundee Corpus

closed-class words are once again in the majority while first (capitalized) words in sentences were
frequently skipped, although their skip rates were, as before, not that high. EvenHis at the top of
the table was skipped with a rate of only 60.00%. Table2(c) shows the top 15 sequences based
on the same criteria used in Table2(b), but only for two- and three-word sequences. The table
suggests that word sequences connecting something like NP chunks tended to be skipped, although
their skip rates were not that high.

These observations suggest that target word sequences themselves seem to be related to whether
they are skipped, while other factors, such as relations with surrounding words, and so on, should
also be considered in skip decisions. Based on the above, we aim to capture factors for word-skip
behaviors using features in the CRF models. Using CRF models trained on the gaze data, we
examine how well the factors implemented as features can explain gaze behaviors.

The main purpose of this research was to capture some generality in human reading strategies from
an NLP perspective. From this point of view, it is desirable to be able to explain gaze behaviors
mainly using combinations of lexical information, in the normal way for NLP. For example, the
width of peripheral fields and the range of saccades, which are given by human eye mechanisms,
have long since been shown to control gaze behavior in psycholinguistic fields, whereas we aim to
interpret them in terms of window size, word length, and so on.

Early in this section we assumed that the length of each skipped sequence is at most three words.
We then attempt to predict a fixation or skip behavior for each word using lexical information on
the word and the preceding and following two words, which implies a window size of five words.
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Subject No. of skipped / all words (rate)
A 20,048 / 51,501 (38.93%)
B 15,224 / 51,501 (29.56%)
C 13,817 / 51,501 (26.83%)
D 14,890 / 51,501 (28.91%)
E 19,039 / 51,501 (36.97%)
F 12,490 / 51,501 (24.25%)
G 12,570 / 51,501 (24.41%)
H 17,563 / 51,501 (34.10%)
I 14,763 / 51,501 (28.67%)
J 13,736 / 51,501 (26.67%)

Table 3:Rate of skipped words

(No. of words)
Condition for agreement Total (rate) = Skipped + Fixated
≥ 6 subjects displaying same behavior 47,320 (91.88%) = 10,109 + 37,211
≥ 7 subjects displaying same behavior 39,439 (76.58%) = 6,484 + 32,955
≥ 8 subjects displaying same behavior 31,855 (61.85%) = 3,473 + 28,382
≥ 9 subjects displaying same behavior 24,219 (47.03%) = 1,385 + 22,834
10 (all) subjects displaying same behavior 16,313 (31.68%) = 314 + 15,999
Total words in all texts 51,501

Table 4:Agreement on gaze behavior for each word

The level of lexical information can vary, such as surface form, POS, length, probability, etc., while
various combinations of these can also be considered. On the other hand, since text is displayed
on a screen, optical factors must also be considered. In this research, we consider one of the most
likely factors, that is, the screen position of each word. In the experiments in Sections5 and6, we
examine the contribution of these factors by representing them as features in the CRF models.

4.3 Observation of commonality in gaze behaviors among subjects

This section investigates a method for capturing generality in gaze behavior among subjects. Using
the gaze data (obtained in Section4.1), Table3 gives the number of words that were skipped by
each subject. From this table, we can roughly see some variability in gaze behavior among subjects.
Table4 shows the degree of agreement among the subjects on whether each word is fixated or
skipped. For each row, the table shows the number of words for which a minimum number of
subjects displayed the same behavior. For example, words for which all the subjects displayed the
same behavior comprised only 31.68% of the texts. The low agreement given in the table would
suggest that it is not a good idea to specify a single common behavior for each word.

Based on this observation, we attempted instead to capture the distribution of how many subjects
fixated or skipped each target word. We trained a CRF model on the merged gaze data for all 10
subjects, using the same feature set as in the model for each subject, and then used the obtained
model to predict the distribution of each word in a target text.

5 Experimental settings

Based on the observation in the previous section, we examine whether word-fixations can be pre-
dicted using CRF models, which are trained on the gaze data. In this section, we explain the
experimental settings mainly of features that are utilized to train CRF models.

5.1 General settings

For the experiments, we trained a CRF model on the gaze data for each subject to predict the
fixation/skip behavior of the subject for each word. In addition, we also trained a CRF model on
the merged data for all subjects, to predict the fixation/skip distributions of each word across the
subjects. The evaluation metrics for the models are given in Section5.3.

For gaze data, we utilized the Dundee Corpus. As introduced in Section3.1, the Dundee Corpus
consists of gaze data for 20 texts, each of which was read by 10 subjects. We then divided the
data into training data, consisting of the data for 18 texts, and test data, comprising data for the
remaining two texts. All the gaze data were converted into first-pass saccade data according to
Section4.1, where each word was labeled “skipped” or “fixated” for each of the subjects. In the
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Figure 3:Word length features

Dundee Corpus, symbols such as quotation marks, periods, and commas are concatenated with the
nearest words. Considering the effect of this on gaze behavior, words in other tools were treated in
the same manner. For the same reason, we left the capitalization of words unchanged.

To train the CRF models, we utilizedCRFsuite(Okazaki, 2007) ver. 0.12. We used a sentence as
an input/output unit, since many of the existing NLP technologies are based on sentence-level pro-
cessing, and we intend to associate outputs of the CRF models with NLP technologies in our future
work. To obtain input sentences, five 80-character lines in each screen were split into sentences
using the sentence splitter implemented in theEnju parser (Ninomiya et al., 2007)1. In training
the CRF models, we selected the option of maximizing the logarithm of the training data with an
L1 regularization term, since this would effectively eliminate useless features, thereby highlighting
those features that really contributed to capturing the gaze data. The coefficient for L1 regulariza-
tion in each model was adjusted in the test data to examine to what extent we could explain the
given data using our features. We next explain the features utilized for training our CRF models.

