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Preface

This volume contains papers accepted for presentation at the Eleventh International Workshop on Tree
Adjoining Grammar and Related Formalisms, TAG+11 for short, to be held on September 26–28,
2012 in Paris. TAG+ is a biennial workshop series that fosters exchange of ideas among linguists,
psycho-linguists and computer scientists interested in modeling natural language using formal grammars.
The workshop series, since 1990, has demonstrated productive interactions among researchers and
practitioners interested in various aspects of the tree adjoining grammar formalism and its relationship
to other grammar formalisms, such as combinatory categorial grammar, dependency grammars, linear
context-free rewriting systems, minimalist grammars, head-driven phrase structure grammars, and lexical
functional grammars; hence the + in the name of the workshop.

We would like to thank the members of the program committee for their careful and timely work,
especially those who participated in discussions on diverging reviews. This meeting would not have
been possible without the hard work of all these people. We would also like to thank our invited
speakers, Kevin Knight and Bonnie Webber, and the speakers at the tutorial program, David Chiang,
Vera Demberg, Laura Kallmeyer and Andreas Maletti. We acknowledge the effort of these speakers in
fostering new interest in TAG and more generally in formal research into natural language. Last but not
least, we would like to thank the local organizers, Éric de la Clergerie, Djamé Seddah, Laurence Danlos
and Chantal Girodon, for their invaluable contribution to the organization of the TAG+11 workshop in
Paris, and for securing the necessary funding that made it possible to realize this workshop. We would
also like to acknowledge the support staff at INRIA Paris Rocquencourt and at University Paris-Diderot.
Funding for TAG+11 was provided by Google, the Association pour le Traitement Automatique des
Langues (ATALA), INRIA Paris Rocquencourt, and University Paris-Diderot.

TAG+11 received 36 long abstract submissions from all over the world, and we were able to accept 28
papers out of these 36. This volume contains the 27 research papers to be presented at TAG+11 (one paper
had been later withdrawn from the program). 19 papers are to be delivered in oral presentations and eight
are to be presented as posters. As at previous TAG+ workshops, the topics addressed by the presentations
belong to diverse areas of research, including mathematics of grammar formalisms, parsing algorithms
for mildly context-sensitive grammars, language learnability, syntax and semantics of natural languages,
and relation between TAG and other grammar formalisms. The oral presentations were thus organized
into several different sessions: syntax/semantics, formalisms, derivation trees and applications, grammar
extraction and grammar induction, and parsing. By bringing together these different topics under the
common theme of Tree Adjoining Grammars, the workshop promises to be a venue for interesting
discussion of the latest research in this area.

Chung-hye Han
Giorgio Satta
Program co-Chairs for TAG+11
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(MCFG) and simple Range Concatentation Gram-
mars (RCG) will be defined and related to LCFRS.
The link between LCFRS and the notion of mild
context-sensitivity will be discussed and, in this
context, the question whether one might even want
to go beyond LCFRS will be raised. The more

powerful formalisms of (unrestricted) RCG and
Literal Movement Grammars (LMG) will be intro-
duced that both are natural extensions of LCFRS,
depending on whether the LCFRS rules are un-
derstood as manipulating strings or manipulating
concrete occurrences of substrings of some input
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sults with tie-ins into current results obtained in
the NLP community. Finally, we cover some in-
teresting advanced results that so far received little
interest from the NLP community.
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Abstract 

Since Bleam's (2000) initial claim that 
capturing clitic climbing patterns in Romance 
requires the descriptive power of set-local 
MCTAG (Weir, 1988), alternative 
approaches to relaxing tree-locality 
restrictions have been developed, including 
delayed tree-local MCTAG (Chiang and 
Scheffler, 2008), which, unlike set-local 
MCTAG, is weakly equivalent to standard 
TAG. This paper compares 2-delayed tree-
local MCTAG with set-local MCTAG in 
terms of how well the two formalisms can 
account for the clitic climbing data. We 
confirm that 2-delay tree-local MCTAG has 
the formal expressivity to cover the data by 
proposing an explicit grammar to do so. 
However, we also find that the constraint on 
set locality is particularly well-suited for 
capturing these clitic climbing patterns. I.e., 
though globally less restrictive, set-local 
MCTAG appears to be restrictive in just the 
right way in this specific case. 

1 Introduction 

Bleam (2000) argues that capturing patterns of 
clitic climbing in Spanish requires the descriptive 
power of set-local multi-component TAG 
(MCTAG) (Weir, 1988); the more restrictive 
tree-local MCTAG is not sufficient. Since 
Bleam’s initial claim, alternative approaches to 
relaxing locality restrictions have been 
developed. Delayed tree local MCTAG, 
introduced by Chiang and Scheffler (2008), 1 is 

                                                            
1 As part of Chiang and Scheffler’s proof showing the weak 
equivalence of delayed tree-local MCTAG to standard 
TAG, they show that any tree-local MC-TAG with flexible 
composition G can be converted into a 2-delayed tree-local 

one such proposal, but unlike set-local MCTAG, 
it is weakly equivalent to standard TAG. Each 
use of a multicomponent set introduces a delay 
into the derivation. A delay is the union of the 
paths in the derivation structure from each 
component of an MC-set S to the lowest node 
that dominates all members of S. A k-delayed 
tree-local MCTAG permits each node in the 
derivation structure to be a member of at most k 
delays. Fig. 1 replicates the example of a 2-
delayed tree-local derivation given in Chiang and 
Scheffler (2008). The dashed boxes mark the 
delays. Thus, a valid k-delayed tree local 
MCTAG derivation permits members of the 
same MC set to compose into different trees, so 
long as all members of the MC set eventually 
compose into the same tree without exceeding k 
delays. Delayed tree-locality permits a limited 
amount of set-local composition, as illustrated in 
Fig.1, but it also permits some non-set-local 
derivational steps. 1-delayed and 2-delayed tree-
local MCTAG have already been employed in 
linguistic analyses of anaphor binding (Chiang 
and Scheffler, 2008), non-local right node raising 
(Han et al., 2010), and binding variables 
(Storoshenko and Han, 2010). 

This paper explores how well the additional 
descriptive power of 2-delayed tree-local 
MCTAG accommodates the available clitic 
climbing data and compares the new approach 
with the set-local MCTAG approach. In section 
2, we review the data Bleam (2000) sought to 
account for. In section 3, we review why such 
data is problematic for tree-local MCTAG and 

                                                                                          
MCTAG G’ that is weakly equivalent to G and has exactly 
the same elementary structures as G. Described informally 
as reverse adjoining (Joshi et al. 2003), it recasts some 
previously non-tree-local derivations as abiding by tree-
locality. 

1



 

 
 
 
 

 
 

 

Figure 1: A 2-delayed tree-local MCTAG derivation. Delays are marked with dashed boxes.  
(Figure taken from Chiang and Scheffler (2008).) 

 
present a set-local solution, slightly modified 
from Bleam (2000). In section 4, we provide and 
discuss a 2-delayed tree local MCTAG solution 
based on a small modification to our set-local 
MCTAG solution. In section 5, we show how the 
differences between the two MCTAG variants 
yield different predictions with respect to the 
number of clitics that can climb. However, the 
predictions turn out to be untestable given 
independent constraints on clitic clusters. In 
section 6, we conclude that though set-local 
MCTAG is particularly well-suited for modeling 
clitic climbing, we cannot escape the result that 
2-delayed tree-local MCTAG eliminates the 
necessity of using set-local MCTAG. 

2 Clitic Climbing  in Romance 

Spanish exhibits a phenomenon known as clitic 
climbing, whereby (one or more) pronominal 
clitics that are thematically dependent on a verb 
in an embedded clause can optionally appear in a 
higher clause. The phenomenon is illustrated in 
(1) and (2) where the clitic lo (“it”) is 
thematically dependent on the verb leer (to read), 
but it can optionally “climb” or appear in the 
higher clause as in (2).  
 
(1) Mari quiere leer-lo 

Mari wants to.read-it 

(2) Mari lo quiere leer 
Mari it wants to.read 

 
Clitic climbing is one consequence of the more 
general phenomenon often referred to as 
restructuring (Rizzi, 1982) or clause 
reduction/union (Aissen and Perlmutter, 1983). 
These are cases where two or more clauses act as 
a single clause for purposes of clitic placement, 
NP movement (as in reflexive passive or tough-
movement), or scrambling (in German, eg.). 
Thus, dependencies (or “movements”) that are 
usually clause-bounded are possible across 
clauses just in case the intervening predicates are 
all in the class of “trigger” predicates (Aissen 
and Perlmutter, 1983). Trigger predicates are 
those that select a “defective” or “reduced” 

clausal complement, one that is tenseless, 
subjectless and that does not contain 
(intervening) functional elements such as 
sentential negation. In Bleam (2000), trigger 
verbs are analyzed as those that optionally select 
a VP complement (vs. a higher functional 
projection of the verb such as TP or CP). 

As noted in Bleam (2000) and in other work, 
clitic climbing is unbounded. There appears to be 
no grammatical limit on the number of clauses 
that can be crossed by a clitic, as long as all of 
the intervening verbs are trigger verbs.2  
  
(3) Juan quería dejar-te terminar de leer-lo 

Juan wanted to.let-you to.finish of to.read-it 
“Juan wanted to let you finish reading it” 

(4) Juan te lo quería dejar terminar de leer. 
 
Clitic clusters can involve two clitics that are 
thematically dependent in a single clause or they 
can be formed by clitics originating in different 
clauses, climbing into a single higher clause, as 
shown in (3)-(4) and (5)-(7).  
 
(5) Mari quiere permitir-te  ver-lo 

Mari wants to.permit-you to.see-it 
‘Mari wants to permit you to see it.’ 

(6) Mari te lo quiere permitir ver 

(7) Mari quiere permitir-te-lo ver 
 

When there are multiple clitics originating in 
different clauses, the clitic originating in the 
lower clause can move up one clause to join the 
other clitic, as shown in (7), but cannot “move 
past” the clitic in the higher clause, as shown in 
(8), unless it carries the second clitic along. 

 
(8) *Mari lo quiere permitir-te ver 

(9) Mari te quiere permitir ver-lo 

(10) *Mari te quiere permitir-lo ver 

                                                            
2 Of course processing becomes more difficult as the 
number of clauses increases, but speakers appear to be able 
to handle up to at least four clauses without much difficulty. 
Examples in text are adapted from Bleam (2000). 
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(a)    (b)    (c) 
 
 
 
 
 
 
 
 
 

(d)      (e) 
 
 
 
 
 

 
 
 

(f)      (g) 
 

 
 
 
 
 
 

Figure 2: Grammar fragment for deriving patterns in (5) – (10).  Three versions of quiere (a) used in 
the set-local account only, (b) used in both accounts, (c) used in the 2-delay tree-local account only; 

two versions of permitir (d) used when clitic remains low, (e) used when clitic climbs;  
two versions of ver (f) used when clitic remains low, (g) used when clitic climbs. 

 
Further, while the higher clitic can move into the 
matrix clause leaving the lower clitic in situ, as 
in (9), it cannot do so if the lower clitic has 
moved into its clause, as shown in (10). These 
constraints on clitic clustering, or “bandwagon 
effects” (Bleam 2000)3, suggest that there is a 
single position in the clause for clitics and that 
clitic clusters form a constituent. 

3 Set-local MCTAG and Clitic 
Climbing  in Romance 

To account for the clitic climbing facts in 
Spanish (and for restructuring more generally), 
Bleam (2000) adopts a defective-complement 
analysis. In the MCTAG analysis, every non-
finite clause with clitic arguments has two 
versions, illustrated for permitir (“to permit”) in 
Figs. 2(d) and (e). 2(d) is a singleton set 
containing a contiguous tree containing the verb 
                                                            
3 These phenomena were observed by Aissen and Perlmutter 
(1983) and fell out from their clause reduction analysis. 

and its full extended projection 4 , which also 
(necessarily) includes the dependent clitic(s) in a 
functional head which is agnostically labeled F. 
This version is the one utilized in cases where the 
clitic stays in the embedded clause in which it is 
thematically dependent. In the second version, 
Fig. 2(e), the tree set contains two components: 
one tree containing the verb in a VP projection, 
lacking its functional structure, and the other tree 
containing the dependent clitic (attached to a 
“higher” functional head). This version is used to 
derive cases of clitic climbing. Because the clitic 
is “loose,” it is free to attach to the functional 
structure of a higher clause in the final derived 
tree. The linguistic intuition is that in the first 
case, the presence of higher functional structure 
in the same single tree with the verb provides a 
host site for the clitic and would entail a 
contiguous tree that included both verb and clitic. 

                                                            
4 I.e., in the sense of Grimshaw (1991), the functional 
projections that accompany a verb. 
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In the second case, the lack of higher functional 
structure necessitates a “loose” clitic in a 
separate component. 

Trigger verbs (such as querer “to want”) are 
clausal complement taking verbs that are flexible 
in the type of complement they take. They can 
either take a VP complement, in which case clitic 
climbing occurs due to the selection of the 
defective complement tree set (e.g. Fig. 2 (e) or 
(g)); or they can take a full FP complement (e.g. 
Fig. 2 (d) or (f)), in which case there will be no 
clitic climbing, due to the selection of the non-
defective complement tree which necessarily 
contains the clitic. Note that the trees for the 
tensed trigger verb, quiere, in Figs. 2 (a) and (b), 
are exactly alike except that one takes an FP 
complement while the other takes a VP 
complement. 5 , 6 Non-trigger verbs (that do not 
trigger restructuring) will only have the option of 
taking a non-defective complement (FP or CP). 

The set-local derivation of (6), where both 
clitics originate in separate clauses but end up 
clustering together in a single clause, is given in 
Fig. 3. The derivation involves the tree sets in 
Fig. 2 (b), (e), and (g). The VP tree for the most 
embedded verb, ver, substitutes into the VP node 
of the permitir tree, while the component with 
the clitic lo adjoins into the component with the 
clitic te. This creates a derived multi-component 
set, one component with the embedded verbs and 
the other with the clitics. The former substitutes 
into the VP verb complement position of the 
matrix tree and the latter adjoins into the F node 
of the same tree. 

As should be clear from the derivation in Fig. 
3, multi-component TAG is necessary to account 
for clitic climbing if we want to maintain the idea 
that a verb and its dependent clitic need to be 
represented in the same elementary object. 
Furthermore, as shown in Bleam (2000), set-
local MCTAG permits an account for cases such 
as (6) that preserves the linguistic intuition that 
the clitics combine with one another to form a 
cluster, while tree-local MCTAG cannot. 
Although the more powerful set-local MCTAG 
must be adopted, requiring set-locality still 
constrains the possible derivations in ways that 
are linguistically relevant. Note that traditional 

                                                            
5 The trees given here are modified from Bleam (2000) in 
that the clitic host site F is higher than the verb in T(ense) in 
the tensed clause. This difference is justified in Appendix A.   
6 The XP complement node in Fig. 2(d-e) is a short-cut for 
indicating two separate trees, one taking an FP complement 
and one taking a VP (representing the fact that “permitir” is 
a trigger verb). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3: MCTAG derivation (set-local and also 

2-delay tree-local) for climbed clitic clusters 
 

set-local MCTAG does not allow for the ver 
component of Fig. 2(g) to substitute into the 
permitir tree in (d) while the component for the 
clitic lo remains unattached. The clitic may not 
“jump over” the permitir clause and adjoin 
directly into the matrix quiere tree. This non-set-
local derivation is shown schematically in Fig. 4. 
Hence, clitics cannot climb past a clause without 
combining with other clitics in the intermediate 
clause, forcing them to all move together. 
Against a backdrop of reasonable linguistic 
assumptions, we see that the Bandwagon Effects 
are derived by the formal properties of set-local 
MCTAG. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Derivation that is illegal in set-local 
MCTAG but legal in 2-delay tree-local MCTAG 
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(a) (b) (c) (d) 
 
 

 

 

 

 
Figure 5. Derivation structures for examples (6), (5), (7), and (9), respectively, with delays marked 

 
One final note is in order. Kulick (2000) 

identifies two types of constructions which he 
claims remain incorrectly prohibited by the 
Bleam analysis: constructions where clitic 
climbing co-occurs with raising or with long 
distance wh-movement. We show in Appendix A 
that set-local MCTAG actually is able to handle 
this data. 

4 2-Delayed Tree-Local MCTAG and 
Clitic Climbing  in Romance 

Recall that in Bleam’s set-local account, a 
sentence with two climbed clitics is formed by 
combining the two clitics and combining the two 
embedded predicates. This derivation is 
permitted in 2-delayed tree-local MCTAG. 
Fig.5(a) is the derivation tree for the derivation in 
Fig. 3 with delays marked. Note that the shape of 
Fig. 5(a) is exactly that of the example 2-delayed 
MCTAG derivation given in Fig.1. By 
considering the shapes of the derivations 
permitted by 2-delayed tree-local MCTAG, we 
can conclude that some account must be possible 
for the clitic climbing data presented here. 

Recall also that it is the prohibition against the 
kind of derivation depicted in Fig. 4 in set-local 
MCTAG that ruled out the patterns exemplified 
by (8) and (10) where clitics ungrammatically do 
not cluster. Since the derivation in Fig. 4 is 
permitted by delayed tree-local MCTAG, the 
challenge for providing a 2-delayed MCTAG 
analysis of available clitic climbing data is how 
to avoid overgeneration. 

