
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), pages 223–231,
Paris, September 2012.

Scope Economy and TAG Locality

Michael Freedman
Yale University

370 Temple Street, Rm 210
New Haven, CT 06511, USA

michael.freedman@yale.edu

Abstract

This paper gives an analysis explaining var-
ious cases where the scope of two logical
operators is non-permutable in a sentence.
The explanation depends on a theory of
derivational economy couched in the syn-
chronous tree adjoining grammar frame-
work. Locality restrictions made using the
STAG formalism allow us to limit the com-
putational complexity of using transderiva-
tional constraints and allows us to make in-
teresting empirical predictions.

1 Introduction

Although the relative scope of quantifiers is gen-
erally free within a single clause in English, there
are a number of cases where the relative scope of
quantifiers/operators is non-permutable. We pro-
vide here an account for the data below that de-
pends on a theory of derivational economy. It
assumes a syntax-semantics interface couched in
the synchronous tree adjoining grammar frame-
work (STAG) (Shieber and Schabes, 1990; Han,
2006; Nesson and Shieber, 2007). The intuition
underlying the current analysis is a familiar one:
that interpretations of a given syntactic derivation
are blocked when there is a simpler, competing
derivation that can produce the same meaning.
However, by couching the intuition in the con-
text of STAG, we derive a number of important
limitations on such competition by restricting the
comparison class (using the TAG formalism), and
maintain a system that is limited in the complex-
ity of the computations it assumes. This allows us
to make empirical predictions that other accounts
of scope economy couched in other frameworks
are unable to make because either they view com-
petition to be global (Grice, 1989; Horn, 1989) or
too local (Fox, 1995, 2000).

2 Universals-Negation

Universal quantifiers like every and negation are
unable to scope freely with respect to one another.
When a universal quantifier is in object position,
as in (1), it is unable to take scope over negation.

(1) a. Peter didn’t catch every crook. (*∀>¬,
¬>∀)

b. Nobody caught every crook. (*∀>¬∃,
¬∃>∀)

Similarly, when a universal is in subject posi-
tion, it is unable to take scope over negation, as
in (2). The pattern breaks down in a number of
cases: in (3a), the presence of a raising predicate
makes the wide scope universal reading possible;
also, in (3b), the presence of an intervening oper-
ator allows the universal to scope over negation.

(2) Everyone didn’t meet Peter. (*∀>¬, ¬>∀)

(3) a. Everyone didn’t seem to meet Peter.
(∀>¬, ¬>∀)

b. Everyone didn’t meet someone.
(∀>∃>¬)

The goal of the analysis is to explain lack of
scope permutability in (1) and (2) while allowing
scope permutability in (3).

3 Preliminary assumptions

We assume following Schabes and Shieber (1994)
the declarative conception of STAG where quan-
tifier scope is determined in the derivation tree:
Here scope can be resolved on the left-to-right or-
der of nodes on a derivations tree; by convention
rightmost nodes in the derivation tree correspond
with higher scope in the derived tree. In Schabes
and Shieber (1994) scope ambiguity is achieved
by allowing either ordering in the derivation tree.

223



In contrast, we follow the restriction on derivation
proposed in Freedman and Frank (2010) which is
defined as follows:

PROMINENCE RESTRICTION ON

DERIVATION (PROD): The children
of a node γ (representing elementary
tree τ ) in a derivation tree must be
in an order consistent with both the
domination and c-command relations
of their corresponding elementary
tree’s attachment sites on τ .

Figure 1 shows how PRoD works: trees adjoin-
ing into δ or ε must be ordered before those that
adjoin into β or γ which must be ordered before
those that adjoin into α.

α

γ

εδ

βT =

acceptable orderings:

T

αγδ

T

βδε

unacceptable orderings:

T

βγα

T

δβε

Figure 1: Sample elementary tree T (left) and sample
derivation trees that show possible and impossible or-
derings of attachment following PRoD on derivation
tree rooted with a node representing T .