5.2 Features utilized for training CRF models

Based on the observation in Section4.2, we set up features to capture the reading strategies. The
examined features can be classified into two types: lexical features and screen position features.
For each target word, we considered the features on the target word, the preceding two words, and
the following two words, which implies a window size of five words. Within the window size, we
considered all possible uni-, by-, and trigrams for each feature, except for3G-F and3G-B.

[Lexical features]
·WORD: word surface(s).
· POS: part(s) of speech obtained applying the POS tagger (Tsuruoka et al., 2005) to each sentence.
· L-POIS, L-PROB, L-RECI : information on surprisal of word length (real-value features).L-
POIS assumes that the word length probability follows a Poisson distribution, and takes the log-
arithm of the probability of the target word length. The logarithmic values are normalized over
the words in the texts (Figure3(a)). L-PROB calculates the actual word length probability in the
training data, takes the logarithm of the obtained probability, and then normalizes the logarithm
(Figure3(b)). L-RECI merely takes the reciprocal of the word length (Figure3(c)). For all of the
above three features, when obtaining bi- and trigrams, we summed the length of each of the words
and single space characters inserted between them.
· 3G-F, 3G-B: surprisal of a forward or backward word trigram (real-value features). We first
obtained the probabilistic distribution of forward or backward trigrams by training the trigram lan-

1http://www.nactem.ac.uk/enju/index.html
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Figure 4:Screen position features

Subjects A B C D E F G H I J
# fixated words 3,076 3,366 3,716 3,761 3,225 3,906 3,878 3,389 3,443 3,679
(Rate (%)) (62.67) (68.58) (75.71) (76.63) (65.71) (79.58) (79.01) (69.05) (70.15) (74.96)

# words in test data 4,908 (100.00%)

Table 5:Baseline rates for fixated words in the test data

guage model using SRILM (Stolcke, 2002) on the section of “Agence France-Presse, English Ser-
vice” in the fourth edition of English Gigaword (Parker et al., 2009), which contains 466,718,000
words. The obtained probabilities for target trigrams were then converted into logarithmic values,
and thereafter normalized over the trigrams in the texts.

[Screen position features]
· LF : line- or screen-feed. This examines whether the target word is at the beginning or end of a
line (Lstar t / Lend ) or the screen (Sstar t / Send ) (see Figure4(a)).
· SC: screen coordinates. This divides each screen into 5×5 grids and examines in which grid the
beginning of the word falls. Each screen in the Dundee Corpus consists of five 80-character lines,
and therefore, one grid has the capacity to hold 1×16 characters (see Figure4(b)).

5.3 Evaluation metrics and baselines

To evaluate the model trained on the gaze data for each subject, we counted the number of words
in the test data for which the model correctly predicted the subject’s behavior. Based on the obser-
vation that words were more often fixated than skipped for all subjects (see Table3), we regarded
the rate of fixated words in the gaze data for each subject as the baseline accuracy (see Table5).

For the model trained on the merged data of all subjects, we first predicted the fixation/skip dis-
tributions of each word across the subjects for the test set. For each predicted distribution, the
similarity based on Kullback-Leibler divergence was calculated against the distribution observed
in the gaze data. Then, we took the average of the similarities over all words in the test set.

More precisely, we calculatedexp{−(1/|T |)∑t∈T

∑
i pi,t loge(pi,t/qi,t)} where setT represents a

target text in which each wordt ∈ T is identified with its position in the text.|T | is accordingly
the number of words in textT , i ∈ {′′fixated′′, ′′skipped′′} is the label given to eacht ∈ T , andpi,t
andqi,t are the “fixated” / “skipped” distributions of target wordt across the subjects, predicted
by the CRF model and observed in the gaze data, respectively. This similarity measure returns
values between(0,1]; it returns 1 if the two distributions are the same. Using this similarity, we
examined how well our model could capture generality in the reading strategies of all subjects.
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Subjects
Utilized feature types Merged A B C D E F G H I J
(Baseline) .8131 62.67 68.58 75.71 76.63 65.71 79.58 79.01 69.05 70.15 74.96
WORD .8803 68.42 70.88 76.65 80.05 70.50 79.58 79.20 70.19 72.21 77.16
POS .8683 67.24 69.80 75.61 78.02 69.58 79.65 79.07 69.09 71.62 76.10
3G-F .8505 64.57 68.79 75.08 75.53 66.91 79.60 79.01 67.95 69.95 75.16
3G-B .8489 64.85 68.68 74.51 75.00 66.10 79.65 79.01 67.69 69.82 75.08
L-POIS .8321 63.18 68.62 75.75 76.63 65.71 79.58 79.03 69.05 70.40 74.98
L-PROB .8591 67.60 68.95 75.81 77.81 69.34 79.58 79.05 69.38 71.35 75.31
L-RECI .8798 67.22 70.17 77.30 80.44 69.72 79.56 79.18 70.42 72.51 75.67
LF .8663 60.96 68.58 75.65 76.83 63.12 79.58 79.01 68.38 70.44 74.96
SC .8725 64.28 69.09 76.00 76.98 66.69 79.63 79.07 69.60 71.31 75.45
(Using all of the above) .9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 6:Prediction accuracy of word fixation/skip behavior (using individual features)