It turns out that only a minor modification to 
the  grammar fragment used for our set-local 
MCTAG account is needed to provide a 2-
delayed tree-local MCTAG account of the data at 
hand. By adding a null adjoining constraint to the 
tree in Fig. 2(a), we obtain the tree in Fig. 2(c). 
Using the tree in Fig. 2(c) instead allows for the 
derivation of the grammatical patterns of clitic 
climbing in (5)-(7), and (9) while blocking the 
ungrammatical patterns in (8) and (10). Crucially, 
we assume clitics have a single position in the 

clause, which we represent here as an F node. 
(Thus, clitics adjoin to F but not V or T.) We 
maintain the general analysis of the two patterns 
of clitic placement utilized in the set local 
MCTAG account: When the clitic does not climb, 
the derivation involves a singleton tree set for the 
embedded verb which includes an F node for 
hosting a clitic. For examples (6), (7), and (9), 
when a clitic does climb, the derivation involves 
a set where the projection of the verb tree is too 
low to include an F node and the clitic is 
represented in a separate elementary tree. As in 
the set-local account, this captures the intuition 
that restructuring phenomena, such as clitic 
climbing, involves the selection of some type of 
reduced clause. Fig. 5 shows the derivation 
structures for the grammatical patterns in (5)-(7) 
and (9). The shapes of the derivations are, in fact, 
the same as those for set-local MCTAG, which 
the reader can verify. 
Where the two accounts differ, however, is 
clearer when we consider how the unattested 
patterns in (8) and (10) are blocked. Let us 
consider the necessary tree sets for each example 
in turn. In (8), the clitic associated with the most 
embedded clause, lo, has climbed into the matrix 
clause while the clitic associated with the next 
highest clause, te, remains in its unclimbed post-
verbal position. Since a successful derivation of 
(8) would require a host site for the climbed clitic 
lo in the matrix clause, the derivation would 
necessarily involve the tree set in Fig. 2(b). The 
quiere tree in 2(c) cannot host a clitic due to the 
null adjoining constraint on its F node. The 
postverbal position of te implies that the singleton 
set 2(d), whose root is labeled FP, should be used 
in deriving (8). However, Fig. 2(b) takes only a 
VP as quiere’s complement, not an FP, so the 
two sets cannot combine. Using the set in Fig. 
2(e) instead will allow the component with 
permitir to substitute into quiere’s tree, but the 
component with the clitic will not have a position 
following permitir to adjoin into. Thus, neither 
available option for permitir and te will 
successfully yield (8). 

permitir (te) 

ver (lo)



(Mari) quiere

permitir (te)



permitir (te) 

ver (lo)ver (lo)
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
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Figure 6. A 3-delayed tree-local MCTAG derivation. Delays are marked with dashed boxes.

In (10), the clitic associated with the most 
embedded clause, lo, has climbed into the next 
highest clause while the clitic associated with 
that clause, te, has climbed up to the matrix 
clause. As with (8), a successful derivation of 
(10) would require a host site for the climbed 
clitic in the matrix clause. Thus, the derivation 
would necessarily involve the tree in Fig. 2(b). 
Since both clitics climb, the derivation must 
involve the sets in Figs. 2(e) and (g), where the 
clitic is a separate component. This is 
unproblematic for deriving the positions for 
permitir and te: the permitir component 
substitutes into the VP node in the quiere tree 
while the te component adjoins into the F node. 
The lo component of Fig. 2(g), however, has no 
F node following permitir into which to adjoin. It 
can only adjoin into the F node of the te 
component or the F node of the matrix clause, 
which would yield the attested (6), not the 
unattested (10). 

We see that our 2-delayed tree-local account 
depends on Fig. 2(b) having only VP (and not 
FP) as its verbal complement. That is, in this 
account, the possibility of taking an FP 
complement is linked to the presence of a null 
adjoining constraint, as instantiated in Fig. 2(c). 
It is the null adjoining constraint on the F node 
that blocks clitic climbing into the matrix clause, 
not the formal properties of 2-delayed tree-local 
MCAG. This machinery is available, but the use 
is not linguistically motivated beyond the goal of 
deriving the observed clitic climbing patterns.7 

                                                            
7 Another option is to propose a quiere tree without an F 
node, i.e. we could posit that the matrix tree involved in 
clitic climbing is larger than the tree involved in non-
climbing cases. However, the null adjoining account 
adopted above can also correctly rule out the the possibility 
of a clitic originating in clause 3 and moving to clause 
1,crossing over an intermediate clitic from clause 2, when 
clause 1 itself contains a clitic.  

i)    Juan te permitió hacerle leerlo 
ii) *Juan te lo permitió hacerle leer. 

5 Clitic Clusters and a 2-Delayed Tree-
Local MCTAG Prediction 

As we have seen above, the set-local MCTAG 
account for climbed clusters of two clitics can be 
straightforwardly recast as a 2-delayed tree local 
MCTAG derivation. This does not, however, 
hold for the derivations of the two MCTAG 
variants in general. Consider, for example, the 
derivation in Figure 6. This is a straightforward 
set-local MCTAG derivation, but it is not a 2-
delayed tree-local MCTAG derivation. Here, β21 
and β22 are members of three delays, making it a 
3-delayed tree-local MCTAG derivation. 

In the context of clitic climbing, this translates 
into different predictions regarding the number 
of clitics that can originate in different clauses 
and form a climbed clitic cluster. The set-local 
account permits an unbounded number of multi-
component clitic-verb sets to combine with each 
other, thus predicting that an unbounded number 
of clitics may form a climbed clitic cluster (in 
principle). In contrast, the 2-delayed MCTAG 
allows only two multi-component clitic-verb sets 
to combine with each other before combining 
into the same tree. This restriction predicts that it 
should not be possible to create a clitic cluster 
containing three clitics that originate in three 
different clauses and then climb into a fourth 
clause. More generally, a k-delayed tree-local 
MCTAG permits at most k clitics, each of which 
originates from a different clause, to form a 
climbed cluster. In testing this prediction, we 
find that speakers do not accept climbed clusters 
of greater than two, which appears at first to rule 
in favor of 2-delayed TL-MCTAG. However, 
this would only distinguish between the two 
variants if we could establish that clusters of 
three clitics are acceptable when they do not each 
originate from a separate clause. This turns out 
not to be the case: 3-clitic combinations are ruled 
out in cases where two of the clitics originate in 
one clause and the third clitic originates in a 
different clause, as shown in (11). 

 

β02 

β01 

β01 β02 
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(11) a.  Juan no  quiere  permitir-le  
Juan neg  wants  to.permit 3p.dat  
escribir-te-la  
to.write- 2p-3p.fem.acc 

‘Juan doesn’t want to permit him/her to 
write it to you.’ 

 b. *Juan no quiere permitir-se8-te-la escribir 
 c. *Juan no se te la quiere permitir escribir 
 
The picture that emerges is that clusters of three 
clitics are difficult for speakers to accept for 
reasons that are independent of the combinatory 
operations that combine multiple clauses. Thus, 
Romance does not allow us to test the prediction 
due to restrictions on clitic clusters in general.9 
Although the data given here is inconclusive, the 
section serves to illustrate how the two MCTAG 
variants differ and identify the kind of data 
pattern that would distinguish between the two. 

6 Conclusions 

This paper demonstrates that although clitic 
climbing originally appeared to require formal 
power beyond that of tree-local MCTAG, the 
introduction of the weakly equivalent delayed 
tree-local MCTAG can account for the same 
body of data. Our set-local MCTAG account can, 
in fact, be translated into a 2-delayed tree-local 
MCTAG account with the addition of a null 
adjoining constraint to one of the trees in the set-
local grammar: the quiere tree in Fig. 2(a) is 
replaced with the tree in Fig. 2(c). The 2-delayed 
account also retains the set-local account’s 
reliance on the absence/presence of a functional 
node to host a clitic within the complement 
clause. 

Where the two differ, however, is how the 
work of capturing the Bandwagon Effect is 
accomplished.  In the set-local account, the 
Bandwagon Effects follow as a consequence of 
the permissible combinatory operations.  
Unattested patterns would require non-set-local 
derivations. In contrast, these non-set-local 
derivations are legal 2-delayed tree-local 
MCTAG derivations. The work of ruling these 
out to capture the Bandwagon Effects relies 
instead on the use of node labels and the null 
adjoining constraint. Both of these are legitimate, 

                                                            
8 This le is converted to se by a morphological rule known 
as the “Spurious se rule.” 
9 The prediction also appears to be untestable in Serbian and 
Italian due to independent constraints.  Thanks to Dave 
Kush, Ivana Mitrovic, Christina Tortora, and Raffaella 
Zanuttini (pc).  

computationally “safe” parts of TAG variants. 
However, as there is no obvious linguistic 
motivation for this particular use of a null 
adjoining constraint, from a linguist’s standpoint, 
there is preference for the set-local analysis. It is 
interesting to note that despite its increased 
power in general, set-locality, in conjunction 
with linguistic facts, has just the right kind of 
restrictiveness to capture clitic climbing patterns, 
making the formalism a particularly good fit in 
this specific domain. This also suggests that we 
may wish to investigate other ways to modify 
tree-locality to permit a limited amount of set-
local derivational steps with the goal of capturing 
the clitic climbing data more succinctly than the 
delayed tree-locality account given here. 

The elegance of the set-local MCTAG 
account, however, should not obscure the 
conclusion that delayed tree-locality makes it 
possible to avoid the increased generative power 
of set-local MCTAG. We are aware of only two 
cases for which it has been argued that 
permitting set-local composition is necessary: 
clitic climbing in Romance, which we have 
discussed here, and double causatives in 
Japanese (Heycock, 1986). The shape of the set-
local MCTAG derivation for the double 
causatives is the same as that given for a two-
clitic cluster which has climbed. Just as the set-
local analysis for the two-clitic cluster is also a 
legal 2-delayed tree-local analysis, so too is 
Heycock’s set-local analysis for Japanese 
causatives a legal 2-delayed tree-local analysis. 
We are led to conclude that 2-delayed tree-local 
MCTAG eliminates the necessity of using set-
local MCTAG not only for clitic climbing, but 
for all cases in which set-local composition was 
previously argued to be required. 
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Appendix A: Set-local Solutions for Clitic 
Climbing and Adjoined Predicates 

Despite the increased derivational power of set-
local MCTAG, Kulick (2000) identifies two 
types of constructions which he claims remain 
incorrectly prohibited by the Bleam (2000) 
analysis: constructions where clitic climbing
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(a)        (b)     (c) 

 

 

  

Figure 7: 1-delay tree-local MCTAG derivations which are not set-local. (a) schematic of derivation 
(b) schematic of derivation of clitic climbing with a raising verb (c) derivation structure with delay 

marked. ((a) and (b) taken from Kulick (2000)) 
 
co-occurs with raising, as in (12), or with long 
distance wh-movement, as in (13). 
 
(12)  a. Luis suele comer-las 
 b. Luis las suele comer 
 Luis them tends to eat 
 ‘Luis tends to eat them’ 

(13)  a. Que quiere mostrar-te Juan 
 What wants to-show-to-you Juan 
 ‘What did Juan want to show to you?’ 
 b. Que te quiere mostrar Juan 
 

The difficulty lies in combining the classic 
TAG accounts for raising and for wh-movement 
with the account developed for clitic climbing. In 
the former, both accounts involve adjoining of 
the matrix verb into the complement clause, thus 
“stretching apart” material in the lower clause. In 
the latter, clitic climbing is handled by positing 
an MC-set in which the clitic is its own 
component that adjoins into its host verbal 
element. A sentence like (12), then, would 
appear to require a derivation where the 
component for the clitic adjoins into the raising 
verb, which subsequently adjoins into the 
infinitival verb, the set-mate of the clitic. This is 
shown schematically in Fig. 7, taken from Kulick 
(2000). Such a derivation, where the clitic first 
combines into a tree while its set-mate remains 
uncombined, is not set-local. 

However, as we show here, the tree set for 
“comer” assumed by Kulick is ruled out under 
Bleam’s analysis. One of the key aspects of 
Bleam’s (2000) analysis was that the size of the 
verb’s tree determined whether the clitic was 
“loose” (instantiated as a separate tree in the tree 
set), and thus free to climb. Since the canonical 
position of the subject is above the position of 
the clitic, a tree anchored by comer and also 
having a position for a canonical subject must 
also contain a dependent clitic, as shown in Fig. 
8(a). Thus, example (12), which combines 
raising and clitic climbing, will require trees as in 

Fig. 8, where the raising verb suele adjoins in 
above the verb but below the clitic.10 
 
(a)   (b) 
 
 
 
 
 
 

Figure 8: Trees for deriving example (12):  
cliting climbing co-occurs with raising. 

 
The second type of example, (13), can be 

handled in a similar way, preserving the 
traditional TAG analysis of long distance wh-
movement in which the verb and its dependent 
wh-expression (argument) are stretched apart 
through adjoining. Assuming that the wh-
expression is in the specifier of CP (of the 
mostrar tree) and that the clitic is in a projection 
below CP, we posit a contiguous tree for the 
mostrar clause, and its wh-expression and clitic 
dependents, as in Fig. 9(a). 

The matrix clause (quiere) must then adjoin in 
below the clitic. This requires us to adopt some 
crucial assumptions about the position of the 
post- verbal subject in wh-questions in Spanish.11 
We assume the canonical pre-verbal position of 
the subject to be the specifier of FP. However, 
the (non-canonical) post-verbal subject in wh-
questions in Spanish (and Italian) has been 
argued to be in a lower position than that of 
canonical subjects (see Rizzi 1982, Torrego 1984, 
Suñer 1994). Following these standard sources, 
we posit the auxiliary tree in Fig. 9(b) for the 
matrix quiere Juan clause. In this tree the verb 
 
                                                            
10 Note that suele is tensed and that tensed verbs are 
standardly assumed to move to T in Spanish; thus, we 
assume that root and foot nodes for the auxiliary tree for 
suele are TP (or T’).  
11 Note that the position for the post-verbal subject “Juan” is 
assumed to originate in the elementary tree for “quiere” that 
becomes the matrix clause in this example.  
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Figure 9: Trees for deriving example (13):  
cliting climbing co-occurs with wh-movement. 

 
has moved past the subject, and the subject is a 
right-branching specifier of VP.12  

Consequences of adopting this analysis to 
account for Kulick’s data are (contra Bleam, 
2000), (1) that not all cases of clitic climbing are 
a result of a “loose” clitic in a tree set; and (2) 
that not all infinitival verbs are in a pre-clitic 
position in the elementary tree.13 But note that by 
adopting these relatively minor changes to the 
original analysis, the set-local analysis can 
handle these (apparent counter-) examples. In 
fact, for the particular examples mentioned here, 
tree-local MCTAG would be sufficient, but 
considering similar cases but with clitic climbing 
from multiple clauses would again require set-
locality rather than tree-locality. It should be 

                                                            
12 Alternatively, Ordoñez 1998 argues that, in general, VOS 
sentences in Spanish are derived via (a) movement of the 
verb to T, (b) the subject remaining in its base position, 
specifier of VP (left-branching), and (c) scrambling of the 
object (in this case a TP) to a position below T but above 
the in situ subject. This is illustrated below: 

 
 
 
 
 
 
 
 

13 Trees such as Fig. 8(a) will necessarily require adjoining 
of a tensed verb at TP in order to ensure appropriate case-
licensing of the nominative subject and to ensure that the 
clitic has an appropriate verbal host. (In Spanish, clitics 
precede tensed verbs, but follow untensed verbs.) This can 
be accomplished via an obligatory adjoining constraint, 
plausibly as a top and bottom feature mismatch in a TAG 
system with features. 

clear from the main text of the paper that these 
particular set-local MCTAG derivations are also 
legal 2-delayed tree-local MCTAG derivations. 
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Abstract

In this paper, we introduce a type-shifting
operation which provides a principled
means of describing the derivational links
required in Synchronous TAG accounts of
quantification. No longer do links appear
on root nodes of predicates on anad hoc
basis, rather they are generated as a part of
a type-shifting mechanism over arguments
of the predicate. By introducing to the sys-
tem a set of temporal variables, we show
how this operation can also be used to ac-
count for the scope interactions of clausal
embedding. We then move on to consider
additional cases of multiple clausal embed-
ding and coordination.

1 The Issue

Investigations of the syntax-semantics interface in
Tree Adjoining Grammar, particularly those mak-
ing use of Synchronous TAG, grapple with the
limitations imposed by the restrictiveness of tree-
or set-local MCTAG. To the degree that they suc-
cessfully treat the mapping between syntax and
semantics in this restricted setting, this provides
evidence in favor of Joshi’s hypothesis that the
mild context-sensitivity of TAG is a fundamen-
tal property of grammar. Nonetheless, the anal-
yses that have been put forward are at times ad
hoc. One wonders why a certain semantic ob-
ject is associated with some piece of syntax, and
why certain nodes of the syntactic representations
are linked to the semantics in one manner as op-
posed to another. In this paper, we report on
our first efforts to formulate principles govern-
ing STAG pairings, in an effort to provide a more
restrictive framework for characterizing STAG-
derivable syntax-semantics mappings.