By PRoD, one could not have the subject-tree
ordered before the object-tree because the attach-
ment site for the former c-commands the latter. To
handle cases of inverse scope, multi-component
tree-sets can combine through split combination
(SC):

SPLIT COMBINATION: The node rep-
resenting a scope-tree within a tree-set
may be ordered later than specified by
PRoD.

SC allows the scope portion of a quantifier
tree set to take scope over a dominating or c-
commanding quantifier. The use of split combi-
nation adds an extra step in the derivation by sep-
arating the scope-tree from the variable tree in the
derivation tree. An example is provided in fig-
ure 2 for the sentence a student read every book;
this compares to figure 3 where the tree-set for the
quantifier is not split and surface scope is gener-
ated. Additionally, SC can be lexically restricted
such that only certain quantifiers are able to split.

read

every bookScopea studentevery bookVar

⇒

t

t

t1 ,2

〈e, t〉

e1

y

〈e, 〈e, t〉〉

read

e2

x

t

xstudent

∃x

t

ybook

∀y

Figure 2: Derived and derivation tree for “A student
read every book” with split combination of “every
book”.

read

every booka student

⇒

t

t

t1 ,2

〈e, t〉

e1

y

〈e, 〈e, t〉〉

read

e2

x

t

ybook

∀y

t

xstudent

∃x

Figure 3: Derived and derivation tree for “A student
read every book” without split combination of “every
book”.

The size of elementary trees follows the Con-
dition on Elementary Tree Minimality (Frank,
2002). For our purposes this dictates that quan-
tificational determiners are in the same elemen-
tary tree as the noun that is in their restriction (as
depicted in figure 4). In the syntax, clausal nega-
tion resides in extended projection of a verb. In
the semantics, we assume that negation adjoins in
separately from the verb-tree, adding another step
in the derivation (as depicted in figure 5).

t

t∗t

xprofessor

∀x

DP

NP

N

professor

D

every

Syntax tree Scope tree

e

x

Argument tree

Figure 4: Elementary trees for the Quantifier Phrase
“every professor” including the syntax tree and the
multi-component semantic tree set consisting of the
scope-tree and the argument tree.

4 Analysis

With this general picture in mind, let us proceed
to analyse the data in §2: Observe that the unavail-

224



TP

T′

VP

V′

DP1V

read

DP2

T

didn’t

DP2

syntax tree

t

〈e, t〉

e〈e, 〈e, t〉〉

read

e

semantic tree

t

t∗¬

negation tree

Figure 5: Elementary trees for the verb “read” with
negation “didn’t” in its extended projection. The se-
mantic tree does not contain the negation; it is a sepa-
rate tree.

able ∀¬ reading for (1) is available for the exam-
ple in (4), as ∀¬ and ¬∃ are logically equivalent.

(4) John didn’t read a/any book(s). (¬>∃)
While the derivation producing this interpreta-

tion would require split combination for (1), it
does not for (4). Because SC creates an addi-
tional step, the derivation for (4) is shorter than
the one for (1). An intuitive way of understanding
this pattern is to think that (4) blocks (1) on the
∀¬/¬∃ reading. A similar line of analysis can ex-
plain (2)’s inability to have a ∀¬ reading; it has a
competitor (5) that can produce the same meaning
(¬∃) with a shorter derivation.

(5) No one met Peter. (¬>∃)
(5) on the relevant reading has a shorter deriva-

tion because both quantifiers (¬ and ∃) are lexi-
calized in a single tree; the negative and existen-
tial force in (2) must be combined in separately,
creating an extra step. This blocking intuition can
be formalized in the following manner:

DERIVATIONAL COMPLEXITY CON-
STRAINT ON SEMANTIC INTERPRE-
TATION (DCCSI)
A derivation d producing meaning m is
ruled out if another shorter derivation d′

also produces m.