Subjects
Utilized feature types Merged A B C D E F G H I J
(All individual types) .9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
−WORD .9460 75.06 74.67 80.75 83.99 76.51 80.50 82.38 72.84 77.51 80.58
−POS .9457 75.02 74.33 80.91 83.99 76.24 80.34 82.46 72.72 77.71 80.81
−3G-F .9460 75.39 74.37 80.85 83.80 76.43 80.54 82.80 72.66 77.73 81.50
−3G-B .9463 75.04 74.49 81.03 83.88 76.47 80.48 82.58 72.84 77.73 81.48
−L-POIS .9462 75.18 74.35 80.70 83.96 76.49 80.52 82.62 72.88 77.67 81.46
−L-PROB .9453 75.45 74.39 80.97 83.62 76.49 80.56 82.40 72.62 77.63 81.50
−L-RECI .9453 74.90 74.49 80.79 83.09 76.49 80.30 82.27 72.96 78.63 81.56
−LF .9447 74.57 74.63 81.01 83.76 76.49 80.70 82.80 73.11 77.89 81.48
−SC .9439 74.19 74.29 80.70 83.88 76.41 80.26 81.11 72.96 77.18 81.21
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 7:Contribution of individual features to prediction accuracy

For the baseline of this similarity measure, we averaged over the training data the fixation/skip
distributions of each word across the subjects, giving 0.8131.

6 Prediction of word-based fixation or skip behavior using CRF models

In the experiments, we first examine whether word fixation/skip behaviors in the test set can be
explained using the trained CRF models. We then explore the individual contribution of each of
the types of lexical and screen position features, and combinations of these features to prediction
accuracy. We further observe which features are heavily weighted in the trained CRF model.

6.1 Individual contribution of each type of feature

Table6 gives the prediction accuracy of the CRF models using each feature individually on the test
data, as well as the CRF model using all of the given features. Each of the columns “A” to “J” gives
the prediction accuracy for the target subject, given by the CRF models trained on training data
for the target subject, while the “Merged” column gives a similarity-based evaluation of the CRF
models trained on the merged gaze data of all subjects (see Section5.3).

Using all the features, the trained CRF model gives between 0.90% and 12.57% higher accuracy
than the baselines for each subject, and higher accuracy than using only individual features. The
degree of contribution of each individual feature, however, seems to vary among subjects. For
subjects A and E, the accuracy improvement over the baselines when using individual features
is relatively higher than for other subjects. For subjects B, D, I, and J, an improvement is also
observed, but this is less than for subjects A and E. For subjects F and G, on the other hand, barely
any improvement is observed for all individual features. From these observations, although there
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Subjects
Utilized feature types Merged A B C D E F G H I J
(All individual types) 0.9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11

−WORD, POS, 3G-F/-B 0.9437 74.53 74.39 80.52 83.68 75.94 80.42 82.23 72.82 77.63 80.56
−L-POIS/-PROB/-RECI 0.9353 73.63 73.98 80.38 82.86 75.59 80.22 82.09 72.58 77.53 81.03
−all lexical features 0.8748 64.61 68.97 75.86 76.87 66.40 79.60 79.07 69.27 71.03 75.45

−LF 0.9447 74.57 74.63 81.01 83.76 76.49 80.70 82.80 73.11 77.89 81.48
−SC 0.9439 74.19 74.29 80.70 83.88 76.41 80.26 81.11 72.96 77.18 81.21
−LF, SC 0.8940 68.93 70.90 77.49 81.09 71.11 79.54 79.67 70.48 72.84 78.26
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 8:Contribution of lexical (upper part) and screen position (lower part) features to prediction

are individual differences in the degree of improvement among subjects, it seems that some of the
characteristics of word-fixation behavior can be captured using our features. However, the 72% to
84% prediction accuracy obtained using all individual features is not high enough to adequately
explain each subject’s behavior. This is discussed further in Section6.5.

For the CRF models trained on the merged gaze data of all subjects (“Merged” column), on the
other hand, each of the individual features drastically improves the distribution similarity to the test
data, and when using all features, the distribution similarity is 0.9462, which is an improvement of
0.1331 over the baseline similarity. This similarity bodes well in terms of our expectation that this
CRF model can explain some generality on word-fixation behavior across all subjects.

When we go back to the prediction for each subject, each ofWORD, POS, L-PROB, andL-
RECI individually seem to be able to capture some characteristics in the gaze data, whileL-POIS
and the screen position featuresLF andSC do not improve the prediction accuracy that much.
Table7 examines the contribution of each individual feature to prediction accuracy, by training
CRF models using all feature types except the target feature type. The table seems to show that
removing the respective individual feature does not lead to a noticeable decrease in accuracy. This
would suggest that each individual feature is complemented by the remaining features.

6.2 Contribution of lexical and screen position features

In order to explore the complementary characteristics of feature types, we start by focusing on the
feature classification given by our definition: lexical and screen position features. Table8 exam-
ines the contribution of lexical and screen position features to prediction accuracy. By removing all
lexical features, that is, using only screen position featuresLF andSC (see “−all lexical features”
row), the distribution similarity drops drastically by 0.0714, and prediction accuracy for each sub-
ject also decreases by between 0.88% and 10.63%. We observe similar characteristics by removing
all screen position features; distribution similarity drops by 0.0522 (see “−LF , SC” row), while
prediction accuracy for each subject also decreases by between 0.94% and 6.31%.

These observations suggest that both the lexical features and screen position features capture cer-
tain information that can only be captured by those features. In addition, the prediction accuracy
obtained by removing all lexical features is similar to the baseline accuracy, regardless of the re-
maining screen position features. This would suggest that screen position features work well only
in conjunction with lexical features. In other words, humans do not seem to be able to decide
whether they fixate a word solely based on the word position.