2 Tree Shapes and Type Shifting

We adopt a traditional view of syntactic elemen-
tary trees as the realization of a single lexical
predicate and its grammatical “associates” (cf. the
Condition on Elementary Tree Minimality and
Theta Criterion of Frank (2002)). The corre-
sponding semantic objects are composed from the
meaning assignments for the lexical anchor to-
gether with the meanings associated with non-
projected non-terminals. Substitution nodes are
interpreted as typed variables (with types deter-
mined by a bijection from syntactic categories to
semantic types: DP to typee, NP to type〈e, t〉,
CP, TP and VP to typet, etc. We follow Pogodalla
(2004) in assuming that such variables are bound
by (linear) lambda operators, and take syntactic
substitution ofS into T to correspond to (seman-
tic) function application ofT to S. For a syntac-
tic nodeN targeted for adjoining, we assume that
the corresponding node in the semantic represen-
tation is embedded beneath an abstracted function
variable (with type〈α,α〉 whereα is the type de-
termined by the category bijection forN ). Ad-
joining of auxiliary treeA to treeT corresponds to
application ofT to A. We assume that adjoining
always applies at nodes to which it may; when no
content is added, a semantic identity function is
applied. Some linkages between the syntactic and
semantic trees are straightforward: non-projected
non-terminals are linked to the lambda operators
binding their associated variables, while projected
nodes in the syntax are linked to lambda operators
binding variables of the appropriate〈α,α〉 type.
This gives rise to a pairing of the sort in Figure 1
for the transitive verblove.

What is less clear is how to establish the non-
bijective linkages between sites for syntactic at-
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Figure 1: Syntactic and Semantic Tree Pair forloves
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]
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Figure 2: Tree Set forevery boy(Schema for all Gen-
eralized Quantifiers)

tachment and semantic composition. Originating
in Shieber and Schabes (1990), and continuing in
all of the subsequent STAG-based work on scope
we are aware of, it is assumed that the DP posi-
tion in, say, the subject of a transitive verb-headed
elementary tree is linked to both thee-type exter-
nal argument of the predicate and thet-type root
of the tree. This dual-linkage is mirrored in non-
STAG accounts of quantification, such as the Hole
Semantics-based account in Kallmeyer and Joshi
(2003), and subsequent works in that tradition.
No matter which type of semantic account the an-
alyst prefers, it is widely accepted that quantifica-
tion requires this simultaneous access to both an
argument position and the root of a tree. Deriva-
tionally, this is of course simply a matter of tree-
local MCS combination, but in STAG, there is
the additional wrinkle of derivational links. Such
multiple linkages are crucial for the establishment
of scope for quantificational DPs, represented as
multi-component sets (MCSs) in the semantics,
but not the syntax, as in Figure 2. The variable
component of this MCS substitutes into thee-type
argument slot, while thet-recursive scope auxil-
iary tree adjoins at the semantic predicate’st root.
It is difficult to see what within the verbal pred-
icate itself directly motivates a link between the
DP syntactic position and thet adjoining site in
the semantics. We will assume that only the link-

age between the syntactic position and the seman-
tic argument slot is basic, as given in Figure 1.
Once these are established, semantic trees can un-
dergo an operation that creates multiple linkages
in a systematic fashion. Specifically, we make use
of an operation similar to argument raising from
Hendriks (1988). In Hendriks’ operation, the type
of an argument is lifted (Partee and Rooth, 1983)
from its basice type to the generalized quantifier
〈〈e, t〉, t〉 type, allowing a raised argument to ef-
fectively take scope over the predicate. Applica-
tion of this operation to the internal argument of a
two-place predicate is shown in (1).

(1) 〈e, 〈e, t〉〉 : f ⇒
〈e, 〈〈〈e, t〉, t〉, t〉 :
λxe.λT 〈〈e,t〉,t〉.T (λye.f(y)(x))

The lambda gymnastics involved here are sub-
stantial. We can accomplish a similar effect with
the paired STAG structure in Figure 1 in a sim-
pler way, if we allow one of thee-type arguments
to be linked to a new functional〈α,α〉 variable.
We represent this linkage as the combination of
two variables under the scope of a single lambda
operator, as shown in Figure 3. We take such
set-valued lambda operators to encode the fact
that the arguments must be introduced in a single
derivational step, via combination with a MCS.
In order to ensure that the newly introduced func-
tional variableQ does not disturb the surround-
ing semantic combinations, it is crucial thatQ be
type-preserving (i.e., of type〈α,α〉 for someα).

λxλyλa

[ a(t)

〈e, t〉

〈e〈e, t〉〉

P

x

y

]
⇒λ{Q,x}λyλa

[ a(Q(t))

〈e, t〉

〈e〈e, t〉〉

P

x

y

]

Figure 3: Schematic Example of Type Lifting in Trees
(Shown for Internal Argument)

The linkage that has been widely exploited to
handle quantifier interpretation fits this pattern:
thee-type argument is linked with a〈t, t〉 function
variable, which will host its scope, shown in Fig-
ure 4. Whereas earlier accounts derived quantifier
scope ambiguity through underspecified ordering
of multiple adjoining at the roott-node of a ver-
bal predicate’s semantics, we derive the same am-
biguity through underspecified ordering of type
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Figure 4: Syntactic and Semantic Tree Pair forloves
(Type-lifted Internal Argument)

lifting operations, one for each of the predicate’s
arguments. These iterations of type-shifting take
place after the construction of an elementary tree,
but before the tree enters into any TAG combi-
natory operations. That is, the links (and their
relative scopes) are all in place before any sub-
stitution or adjoining operations take place. What
we have gained is that the additional non-bijective
link which normally appears by stipulation now
has a principled origin in the type-shifting opera-
tion which makes it possible for a semantic MCS
to combine in a single derivational step.

3 Extending Beyond Quantifiers

Type lifting is not limited to linkinge-type vari-
ables to quantificational scope. In principle, any
argument slot can be linked to an arbitrary type-
preserving function, so long as there is a MCS
that can satisfy these two positions simultane-
ously. One case involves infinitival complements
to control predicates. Under the analysis of con-
trol of Nesson and Shieber (2008), the control
predicate’s semantic representation is a MCS with
ane-type variable to fill the embedded subject ar-
gument slot as well as at-recursive auxiliary bear-
ing the predicate’s lexical content. Just as with
quantifiers, we link the semantic slot for thee-
type subject argument with the roott node, at
which the embedding control predicate adjoins.
Because this linkage is analogous to the one estab-
lished in the case of quantifiers, we predict its in-
teraction with other linkages to behave similarly.
Specifically, we are led to expect that object quan-
tifiers in the infinitival complement clause should
be able to scope out of that clause, past the em-
bedding control predicate (as well as quantifiers
in the higher clause). This prediction is correct,
as shown in (2).

(2) Someone wants to visit every European
city. (want> ∀, ∀ > want)

The example is derivable using the tree set for
the control predicate in Figure 6, along with trees
for the embedded clause and for the quantifiers,
all lexical variants of the trees in Figures 1 and
2. The embedded predicate is shown in Figure
5, with type-shifting having applied in the order
which yields surface scope. Recall though that
inverse scope is equally possible, as we place no
restriction on the order of the applications of type-
shifting. The derivation proceeds as in Figure 7,
with the order of the two instances of type lifting
over the arguments ofto visit left unspecified.

〈[ TP

DPi↓ 1 T′

T

to

VP 3

DP

ti

V′

V

visit

DP↓ 2

]
λ{Q,x}

2
λ{P, y}

1
λa

3

[ a(P (Q(t)))

〈e, t〉

〈e〈e, t〉〉

visit

x

y

] 〉

Figure 5: Non-finite predicateto visit, type-shifted for
surface scope

to visit

every city

European

want

someone

Figure 7: Derivation Tree for (2)

The same scope facts are present in other ex-
amples of non-finite clausal embedding, such as
raising and ECM, as in (3).

(3) a. Some member seems to like every
amendment. (seems> ∀, ∀ >
seems)

b. Some member wants every minis-
ter to leave. (wants> ∀, ∀ >
wants)

Stowell (1982) notes that unlike control, raising
and ECM predicates temporally restrict the em-
bedded clause. Matrix predicates routinely spec-
ify the embedded clause’s temporal interpretation
relative to the time of the higher clause, as in
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(4) below: depending on the choice of the ma-
trix predicate, the embedded event is understood
to take place at a different relative time. For finite
clausal complements as in (5), the temporal rela-
tion must be conveyed through tense marking in
the embedded clause.

(4) a. John regrets missing your talk.
(τ(missing-talk) < now)

b. John anticipates missing your talk.
(τ(missing-talk) > now)

(5) a. John regrets that he missed your talk.

b. John anticipates that hewill miss your
talk.

It is straightforward to assume that the depen-
dency in (3) results from the matrix predicate pro-
viding a temporal variable to the non-finite em-
bedded clause. We implement this temporal vari-
able using a simplified version of the presenta-
tion in Kusumoto (2005); most notably, we omit
from our analysis additional situation variables
also present in Kusumoto’s analysis. This is done
purely in the interest of keeping the semantics as
clear as possible, and is not intended as an ex-
plicit claim that these variables are incompatible
with the analysis.

We take the temporal dependency between
clauses as in (3) and (4) to indicate multicompo-
nent semantics in the matrix predicate, the use of
which must be licensed by type lifting in the em-
bedded clause. Once again, we should expect that
this instance of type lifting can be interleaved with
those for embedded quantificational arguments,
predicting the observed scope facts. We illustrate
using the ECM case (3b), beginning in Figure 8
with the elementary trees for the two predicates.
ECM want is a MCS providing a temporal vari-
ablei of typeτ , similar to a control predicate pro-
viding an argument of typee. The matrix predi-
cate’s temporal variable can be saturated by a tem-
poral indexical, whose interpretation varies with
the tense of the matrix clause. Crucial to our sys-
tem is the notion that there is only one such in-
dexical available per derivation. The embedded
clause has a similar variable slot, but as just stated,
it cannot be similarly filled by an indexical. By
type lifting over this position, the ECM predicate
may combine in exactly the same way as a quanti-
fier. The derivation in Figure 9 yields the reported
scope ambiguity through underspecification of the

order of type lifting in the embedded clause. A
similar process yields (3a), using the trees in Fig-
ure 10, following the derivation in Figure 11.

to leave

every minister want

some member

Figure 9: Derivation Tree for (3b)
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Figure 10: Elementary Trees for (3a)

to like

some member every amendment seem

Figure 11: Derivation Tree for (3a)

4 Multiple Predicates

Thus far, we have limited our discussion to simple
cases of single clause embedding; in this section
we illustrate how the proposed system will inter-
act with multiple embedding, and with coordina-
tion.

An example of multiple embedding is given in
(6):

(6) John wants Mary to be likely to win.

This is ECMwant, which will, along withto win,
use an elementary tree set essentially as in Figure
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8. The raising predicate, for the moment, we as-
sume will have the standard TAG syntax of recur-
sion on T′, meaning that it is syntactically possi-
ble for bothwantsandto be likelyto adjoin at dif-
ferent nodes in theto win tree. This raises two is-
sues. Firstly, both the ECM and raising predicates
would be adjoining at the same node in the se-
mantics, predicting ambiguity betweenwantsand
likely. However, this ambiguity is not found, and
only the surface scope ofwants> likely is avail-
able. Secondly, there is an issue concerning the
interval variables. The embedded predicateto win
will have one open substitution site for an interval
variable in its semantic elementary tree. However,
both likely andwantshave such a variable to pass
on. It thus seems that under the proposed syntac-
tic analysis, not only do we predict an unobserved
ambiguity, but an interval variable will go unused.

To resolve this issue, we propose a tree set for
the raising predicate as in Figure 12. Looking first
at the semantics, as a clause which will adjoin
into a non-finite clause, this passes down an in-
terval variable, as described. However, this pred-
icate itself also requires an interval argument of
some sort to saturate its own typeτ argument slot,
and we assume that only one temporal indexical is
available per derivation. If this indexical is to be
substituted into the matrix ECM predicate, then
that predicate’s own interval variable must be the
one which substitutes into the raising predicate.
That is,wantsmust combine directly withlikely,
not to win. This is a welcome finding, as it also
predicts the observed scope facts. This then leads
us to discuss the syntax of this raising predicate;
with an additional degenerate CP node which can
serve as the destination of the ECM predicate, di-
rect combination ofwantsinto likely is now pos-
sible, with the CP-recursivewantsauxiliary tree
adjoining to the degenerate CP tree in the set as-
sociated with the raising predicate. Type-shifting
over the interval variable position inlikely allows
the wantsMCS to adjoin, and type-shifting over
the interval variable into win allows likely to ad-
join, bringing the ECM predicate along, with both
the T′- and CP-recursive adjoinings coming from
one elementary tree set.

A slightly different problem arises when com-
bining control with a raising predicate as in the
similar (7):

(7) John wants to be likely to win.

First, let us consider the scope facts. As in the
previous case, there is only one possible reading
here, the surface scope wherewant scopes over
likely; it is not the case that John is likely to want
to win, rather he wants to be likely to win. Thus,
the same type of chained derivation would seem to
be in order. However, there is an additional com-
plication: we have already made the claim that
control predicates pass down a typee argument to
the clauses in which they adjoin, not typeτ . As
a raising predicate,likely should never take a type
e argument unless an experiencer phrase is added.
Further complicating matters is the fact that the
type e variable provided by the control predicate
is clearly an argument ofwin; this suggests that
the derivation which we worked so hard to ob-
viate in the previous case must be the only one
available. Bothwant and likely should combine
directly with the embedded predicate.

However, two new problems present them-
selves: firstly, given that these predicates will
each combine via a type-shift, we predict again
there to be a scope ambiguity, contrary to fact.
Furthermore, there is the additional question of
the open interval variable in the raising predicate.
Assuming thatto be likelyhere is of the same form
as in Figure 12, then what will fill that argument
position? We have already claimed that there is
only one indexical available, and Stowell’s obser-
vations make it clear that there is no temporal con-
nection between a control predicate and the clause
it embeds. In fact, this second question extends
beyond this particular example. The elementary
tree for the embedded clause in Figure 5 should
likewise require an interval variable which is not
provided by the matrix predicate.

To resolve this issue, we propose that non-finite
predicates embedded under a control predicate
contain a function INF from type〈τ, t〉 to t , given
in (8):

(8) INF = λP.✸∃iInf .P (iInf )

This provides the necessary binding for the inter-
val variable while remaining as non-committal as
possible with regards to the actual existence of
such an interval. We thus propose a revised ver-
sion of the non-finite raising predicate as in Figure
13. Only to be used under a control predicate, this
gives (local) wide scope to the INF operator. This
bears on the second problem, the question of the
relative scopes of the two predicates. Earlier, we

14



had stated that because bothwantandlikely would
combine withwin via a type-shift, their scopes
should be permutable, but that only the surface
scope is available. We speculate that it is the effect
of this INF operator which serves to rule out the
reading wherelikely outscopeswant. This is be-
cause such a scope would also give the INF func-
tion wide scope over the whole expression, yield-
ing a situation where the widest temporal opera-
tor carries this contingent existential, essentially
making it possible for there to be no interval at
which the described events took place, which is an
undesirable result. Nothing in the derivationper
se blocks this reading, rather a well-formedness
constraint on semantic outputs would do so.
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] } { [ t
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i′
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} 〉

Figure 13: Non Finite Raising Predicate under Control

A reviewer notes that certain cases of Right
Node Raising may present a particular challenge
for our approach, with an example as in (9):

(9) Every boy supported and every girl
protested some amendment.

Specifically, the concern is in deriving the read-
ing in which the shared argument’s existential
quantifier has narrow scope relative to the uni-
versals, since the right-node-raised existential ob-
ject would appear to be derivationally higher than
the subject quantifiers within the conjoined sen-
tences. In fact, such cases can be treated if we
adopt the approach to coordination presented in
Sarkar and Joshi (1996), and further developed in
Han et al. (2008), where examples like (9) are
discussed. Under this approach, we allow ele-
mentary trees to contain nodes that are marked
as shared arguments. When two predicate trees
with nodes targeted for sharing (indicated by a cir-
cle) are combined, a node-contraction operation
applies, such that the relevant shared nodes com-
bine into a single node that is multiply-dominated

in both the derived syntax and semantics trees.1

In Figure 14, we update the relevant Han et al.
elementary trees with our new semantic notation,
dispensing for the moment with interval variables.
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Figure 14: Elementary trees for Coordination

The support elementary tree contains three
linked nodes: one for the subject, which is a stan-
dard typee substitution site, one for the object,
which is marked for contraction, and one at the
root, which corresponds toλP , which binds a
function of type〈t, t〉. The coordinator is treated
as a functional element in theprotest tree, pro-
jected in accordance with the CETM. The second
elementary tree contains two links, one each for
the arguments of the verb. These elementary trees
however provide two new questions regarding the
application of our type-shifting operation. The
first concerns the status of the object in thesup-
port tree. A crucial feature of the Han et al. anal-
ysis is that the shared object,some amendment
in this case, is not duplicated, but rather shared
through multiple dominance. As such, its scope
part can only combine with one of the two ele-
mentary trees. Thus, we do not apply the type-
shifting operation at all to thesupporttree, as the
only component of the quantificational MCS that
is relevant here will be the typee variable. Type

1See Han et al. for a formal definition of semantic com-
bination with multiple dominance.
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shifting thesupport tree would force the quanti-
fier’s scope part into a position that does not dom-
inate both of the contracted nodes afterprotestad-
joins at the root ofsupport, leaving an unbound
variable.