This constraint explains the data in (1) and (2);
both have more economical alternatives that block
them. Derivation trees for (1) and (4) are provided
in figure 6 showing the difference in derivation
length. The DCCSI also explains the ability for
the universal to take wide scope in (3); because an

operator intervenes, there is no more economical
competitor, and no blocking can take place.

read

every bookScopenotJohnevery bookVar

read

a booknotJohn

Figure 6: Derivation trees for “John didn’t read every
book” and “John didn’t read a book” on the ∀>¬ read-
ing.

But, as the DCCSI stands, it is unrestricted with
respect to comparison class. This causes empiri-
cal and computational problems. Computational
issues are discussed in §6. Empirically, the unre-
stricted constraint leads to the puzzle posed by the
data in (3a) (repeated as (6a)): why isn’t the wide
scope universal reading blocked by (6b). Given
the definition of the DCCSI, blocking should take
place as the relevant derivation for it is shorter
than the relevant derivation for (3a).

(6) a. Everyone didn’t seem to meet Peter.
(¬>∀, ∀>¬)

b. No one seemed to meet Peter. (¬>∃)

To restrict the comparison class we impose
a constraint that closely follows TAG intuitions
about locality. The TAG-like intuition behind this
constraint is that comparison is localized to ele-
ments combining into a single elementary tree.
The derivation can informally be defined in the
following way: A derivation tree D is compara-
ble to derivation tree D′ iff D and D′ are identical
except for the daughters of a single node α. The
possible differences between D and D′ include D
excising or replacing one or more of α’s daugh-
ters. A more formal definition follows:

LOCALITY CONSTRAINT ON COMPE-
TITION (LCC) (formal version)
Derivation tree D′ can be compared to
derivation tree D (where D and D′ are
defined as triples consisting of a set of
nodes N , a set of labels L and the im-
mediate dominance relation P ) iff:

1. N ′ ⊆ N
2. P ′ ⊆ P
3. ∃!n ∈ Ns.t.

(a) P ′ ⊇ P − {(n, x)|x ∈ N}

225



(b) ∀x ∈ N, (n, x) /∈ P →
L(x) = L′(x)

The first two clauses ensure that the derivation
trees in the comparison class have no structure
that is not present in the original derivation tree
D. The third clause ensures that the only change
is under a single node of the derivation tree and
that daughters can be deleted or labels changed.

The LCC has the benefit of limiting the com-
parison class in a way that not only makes trans-
derivational constraints feasible but also explains
the puzzle of the wide scope reading for (3a). The
availability of the wide scope universal reading
for the example in (3a) can be understood in con-
junction with the LCC; while there is a sentence
that has a shorter derivation, (6b), it is not able to
be compared to (3a) because there are differences
under more than one node of the derivation trees
(as depicted in (7)): The didn’t-node is deleted
under the seem-node and the everyone label is
changed to the no one-label. This finding is possi-
ble because of the TAG analysis of raising where
raising predicates adjoin into a VP (as shown in
figure 8). Since the clausal negation combines
into the raising predicate and the nominal quan-
tifier negation combines into the main verb-tree
the comparison is non-local, as depicted in figure
7.

meet

seem

didn’t

everyone

meet

seemno one

Figure 7: Derivation trees for “John didn’t seem to
meet everyone” and “No one seemed to meet every-
one” on the ∀>¬ reading.

T′

VP

T′V

seemed

T

TP

T′

VP

DPV

meet

T

to

DP
=

TP

T′

VP

T′

VP

DPV

meet

T

to

V

seemed

T

DP

Figure 8: Derivation for a raising construction: the
seem-tree (the raising predicate) adjoins into the meet-
tree
.

Computationally, the DCCSI in conjunction
with the LCC can be proven to not exceed the ex-
pressive power of TAG. This can be done with
a proof by construction where a TAG with the
DCCSI can be compiled into a TAG without the
DCCSI. In addition, with proper linguistically
motivated constraints, it can shown that the size
of the grammar does not become unsuitably large
with the compilation. This is shown in §7.