The “−WORD, POS, 3G-F/-B,” and “−L-POIS/-PROB/-RECI ” rows in the table show that
removing either the features on word length surprisal or all lexical features other than these does
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Mer Subjects
Utilized feature types ged A B C D E F G H I J
Baseline .8131 62.67 68.58 75.71 76.63 65.71 79.58 79.01 69.05 70.15 74.96
All individual types (AIT) .9462 75.24 74.37 81.05 83.94 76.51 80.48 82.62 72.98 77.69 81.11
WORD, POS .8805 68.58 70.64 76.55 79.97 70.64 79.60 79.18 69.89 72.07 76.81
WORD∗POS,WORD,POS .8802 68.56 70.60 76.67 80.26 70.74 79.60 79.18 69.99 72.00 76.87
AIT, WORD∗POS .9461 75.26 74.31 80.91 84.01 76.59 80.48 82.58 72.90 77.63 81.38
LF, SC .8748 64.61 68.97 75.86 76.87 66.40 79.60 79.07 69.27 71.03 75.45
LF∗SC, LF, SC .8750 64.98 69.01 75.92 76.85 66.50 79.60 79.01 69.32 71.03 75.45
AIT, LF∗SC .9463 75.18 74.71 80.83 84.01 76.57 80.44 82.60 72.84 77.85 81.46
WORD, LF .9322 73.08 73.61 80.11 82.76 75.49 80.64 80.48 72.62 77.24 80.50
WORD∗LF, WORD, LF .9336 73.43 73.78 80.15 83.01 76.08 80.70 80.46 72.70 77.28 80.46
AIT, WORD∗LF .9470 75.04 74.23 80.97 83.92 76.69 80.44 82.72 72.90 77.67 81.72
WORD, SC .9328 73.02 73.92 80.56 82.93 75.71 80.75 82.19 73.19 77.26 81.05
WORD∗SC, WORD, SC .9333 72.98 73.90 80.58 82.95 75.86 80.73 82.21 73.17 77.44 80.99
AIT, WORD∗SC .9468 75.35 74.47 80.73 83.96 76.65 80.50 82.62 72.82 77.77 81.48
POS, LF .9187 72.09 72.94 78.93 80.79 74.65 79.50 79.93 71.35 76.10 78.93
POS∗LF, POS, LF .9201 73.11 73.08 78.79 80.93 75.26 79.16 79.56 71.31 76.14 79.03
AIT, POS∗LF .9475 75.06 74.71 80.62 83.99 76.77 80.54 82.46 72.90 77.75 81.52
POS, SC .9190 72.39 73.08 79.30 80.93 75.06 79.73 80.73 71.84 76.43 79.60
POS∗SC, POS, SC .9196 72.56 73.04 79.69 80.97 75.08 79.75 80.75 71.84 76.49 79.60
AIT, POS∗SC .9473 75.18 74.71 80.68 83.99 76.63 80.46 82.64 72.76 77.79 81.09
AIT, all combination .9481 74.96 74.61 80.66 83.94 76.63 80.54 82.64 72.98 77.77 81.28
“Merged” denotes the similarity of the distribution to the test data; “Subjects” gives the accuracy (%) of predicting word fixations/skips

Table 9:Prediction accuracy of word fixation/skip behavior (using combined features)

not bring about a serious decline in prediction accuracy. Considering that lexical features other
than the word length features, such asWORD, can implicitly capture a great deal of information
on word length, most of the lexical information affecting word fixations/skips seems to be word
length surprisal. The “−LF ” and “−SC” rows in the table, on the other hand, show that removing
either screen coordinate features or line-/screen-feed features does not bring about a serious decline
in prediction accuracy. Considering that most of the line-/screen-feed information is implicitly
contained in the screen coordinate information, most of the screen position information affecting
word fixations/skips seems to be whether a target word is at the beginning or end of a line/screen.

6.3 Contribution of combined features

We also considered combinations of two feature types. Table9 shows the contribution of each
combination of features to prediction accuracy. In the table,A∗B represents the combination of
feature typesA andB, which means that this combined feature is fired only when bothA andB are
fired. Some feature types are real-value features, and cannot easily be combined with other feature
types. We therefore, omitted the real-value features as candidates for combination. When using
each combined feature, we also added the respective individual features for smoothing.

From the table, we can see that adding each of the combined features barely contributes to any
accuracy improvement. Even when using all the individual and combined features (see the bottom
row of the table), the improvement over using only all the individual features is barely noticeable.
These observations seem to imply that combining the features does not capture any extra informa-
tion than when using the features separately. Owing to a lack of gaze data, these results may be
misleading, and further investigation would be required in order to continue this discussion.