The second question concerns the application
of type-shifting in theprotest elementary tree.
This is the first time we have explicitly dealt with
the question of how to apply the type shifting op-
eration in an elementary tree with more than one
availablet node. Here, we suppose that the type-
shifting operation targets only the root of the el-
ementary tree. That is, both the shared and non-
shared arguments ofprotestcan take scope over
the coordinator. In the case of the shared argu-
ment, this is treated as a necessity for proper vari-
able binding in the original Han et al. presenta-
tion, an observation which we echo here. How-
ever, they treat it as equally necessary for the non-
shared argument to take a low scope relative to the
coordinator, and here our analyses diverge. We
believe it should be possible to derive the reading
in which the non-shared argument takes widest
scope. Thus, type-shifting will link both argu-
ments to the root of theprotesttree.

Finally, it is just a matter of determining
whether or not there is a possible derivational or-
der which yields the narrow scope of the shared
argument. First, we must examine the orderings
of type-shifting. By first type-shifting the ob-
ject position and then the subject position in the
protest tree, every girl will take a wider scope
than some amendmentat the root of that tree.
Similarly, the subject position insupport will
also undergo a type-shift, allowing the subject to
outscope the coordinating predicate, which does
not require a type-shift to combine. Once the
predicates are combined, the universals will both
outscope the existential, and the coordinator.

5 Type-Shifting and Scope Interleaving

Finally, a reviewer brings the question of whether
or not the type-shifting operation will allow for
the derivation of quantificational scopes not read-
ily derivable by conventional set-local means.
Specifically, an example such as that in (10):

(10) John refused to want to visit every can-
didate.

The reading of interest here is the one where John
refused, for every candidate, to want to visit that

candidate. That is,refuse> ∀ > want. Again, be-
cause this involves a chain of control predicates,
we can dispense with the interval variables for
the time being and concentrate on the typee vari-
ables. The reviewer is quite correct in suspecting
that there is nothing inherent in the type-shifting
operation which will allow us to derive this read-
ing. With the tools presently available,refusewill
combine withwant, and the embedded quantifier
is predicted to scope over or under that compound
predicate, yielding either∀ > refuse> want or
refuse> want> ∀.

However, we call readers’ attention to Frank
and Storoshenko (2012) in this volume. There,
we motivate the breaking of predicate elemen-
tary trees in the semantics into “scope” and “vari-
able” parts, along the same lines as the general-
ized quantifiers seen here. Following a sugges-
tion in Nesson and Shieber (2008), a control pred-
icate becomes a 3-member MCS consisting of this
scope part containing the substitution site for the
external argument, the predicate part, and the type
e variable to be passed down. The type-shifting
operation described here is not incompatible with
that analysis, though its domain of application
will naturally be limited to the scope parts of those
elementary tree sets which contain substitution
sites for typee (or typeτ ) variables. Again, our
account of unspecified ordering of type-shifting
applies only to this component of the larger MCS,
rather than to the predicate tree.{ t

〈e, t〉

λz t

〈e, t〉

〈t〈e, t〉〉

refuse

t

〈e, t〉

λy t*

z

z

john

t

〈e, t〉

〈t〈e, t〉〉

λP .want(P )

t*

y

e

y

}

Figure 15: Partial Semantic Derived Tree Set for (10)

To illustrate the example in question, we
present the partial derived structure in Figure 15,
showing the stage at whichJohn has combined
with refuse, which has in turn combined withwant
after a type-shift over that predicate’s open sub-
ject position. At this stage,wanthas the described
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3-component structure. This will combine with
visit via type-shifting. One wrinkle at this point
is that our type-shifting operation has to this point
only dealt with 2-member MCSs. Either the type-
shifting operation can be re-defined to allow this
triplet, or our preferred interpretation at this point
is to maintain that a single link is going to be cre-
ated, and we rely upon the constraints of the MCS
such that the components will eventually collapse
into a single tree structure, needing only one link.

As argued in the paper where these structures
are introduced, we believe that, with some deriva-
tional flexibility, they make certain scopes avail-
able which are not otherwise derivable. In this
case, as bothwantandevery candidatewill com-
bine via a type-shift targeting the same node (the
root of the scope part ofvisit), full freedom for
multiple adjoining is possible, so long as all vari-
ables are properly bound. Thus, the tree com-
ponent carrying the universal quantifier should
be able to intervene between the twot-recursive
components ofwant, deriving the desired reading.
For more details on these scope possibilities, we
refer readers to the cited paper.

6 Conclusion

In this paper, we have sought a more restric-
tive framework for linking syntactic and semantic
trees in STAG. Combining our modified seman-
tic representations with the type lifting operation
provides us a principled account for the creation
of the derivational links which captured the simul-
taneous substitution and adjoining of quantifica-
tional MCSs. Extending this operation to type-τ
temporal variables, we have shown how embed-
ded quantifiers can scope over raising and ECM
predicates. It remains for future work to develop
a fully fleshed-out account of the temporal system
sketched here, including the links between open
type-τ variables and multiple possible syntactic
positions where different clauses may adjoin.
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Abstract

Even though Minimalist grammars are
more powerful than TAG on the string level,
the classes of tree languages the two de-
fine are incomparable. I give a constructive
proof that if the standard Move operation in
Minimalist grammars is replaced by Reset
Lowering, every TAG tree language can be
generated. The opposite does not hold, so
the strong generative capacity of Minimal-
ist grammars with Reset Lowering exceeds
that of TAG.

1 Introduction

The comparison of grammar formalisms with re-
spect to their expressive power has been essen-
tial to furthering our understanding of their inner
workings (Weir, 1988; Joshi et al., 1991; Vijay-
Shanker and Weir, 1994). Considering a formal-
ism in isolation only takes us so far, it is by con-
necting it to other proposals that we see which
parts are indispensable, why this is the case, and
how they grant the grammar its power.

In recent years, significant attention has been
devoted to the comparison of TAG and Minimalist
grammars (MGs; Stabler, 2011). These two for-
malisms are interrelated in peculiar ways. MGs
are weakly equivalent to MCFGs (Michaelis,
1998; Michaelis, 2001; Harkema, 2001) and thus
subsume TAG on the string level. But with respect
to the tree languages they generate, the two are
in fact incomparable (Fujiyoshi and Kasai, 2000;
Mönnich, 1999; Mönnich, 2006; Mönnich, 2007;
Kobele et al., 2007), due a profound difference in
how trees are cut up and reassembled in the re-
spective formalisms.

What gives TAGs an edge over MGs is the
limited kind of context-free tree manipulation
granted by tree adjunction. Tree adjunction slices
a tree in half and “glues” it back together with
new material inserted in the middle, similar to
how context-free string languages insert new sub-
strings inside an existing string. This allows TAGs
to generate tree languages that satisfy certain
context-free path conditions, e.g. that a branch
must be of the form anbn when read from the root
towards the leaf.

In this paper, I show that the chasm between
MGs and TAGs can be overcome by replacing the
standard Move operation with Reset Lowering.
The idea builds on earlier work of mine in Graf
(2012), where I present a general schema for en-
riching MGs with new variants of Move without
increasing their weak generative capacity. Using
Reset Lowering, it is straight-forward to translate
(suitably preprocessed) TAG derivation trees into
Minimalist derivation trees that encode the same
derived trees (modulo empty nodes left behind by
movement).

Organization. I first introduce MGs with Reset
Lowering in Sec. 2. The presentation is slightly
informal, but all technical details can be deduced
from Graf (2012). The remainder of the paper
is devoted to the translation from TAG to MGs
(Sec. 3). After a few remarks on how a given
TAG’s elementary trees can be brought in line
with the kind of X′-like phrase structure template
used by MGs (Sec. 3.2), I describe the actual
translation in Sec. 3.3. I also discuss how the out-
put of the translation can be guaranteed to be a
well-formed Minimalist derivation tree language
(Sec. 3.4). Some familiarity with TAG and MGs
is presupposed on the reader’s part.
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2 Minimalist Grammars with Reset
Lowering

MGs are a highly lexicalized framework using
two basic operations, Merge and Move. Merge
combines two distinct trees and projects a label
in an X′-style fashion, whereas Move applies to a
single tree t, takes some subtree s of t and puts
it into the specifier of the currently highest phrase
of t. Every lexical item (LI) is associated with a
sequence of Merge and Move features that need
to be checked by these operations in the order that
they occur in. Both types of features come in two
polarities, positive and negative. By convention,
every LI l has exactly one negative Merge feature
(its category feature), which all of l’s positive po-
larity features must precede and all other nega-
tive polarity features must follow. If two LIs have
matching features of opposite polarities as their
first unchecked feature, the corresponding opera-
tion is triggered. By the end of the derivation, all
features must have been checked off except for the
category feature of the LI that projects the root of
the tree, which must be a specifically designated
final category.

The MG apparatus can be viewed as a combi-
nation of well-formedness conditions on deriva-
tion trees combined with a mapping from deriva-
tion trees to derived trees. Graf (2012) uses this
perspective to generalize both components along
several dimensions while keeping MGs within the
bounds of MCFLs. Three parameters are of in-
terest here. First, every positive feature f is also
specified for directionality, indicating whether the
subtree headed by the LI with the matching fea-
ture for f is the left or the right daughter of the
root of the newly constructed tree. Second, the
size of the constituent carried along by an LI l
that undergoes movement is no longer fixed to the
entire phrase headed by l but can be specified ex-
plicitly for each feature. Third, the target site of
Move is no longer restricted to a c-commanding
position; any position that can be picked out by
a formula of monadic second-order logic is suffi-
cient.

The expanded feature system and the Minimal-
ist lexicons one can build from them are defined
as follows:

Definition 1. Let BASE be a non-empty finite
set of feature names. Furthermore, OP :=
{merge,move}, POL := {+,−}, SIZE ⊂ N fi-

nite, and DIR := {λ, ρ} are the sets of opera-
tions, polarities, sizes, and directionality parame-
ters, respectively. A feature system is a non-empty
set Feat ⊆ BASE × OP × POL × SIZE × DIR.

Definition 2. Given a string alphabet Σ and fea-
ture system Feat , a Minimalist lexicon is a finite
subset of Σ× {::} × Feat .

Note that the double colon serves only cosmetic
purposes, and that features must still appear in the
specific order described at the beginning of the
section. Moreover, not all components are always
meaningful: SIZE is irrelevant for all Merge fea-
tures, DIR for all negative polarity features.

Derivation trees play a central role in this pa-
per. Their leaves are labeled by LIs, while binary
branching nodes are labeled Merge and unary
branching ones Move. The crucial difference be-
tween derivation trees and derived trees is that
movement is only indicated by the presence of a
Move node marking its target site, while the sub-
tree to be displaced remains in situ (skip ahead to
Fig. 1 for an example).

The main duty of derivation trees is to encode
the operations of the Minimalist feature calculus.
Counting from an LI l towards the root, the i-
th node is associated to the i-th positive polar-
ity feature of l (if it exists). Every interior node
mode must be associated to exactly one feature
of exactly one LI — its feature associate — and
every positive polarity feature of every LI must
be a feature associate of exactly one node. The
LI carrying an interior’s node feature associate
is also called its lexical associate. Furthermore,
there must be a matching feature for every inte-
rior node’s feature associate, where two features
match iff they agree on their name, operation, and
size, but have opposite polarities.

In general, there will be many matching fea-
tures, but only one of them can be involved in
checking off an interior node’s feature associate.
How this feature is determined varies between
Merge and Move. For a Merge node n with lex-
ical associate l, it is the category feature of the
unique LI l′ 6= l that is the lexical associate of a
node immediately dominated by n in the deriva-
tion tree. For n a Move node, on the other hand,
the feature is determined via occurrences, where
the definition of occurrences depends on the type
of movement to be modeled.

I only present the definition for the type of
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movement used throughout this paper, Reset Low-
ering. First, the k-root of l is the unique node n
such that the shortest descending path from n to l
has length k. The 0-root of l is l itself.

Definition 3. A Move nodem associated to a fea-
ture f of size k is a potential i-occurrence of l iff
the i-th negative Move feature of l matches f and
the k-root of l c-commands m in the derivation
tree. It is a potential occurrence of l iff it is a po-
tential i-occurrence of l for some i > 0. It is an
i-occurrence of l iff it is a potential i-occurrence
of l and there is no l′ 6= l such that the k-root of l
c-commands l′ and n is a potential occurrence of
l.

Intuitively, Move node n is an i-occurrence of l
iff I) l has the right kind of feature, and II) the root
of the subtree to be displaced c-commands n (i.e.
the target site), and III) no other LI that is closer
to n satisfies requirements I) and II).

Now the distribution of Move nodes can be reg-
ulated by two conditions.

Move. For every LI l with negative Move fea-
tures f1, . . . , fn, there exist distinct nodes
m1, . . . ,mn such that mi (and no other
node) is the i-th occurrence of l, 1 ≤ i ≤ n.

SMC. Every Move node is an occurrence of ex-
actly one LI.

This ensures in a purely tree-geometric fashion
that all movement features in the derivation get
checked.1 Given a grammar G with lexicon L, its
Minimalist derivation tree language is the set of
all derivations that can be assembled from items
in L and satisfy the conditions above.

Once the occurrences of all LIs l are known,
the mapping from derivation trees to derived trees
is straightforward. First, a branch is drawn from
o to the respective k-root of l, where o is the i-
occurrence of l with the highest value for i. Af-
terwards, the branch from the k-root to its mother
is removed, so that o is the only mother of the k-
root now. When this has been done for all LIs,
any remaining unary branching nodes are given
the empty string ε as their second daughter. The
proper linearization of the derivation tree is con-
trolled by the directionality of the positive fea-

1For Reset Lowering, it also implies that every LI has
at most one negative movement feature of size k (otherwise
every Move node c-commanded by its k-root would count as
an occurrence, in violation of Move).

tures. Finally, it only remains to relabel the in-
terior nodes by the distinguished symbols < and
>, which point in the direction of the projecting
head — an interior node is labeled< iff its feature
associate has directionality ρ.

Let us finish with an example grammar for the
language anbn, n ≥ 2. An easy way of generating
it is to create multiple instances of ab and then
lower each σ ∈ {a, b} into the specifier of the
next lowest σ. The grammar in Fig. 1, with f as
its only final category, does just that. For the sake
of succinctness, Merge features are given in lower
case, Move features in upper case, polarities as
superscripts, directionality as subscripts, and size
in square brackets.

It should be easy to see that this grammar can
be extended to an1 . . . a

n
k for any choice of k, prov-

ing that MGs with Reset Lowering trump TAG in
terms of weak generative capacity (possible re-
strictions will be hinted at in Sec. 3.3.6). The
same holds for the weakly equivalent standard
MGs, though, yet they cannot generate all TAG
tree languages. The translation presented in the
next section proves that MGs with Reset Lower-
ing can.

3 The Translation Procedure

3.1 Overview

The mapping from TAGs to MGs proceeds in
three stages. First, the TAG grammar must be
preprocessed to accommodate MGs’ restriction
to binary branching, X′-like tree structures. Af-
terwards, the translation proper is defined over
derivation trees in a piece-wise by case fashion.
This is done via three three functions φ, µ and
τ . The role φ is to determine which features are
needed for which nodes, and µ uses this informa-
tion to transfer elementary trees in fragments of
Minimalist derivations, which are then pieced to-
gether by τ . The specifics of µ vary depending
on what kind of TAG operation needs to be em-
ulated. While substitution is easily handled by
standard Merge, reigning in adjunction via Reset
Lowering depends on a trick: instead of adjoining
tree u at node n, one can Merge it as a sister of
n and subsequently lower the subtree rooted in n
to where the foot node would be in u. The proce-
dure is sketched in Fig. 2. After the derivation tree
transduction from TAGs to MGs is put in place, it
only remains to ensure that the resulting MG does
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a1) a :: A+
ρ [0] a-lo− b1) b :: B+
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not overgenerate. This is a simple task, though,
thanks to the attractive closure properties of MGs
(Graf, 2011; Kobele, 2011).

3.2 Step 1: Preprocessing

We already saw in Sec. 2 that the tree languages
derived by MGs are somewhat peculiar in that
they are strictly binary branching and follow a
projection scheme inspired by X′-theory. While
the usual binarization strategies can easily be ap-
plied to TAG and need not be discussed here, im-
posing projection on an arbitrary TAG is slightly
more tricky. Since not all elementary trees of a
given TAG may necessarily contain any LIs, there
might be no upper bound on the length of the
shortest descending path in a derived tree from
some interior node to some LI. This is impossi-
ble in MGs and thus needs to be prevented. A
simple, albeit not particulary elegant solution is
to insert empty LIs where necessary. How exactly
one goes about this has no bearing on the transla-
tion procedure as long as every interior node with
a non-terminal symbol is a projection of some LI.

Since every TAG is required to obey projection,
it makes sense to introduce some extra notation to
talk about trees more efficiently. The label of a
node n is given by `(n). For every node n, its
head ~(n) is the leaf l that n is a projection of. If
t is a tree with root r, then ~(t) := ~(r). In the
other direction, π(l) := p1 · · · pn is the string of
all projections of l such that each p1 is the par-
ent of l and each pi is immediately dominated
by pi+1, 1 ≤ i < n. A node n is a maximal
projection of l iff l = n or n the last symbol of
π(l). Note that l can be its own maximal projec-
tion even though it is never included in π(l). Parts
of trees will sometimes be specified via functional
notation such that f(a, b) is a tree in which f im-
mediately dominates a and b.