5 Double Object Constructions

It has been observed that the relative scope of the
internal arguments of double object sentences are
only able to have a surface scope reading (Lar-
son, 1988; Bruening, 2001). That is, the sentence
in (7a) can have the reading where every photo-
graph was given to one individual but not a read-
ing where the photographs differed in who they
were given to. The prepositional dative sentences
in (9) differ from those the double object in (7) in
that they are scopally ambiguous; both the surface
and inverse scopes for the internal arguments are
available.

In the double object case, as in (7) and assum-
ing the elementary tree for the double object in
figure 9a, inverse scope interpretation can be ob-
tained through the use of split combination which
would place the scope of the second object in a
higher position than the first object.

(7) a. Peter gave someone every/each photo-
graph. (*∀>∃, ∃>∀)

b. Harry told someone every/each plot.
(*∀>∃, ∃>∀)

Note however that the prepositional dative al-
ternative in (8) (and assuming the elementary tree
in figure 9b) does not need SC in order to obtain
the same reading, making its derivation shorter.

(8) Peter gave every photograph to someone.
(∀>∃)

(9) a. Peter gave every photograph to some-
one. (∀>∃, ∃>∀)

b. Peter put a bagel on every shelf. (∀>∃,
∃>∀)

Thus, blocking removes the inverse scope
structure from the grammar. Why then are the
ditransitive sentences in (9) ambiguous? For the

226



prepositional dative cases in (9a,b) the PP argu-
ment is able to optionally attach to a higher po-
sition than the direct object argument thereby al-
lowing “inverse scope” without SC (the PP can
also be under the direct object in a VP-shell), as
depicted in figure 9c. Evidence for this struc-
tural explanation come from examples like that in
(10) where complex existential quantifiers (which
have been observed not to take scope over other
higher quantifiers (Beghelli and Stowell (1997);
Heim (2001))) take scope over a higher quantifier.

(10) John gave an apple to more than three stu-
dents.

The examples in 11 provide additional evi-
dence for the blocking analysis: In (11a), no
blocking occurs if there is an intervening opera-
tor that would force the prepositional dative con-
struction to utilize SC to obtain the same scope
reading (making the derivation length the same).
Likewise, as in (11b), no blocking occurs in con-
structions that have no prepositional dative con-
struction to compete with.

(11) a. A teacher gave every student every
book. (∀book>∃>∀stu )

b. Peter bet a friend every nickel (he
had). (∀>∃, ∃>∀)

6 Complexity

6.1 TAG with TDC is not a TAL
I show in this section how a TAG with a TDC
can generate a language that contains exactly the
prime numbers. Since the language that contains
only the prime numbers is not in the class of
mildly context sensitive languages, the language
that is generated by this grammar is not a TAL.
This shows that adding a transderivational “econ-
omy” constraint can increase the generative ca-
pacity of a grammar. We can construct this lan-
guage in the following way:

Construct a TAG G that composes the natural
numbers. Figure 10 shows a TAG G′ that gen-
erates unary strings that can be interpreted as the
natural numbers beginning with 2. The initial tree
has an obligatory adjoining constraint; the gram-
mar only generates unary strings of length > 1.
Each adjoining operation increases the interpreted
value of the string by 1.