6.4 Observation of heavily weighted features

From the heavily weighted features in the CRF model, we observed which features were regarded
as important for explaining the gaze data. Table10shows the heavily weighted features in the CRF
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Features (for fixations) Weight Features (for fixations) Weight
L-PROB[0] 5.7808 L-RECI[-1] 0.1651
LF[0]= Lend 1.3306 SC[-2,-1]=(5,4),(5, 4) 0.1639
LF[0]= Lstart 1.3210 LF[-1,0]= Lmid, Lend 0.1519
LF[0]= Send 1.2605 SC[+2]=(1,5) 0.1454
L-POIS[-1,0] 1.2218 SC[+1,+2]=(1,3),(1,3) 0.1347
L-PROB[-1] 0.7899 SC[0,+1,+2]=(5, 3),(5,3),(1,4) 0.1299
L-RECI[-2,-1] 0.5393 WORD[-1]=But 0.1284
SC[+1]=(1,5) 0.4001 SC[-2,-1]=(5,1),(5, 1) 0.1258
LF[+1]= Lstart 0.3422 LF[-1]= Lend 0.1248
LF[0,+1]= Lend, Lstart 0.3422 LF[-1,0]= Lend, Lstart 0.1248
LF[0,+1]= Lstart, Lmid 0.3265 LF[0,+1]= Send, Sstart 0.1232
SC[+1]=(1,3) 0.2987 LF[+1]= Sstart 0.1232
SC[+1]=(1,4) 0.2776 SC[+2]=(1,2) 0.1182
L-PROB[-2,-1,0] 0.2310 SC[+2]=(1,3) 0.1146
3G-F[-2,-1,0] 0.2090 LF[-2]= Lmid 0.1092
SC[0]=(5,5) 0.1867 SC[0,+1]=(5,5),(1,1) 0.1079
SC[+1,+2]=(1,1),(1, 1) 0.1832 POS[0]=CD 0.1047
SC[-1]=(5,5) 0.1721 SC[-1]=(5,4) 0.1029
SC[+1,+2]=(1,2),(1, 2) 0.1718 POS[0,+1]=NN, NNS 0.1014
SC[+1]=(1,2) 0.1695 SC[-2,-1]=(5,5),(5, 5) 0.1012
SC[+1,+2]=(1,4),(1, 4) 0.1660 SC[0,+1]=(1,4),(1,4) 0.1006

Features (for skips) Weight
L-RECI[0] 2.0020
L-POIS[+1] 0.2691
Beginning of sentence 0.2657
End of sentence 0.2071
POS[-1]=_COLON_ 0.2023
WORD[0]=it’s 0.1904
WORD[-1]=- 0.1829
WORD[-1]=I 0.1793
LF[-2,-1,0]=Lmid, Lmid, Lmid 0.1756
L-PROB[-1,0] 0.1716
WORD[0]=than 0.1599
LF[0,+1]= Lmid, Lmid 0.1584
WORD[0]=that 0.1493
LF[0,+1,+2]=Lmid, Lmid, Lmid 0.1463
WORD[0]=and 0.1452
WORD[-1]=of 0.1289
WORD[-1,0]=as, a 0.1271
WORD[0]=from 0.1267
WORD[0]=which 0.1235
SC[-1,0,+1]=(1,1),(1, 1),(1,1) 0.1224
LF[0]= Lmid 0.1157

Table 10:Features that were heavily weighted in the “Merged” model using all individual features

model that was trained using all individual features on the merged training data of all subjects. The
left and right tables show the features weighted for fixations and skips, respectively. A number
in square brackets [ ] represents a word whose feature was captured, and identified with an offset
from a target word. A sequence of two or three numbers in [ ] represents bi- or trigram features.

The tables suggest that surprisal based on word length probability and the reciprocal word length
of a target word (L-PROB[0] and L-RECI[0] , respectively) have a large influence on whether
subjects fixate or skip the word, respectively. ForL-PROB[0] , according to Figure3(b), longer
words tend to give greater surprisal. This may be because the longer length possibly suggests that
the word is a content word and sometimes even an unknown word. In addition, it may be possible
that a longer word cannot be skipped easily by a single saccade. The heavy weight for fixations
thus seems reasonable. ForL-RECI[0] , a large value for the reciprocal word length means that
the word length is short, and a shorter length possibly suggests that the word is a functional word
or easily skipped by a single saccade. The weight for skips thus seems reasonable. From the
viewpoint of the human eye mechanism, these features would have been fired without a fixation on
a target word, using information on the word obtained by peripheral fields of the eyes or guessed
from surrounding information.

For WORD features, most of the heavily weighted features are for skips and on target words
(WORD[0] ) that belong to a closed-class, such asthan, from, andwhich. These words are not
content words and tend to be short, and therefore were likely weighted heavily for skips. On the
other hand,WORD[-1]=But was heavily weighted for fixations. The reason for this may be that
when a sentence starts withBut, it attracts the reader’s interest to focus on the next word.

For SC features, almost all of the heavily weighted features were located in the leftmost (1,*) or
rightmost (5,*) coordinates, which is consistent with our analysis in Section6.2. Many of these
features were weighted for fixations for the simple reason that the next word was in the leftmost
coordinate (SC[+1]=(1,*)), which would mean that subjects tended to fixate last words in a line
before their linefeed eye movements.SC[0]=(5,*) with conditions similar toSC[+1]=(1,*) were
not weighted that highly, probably because the first character of the last word in a line does not
always appear in position (5,*).

67



6.5 Discussion on the experimental results

The experimental results in Section6 show that the CRF model trained for each subject does not
have high prediction accuracy. When we analyzed the prediction errors, we found many long spans
in the gaze data where all words were fixated. The subjects seem to have read the spans very
precisely, which differed from the behavior displayed in other areas. It is natural that subjects do
not maintain the same level of concentration or understanding throughout a text, yet our model was
not able to capture this. We believe that this is the main reason why the CRF model for each subject
does not exhibit high prediction accuracy. This issue will be addressed in our future work.

On the other hand, the experimental results also suggest that we can predict the distribution of
fixation/skip behavior of each word across subjects with very high similarity to the gaze data, re-
gardless of individual differences among subjects (see Table4) and the above unstable movements
in gaze data. This would imply the possibility of capturing and explaining generality in human
reading strategies from an NLP perspective.

It should also be noted that our results also depend on the preprocessing of the gaze data in Sec-
tion 4.1. The authors in (Nilsson and Nivre, 2009) also used the Dundee Corpus, and trained and
examined their model to predict word-based fixation behavior for each subject. Similar to our
method, they applied some preprocessing to the gaze data to remove irregular eye movements,
whereas, unlike our case, they also took regressions and revisits as well as first-pass forward sac-
cades into consideration. Since the experimental settings differed, we cannot directly compare the
prediction accuracy of our results with those in (Nilsson and Nivre, 2009). However, considering
that our baselines seem to be higher than those in (Nilsson and Nivre, 2009), we could say that our
additional preprocessing simplified the problem and made the gaze behavior easier to capture.