The following terminology will be adopted to
avoid confusion brought about the fact that TAG
allows for terminal nodes to be decorated with
non-terminal symbols: leafs labeled with termi-
nal symbols will be referred to as LIs, while non-
terminal is used exclusively for interior nodes.
Keep in mind that thanks to the projection require-
ment the only nodes with non-terminal symbols
that aren’t part of some LI’s projection are foot
nodes and substitution nodes.

3.3 Step 2: Translating TAG Derivations
3.3.1 Derivation Trees

The translation τ from TAGs to MGs operates
at the level of derivation trees, which for TAG are
defined as follows. Let E be some finite set of
elementary trees and ν some function that assigns
each e ∈ E a unique name. A derivation tree over
E is an ordered tree over the (unranked) alphabet
Σ := {ν(e) | e ∈ E} × ({ε} ∪ A), where A is
the smallest set containing an address for every
node in every e ∈ E (as a notational shorthand,
e is often used instead of ν(e) where convenient).
Since every e ∈ E is finite in size and E has fi-
nite cardinality, A is finite, too, wherefore Σ is
indeed an alphabet. If node n in derivation tree t
is immediately dominated by node m such that m
and n have labels 〈u, a〉 and 〈v, b〉, respectively,
that is to be interpreted as tree v adjoining in tree
u at the node p with address b (we require that
this node exists in u). Often p will simply be re-
ferred to as b. The second component of a label
is ε iff it is the label of the root of the derivation
tree. Furthermore, if nodes m and n are siblings,
their labels must differ in their second component.
That is to say, no two trees ever adjoin to the same
node, which guarantees that the branching factor
of derivation trees is bounded and that there is a
unique derived tree language. Note that elemen-
tary trees containing foot nodes and substitution
nodes must have at least two nodes total. For ev-
ery TAGGwith setE of elementary trees, it holds
that its derivation tree language is a subset of the
set of all derivations over E.

3.3.2 Single Elementary Tree
We start with the simplest case, a derivation

tree t that consists of only one node u. Note that
u cannot contain a foot node or substitution node,
for then t would not be well-formed. Hence every
node in u is either an LI or part of the projection
of some LI. We convert u into an MG derivation
in two steps.

For every LI n in u, φ(n) := 〈`(n),merge,−〉.
If n is a non-terminal and its left daugh-
ter d is a maximal projection, φ(n) :=
〈`(~(d)),merge,+, λ〉. Substitute ρ for λ if d is
the right daughter of n. Since u is binary branch-
ing and every non-terminal in u must be a projec-
tion of some LI, φ is well-defined for all nodes in
u.

Now for every LI n with π(n) := p1 · · · pn,
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let µ(n) := `(n) :: φ(p1) · · ·φ(pn) φ(n). For
all non-terminals n, µ(n) is the second compo-
nent of φ(n), which so far is restricted to Merge.
As φ before, µ is well-defined for all of u. This
carries over to the standard extension of µ from
nodes to trees, which is denoted by µ̂. It is easy to
see that µ̂maps u to its corresponding MG deriva-
tion. The required feature values are determined
by φ — including values for the linear order of
nodes — and then instantiated on the heads of the
respective projections. Interior nodes are univer-
sally labeled Merge. Therefore the derived tree
encoded by the Minimalist derivation µ̂ is identi-
cal to u (under a deterministic relabeling of inte-
rior node labels); we may safely set τ(t) := µ̂(u).

3.3.3 Substitution
Now consider a derivation t in which trees

v1, . . . , vn substitute into tree u at addresses
a1, . . . , an (and there is no vj 6= vi, 1 ≤ i ≤ n
that is dominated by u in t). Then u contains n
distinct substitution nodes s1, . . . , sn, where n is
bounded by the size of u. By assumption (cf.
Sec. 3.2) there are at least two nodes in u. Be-
cause substitution nodes must be leaves, this en-
tails that each si has a parent pi, which is the pro-
jection of some LI.

Let φ(pi) := 〈`(~(vi)),merge,+, λ/ρ〉 if si is
the left/right daughter of pi. In addition, µ(si) :=
�i. Then τ(〈u, a〉 (〈v1, a1〉 , . . . , 〈vn, an〉)) is
the result of replacing each �i in µ̂(u) by
τ(〈vi, ai〉 (t1, . . . , tk)), where t1, . . . , tk are all
the subtrees immediately dominated by vi in t,
k ≥ 0. This yields once again a well-formed Min-
imalist derivation, as the feature instantiation of
pi and ~(vi) via φ ensures for all 1 ≤ i ≤ n that
~(vi) is selected by ~(pi).

3.3.4 Adjunction
Finally, suppose that trees v1, . . . , vn adjoin

into tree u at a1, . . . , an. Each vi contains a
(unique) foot node fi, which has a mother mi that
is the projection of some LI. This holds because
vi consists of at least two nodes and we prepro-
cessed all elementary trees in order to make them
projective. Note that for every TAG, adjoining v
at the foot node of u is equivalent to adjoining u at
the root of v, so we do not consider the case where
ai is a foot node. Adjunction at substitution nodes
is superfluous for the same reason and usually for-
bidden. The only remaining cases, then, are for ai

to be an LI or some projection thereof.
The translation of vi is less involved than

that of u, so it makes sense to discuss it first.
For � some distinguished symbol, µ(fi) := �.
The � is used to mark the foot node fi for
deletion by τ . As for mi, we set φ(mi) :=
〈◦,move,+, connection(vi)− 1〉, where ◦ is
some arbitrary feature name. This turns mi into
a Move node that will serve as the landing site for
a subtree in u as sketched in Fig. 2. The function
connection(vi) determines the size of the move-
ment feature and returns integer n iff the Merge
node immediately dominating �i in µ̂(u) is the
n-th projection of some node. In order to under-
stand why this is the desired value, we need to
look at the translation of u next.

For each ai in u, a Merge node must be added
immediately above it that serves in selecting vi.
These Merge nodes require new features on ~(ai).
Moreover, ~(ai) must also carry the requisite
number of Move features to undergo lowering,
and all of them must have the correct size value.
This requires special definitions for µ(ai), φ(ai),
and µ(~(ai)), respectively. I only discuss the case
where ai is an interior node. The procedure for ai
an LI is almost the same (see Fig. 3).

The value of φ(ai) is the feature string
[φ] 〈`(~(vi)),merge,+, λ〉, where [φ] is what φ
would return at ai if it was a normal non-terminal
(see Sec. 3.3.2). The corresponding part of the
Minimalist derivation is µ(ai) := Merge(�i, [µ]),
where [µ] is what µ would return at ai if it was
a normal non-terminal. These notational contor-
tions emulate the effect of treating ai as usual ex-
cept that a Merge node is added above it that vi
can be attached to.

Due to the complexities of the movement
mechanism in the specification of ~(ai), this part
is best split out into a separate component. Let
ξ(x, n) := 〈◦,move,−, δn〉 if some ai is the n-th
projection of x, and ε otherwise. The integer δn is
given by | {1 ≤ j < n | ξ(x, j) 6= ε} |. As a more
compact notation, let ξni (x) := ξ(x, n) ξ(x, n −
1) · · · ξ(x, i + 1) ξ(x, i) be the string con-
catenation of the outputs of ξ(x, i), . . . , ξ(x, n)
listed in reverse. Now for π(~(ai)) :=
p1 · · · pz , we define µ(~(ai)) := `(~(ai)) ::
φ(p1) · · ·φ(pz) φ(~(ai)) ξ

z
1(~(ai)).

The peculiar formula for δn stems from a com-
plication in how projections should be counted.
Recall from the discussion in Sec. 2 that a fea-
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ture’s size plays an essential role in the mapping
from derivation trees to derived trees by virtue of
picking out the root of the moved subtree. For
our purposes, a size value j should refer to the
j-th projection of ~(ai) in u. But the mapping
to derived trees operates over Minimalist deriva-
tion trees, and since µ adds new projections for
~(ai), that node’s j-th projection in u might be
its k-th projection in the corresponding Minimal-
ist derivation tree fragment µ̂(u), k > j (see also
Fig. 2). In order to correctly compute j, though,
it suffices to know how many of the lower projec-
tions have been expanded into two Merge nodes
rather one, which can be deduced from the num-
ber of values that aren’t mapped to the empty
string by ξ.

There is still one minor problem pertaining to
adjunction at the root node of u when u is also
the root of the derivation tree t. In this case,
~(u) won’t get its category feature 〈l,merge,−〉
checked, so it cannot undergo movement. This
can be fixed by adding another LI on top of the
derivation, as was done for the example grammar
in Fig. 1: For ai the root of u, u the root of t, and f
some feature name, µ(ai) := Merge(Merge, ε ::
〈`(~(ai)),merge,+, λ〉 〈f,merge,−〉).

With these pitfalls out of the way, it
only remains for us to assemble the individ-
ual outputs of µ into a coherent derivation:
τ(〈u, a〉 (〈v1, a1〉 , . . . , 〈vn, an〉)) is the result of
deleting every node labeled � in µ(u) and replac-
ing each �i as before.

3.3.5 Putting it All Together
The full specification of the translation proce-

dure is given in Fig. 3. For a little bit of extra
rigor, φ has been split into two functions, while
space restrictions forced the use of additional no-
tational shorthands. The result of removing all in-
stances of � from tree u is denoted by u \ �, and
u ← [t1, . . . , tn] is the tree obtained from u by
replacing each �i by ti. Given a feature f , ω(f)
is the second component of f , i.e. the type of op-
eration f regulates.

Several parameters must be kept track of
in order for the functions to be well-defined.
They are the current tree u, and its deriva-
tional daughters v1, . . . , vi with their respective
addresses a1, . . . , an. In addition, computing
connection(vi) requires access to the derivational
mother o of u, or alternatively, storage of the

value during the computation of o. The (locally
bounded) passing around of these parameters is
not made explicit in the definitions in order to
minimize notational clutter.

3.3.6 Correctness
The correctness of the translation for single

node derivations as well as instances of substitu-
tion has already been established. It should also
be clear that all cases of adjunction yield an out-
put, so τ is at least well-defined. Moreover, these
outputs are definitely Minimalist derivation trees.
It still needs to be shown, though, that they are
well-formed and that the intended derived tree can
be obtained from them. The former depends on
whether Move and SMC are satisfied. The lat-
ter follows rather straight-forwardly if this is the
case.

The definition of Reset Lowering entails that
every Move node m is an occurrence for at most
one LI. Otherwise, there would be two LIs l 6= l′

whose k-th projections both c-command m with-
out at least one c-commanding the other, which is
impossible (k is the size value of the feature as-
sociate of m). That there is at least one LI l for
every m follows from the definition of µ, which
inserts the tree containing m as the sister of the k-
root of l. The corresponding negative movement
is also instantiated on l at the right position of the
feature string. Thus SMC always holds.

Move is satisfied, too, because LI l contains a
negative movement feature iff it selects a tree con-
taining the required Move node m. Said tree can-
not contain another LI l′ that m is a potential oc-
currence for, because then there would also be an-
other Move node m′. This argument can be con-
tinued until eventually there must be a Move node
that isn’t an occurrence for any LI, or for more
than one. Either case violates SMC, yielding a
contradiction.

As a result of all this, the Move node in tree
µ̂(vi) is an occurrence of ~(ai), and for every neg-
ative Move feature on an LI there is an occurrence
m such that lowering tom yields the same derived
tree as adjunction. That this ensures the gener-
ation of the correct derived tree (modulo empty
nodes left behind by movement) only requires a
short proof by induction.

As a quick side remark, the use of only one fea-
ture name for movement features in the translation
might provoke the conjecture that Reset Lowering
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ϕ(x) :=





ϕ(x1) · · ·ϕ(xn) if x is a string of nodes x1, . . . , xn,
〈◦,move,+, connection(vi)− 1, λ/ρ〉 if foot node fi is the left/right daughter of x,
〈`(~(vi)),merge,+, λ/ρ〉 if ai is a substitution node and the left/right daughter of x,
〈`(~(y)),merge,+, λ/ρ〉 if the daughter y of x is not part of the same projection,
〈`(x),merge,−〉 if x is an LI.

φ(x) :=





ϕ(x) 〈~(vi),merge,+, λ〉 if x = ai and x is an interior node,
〈~(vi),merge,+, λ〉ϕ(x) if x = ai and x is an LI,
ϕ(x) otherwise.

ξ(x, n) :=

{
〈◦,move,−, n+ | {1 ≤ j < n | ξ(x, j) 6= ε} |〉 if some ai is the n-th projection of x,
ε otherwise.

µ(x) :=





Merge(Merge, ε :: 〈`(~(x)),merge,+, λ〉 〈f,merge,−〉) if x = ai is the root of u & u the root of t,
`(x) :: φ(π(x)) φ(x) ξ(x, n) · · · ξ(x, 1) if some ai equals x or is a projection of x,
Merge(�i, ω(φ(x))) if x = ai and x is an interior node,
Merge(�i, φ(x)) if x = ai and x is an LI,
�i if x is a substitution node,
� if x is a foot node,
ω(φ(x)) if x is an interior node,
`(x) :: φ(π(x)) φ(x) if x is an LI.

µ̂(x(x1, . . . , xn)) :=

{
µ(x) if n = 0,
µ(x)(µ(x1), . . . , µ(xn)) otherwise.

τ(〈ν(e), a〉 (t1, . . . , tn)) :=

{
µ̂(e) \ � if n = 0,
(µ̂(e) \ �)← [τ(t1), . . . , τ(tn)] otherwise.

Figure 3: Definition of the translation from a TAG derivation t to the corresponding Minimalist derivation;
where multiple conditions are satisfied at once, only the highest one applies; see Sec. 3.3.5 for an explanation of
notation.

MGs satisfying this condition are weakly equiva-
lent to TAGs (as Graf, 2012 erroneously does).
However, even with just one feature name Reset
Lowering MGs can still generate an1 , . . . , a

n
k for

arbitrary k. This is so because features with dif-
ferent size values are considered distinct by SMC
despite their identical feature name. For example,
the grammar in Fig. 1 can be made to use only one
feature name by having b merge with an empty
head before selecting a so that the size value of
its movement feature can always be one bigger
than that of a’s. If this loop-hole can be patched,
though, a weak equivalence proof seems feasible.

3.4 Step 3: Intersection
The correctness of the translation only entails that
the output of τ applied to a TAG derivation is
a Minimalist derivation that can be mapped to
the intended derived tree. Nothing so far guar-

antees that translating the TAG derivation tree
language actually yields a Minimalist derivation
tree language (MDTL), as not every set of well-
formed Minimalist derivations is a well-formed
MDTL. The closure of MDTLs under intersec-
tion with regular tree languages (Graf, 2011; Ko-
bele, 2011), however, makes it straight-forward to
construct an MDTL from the output of the trans-
lation.

It is a well-known fact that the image of a reg-
ular tree language under a linear transduction is
also regular (Gécseg and Steinby, 1984), and τ is
exactly such a (non-deterministic) transduction.2

As TAG derivation tree languages are regular, so
is the tree language produced by τ applied to a
given TAG GT . Now let GM be the MG whose
lexicon contains every LI that occurs in some tree

2Given a look-ahead of 1, it is even deterministic.
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in τ(GT ). The intersection of GM ’s derivation
tree language with τ(GT ) yields the MDTL of
some MG that generates the same derived trees
as GT .

4 Conclusion

I have given a productive proof via a translation
procedure that MGs with Reset Lowering instead
of standard Move can generate all TAG tree lan-
guages. I also showed that they are more powerful
than TAGs on a string level, but a stronger version
of SMC might actually be sufficient to make the
two formalisms equivalent in this respect. For fu-
ture work, it will be interesting to see if the trans-
lation can be extended to generalizations of TAG
such as the one in Rogers (2003). If so, this would
be an indication that the relation between adjunc-
tion and Reset Lowering isn’t merely accidental
but provides a fresh perspective on TAG.
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Abstract

In this paper we present an analysis of
locative alternation phenomena in Russian
and English within a frame-based LTAG
syntax-semantics interface. The combina-
tion of a syntactic theory with an extended
domain of locality and frames provides a
powerful mechanism for argument linking.
Furthermore, the concept of tree families
and unanchored trees in LTAG allows for a
decomposition of meaning into lexical and
constructional components.

1 Introduction

There is a number of formalisms that capture the
idea that the meaning of a verb-based construction
depends both on the lexical meaning of the verb
and on the construction in which the verb is used
(Goldberg, 1995; Van Valin and LaPolla, 1997).
The question is how exactly the meaning compo-
nents are distributed and how they combine.

In (Kallmeyer and Osswald, 2012a) a combi-
nation of Lexicalized Tree Adjoining Grammars
(Joshi and Schabes, 1997) and Frame Semantics
is introduced. Since LTAG displays an extended
domain of locality and, related to this, elementary
trees contain slots for all arguments of their lex-
ical anchor, LTAG is particularly well-suited for
combining it with a frame-based compositional
semantics. When coupling an elementary tree
with a semantic frame, as proposed in (Kallmeyer
and Osswald, 2012a), syntactic arguments can be
directly linked to their counterpart in the seman-
tics. Semantic composition is then modeled by
unification which is a result of performing adjunc-
tions and substitutions. Figure 1 provides a sim-
ple illustration of syntactic and semantic compo-
sition.

....NP
[I= 3 ]
...

..John

....S.....

..VP.....

..NP[I= 2 ]

.

..

..V...

..loves

.

..

..NP[I= 1 ]

....NP
[I= 4 ]
...