An additional tree is added (in figure 11) to the
grammar G′ (let’s call it G) in order to be able to

TP

T′

VP

VP

V′

DPV

ti

DP

V

gavei

T

DP

TP

T′

VP

VP

V′

PP

DPP

to

V

ti

DP

V

gavei

T

DP

TP

T′

VP

PP

P′

DPP

to

VP

V′

DPV

gave

T

DP

(a) (b)

(c)

Figure 9: The three elementary trees for ditransitive
constructions: (a) double object; (b)dative comple-
ment (low attachment); dative complement (high at-
tachment)

POA

P

ε

1

P

P1

Figure 10: This figure shows TAG G′; it consists of
trees that can build up the natural numbers in unary.
The left and right trees construct numbers by succes-
sively “adding” 1.

represent all of the natural numbers greater than
1 as products of other natural numbers. The tree
contains two nodes where adjunction can occur:
there is one OA site where at least one 1-tree must
obligatorily adjoin and one SA site where a tree
may optionally adjoin. Adjoining into this tree
can produce any natural number except 1.

The grammar G consisting of the trees in fig-
ures 10 and 11 generates the language that con-
sists of the natural numbers in unary and the nat-
ural numbers as products of other natural num-
bers (represented in unary). Now, we introduce a
transderivational constraint that will remove from
the grammar any derived tree whose value can be

227



P

PSA

1

×POA

1

Figure 11: Additional tree for TAG G; this allows nat-
ural numbers to be represented by the product of other
natural numbers.

more simply derived (fewer derivational steps) by
an alternative derivation. We will call the resul-
tant grammar Gc . This constraint is similar to the
constraint used in the first half of the paper for
grammatical constructions; equivalence in num-
ber and equivalence in meaning are both instances
of logical equivalence where it is necessary for the
truth values to be the same in any possible model
(although meaning as defined requires a bit more
than logical equivalence). A more formal defini-
tion follows:

(12) TDC on Number Generation A deriva-
tion d taking k steps and generating a string
that is interpreted as natural number n is
ruled out if a derivation d′ takes fewer than
k steps and also produces n.

The length of derivation for the purely unary
method of combination is equal to the value of the
number minus one (n− 1). The length of deriva-
tion with the product-tree is the sum of the value
of each product minus two (p+m− 2).

For any prime number no blocking occurs be-
cause the length of derivation for both the unary-
string and the product-string is the same. The
proof by contradiction follows: Suppose that for
any prime n− 1 6= p+m− 2. For any prime we
know that (1) one of the factors will be 1 (m = 1)
and that the other factor will be equal to the num-
ber (n = p). Replacing m with 1 and p with n we
get the equation n − 1 6= n − 1. Thus, n − 1 =
p+m− 2 for any prime number n.

For non-prime numbers there will always be
a product-tree derivation that is shorter than the
unary-tree derivation. To do this we want to prove
that for all n there is a p and an m such that n− 1
> p+m− 2 which reduces to pm > p+m− 1
when replacing n with pm. This can be proven
directly:

First solve for m: pm > p+m− 1⇒ pm−m
> p− 1⇒m(p− 1) > p− 1⇒m > 1.

Then solve for p: pm > p+m− 1⇒ pm− p

> m− 1⇒ p(m− 1) > m− 1⇒ p > 1.
This shows that the inequality holds as long as

m,p > 1. Since the problem is defined on non-
prime factors, the equality holds in all the relevant
cases and the TDC will remove all purely unary
representations of non-prime numbers.

Thus with the transderivational constraint all
unary representations of non-prime numbers will
not be members of Gc .

Next, we will intersect the constructed TAL (U )
(from TAG Gc) with the complement of the lan-
guage that contains the product representation of
the natural numbers in unary (L′). L′ is a regu-
lar language because L is a regular language and
regular languages are closed under complemen-
tation. Since TALs are closed under intersection
with regular languages U ∩ L′ is a TAL if U is.
But, the strings that comprise U ∩ L′ are only
the prime numbers: Since, this language does not
have the constant growth property it cannot be a
TAL. This result shows that the transderivational
constraint takes the grammar out of the class of
TAL because the properties of all of the other ele-
ments of the construction are known.

6.2 TAG with TDC is beyond NP

This section shows that a TAG grammar with the
addition of a TDC is beyond NP. This is shown by
generating the language MINIMAL.