We found that both lexical features and screen position features contributed to explaining the gaze
data. Our final goal is to obtain some reading strategies from the gaze data, which can then be im-
ported into NLP technologies. Considering this goal, we need to remove the screen position factors
from the gaze data, since most NLP technologies consider sentence-based processing without any
position information. The experimental results suggest that combined features of screen position
and lexical information do not capture any extra characteristics. If this is true, we may be able to
separate the two factor types without considering their mutual interaction.

Conclusion

In this research, we examined the possibility of extracting reading strategies by observing word-
based fixation behavior. We trained CRF models on gaze data to predict the gaze behavior of each
subject and the distribution of gaze behavior across all subjects. Using lexical and screen position
features, the CRF models could predict word fixation/skip behaviors for each subject with 73% to
84% accuracy as well as the distribution of word fixation/skip behaviors across the subjects with a
0.9462 similarity to the original gaze data.

In our future work, we would like to collect gaze data on specific linguistic phenomena, such
as coordination and prepositional attachment, and then attempt to extract some general reading
strategies from this gaze data. Having achieved this, we aim to import the obtained strategies into
NLP technologies such as parsing, to realize further progress in these fields.
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ABSTRACT 

In eye-tracking research, temporally constant deviations between users’ intended gaze location 

and location captured by eye-samplers are referred to as systematic error. Systematic errors are 

frequent and add a lot of noise to the data. It also takes a lot of time and effort to manually correct 

such disparities. In this paper, we propose and validate a heuristic-based technique to reduce such 

errors associated with gaze fixations by shifting them to their true locations. This technique is 

exclusively applicable for reading tasks where the visual objects (characters) are placed on a grid 

in a sequential manner; which is often the case in psycholinguistic studies.  
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1 Introduction 

In psycholinguistic studies, eye tracking experiments have often been conducted to study the 

human way of analysing and synthesizing text. During reading, eye movement significantly 

relates to the cognitive load on participants. So, analysing gaze data is useful in 

proving/disproving hypotheses and extracting features for training and tuning machines. But eye 

trackers, after all, have certain limitations and they exhibit error in capturing gaze points of 

individuals. Such errors could be classified into variable and systematic errors (Harnof and 

Halverson, 2002). Variable error is nothing but dispersed gaze-points around the intended 

fixation which indicate lack of precision of eye-trackers. Systematic error, on the other hand, is 

the drift between the gaze-point locations captured by the eye-trackers and the intended fixation. 

It may be caused by imperfect calibration, head movement, astigmatism and other sources (LC 

Technologies, 2000). With the advent of sophisticated eye-trackers (Tobii, SR Research Eyelink 

etc.) it has been possible to reduce variable errors. But yet there is still a demand of tools and 

techniques to handle systematic errors which often imposes adverse impact on gaze-point 

analysis.  

Various methods have been proposed to handle systematic error associated with fixations. 

Abrams and Jonides (1988) and Juhasz et.al (2006) proposed recalibration in the course of 

experiment which may not be applicable for linguistic analysis since such interruptions would 

reduce the quality of task. For example: during translation process studies participants cache 

contextual evidences in their short term memory, which could be lost by such interruptions. 

Hornof and Halverson (2002) introduced Required Fixation Location (RFL) technique in which 

they identify RFLs i.e some points on the screen which indicates the actual fixation of the 

candidates at a specified time.  In some of the experiments they record RFLs by asking 

participants to place the mouse cursor over the objects they were looking at. Then they measure 

the discrepancies between RFLs and fixations recorded by eye-trackers and shift the fixations to 

the true locations. This method is not very useful where one cannot ask the user to indicate RFLs. 

For example, during translation studies the participant might be busy typing the translations and 

reading the text simultaneously. Similar is the case with annotation tasks where the user has to 

read and annotate a text. 

The Gaze to Word Mapping (GWM) modules introduced by Špakov, (2007) is a heuristic based 

approach. The underlying algorithm does not make a simplistic link between the x-y coordinates 

of a fixation and the location of a word on the monitor, but rather tries to account for certain 

documented effects, closely resembling to our technique. While is it quite reasonable to believe 

that participants tilt towards the end of reading lines; it doesn’t clearly show us a way to 

determine the line which the participant is looking at; given initial few fixations are nonlinear in 

nature. Our algorithm tries to overcome this by introducing a scoring function which guesses 

which line a participant is focusing on; given N initial non-linear/linear fixations starting at time 

T. 

The Mode-of-disparities error correction technique proposed by Zhang and Hornof (2011) is 

useful when the visual objects are arranged in an irregular manner but fails when objects are 

placed on a grid such as placing a paragraph for reading. 

Intuitively, for reading and writing tasks vertical displacement of fixations contribute more to the 

noise than that of horizontal. So in this article, we focus more on vertical directional adjustment. 
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Initially, before processing fixations, a set of virtual horizontal lines are drawn by joining the 

centre coordinates of character belonging to the respective textual lines.  Fixations are extracted 

from the noisy data and stored sequentially in a temporal order
1
. Then they are processed and 

corrected in three stages. In first stage, fixations are shifted to lie on the nearest virtual lines. In 

the second stage transient fixations are corrected. Finally, participant’s Reading Line (RL) is 

predicted and deviating fixations are shifted to the corresponding RLs.  