..Mary

3

[
person
NAME John

] 


loving
EXPERIENCER 1

THEME 2




4

[
person
NAME Mary

]

Figure 1: Derivation for John loves Mary

Linguistic generalizations in LTAG are cap-
tured a) by the distinction between lexical an-
chor and unanchored elementary tree, b) by the
concept of tree families (representing subcatego-
rization frames) and c) by the factorization in the
metagrammar. Parallel to this syntactic factor-
ization, a factorization of meaning is possible as
well. The resulting framework is very flexible
with respect to the decomposition and composi-
tion of lexical and constructional units on the syn-
tax and semantics level.

In the following, we present an analysis of loca-
tive alternation that benefits from the flexibility
of this framework. The structure of the paper is
as follows. The next section presents the English
and Russian data we are dealing with in this pa-
per. Then, in section 3, we briefly introduce the
framework of frame semantics in LTAG that we
are using. Section 4 proposes an analysis of the
locative alternation in English and Russian within
this framework. In section 5, we further decom-
pose the meaning of some Russian verbs, analyz-
ing the semantics of certain prefixes that change
the verb meaning such that a locative alternation
becomes possible. Finally, section 6 concludes.
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2 The Data

(1) - (4) show basic examples of locative alterna-
tion in English and Russian. As there is no stan-
dard name for this constructions in the literature,
let us call the first variant ((1), (3)) prepositional
phrase construction, or PPC, and the second vari-
ant ((2), (4)) - instrumental case construction, or
ICC, for convenience of referring to them.

(1) John 1 loaded the hay 2 into the wagon 3 .

(2) John 1 loaded the wagon 3 with hay 2 .

(3) Ivan 1

Ivan
zagruzil
loadedperf

seno 2

hayacc

v
in

vagon 3 .
wagongen.

Ivan loaded the hay into a/the wagon.

(4) Ivan 1

Ivan
zagruzil
loadedperf

vagon 3

wagonacc

senom 2 .
hayinstr.

Ivan loaded the wagon with hay.

PPCs are traditionally analyzed as having a
change of location meaning and ICCs as having a
change of state meaning (Kageyama, 1997; Levin
and Rappaport Hovav, 1998; Goldberg, 1995).
An analysis for (1) and (2) following (Kageyama,
1997) is provided in (5). It demonstrates that there
is a difference between the two constructions, but
only the difference in the perspective is shown.

(5) a. X CAUSE [BECOME [hay
BE ON truck]]

b. X CAUSE [BECOME [truck z

BE [WITH [hay BE ON z]]]]

(6) a. [[x ACT] CAUSE [y
BECOME Ploc z] [LOAD]MANNER]

b. [[x ACT] CAUSE [z BECOME
[]STATE WITH-RESPECT-TO y]
[LOAD]MANNER]

The analysis proposed in (Levin and Rappaport
Hovav, 1998), which can be found under (6), pro-
vides more detailed information about the differ-
ence between PPCs and ICCs. (6-a) tells us that
the hay changes its location as a result of the load-
ing event, while (6-b) describes that the result is a
change in the state of the wagon. One can notice
that in (5) there is no explicit reference to the verb
itself and the only component that is taken from
the verb meaning is that the result of the loading
is that the THEME is on the LOCATION in the end.

The question that arises if one looks carefully
at what the sentences in (1) - (4) mean is whether

it is really the case that there is no change of state
in PPC examples? In fact, any loading activity
leads to both a change of location of the content
and some change of state of the container (if it is
specified), just different components of the effect
become more salient. As there is actually only
one action, we propose the following formaliza-
tion: the verb describes a change of location and
the result state depends on the end amount of PA-
TIENT at the GOAL. If this amount is equal to
the capacity of the container, we get the change
of state effect. If it is equal to the total amount
of content, we have a holistic change of location
effect.

Although at first Russian examples look sim-
ilar to the English ones, there are a number of
differences. While (4) has the same meaning as
(2), (3) means that all the hay was loaded. On the
other hand, if we consider imperfective examples
(7) and (8), we find no holistic effect in either ICC
and PPC case. Verbs gruzit’ ’to load’ and mazat’
’to spread’, ’to cover’ (examples (9) and (10)) are
the only non-prefixed verbs that allow locative al-
ternation in written language1. Other verbs allow
only one construction in their non-prefixed variant
(see (11) and (12)) and both constructions, when
a prefix za- is added (see (13) and (14)). A prefix
na- makes the verb perfective but does not change
the set of constructions it can participate in, like
in (15) and (16).

(7) Ivan 1

Ivan
gruzil
loadedimp

seno 2

hayacc

v
in

vagon 3 .
wagongen.

Ivan was loading the hay into a/the wagon.

(8) Ivan 1

Ivan
gruzil
loadedimp

vagon 3

wacc

senom 2 .
hayinstr.

Ivan was loading the wagon with hay.

(9) On
He

namazal
distributedperf

maslo
butteracc

na
on

hleb.
breadacc

He distributed butter over a piece of bread.

(10) On
He

namazal
coveredperf

hleb
breadacc

maslom.
butterinstr

He covered a piece of bread with butter.

(11) On
He

sypal
putimp

sahar
suggaracc

v
in

banku.
canacc

He was putting sugar in a/the tin.

(12) *On
He

sypal
covered/filledimp

banku
tinacc

saharom.
sugarinstr

1A couple more can be found in spoken language, for
example stelit’ ’to cover’
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He covered/filled the tin with sugar.

(13) On
He

zasypal
putperf

sahar
suggaracc

v
in

banku.
canacc

He put sugar in a/the tin.

(14) On
He

zasypal
covered/filledperf

banku
tinacc

saharom.
sugarinstr

He covered/filled the tin with sugar.

(15) On
He

nasypal
putperf

sahar
suggaracc

v
in

banku.
canacc

He put sugar in a/the tin.

(16) *On
He

nasypal
covered/filledperf

banku
tinacc

saharom.
sugarinstr

He covered/filled the tin with sugar.

The aim of this work is to provide an analysis
that correctly models the following: a) holistic ef-
fects for English ICC constructions, b) holistic ef-
fects for Russian PPC and ICC constructions with
perfective verb, and c) no holistic effect in other
cases. We also aim at providing an explanation
of why some verbs allow locative alternation and
some do not and how the addition of a prefix to
a Russian verb changes the set of constructions it
can participate in.

3 LTAG and Frame Semantics

Following (Kallmeyer and Osswald, 2012a), we
adopt a syntax-semantics interface that links a sin-
gle semantic representation (in our case, a se-
mantic frame) to an entire elementary tree and
that models semantic composition by unifications
triggered by substitution and adjunction. In this
we partly follow (Gardent and Kallmeyer, 2003;
Kallmeyer and Romero, 2008), except that our fo-
cus is on event semantics and the decomposition
of lexical meaning and we therefore use frames.

Formally, frames are taken to be typed feature
structures. Each elementary tree is linked to a fea-
ture structure and unification is triggerd via the
feature unifications in the syntax. For this pur-
pose, some of the nodes in the elementary trees
have semantic features such as I (for inidividual)
and E (for event). Their unifications cause equa-
tions between metavariables. As a result, the cor-
responding semantic feature structures are uni-
fied as well. A simplified example was given in
Fig. 1 where the substitutions trigger unifications
between 1 and 3 and between 2 and 4 , which
leads to an insertion of the corresponding argu-
ment frames into the frame of loves.
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..VP
[E= 4 ]
...

..V[E= 4 ]...

..walked

.

..

..NP[I= 5 ]

....VP
[E= 8 ]
.....

..PP
[I= 7 ]
.....

..NP[I= 7 ]

.

..

..P...

..along

.

..

..VP∗[E= 8 ]

4




directed-motion-activity
EFFECTOR 5

PATH




path

STARTP 2

ENDP 3




MANNER WALKING




8




directed-motion

PATH

[
path
REGION 10

]



7

[
AT-REGION 9

]

10 ⊆ 9

Figure 2: Path modification

An example taken from (Kallmeyer and Oss-
wald, 2012a) involving an adjunction is given in
Fig. 2 where the path of a walking activity is fur-
ther restricted by an along ... PP modifier. The
frames express that the AT-REGION of the NP em-
bedded under the PP (for instance the brook in
John walked along the brook) contains the RE-
GION of the path. This containment is expressed
as an additional relation between feature values.

Note that the feature structures used for seman-
tics are more complex than the syntactic feature
structures used in LTAG. However, this complex-
ity is limited to the semantic part, the complexity
of syntactic parsing remains unchanged.

As detailed in (Kallmeyer and Osswald,
2012a), LTAG’s decomposition of elementary
trees into a) unanchored trees and lexical anchor
and b) tree fragments of unanchored trees in the
metagrammar can be paired with a correspond-
ing decomposition of meaning, in particular into
contributions of constructions and of lexical ele-
ments. In this paper, we will exploit this for a dis-
tinction of the meaning contributions of ICC and
PPC constructions and of their lexical anchors.

4 Locative Alternation: The Analysis

In this section, we will examine the possible unan-
chored trees involved in our examples of loca-
tive alternations, relating the elementary tree tem-
plates to the semantics of the construction. Fur-
thermore, we will detail the semantics contributed
by lexical anchors and we will show how syntactic
composition triggers semantic frame unification.

In the case of the PPC in English, the seman-
tics of the whole phrase can be compositionaly
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Figure 3: Signature for scalar change of location

derived from the semantics of the verb and its ar-
guments, while in the case of the ICC there is a
part of the meaning, that comes from the construc-
tion itself. The goal now is to provide the meaning
of the ICC and of the verbs allowing locative al-
ternation such that in combination they form the
desired frame representation of the semantics of a
sentence.

4.1 Feature Geometry

Following ideas in (Osswald and Van Valin, Jr.,
2012) where one can find a discussion of the rep-
resentation of events and results using Fillmores
Frame Semantics (Fillmore, 1982) we introduce
attributes of initial and result states and a scale
which is determined by its type, maximum and
minumum value. The change of state is either a
decrease or an increase of a value on an ordered
scale (a discussion of an analysis of scalar change
can be found in (Kennedy and Levin, 2008)). The
type of change of state determines the way the
change happens. For example, change of loca-
tion requires a patient and a goal and the patient
is then moved to the goal according to the scale
(for example, covered area or amount). Inside the
scale attribute the maximum value (feature MAX)
is specified, the minimum value is assumed to be
0. Some of the verbs specify a concrete initial or
result state (INIT and RESULT respectively), but
load does not have any initial or result state spec-
ified within its semantics, so it just determines the
scale with its maximum. Summarizing the ideas,
one obtains the following for our analysis of loca-
tive alternation:
• change of location and change of state are just

different interpretations of the result state of
the scalar change of location;

• a scalar change of location is described by

S

NP[I=1 ] VP

V⋄[S=
0 ] NP[I=2 ] PP[I=3 ]

S

NP[I=1 ] VP

V⋄[S=
0 ] NP[I=2 ]

Figure 4: Unanchored trees for the PPC

S

NP[I=1 ] VP

V⋄[S=
0 ] NP[I=3 ] NPINSTR

[I=2 ]

S

NP[I=1 ] VP

V⋄[S=
0 ] NP[I=3 ]

Figure 5: Unanchored trees for the ICC

PATIENT, GOAL, SCALE and initial and re-
sult values on it, which means that there is
a change of location of PATIENT to GOAL,
such that the amount of PATIENT at the GOAL

changes from the initial to the end value
(cf. Fig. 3);

• the value of SCALE is of type scale with pos-
sible subtypes such as volume, or area, which
can also have subtypes such as capacity and
amount for volume or coverage for area.

4.2 The Construction

So far, we were looking only at examples where
both container and content are realized. However,
the constructions that are being discussed can also
be used when only the direct object of the verb is
present; in this case, they will have the same dif-
ference in semantics. Therefore, for the PPC and
ICC construction, we obtain the unanchored ele-
mentary trees shown in Fig. 4 and Fig. 5.2 In the
ICC trees, the second NPINSTR stands for both
NP in instrumental case in Russian and PP with

2For this paper, we restrict ourselves to the base trees;
other trees (for extraction and passivization, for instance) are
of course in the tree family as well.
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Figure 6: Frame for the ICC (English)
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Figure 7: Frame for the ICC (Russian)

preposition with in English.3

Let us present our analysis by going through
the decomposition of the verbal trees for (1) - (4).

Figures 6 and 7 show the frames for the unan-
chored trees for the ICC in English and Russian
respectively. The frame for the PPC is common
for both languages and represented in Fig. 8. In all
three frames, the scalar change of location is em-
bedded under the EFFECT attribute of the causa-
tion event that describes the meaning of the verbal
construction. The ICC frame in Fig. 6 expresses
that in the initial state there is nothing at the GOAL

and in the result state the amount of PATIENT at
the GOAL is equal to the maximum value speci-
fied in the SCALE inside the GOAL. This gives us
the meaning that if the GOAL is a container and
thus has a capacity scale, it’s result state will be
full. As already mentioned, in Russian this is not
necessarily so. Therefore, in Fig. 7, the effect of
the causation is less specified. The part which is

3Note that, in order to adjoin VP modifiers, a more binary
structure is actually needed. In this respect, our trees are
slightly simplified for the sake of this paper.
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Figure 8: PPC frame (English, Russian)
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Figure 9: Frame for load (English, imperfective in
Russian)

more specified in the English ICC construction,
compared to the Russian one, comes with the per-
fectivizing prefixes, like na- and za-. The PPC
frame (Fig. 8) expresses that the relevant scale for
the change of location is provided by the patient.

4.3 Semantic Frame Composition

Let us first go through the full composition of (2).
Fig. 9 gives the lexical semantics of load. When
anchoring the ICC construction with load, yield-
ing the tree in Fig. 10, the frames from Fig. 6 and
Fig. 9 unify. The result is given in Fig. 11.

S

NP[I=1 ] VP

V[S=0 ] NP[I=3 ] NPINSTR
[I=2 ]

load

Figure 10: Elementary tree for load, ICC construction
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Figure 11: Frame for the load ICC tree (English)
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Figure 12: Frames for wagon and hay

We assume that frames for nouns such as
wagon or hay come with a SCALE attribute that
can be for instance of type capacity as for wagon
or amount as in the case of hay, see Fig. 12. When
substituting the wagon into the direct object posi-
tion, because of the linking I features, the value
3 of the GOAL feature in the frame in Fig. 11 is
unified with the wagon frame. As a result, the
maximal value on the capacity scale of the wagon
provides the value of the result state, yielding the
frame in 13. At the next step, hay is substituted
into the instrumental object slot in the tree (see
Fig. 14), causing a unification of its frame with the
value 2 of PATIENT. The resulting frame (Fig. 15)
represents that in the result state the amount of
hay in the wagon is equal to the maximal capacity
of the wagon, in other words the wagon is full. As
we have seen, the construction determines which
scale is relevant for the result state; in an ICC con-
struction it is the scale of the goal, i.e., the capac-
ity of the wagon.

In contrast to this, in the PPC construction, the
scale of the PATIENT is the relevant scale for the
scalar change of location. In the case of hay, the
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Figure 13: Frame for load wagon (ICC)
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load wagon with hay

Figure 14: Tree for load wagon with hay

change can be up to the total amount of hay. How-
ever, as expressed in the PPC frame, the RESULT

value is not necessarily equal to the MAX value of
the relevant scale. Consequently, no holistic effect
arises in this case.

5 Morphological Decomposition

Let us now turn to the Russian examples (11) -
(16). There are two questions we aim to answer:
• How does holistic meaning arise?
• Why does adding the prefix za- make some

verbs eligible for both ICC and PPC?
The idea is that most verbs, for example sypat’

’to pour, but for non-liquids’, have a restriction
on the type of their relevant scale (see frame in
Fig. 16), which does not allow them to com-
bine with nouns that do not have an appropri-
ate scale type, like banka ’can’ whose frame is
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Figure 15: Resulting frame for the ICC and load
wagon with hay

shown in Fig. 17. Note that, in contrast to the
previous section, we now allow multivalued (i.e.,
set-valued) scale values for cases where several
scales are possible. Can for instance has both a
surface (area) that can be covered and a volume
(capacity) that can be filled. When unifying with
such a multivalued attribute, unification with one
of the values must be successfull. When adding
the noun in direct object position, the SCALE in-
side the change of location must unify with the
SCALE of the noun. In the case of sypat’ the uni-
fication fails since the type amount cannot unify
with any of the two scale types of can.

What happens when a prefix is added? First,
the perfective meaning is added (the part of the
meaning that comes together with the ICC in En-
glish), see frames for both na- (Fig. 19) and za-
(Fig. 18). Second, if the prefix za- is added, the
scale restriction is removed (20). If the prefix na-
is added, the restriction remains. As a prelim-
inary analysis of this, let us introduce attributes
that can overwrite something instead of unifying
with it. This operation is allowed only on the mor-
phological level and thus does not affect the com-
positionality of semantic derivation. The under-
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Figure 16: Frame for Russian verb sypat’
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Figure 17: Frame for banka (can)

lined SCALE attribute in the frame for za- prefix
(Fig. 18) replaces the SCALE attribute in the verb
frame and we obtain the resulting frame in 20 for
the verb zasypat’ ’to cover’, ’to fill’.4

This analysis is in line with ideas from (Filip,
2000; Filip, 2003), where the meaning of Slavic
prefixes is discussed. Both prefixes presented here
derive a perfective verb from an imperfective one,
but with different meanings: while zasypat’ is a
quantized verb, nasypat’ (as well as sypat’) is a
cummulative one and this leads to the restrictions
on the direct object type (which is here expressed
via the type of scales).