The minimization problem for propositional
formulas seeks to find a minimum equivalent for-
mula for a given boolean formula; the language
MINIMAL consists of all well-formed boolean
expression for which there is no shorter equivalent
formula (Meyer and Stockmeyer, 1972). Mini-
mality (‘shortness’) can be defined in a number of
ways and for the purposes of this proof it will be
defined by the number of connectives in the for-
mula. The complexity class of the minimization
problem is unknown but it is known to be beyond
NP.

The first step of the proof is to make a TAG
that generates the set of propositional formulas.
The syntax for PL can be defined in the following
manner:

(13) Syntax of PL

1. any statement letter α is a well-
formed formula (wff);

2. if α is a wff then _¬α^ is a wff;

228



V2

1A

V2

1V2

Figure 12: This figure shows how atomic propositions
are constructed. Atomic propositions would be the fol-
lowing: A1, A11, A111, etc.

V2

V2¬

V2

V2∧V2

V2

V2∧V2

Figure 13: This figure shows trees that with the atomic
proposition trees construct (from left to right) nega-
tion, conjunction, and disjunction.

3. if α and β are wff then _(α ∧ β)^ is a
wff;

4. if α and β are wff then _(α ∨ β)^ is a
wff;

5. Nothing else is a wff.

A TAG version of (13) follows (which we will
call G): The first step creates the atomic propo-
sitions in PL. Because of the finite limit to the
number of trees in a TAG, the syntax has to re-
cursively construct the atomic propositions. The
construction includes an initial tree and an aux-
iliary tree where the initial tree encodes a single
proposition. Each instance of adjunction is a new
atomic proposition. The two trees are shown in
figure 12. The trees that encode the logical con-
nectives are in figure 13. These trees can combine
with one another through substitution to make the
full set of possible well-formed formulas for PL.

These trees form G. We can add a transderiva-
tional constraint to the grammar (making gram-
mar Gc):

(14) A derivation d taking k steps and producing
PL formula m is ruled out if a derivation d′

takes fewer than k steps and also produces
m.

The addition of the TDC to the grammar would
define the language of propositional formulas that
do not have alternative semantically equivalent
formulas that can be constructed by the TAG in
the same or fewer derivational steps. This is
equivalent to the minimization problem; if we had
an oracle that could determine for any formula φ if
it was a member of the TAL then we would know
the answer to the membership problem for MINI-
MAL or if we had an oracle that could determine

for any formula φ if it was a member of MINI-
MAL, we would know whether the correspond-
ing tree was in Gc . Since a solution for the mini-
mization problem is beyond NP, the member ship
problem for the language generated by Gc is as
well.

Given the results that the language generated
by a TAG with a TDC is not a TAL and is be-
yond NP for propositional logic, it is clear that
an unrestricted TAG with TDCs is unwanted. I
will present a construction in the next section that
shows that TAG with the DCCSI and with the ad-
dition of the locality constraint (LCC) described
in the previous chapter is a TAL.

7 The Expressive Power of the DCCSI

In this section, I will show that the expressive
power of TAG is not increased by adding TDCs
into the grammar: A TAG with the DCCSI con-
straint does not exceed the expressive power of
a similar TAG variant that does not have the
DCCSI. I do this through a compilation: the for-
malism described in this paper is algorithmically
transformed into a standard STAG that is known
to be in the mildly-context sensitive class of gram-
mar formalisms. The translation takes three steps:
(1) The effects of multiply linked semantic nodes
(MLSNs) will be recreated using the formalism
outlined in this paper but without having any ML-
SNs. This step will also make sure that the rele-
vant links are completely ordered with respect to
one another. This will allow there to be a single
tree for every possible scope configuration. (2)
The effects of PRoD and split combination will
be recreated using the grammar created in step 1
without PRoD and split combination and with the
overt addition of features to recreate their effects.
The addition of features will allow the removal
of trees that violate PRoD. (3) The effects of the
DCCSI with the grammar created in step 2 will be
recreated without the use of the DCCSI. This will
be done by eliminating structures that have un-
wanted scope configurations. Through each step I
will show that the increase in the number of trees
in the grammar is bounded in a non-problematic
way given some restrictions on the properties of
natural language grammars. This will show that
the grammar created in this paper is no more pow-
erful than a STAG.