This technique is applied on the Translation Process Research (TPR) database (Carl, 2012) 

recorded by Tobii eye-tracker using Translog-II (Carl 2012) software. Then validation is done 

across manually corrected fixations. Qualitative analysis is done by replaying the recorded and 

corrected data in Translog. In all the cases we have assumed left to right reading and writing but 

the technique could be slightly modified to support for languages adopting Arabic scripts. 

2 Heuristics for Fixation Correction 

In order to hand code rules for fixation correction, we have extensively studied the fixation 

sequences in TPR database. The database contains more than 450 recordings for translation, post-

editing and reading experiments in 7 languages and are collected over last 5 years by a following 

a systematic initial experimental setup (Carl, M. and Jakobsen A.L. 2009); the eye-tracker used 

being Tobii, a remote eye-tracker. However, this does not bias our heuristics since many of the 

psycholinguistic experiments involving reading and writing tend to follow similar set-up. 

Moreover, other state of the art remote eye-trackers (such as SR research, SMI vision) report 

same or more accuracy as Tobii. 

Fixations in the recorded data are corrected in three phrases as described below.  

2.1 Shifting fixations to the nearest line 

First of all, recorded fixations could be dispersed over the screen whereas the intended fixation 

should only possibly lie on visual objects such as characters. A fixation lying on the blank space 

between two lines is nothing but an indication of error. So the first step is to shift the fixations 

vertically to the nearest line. To come up with discrete lines we have taken the cursor coordinates 

of each character in a line and joined them to draw a virtual line. Figure 1 illustrates a set of 

virtual lines going through the text. These lines serve as Reading Lines (RLs) in the later 

processing stages. 

 

 

 

 

 

FIGURE 1 – Shifting fixations to nearest virtual lines 

                                                           
1 Fixation sequencing is done on the basis of time of occurrence of the fixations. For exemple, if we say a particular 
fixation (say F2) follows/precedes another fixation (F1), we mean, F1 occurs sooner/later than F2 even if F2 
appears to the left/right of F1 co-ordinate wise. 
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Figure 1 is a screen dump of Translog II, The orange lines represent virtual lines (Reading Lines). 

The red and green dots represent gaze samples of left and right eyes and blue circles represent 

fixations. 

Sometimes, shifting fixations to the nearest virtual line is not enough. Upon closely looking at 

figure-1, one would predict that the participant is trying to read line1. But after shifting the 

fixations most of the fixations fall on line2. 

After this step, it becomes easy to obtain systematic patterns which reduces the randomness and 

hence, the number of rules to be used for correction. 

2.2 Discarding transient fixations 

Transient Fixations (TFs) are very short duration fixations which occur in between two fixations 

falling nearer to each other (on the same line or just a line apart) and located far away from each 

of them. In other words, upon joining three fixations if we observe a spike and the tip of the spike 

is a short duration fixation, it is said to be transient. Figure 1 illustrates one TF. 

 

 

 

 

 

 

 

 

FIGURE 2 – Transient Fixations 

Figure 2 shows one transient fixations. Upon joining 3 consecutive fixations involving one TF, 

we observe a spike. 

In some studies, we do not need TFs to be present in our data as the fixation count un-necessarily 

grows on account of TFs. Transient fixation may also add noise to the data in some cases where, 

for example, fixation count for a region is a part of our study. Suppose, for our translation studies 

if we want to count fixations in source text window (src) and target text window (tgt) during an 

interval of 20 seconds and a lot of transient fixations fall on tgt, the distribution will be 

completely different from that of if we discard transient fixations. Such cases would require 

discarding TFs. 

2.3 Correcting continuous abnormalities in fixation sequences 

In this stage we try to predict the Reading Line (RL) of the participant at a specified time period 

and try to shift way-ward fixations within that time period to the corresponding RL. For instance, 

consider the case where the user starts reading the text from left to right and the eye-tracker 

records F fixations within the timespan of T. After shifting those fixations to the nearest lines, it 

is observed that first N out of the F fixations lie on line1. Here we can, to some extent, believe 

that the RL for the participant for the timespan T is line1. Now suppose the rest (F-N) fixations 
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lie on line2 and the X co-ordinate of these fixations are greater than those of first N fixations. In 

this case, it is unlikely that the RL of the user has changed from line 1 to line2. Hence those (F-

N) fixations have to be relocated to line1. 

Assuming that the initial calibration is perfect enough for a particular experiment session and the 

line spacing width significant (which is often the set up in linguistic studies) , it is reasonable to 

believe that most of the first N (co-ordinate wise) fixations decide the RLs. The intuition behind 

such an assumption is that, if the participant is reading from left to right, after reading certain 

words from left, there will be a gradual head movement and tilting which might contribute to 

shifting of fixations to the next/previous line. 

The value of N is decided by taking samples from the recorded data and observing it by replaying 

the recordings. It is highly possible that the first N fixations could be distributed amongst 

different lines; each being a candidate RL. In such cases we infer the RL by ranking the 

candidates as follows 

              ∑ ∑            )              )) 

                                                    and dur(f) is duration of fixation f 

The first part of the summation represents fixation frequency distribution amongst the RIs. The 

intuition behind taking such a function is that during reading/writing, fixation duration and 

frequency are measurable factors providing evidences regarding participant’s attention. The 

rationale behind taking Dirac Delta is that one particular fixation at time T could lie only on one 

Reading Line. 

If the scores of two potential RLs match, RL is assigned to the line having maximum fixation. If 

that still matches, random assignment has to be done. Once the RL for a particular time period 

has been detected, the following two types of deviations are corrected. 