After the morphological step is computed, only
standard unification is used. However, now the
verb can participate in both the PPC and ICC con-
structions because it is now unifiable (after com-
bination with the construction frames) with ob-
jects of container type (like can), as well as with
objects of a content type (like hay or sugar).

4A more detailed investigation of the morphology-
semantcs interface is planned for future research.

34





causation

effect



scalar change

scale 11

[
scale

max 12

]

init

[
state

value 0

]

result

[
state

value 12

]





1

Figure 18: Frame for the prefix za
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Figure 19: Frame for the prefix na

As mentioned above, at the moment we assume
multiple values for the SCALE attribute of objects
like banka ’can’. An alternative solution might
be to store the object frame in the lexicon with
characteristic attributes of this object, such as a
CAPACITY attribute with a value of maximum ca-
pacity of the object, and then allow for such at-
tributes to be transformed in the SCALE attribute.
We leave this issue for future research.

Let us illustrate the multivalue approach that
we currently assume by performing the substitu-
tion of the noun banka ’can’, Fig. 17 into the tree
for the verb gruzit’ ’to load’ in the ICC. There
are two different scale types inside the object of
can available for the unification while substituting
can in a direct object position in the ICC, capac-
ity and area. As there is no restriction on the type
of the scale inside the verb, both unifications are
possibe and lead to different interpretations of ex-
ample (14): in case the capacity scale is selected,
the result state of the can is full (Fig. 21) and in
case the area scale is selected, the can is covered
(Fig. 22).
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Figure 20: Frame for Russian verb zasypat’

6 Conclusion

In this paper we present an analysis of locative
alternation phenomena in Russian and English
using the combination of an LTAG and Frame
Semantics. This analysis uses LTAG’s mecha-
nism of separation between unanchored elemen-
tary trees and lexical anchors to separate the con-
tribution of the lexical meaning from the contri-
bution of construction and follows the ideas ex-
pressed in (Kallmeyer and Osswald, 2012b). An
advantage of combining LTAG with Frame Se-
mantics is that LTAG’s extended domain of lo-
cality allows direct linking of thematic roles of
the arguments with corresponding syntactic slots.
From the other side, Frame Semantics allows a
reach meaning factorization, as is illustrated in the
provided analysis of locative alternation.

Additionally, some ideas for morphological de-
composition are presented, which is especially
useful for languages with a rich morphology, such
as Russian.
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Figure 21: Frame for (14), ’fill’ variant
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Abstract

Context-free tree grammars, originally in-
troduced by Rounds ((Rounds, 1970)), are
powerful grammar devices for the defini-
tion of tree languages. In the present pa-
per, we consider a subclass of the class
of context-free tree languages, namely the
class of monadic simple context-free tree
languages. For this class of context-free
tree languages, a faithful rendering of ex-
tended TAGs, we show that it can be given
a simple logical characterization in terms of
monadic second-order transductions.

1 Introduction

The monadic simple context-free tree languages
belong to the class of mildly context-sensitive lan-
guages. The intuitive notion of mild context-
sensitivity has led to two competing candidates
claiming to be an exact formal rendering of
the intentions Joshi (1985) was trying to cap-
ture when introducing this concept. On the one
hand multiple context-free grammars and their
equivalents exhibiting a variety of wildly different
specifications provide impressive evidence that
this precise counterpart of the informal descrip-
tion of mild context-sensitivity constitutes a nat-
ural class. On the other hand the well-nested
subclass of the multiple context-free grammars
has recently been advertised as a formalization
more in accordance with Joshi’s original inten-
tions ((Kanazawa, 2009; Kuhlmann, 2007)). Both
candidates have counterparts in the realm of tree
languages and it is in this context that they are eas-
ily recognized to provide a mathematically pre-
cise framework for the characterization of two
leading linguistic models, minimalist syntax and

tree adjoining grammars (cf. (Harkema, 2001),
(Michaelis, 2001), (Kepser and Rogers, 2007),
(Mönnich, 1997; Mönnich, 2007)).

The tree languages in question are the multi-
ple regular tree languages ((Raoult, 1997)) and
the simple context-free tree languages ((Engel-
friet and Maneth, 2000)). Both language fami-
lies are proper subfamilies of the tree languages
generated by context-free hyperedge-replacement
graph grammars and the latter family is iden-
tical with the output languages of logical tree-
to-tree transductions applied to regular tree lan-
guages. The obvious question that poses it-
self is whether the two restricted rule formats
or their corresponding tree transducers, finite-
copying top-down tree transducers and simple
macro/attributed tree transducers, respectively,
can be given an equivalent logical characteriza-
tion in terms of restrictions on the logical formu-
las defining the relations in the target structures of
logical transductions. This is indeed the case. A
central result in a paper by Bloem and Engelfriet
(2000) states that the tree languages which are the
output of finite-copying top-down tree transduc-
ers applied to regular tree languages are exactly
the output tree languages of logical tree transduc-
ers which are direction preserving in the sense
that edges in the output trees correspond to di-
rected paths in the input trees. As a first step
towards an analogous result for simple context-
free tree languages the main theorem of the pa-
per shows that their monadic subclass, which pro-
vides a formalization of the extended version of
classical tree adjoining grammars (TAGs), has
indeed an easy logical characterization that puts
them on the same footing as their multiple regu-
lar counterparts and thereby closes the gap that
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has remained with respect to a model-theoretic
description of TAGs.

The logical approach to the specification of lan-
guage classes involves a lot of advantageous prop-
erties that have paved the way to its application
to linguistic issues. Of particular importance in
the present context is the restricted translational
power of logical transductions. Monadic second-
order definable tree translations are, by definition,
of linear size increase. An output tree is at most k
times as large as its input tree where k denotes the
cardinality of the set of copy names. This bound
on the copying power of transduction devices that
are motivated by the model-theoretic idea of se-
mantic interpretation is the main reason why the
output languages of tree transductions definable
in terms of monadic second-order logic satisfy
in a particular perspicuous way the crucial crite-
ria Joshi has suggested for the family of mildly
context-sensitive languages.

One of our reviewers pointed out that there are
recent attempts at relaxing the linearity condition
of multiple context-free grammars and thus ar-
riving at a larger class of languages for which
it is claimed that they are still in accordance
with the intuitions behind the notions of mild
context-sensitivity. This extended class allows for
a limited amount of copying (Cf.(Bourreau et al.,
To appear; Kallmeyer, 2010)). Whether such a
formalization violates the criterion that poses a
bound on cross-serial dependencies seems to be
an open question. We favor a strong interpretation
of this criterion and therefore are inclined to con-
sider the realm of languages covered by logical
translations as the the currently leading contender
for an exact specification of Joshi’s proposal.

There are two main sources that have influ-
enced the ideas reported in this paper. Apart
from the fundamental work on graph structure and
monadic second-order logic due to Courcelle and
Engelfriet (2012) we have to mention a previous
attempt at giving a logical description of linear
inside-out context-free tree languages (cf. (Kolb
et al., 2000; Kolb et al., 2003)). This attempt
relied on a particular technique of regularizing
context-free tree grammars and does not lend it-
self to a treatment of arbitrary regular tree lan-
guages as input. The other principal source is pro-
vided by the characterization of tree transductions
that are specifiable in monadic second-order logic
in terms of attributed tree transducers with look-

ahead. This result was established by Bloem and
Engelfriet (2000) and constitutes together with
our own earlier proof of the equivalence between
simple context-free tree grammars and simple at-
tributed tree transducers (Mönnich, 2010) the ba-
sis for the main result of the present paper.

We have been at pains to expound the central
notions of this paper in an informal way. Our em-
phasis has been on motivating examples and con-
nections with recent work on syntax-directed se-
mantics. We hope not to have traded formal rigour
for transparency in the proof sketches below.

2 Preliminaries

This section defines familiar notions from the the-
ory of syntax-directed semantics together with
its model-theoretic counterpart, the theory of
monadic second-order transductions.

For any setA,A∗ is the set of all strings overA.
ε is the empty string, |w| is the length of a string
w. N denotes the set {0, 1, 2, 3, . . . } of nonnega-
tive integers.

A single-sorted or ranked alphabet is a finite
set Σ given with a mapping rank : Σ → N (the
rank mapping). We usually write Σ(n) to denote
the (unique) set of operators of rank n ∈ N ; we
also write σ(n) to indicate that rank(σ) = n.
The elements of Σ(0) are also called constants.
The set of trees TΣ is defined recursively as fol-
lows. Each constant of Σ, i.e., each symbol of
rank 0, is a tree. If σ is of rank k and t1, . . . , tk
are trees, then σ(t1, . . . , tk) is a tree. A tree
language L ⊆ TΣ over Σ is a subset of TΣ.
With each tree t ∈ TΣ we can associate a string
s ∈ Σ(0)∗ by reading the leaves of t from left
to right. This string is called the yield of t, de-
noted by yd(t). More formally, yd(t) = t if
t ∈ Σ(0), and yd(t) = yd(t1) · · · yd(tk) when-
ever t = σ(t1, . . . , tk) with k ≥ 1. The yield
of tree language L is defined straightforwardly as
yd(L) = {yd(t)|t ∈ L}.

If A is a set (of symbols) disjoint from Σ,
then TΣ(A) (alternatively T (Σ, A)) denotes the
set of trees TΣ∪A where all elements of A are
taken as constants. Let X = {x1, x2, x3, . . . }
be a fixed denumerable set of input variables
and Y = {y1, y2, y3, . . . } be a fixed denumer-
able set of parameters. Let X0 = Y0 = ∅
and, for k ≥ 1, Xk = {x1, . . . , xk} ⊂ X , and
Yk = {y1, . . . , yk} ⊂ Y . For k ≥ 0,m ≥ 0, t ∈
TΣ(Xk), and t1, . . . , tk ∈ TΣ(Xm), we denote by
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t[t1, . . . , tk] the result of substituting ti for xi in
t. Note that t[t1, . . . , tk] is in TΣ(Xm). Note also
that for k = 0, t[t1, . . . , tk] = t.

Definition 1. A context-free tree (CFT ) gram-
mar is a tuple G = (F ,Ω, S, P ) where F and Ω
are ranked alphabets of non-terminals and termi-
nals, respectively, S ∈ F (0) is the start symbol
and P is a finite set of productions of the form

F (y1, . . . , ym)→ ξ

where F ∈ F and ξ is a tree over F , Ω and Ym.

If for every F ∈ F (m) each y ∈ Ym occurs
exactly once on the right-hand side of the cor-
responding rule then the context-free tree gram-
mar is called simple in the parameters (sp). The
family of tree languages which is generated by
context-free tree grammars which are simple in
their parameters is designated as CFTsp. Of par-
ticular interest to us is the situation where all the
non-terminals in a simple context-free tree gram-
mar are at most of arity 1. We call this class of
grammars monadic simple context-free grammars
CFTmon,sp.

Attributed tree transducers are a variant of at-
tribute grammars in which all attribute values are
trees. Besides meaning names which transmit in-
formation in a top-down manner, attributed tree
transducers contain explicit context names which
allow information to be passed up from a node to
its mother. Consequently, arbitrary tree walks can
be realized by attributed tree transducers.

Definition 2. An attributed tree transducer (ATT )
is a tuple

A = (Syn, Inh,Σ,Ω, αm, R),

where Syn and Inh are disjoint alphabets of syn-
thesized and inherited attributes, respectively, Σ
and Ω are ranked alphabets of input and out-
put symbols, respectively, αm is a synthesized at-
tribute, and R is a finite set of rules of the fol-
lowing form: For every σ ∈ Σ(m), for every
(γ, ρ) ∈ insσ (the set of inside attributes of σ),
there is exactly one rule in Rσ:

(γ, ρ)→ ξ

where ξ ∈ TΩ∪outσ and outσ is the set of outside
attributes of σ. Rules where ξ is (γ′, ρ′) are called
copy rules.

Definition 3. For every σ ∈ Σ(m), the set of
inside attributes is the set insσ = {(α, π)|α ∈
Syn} ∪ {(β, πi)|β ∈ Inh, i ≤ m} and the set of
outside attributes is the set outσ = {(β, π)|β ∈
Inh} ∪ {(α, πi)|α ∈ Syn, i ≤ m}. π and ρ are
path variables ranging over node occurrences in
the input tree.
ATTs with rules Rσ at an input symbol σ in

which each outside attribute occurs exactly once
are called simple attributed tree transducers. We
denote this class by ATTss,si.

The dependencies between attribute occur-
rences in an input tree s can be represented with
the help of Rσ. An instance of an attribute oc-
currence (α′, π′) depends on another occurrence
(α, π) if σ labels node u in s,Rσ contains the rule
(α′, π′)→ ξ and (α, π) labels one of the leaves in
ξ. The dependency graph D(s) of an input tree
s ∈ TΣ consists of the set of attribute occurrences
together with the dependencies according to the
rules in R. Reversing the direction of these de-
pendencies leads to the notion of a semantic graph
S(s) of an input tree s ∈ TΣ.

An attributed tree transducer is noncircular if
the paths of attribute dependencies are noncircu-
lar. It is well known that noncircular ATT s have
unique decorations dec, functions which assign
each attribute occurrence a tree over Ω ∪ outσ in
accordance with the productions Rσ.
Definition 4. The transduction realized by a non-
circular attributed tree transducer A is the func-
tion

τA = {(s, t)|s ∈ Tσ, t ∈ TΩ, t = decs(αm, ε)}
Declarative tree transductions are inspired by

the model-theoretic technique of semantic inter-
pretation (Rabin, 1965). The idea is to define a re-
lational structure inside another structure in terms
of monadic second-order formulas. Both the input
and the output structures are finite trees regarded
as finite models.

The language to be used for the specification
of properties and relations satisfied by finite tree
structures is a straightforward extension of first-
order logic: monadic second-order logic (MSO).
The language of this logic contains variables that
range over subsets of the universe of discourse
and quantifiers that bind these (monadic) predi-
cate variables.

Given a ranked signature Σ the monadic
second-order language over trees in TΣ uses
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atomic formulas labσ(x) (σ ∈ Σ), childi(x, y),
x = y and x ∈ X to convey the idea that node x
has label σ, that node y is the i-th child of node x,
that x and y are the same node and that node x is
a member of the set of nodes X .

Besides this extension of the classical first-
order logic the concept of a monadic second-order
definable tree transducer (MSOTT ) differs in
two further aspects from the method of semantic
interpretation as originally introduced by Rabin.
First, an MSO formula φ serves to define the do-
main of the transducer. The second modification
of the original method of semantic interpretation
provides for a fixed number k of disjoint copies
of the input tree. It is inside these disjoint copies
that the output tree is to be defined.

Definition 5. Given two ranked alphabets Σ and
Ω and a finite set C of copy names, a monadic
second-order definable tree transducer T from TΣ

to TΩ is specified by the following formulas of the
monadic second-order language over Σ:

(i) a closed formula ϕ, the domain formula

(ii) formulas νc(x) with c ∈ C, the node formu-
las

(iii) formulas ψδ,c(x) with c ∈ C and δ ∈ Ω, the
labelling formulas

(iv) formulas χi,c,d(x, y) with c, d ∈ C and i ≤
maximal arity of symbols in Ω, the edge for-
mulas

In sharp contrast with the syntax-directed trans-
formation devices a logic based tree transducer T
does not translate its input trees in a recursive top-
down manner. The translation τT realized by such
a declarative transducer has to be defined in terms
of the familiar ingredients of a relational structure.

Definition 6. The tree translation τT realized by
a monadic second-order definable tree transducer
T from TΣ to TΩ is a partial function τT : TΣ →
TΩ defined as follows. The domain of τT is {s ∈
TΣ | s |= ϕ}. For every s ∈ TΣ in its domain
τT (s) is the tree structure t ∈ TΩ such that:

Dt = {(c, x) ∈ C ×Ds | s |= νc(x)}
is the tree domain of t
Et = {((c, x), i, (d, y)) ∈ Dt × ar(Ω)×Dt |
s |= χi,c,d(x, y)} is the edge relation of t
where ar(Ω) denotes the rank of Ω
Lt = {((c, x), δ) ∈ Dt × Ω | s |= ψc,δ(x)}
is the labeling function of t

Logic based transducers are called relabeling
if they just relabel the nodes of an input tree.
Of particular interest regarding the logical anal-
ysis of monadic simple context-free tree gram-
mars are logic based tree transducers that pre-
serve or reverse the direction of the paths in the
input tree in their definitions of edges of output
trees. This family of tree transducers is designated
by MSOTTdir,rev. We depart slightly from this
definition in allowing defining upwards paths be-
tween a leaf node and the daughter of a dominat-
ing branching node. In this situation we speak of
a slight modification of MSOTTdir,rev.

3 From CFTmon,sp to 1S, 1I − ATTss,si

The proof of the logical characterization of
monadic simple context-free tree languages is
based on a procedural characterization of sim-
ple context-free tree languages as the output lan-
guages of simple attributed tree transducers with
one synthesized attribute only (Cf. Mönnich,
2010). The simulation of attributed tree trans-
ducers by monadic second-order tree transducers
along the lines of Bloem and Engelfriet (2000)
then leads to the logical characterization of the
( formal representation of ) extended TAGs in
terms of extremely simple edge definitions on the
input trees.

The translation below of a given CFTmon,spG
into an equivalent ATTspA is inspired by the
proofs of Lemma 5.11 in (Fülöp and Vogler,
1998) and of Lemma 6.1 in (Engelfriet and
Maneth, 1999).