This type of proof is possible because the LCC
localizes comparison to a single elementary tree.

229



Xαβ Xα

Xβ

Xβ

Xα

Figure 14: This figure shows the conversion from a
multiply linked semantic node to nodes corresponding
to the possible orderings of the links. On the left is a
node with links α and β. The two trees on the right
correspond to the two possible orderings.

It does so by making the compared nodes of the
derivation tree necessarily sisters. The compari-
son can then be represented in a single elementary
tree using a finite number of features. The proof
goes as follows:
Step 1: Construction of a STAG G’ (where there
are no MLSNs ) from a STAG with MLSNs G:
Consider all of the elementary trees in the gram-
mar. In order to convert all trees with MLSNs
into trees without them, the following step can be
taken: For each node with n links (n>1) create a
tree for each possible ordering of the links. The
ordering is represented by the dominance relation
on a single-branching tree. Replace nodes with
multiple links with the representations of these or-
dered trees. This would, for instance take a node
t1 ,2 and convert it into two different structures
where a t-node dominates another t-node. One
tree would have the 1 link dominate the 2 link
and another where the 2 link dominates the 1 link.
Trees with these structures in them replace the
original trees where there are nodes with multiple
links.

For n links the number of additional trees is
n!. For a tree with multiple instances of ML-
SNs (m1 ...mn ) the number of additional trees is
the product m1 !... × ...mn !. This, at first glance,
is problematic because as n grows, the factorial
growth of n! exceeds even the exponential growth
rate. This is not problematic for the compilation
because of the natural bound of links for a given
node. The maximum number of links for a se-
mantic node is the number of nodes in the syntax
and since this is finitely bounded, the increase in
trees is at worst still manageable. In any actual
case, the results will be easier: it is reasonable to
think that the maximum number of links for a t
node is the number of arguments of the verb plus
1 (for sentence level modifiers.) In conclusion,
since there is a finite bound, there is no particular
problem with the factorial growth rate.

Step 2: Another necessary step in the conversion
is to do the following: Take (scopal) nodes (t-
nodes) and make an ordering of their links. If
the order is a partial order take the total order
extensions of the ordering. Replace the partial
ordered trees with their total ordered extensions.
For instance, if we have a series of nodes t1 -t2 -
t1 , we would end up with t1 -t2 and t2 -t1 . This
step is necessary for future steps where trees are
eliminated. Trees where a link is associated with
a node that both dominates and is dominated by
another link underspecifies the scope relation be-
tween different scope taking operators. Since it
is necessary to make the scope unambiguous for
each elementary tree (in order to remove scope
configurations that are unwanted) these trees must
be removed from the grammar. At this point, we
have constructed separate trees that corresponds
to every scope ordering that the linkages allow; in
essence this grammar will allow any quantifier to
use split combination.
Step 3: Now we have to replicate the effects of
the DCCSI. Take the grammar created by step 2
and then remove the tree set types that correspond
to the readings that are made unavailable by the
DCCSI.

First, we add features that constrain what type
of quantifier can adjoin to what DP position of a
verbal tree to relevant nodes of trees. In order to
get the results described in this paper, for instance,
it suffices to only have a +/- quantifier feature, a
distributive quantifier feature, and a +/- negative
feature. But no matter the actual number of fea-
tures needed for a complete analysis, it will be
finitely bounded.

If the number of features were not stipulated
to be finite, the addition of features would ex-
ponentially increase the number of trees in the
grammar. The addition of trees in general (while
also only considering features on arguments) adds
(2n)k trees for each tree in the grammar, where n
is the number of arguments and k is the number
of features.