Type A: This is a case when the user tries to read M
th

 line from left to right. A few fixations (say 

P) lie on line M spatially followed by a number of fixations (say F) on line M+1. The x-

coordinates of those F fixations are greater than those of P. In such cases those F fixations are 

shifted upward to line M unchanging x-coordinates. (Figure 3 Type A) 

Type B: Here, the user tries to read M
th

 line from left to right. A few fixations (say P) lie on line 

M spatially followed by a number of fixations (say F) on line M-1. The x-coordinates of those F 

fixations are greater than those of P. In such cases those F fixations are shifted downward to line 

M unchanging x-coordinates. (Figure 3 Type B) 

 

FIGURE 3 – Type A and Type B deviations 
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3 Algorithm 

correctFixations (N, loggedData):   

 fixationSet := extractFixations(loggedData) 

 fixationSet = sortByTimeOfOccurrence (fixationSet)  

 RL_Set := extractDistinctYCoordinate(loggedData) 

 Foreach fixation in fixationSet: 

  Re-assign the y-coordinate of the fixation to that of the closest RL 

 correctTransientFixations (fixationSet) 

 correctAbnormalities (fixationSet,N,RL_Set) 

 Update logged data with fixationSet 

 return  

correctTransientFixations (fixationSet): 

 averageFixationDuration := ComputeAvarageFixationDuration(fixationSet) 

 Foreach fixation in fixationSet: 

 IF previousFixation doesn’t exist OR nextFixation doesn’t exist 

  Continue 

 IF abs(previousFixation.Y-nextFixation.Y) << abs(previousFixation.Y -fixation.Y) 

AND fixation.duration  << averageFixationDuration) 

  Delete fixation from fixationSet 

correctAbnormalities (fixationSet,N,RL_Set): 

 startingPoint := 1 

firstN: = selectNFixations(fixationSet, startingPoint,N) 

RL:= getRLWithMaximumScore(firstN,RL_Set) 

 X: = getLargestXCoordinate(firstN,RL) 

 targetSet: = setDifference(fixationSet,firstN) 

 Foreach fixation in targetSet -: 

  startingPoint+=1 

  L1 = getLineNumber(fixation.Y)   

  L2 = getLineNumber (RL) 

  IF previousFixation doesn’t exist OR nextFixation doesn’t exist 

   Continue 

  IF (previousFixation.X > fixation.X and previousFixation.X>nextFixation.X) 

  RL = getRLWithMaximumScore(firstN,RL_Set) 

   X = getLargestXCoordinate(firstN,RL) 

   targetSet = setDifference(fixationSet,firstN) 

  Continue 

  IF (abs(L2-L1)==1 and fixation.X >X) 

   fixation.Y = RL 

getRLWithMaximumScore (firstN,RL_Set) 

RL =                 ∑ ∑                        )        ) 

 Return RL 
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The subroutines selectNFixations returns N fixations from the starting index. Similarly, 

getLargestXCoordinate returns the right-most fixation lying on an RL. 

4 Validation 

This technique was applied on Spanish and Danish translation and post-editing recording sessions 

from Translation Process Research (TPR) database. Qualitative analysis of the corrected data 

showed improvement. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 – Uncorrected fixations 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6 – Automatically corrected fixations 
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As we can see in the initial data (Figure 5), the fixation distribution is noisy and there is an 

overlap among fixations lying on line 3 and 4. After correction (Figure 6) the noise is 

significantly reduced. Fixations are labelled as per their temporal ordering.  

5 Comparison with manual correction 

We compared our output with manual corrections done for Spanish and Danish TPR data. Since 

our method shifts most of the fixations and manual correction only involves correcting only 

certain badly shifted fixations by mapping an appropriate word to the fixation, we checked for 

what fraction of manual correction could be successfully carried out by our method. 

First, we mapped our fixations to the words on which they lie. Then from the original data we 

took the timestamp of those fixations which were corrected manually. For those timestamps we 

collected Fixation-to-word mapping for both the corrected versions and produced the Longest 

Overlapping Subsequence (LOS) between the mapped words. If the length of the LOS is more 

than the sum of the character counts of those two corresponding words, it is considered to be a 

valid correction. 

For different values of N, we checked for the percentage of correction done with respect to 

manual correction. The results are shown by the following table 

 N=3 N=6 N=10 

Danish 

(10 sessions) 

63% 83% 79% 

Spanish 

(40 sessions) 

55% 81% 81% 

TABLE 1 – Automatic Vs Manual Correction 

6 Conclusions 

In this article, we presented a mechanism to correct systematic error associated with fixations by 

applying certain heuristics. The advantage of this method is, it can be applied both online (in the 

course of experiments) and offline. But the correction quality depends on the value of N and 

other parameters like initial experimental set-up and degree of randomness of fixations etc. It 

works best for shallow visualization studies; making it quite useful in studies like Translation 

Process Study, Sentiment Analysis etc. 

There are certainly several factors for drift and imprecision apart from what we have taken into 

account. For instance, if the eye-tracker maps all gaze sampled, say 3cm below the intended 

location (because the head was permanently moved), all gaze samples are 3cm distorted, 

including the ones on the first N words in a line. Our algorithm fails to detect this. Of course, for 

the studies involving writing, we can get this constant drift (3cm) by comparing the cursor and 

the fixation positions during writing and finding out the average deviations. This is somewhat 

similar to RFL techniques assuming that a person’s region of interest should not be very far away 

from the cursor position. 
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Our technique also fails if fixations are highly randomly distributed; which might be a case for 

studies involving detailed reading. In such cases, we also do not know the all the causes of the 

deviating fixations. Future work includes exploring and involving other case than just the two 

types of deviations that we took into account here. More cases and heuristics have to be included. 

A better validation technique has to be introduced as well. 
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