The nodes of a tree in the worst case would all
have the maximal set of features and there would
be all of the possible combinations. Since the
number of nodes causes exponential growth in the
size of the grammar this would be problematic if
the number of nodes in the grammar weren’t also
bounded. Since all trees in TAG are bounded, they
must also have a finite number of nodes. Thus,

230



TP

T’

VP2 ,+n

V’

DP1+distV

read

spec

T

did

DP3 -q

t1

t2

〈e, t〉

e1〈e, 〈e, t〉〉

read

e↓

Figure 15: Example of a tree set to be removed to repli-
cate the effects of the DCCSI. This tree-pair would al-
low a distributive quantifier in object position to take
wide scope over clausal negation.

the finite number of features and nodes allows the
added number of trees to be manageable.

In figure 15, an example is given; it corresponds
to the not...every sentences that can not have a
wide scope universal reading. Once all of the
appropriate tree sets are removed, the resultant
grammar is G’ which is equivalent to G.

This construction has shown how a grammar
with a TDC can be a TAL when the comparison
class for the transderivational constraint is con-
strained. Additionally, it was suggested that the
growth during the compilation does not increase
the number of trees disastrously if some reason-
able assumptions are made. For these reasons, it
seems that the use of semantic TDCs are not in-
feasible in grammar when properly constrained.

References

F. Beghelli and T. Stowell. The Syntax of Each
and Every, pages 71–107. Springer, 1997.

B. Bruening. Qr obeys superiority: Frozen scope
and acd. Linguistic Inquiry, 32(2):233–273,
2001.

D. Fox. Economy and Scope. Natural Language
Semantics, 3(3):283–341, 1995. ISSN 0925-
854X.

D. Fox. Economy and Semantic Interpretation.
The MIT Press, 2000. ISBN 0262561212.

R. Frank. Phrase Structure Composition and Syn-
tactic Dependencies. The MIT Press, 2002.

M. Freedman and R. Frank. Restricting inverse
scope in synchronous tree-adjoining grammar.
In Proceedings of the Tenth International Work-
shop on Tree Adjoining Grammars and Related
Formalisms, 2010.

P. Grice. Studies in the Way of Words. Harvard
Univ Pr, 1989.

C.H. Han. Pied-piping in relative clauses: Syn-
tax and compositional semantics based on syn-
chronous tree adjoining grammar. In Pro-
ceedings of the Eighth International Workshop
on Tree Adjoining Grammar and Related For-
malisms, pages 41–48. Association for Compu-
tational Linguistics, 2006.

I. Heim. Degree operators and scope. audiatur
vox sapientiae. a festschrift for arnim von ste-
chow, pages 214–239, 2001.

L.R. Horn. A natural history of negation. Univer-
sity of Chicago Press, 1989.

R.K. Larson. On the double object construction.
Linguistic inquiry, 19(3):335–391, 1988.

A.R. Meyer and L.J. Stockmeyer. The equiv-
alence problem for regular expressions with
squaring requires exponential space. In 13th
Annual Symposium on Switching and Automata
Theory, pages 125–129. IEEE, 1972.

R. Nesson and S. Shieber. Extraction phenom-
ena in synchronous TAG syntax and semantics.
In Proceedings of the NAACL-HLT 2007/AMTA
Workshop on Syntax and Structure in Statistical
Translation, pages 9–16. Association for Com-
putational Linguistics, 2007.

Y. Schabes and S. Shieber. An alternative con-
ception of tree adjoining derivation. Computa-
tional Linguistics, 20:91–124, 1994.

S. Shieber and Y. Schabes. Synchronous Tree-
adjoining Grammars. In Proceedings of the
13th conference on Computational linguistics-
Volume 3, pages 253–258. Association for
Computational Linguistics Morristown, NJ,
USA, 1990.

231