Example 1. Consider the CFTmon,spG =
〈{S, S′, S, E, a, b, c, d}, {a, b, c, d, ε, St, S0

t }, S′, P 〉
with P given as follows:

S′ −→ St(a, S(S(E)), d) a −→ a

S(y) −→ St(a, S(S(y)), d) b −→ b

S(y) −→ S0
t (y) c −→ c

S(y) −→ St(b, y, c) d −→ d

E −→ ε

This grammar generates the language L =
{anbn, cn, dn}. A derivation of the string
aabbccdd is shown in figure 1. We simplified the
presentation in the sense that the last step involves
the simultaneous application of several expansion
rules.
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Figure 1: Derivation of yield aabbccdd
.

Inspecting the rules of the example grammar
it turns out that they exhibit a particular nor-
mal form with a terminal symbol as head and a
possibly empty string of non-terminals. This is
not an accidental feature of our grammar, but a
general characteristic of monadic simple context-
free tree grammars. Context-free tree grammars
in which the root of the right-hand side of each
rule is labelled with a terminal symbol are in
Greibach normal form. It is well known that there
are context-free tree languages that do not admit
grammars in Greibach normal form. In the case
of tree languages generated by monadic simple
context-free tree grammars, however, the classi-
cal proof for context-free word grammars goes
through without any modification because of the
isomorphism between strings and monadic trees.
The preceding considerations lead to the follow-
ing lemma:

Lemma 1. For any monadic context-free tree
grammar G, there is a monadic context-free tree
grammar G′ in Greibach normal form such that

L(G′) = L(G)

Given these preparations we arrive at the fol-
lowing translation procedure from monadic sim-
ple context-free tree grammars to simple at-
tributed tree transducers.

Lemma 2. For every CFTmon,sp G, there is an
1S, 1I − ATTss,si AG that outputs the same lan-
guage when applied to the derivation trees of G.

Proof For a given CFGmon,sp G =
(F ,Ω, S, P ) an 1S, 1I − ATTss,si =
(Syn, Inh,Σ,Ω, αm, R)AG that outputs the
same language is defined from the rules of G in
the following way.

• Syn = {0, 1} with α = αm at the root node

• Inh = {y}

• Every symbol in the derivation trees is as-
signed one synthesized attribute.

• If p : N → ξ is an element of P then R′p is
specified for both the synthesized and inher-
ited attributes by structural induction on the
right-hand side ξ:

(q, π)→ ϑ(ξ),

where q = 0 or q = 1 depending on the arity
of N and ϑ substitutes a non-terminal M in
ξ by (q, πi) if the non-terminal M occurs in
the i-th non-terminal position in ξ and y by
(y, π)

(yj , πi)→ ϑ′(ξ′),

where ξ′ occurs in the argument position of
some non-terminal L in ξ that itself occupies
the i-th non-terminal position on the right-
hand side of p and ϑ′ is identical with ϑ ex-
cept for erasing every y in ξ′.

a
Example 2. Applying the construction just out-
lined to the context-free tree grammar of the last
example we obtain the following attributed tree
transducer A = (Syn, Inh,Σ,Ω, q0, R

′):

• Syn = {0, 1}

• Inh = {y}

• Σ = {p0, . . . , p9}

• Ω = {a, b, c, d, ε, St, S0
t }
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• q0 = 0

• R′ = ⋃
pi

R′pi

R′p1 = {(0, π)→ St((0, π1), (1, π2), (0, π4)),

(y, π2)→ (1, π3)}
R′p2 = {(1, π)→ St((0, π1), (1, π2), (0, π4)),

(y, π2)→ (1, π3),

(y, π3)→ (y, π)}
R′p3 = {(1, π)→ S0

t ((y, π))}
R′p4 = {|1, π)→ St((0, π1), (y, π)(0, π2))}
R′p5 = {(0, π)→ a}
R′p6 = {(0, π)→ b}
R′p7 = {(0, π)→ c}
R′p8 = {(0, π)→ d}
R′p9 = {(1, π)→ ε}

Given the constructed attributed tree transducer
A that is equivalent to the previously considered
monadic simple context-free tree grammar G we
can now repeat the example derivation displayed
in figure 1. We follow the conventional graphical
representation for drawing attributed derivation
trees together with the dependencies obtaining be-
tween synthesized and inherited attributes. Oc-
currences of synthesized and inherited attributes
in conjunction with their tree values appear to the
right and left, respectively, of the labelled nodes
of the input tree. Dependencies among the at-
tribute occurrences are indicated by arrows. Since
dependency graphs indicate the connection be-
tween an attribute leaf and the tree which is to
be substituted for it by building the output tree
bottom-up we will depart from the conventional
graphical representation in this respect and adopt
instead the tradition of semantic graphs which
construct the output tree top-down and therefore
are direction preserving as far as relations be-
tween attribute values are concerned.

Under the stated conventions the graphical rep-
resentation of the information transport in terms
of the constructed attributed tree transducerA that
corresponds to the example derivation of figure 1
looks as shown in figure 2. We have again sim-
plified the presentation in the sense that the appli-
cation of the “barred” rules is contracted into one
single step.

4 Equivalence of CFTmon,sp with (a
slight modification of) Non-Copying
MSOTTdir,rev

It was mentioned above that attributed tree trans-
ducers are attribute grammars with all their at-
tribute values restricted to trees and their seman-
tic functions to substitution of trees for depen-
dent leaves. Second–order substitution for inter-
nal nodes of trees is achieved through the upward
information transport that is made possible by the
inherited attributes. An analysis of the paths in
the semantic dependency graph of the attributed
tree transducer that corresponds to a monadic sim-
ple context-free tree grammar in Greibach normal
form reveals that these paths are either direction
preserving as in the case of minimalist grammars
or direction reversing.

Lemma 3. For every CFTmon,spG there is (a
slight modification of) an equivalent non-copying
reduced MSOTTdir,rev T .

Proof (Sketch) The main idea of the proof is a
careful case analysis of the translation procedure
that produces an equivalent attributed tree trans-
ducer from a given monadic simple context-free
tree grammar G. Inspection of this translation
procedure in the proof of Lemma 2 reveals the fol-
lowing types of right-hand sides in the rules of a
monadic simple context-free tree grammar. W.l.g
we consider only terminals with at most arity one:

• F −→ a The synthetic meaning at-
tribute gets the value a at the node corre-
sponding to the application of this rule.

• F −→ a(N) The synthetic meaning
attribute gets the value a(α, π) establishing
a dependency on the synthetic value of the
daughter.

• F −→ a(N(M)) In addition to the
previous case a further dependency is estab-
lished on the value of the sibling node corre-
sponding to the application of a production
with left-hand side M . This dependency is
mediated by a copy rule at the inherited con-
text attribute of the node corresponding to
an application of a production with left-hand
side N .

Iteration of the second case leads to further top-
down semantic dependencies. If monadic instead
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Figure 2: Attributed derivation tree with semantic dependency relations

of nullary non-terminals F (y) are rewritten the
parameter y mediates an one-step upwards infor-
mation transport by means of inherited copy rules.

From this case analysis it follows immediately
that all inherited rules are copy rules whereas all
synthetic rules add material to the output tree.
Furthermore, all upwards dependencies are me-
diated by an inherited rule establishing a depen-
dency on the synthetic value of a sibling node.

Based on this intermediate simpleATT we can
now define the equivalentMSO tree transducer T
by specifying the edge formulas χ1,γ,γ′(x, y) that
represent the dependencies between the attributes
and the node formulas ψd,γ(x) that define the la-
bels of the output tree. We assume again for sim-
plicity that the terminals of the given grammar G
are of arity at most one and that the copy rules in-
troduce a new output symbol id. The set of copy
nodes consists of the synthetic and the inherited
attribute. The edge formulas mirror the informa-
tion transport of rules of the form

(∗) (γ, ρ)→ a(γ′, ρ′)

where (γ, ρ) is an inside, (γ′, ρ′) an outside
attribute and a an output symbol or the new
symbol id. Such an edge formula χ1,γ,γ′(x, y)
is the disjunction of all formulas ∃z(labσ(z) ∧
edgej(z, x) ∨ edgej′(z, y)) for all input symbols
σ with j, j′ equal to 0 or 1 and (γ, πj) depending
on (γ′, πj′) inRσ. In the situation where j, j′ = 0
edge0(x, y) is shorthand for x = y.

The node formula ψd,γ(x) is the disjunction of
all formulas ∃z(labσ(z) ∧ edgej(z, x)) for all in-
put symbols σ where the same stipulations hold

as for the edge formulas and Rσ contains the rule
(*).

This easy transfer of the translation technique
developed by Bloem and Engelfriet (2000) to the
context of simple tree transducers with only one
synthesised and one inherited attribute reveals im-
mediately that the defined monadic second-order
tree translation fulfills the condition of being di-
rection preserving/reversing apart from the infor-
mation flow to and fro between the the synthetic
and inherited copies of the input trees.

Bloem and Engelfriet show how to prune all oc-
currences of these transitions. Since this makes
the ”inherited” copy of the input tree superflu-
ous we can erase it completely and arrive thus at
a reduced non-copying MSO-transduction in the
sense that every node is the head or tail of an edge.
The pruning step has introduced a slight modifica-
tion of the upward paths by linking some leafs to
the first daughter of a dominating branching node.

a
Applying the construction just outlined to the

information transport illustrated by figure 2 we
obtain the defined edges in the output of an MSO-
transduction shown in figure 3.

Lemma 4. For every (slight modification of a)
non-copying reduced MSOTTdir,rev T there is
an equivalent CFTmon,spGT .

Proof (Sketch) We adapt again to the present
situation the method of proof developed by Bloem
and Engelfriet (2000). We assume with them that
the root of the defined output tree of a given di-
rection preserving/reversing MSO tree transducer
T is identical to the root of the input tree. We as-
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Figure 3: MSO-defined edges

sume furthermore that edges originate or end at
every node of the input tree. For nodes occurring
between endpoints of edges that correspond to di-
rection preserving paths this assumption could be
avoided by eliminating spurious rules like N −→
M from the equivalent context-free tree grammar.
Finally we observe that the upward edges of the
output tree may still be established between nodes
that are not immediate neighbours.

This non-local feature can be excluded by ap-
plying the inverse of the pruning action of the
previous lemma. If there is a non-local upward
edge from the leaf of the input tree to a sibling of
the first daughter of a dominating branching node
then we define a local path on an ”inherited” copy
of the input tree that connects the endpoints of the
original non-local upward edge.

The specification of the equivalent ATT re-
lies on information about the configuration of
the (local) edges in its immediate neighbourhood.
This information can be stored in the node la-
bels by means of a relabeling MSOTT T ′ that
extends each label by a vector of truth values of
the formulas for top-down and bottom-up edges
and for edges between nodes and their twins in
the other copy. To illustrate the simplest case
for a unary output symbol a and a ”synthesized”
copy name γ : If the formula ψa,γ(x) is true at
a node with extended label σ′ and the only true
edge formula is χ1,γ,γ(x, y) thenRσ′ contains just
(γ, ρ)→ a(γ, ρ1).

From this intermediate attributed tree trans-
ducer the equivalent monadic simple context-free
tree grammarGT is then defined as follows where
we use the notational conventions introduced in
the preliminary section (cf. (Mönnich, 2010)):

• F = Σ where the arity of non-terminals
is either zero or one depending on the oc-
currence of an inherited attribute assigned to
them in the input tree.

• Ω = Ω

• S = {σ(0)} with σ ∈ Σ labeling the root of
an input tree.

• For every σ ∈ Σ we construct a rule

σ(y1, . . . , yn)→ t

where t = COMP (ξ) and ξ is the right-
hand side of the only synthesized attribute α
in Rσ. The right-hand sides of rules in Rσ
are designated by rhs(γπ, σ) in the follow-
ing:

(i) If ξ = απi then

σ(y1, . . . , yn)→ t

where t = COMP (ξ) and ξ is the right-
hand side of the only synthesized attribute α
in Rσ. The right-hand sides of rules in Rσ
are designated by rhs(γπ, σ) in the follow-
ing:

(i) If ξ = απi then

COMP (ξ) = ρ(t)

where ρ labels the ith daughter of σ and

t = COMP (rhs(βπi, σ))

(ii) If ξ = βπ then

COMP (ξ) = y
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(iii) If ξ = f(ξ1, . . . , ξr) for f ∈ Ω(r)

COMP(ξ) = f(COMP (ξ1), . . . , COMP (ξr))

By a routine inspection it is easy to verify that
the resulting grammar GA is indeed simple and
that it generates exactly the output language of T .

a
By lemmas 4 and 4 we obtain our main result.

Theorem 1. The monadic simple context-free tree
languages are exactly the output languages (of a
slight modification) of non-copying direction pre-
serving/reversing MSO definable tree transduc-
tions.

5 Envoi

The question of how to extend the logical char-
acterization given in the present paper to the full
class of simple context-free languages or to the
family of well-nested tree languages, for that mat-
ter, is still open. Our conjecture is that a similar
characterization holds for these languages. The
main step towards such a result would consist
in establishing a Greibach normal form for this
larger class of languages.
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Abstract

This paper presents a novel grammar
formalism, Synchronous Tree Unification
Grammar (STUG), that borrows ideas from
two rather distinct exemplars of tree-based
grammar formalisms, namely Synchronous
Tree Adjoining Grammar and Tree Unifi-
cation Grammar. At the same time STUG
differs considerably from those in that it al-
lows for a clean separation of syntax and
valency. Exploiting this potential in the
modelling of natural language grammar has
a number of interesting consequences that
we will sketch in the course of this paper.

1 Motivation

The underlying motivation for the development of
Synchronous Tree Unification Grammar (STUG)
is to model syntax and valency as separated, yet
linked dimensions of natural language signs. This
sharply contrasts with the lexical amalgamation of
syntax and valency found within the TAG frame-
work (and other main stream syntactic frame-
works). Very generally speaking, we takeva-
lencyto be a mapping from semantic roles to sets
of morpho-syntactic properties and some marker
for indicating necessity. Following common ter-
minology, realizations of valency roles are also
calledarguments.

In TAG elementary trees, valency properties
of the lexical anchor are commonly mapped bi-
jectively onto non-terminal leaves due to well-
formedness conditions (Abeillé, 1988; Frank,
1992; Abeillé and Rambow, 2000; Frank, 2002),
while the realization of optional valency roles is
reflected across the set of elementary trees with
the same lexical anchor. However, the correspon-
dence between elementary tree and valency frame

is blurred by functional items such as comple-
mentizers, determiners and auxiliary verbs, which
commonly anchor an elementary tree of their
own.

This way of amalgamating elementary trees
and valency information can be held responsible
for a couple of difficulties that have shown up in
various aspects of the TAG framework – amongst
them the following:

Since elementary trees for predicative verbs en-
force the surface realization of the verbal head
and its obligatory arguments, TAG accounts have
to cope withelliptical structures(i.e. with gap-
ping) by means of more or less far reaching con-
cessions: either tangled trees are generated from
elementary trees using a non-trivial contraction
operation (Sarkar and Joshi, 1996; Sarkar and
Joshi, 1997), or one falls back on an infinitely
ambiguous lexicon (Seddah, 2008; Seddah et al.,
2010), or one includes empty words as a result of
a deletion-like operation (Lichte and Kallmeyer,
2010) or as a result of lexical insertion using ex-
tra elementary trees (Sarkar, 1997; Seddah and
Sagot, 2006).

Since alternative valency frames and alterna-
tive linearizations thereof multiply the set of (yet
unanchored) tree templates (Prolo, 2002), the
use of a metagrammar system in broad-coverage
grammars is practically inevitable (XTAG Re-
search Group, 2001; Duchier et al., 2004). Im-
portant syntactic generalisations are therefore not
expressed directly in a TAG, but emerge indirectly
across elementary trees. Furthermore the factor-
ization by means of metagrammars makes the in-
clusion of empty words attractive, since they in-
crease the reusability of tree fragments.

Finally, since elementary trees span over an ex-
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tended domain of locality and may relate a lexical
anchor to more than one preceding constituent, it
is far from obvious how incremental parsing can
be performed. Proposals so far either add unlexi-
calized trees (“prediction trees”) and a verification
operation (Demberg and Keller, 2008; Demberg,
2010), or place the lexical anchor at the left edge
of an elementary tree, the head of which can be
left underspecified (Mazzei et al., 2007).

Each of these difficulties may seem resolvable
in one of the mentioned ways. But in my view
the sum of necessary adaptations and concessions
makes it worth thinking about accounts that relate
syntax and valency more indirectly. STUG repre-
sents the first result of this line of thought.

2 The STUG formalism

2.1 The elementary structures

STUG and Synchronous Tree-Adjoining Gram-
mar (STAG) (Shieber and Schabes, 1990; Shieber,
1994; Nesson and Shieber, 2008) share the idea,
that syntactic and semantic representations are
joined in the lexicon by making up a set of pairs
of trees or multi-component structures. Further-
more there is some way of directly linking nodes
of the syntactic domain and the semantic domain
within an elementary pair.

To provide an example, a STUG pair for the
verb laughs is shown in Figure 1. We call the
first element of the STUG pair thesyntactic tree,
and the second element thevalency tree. While
the syntactic tree corresponds to an elementary
and derived tree known from TAG, the valency
tree resembles a TAG derivation tree in that it
is unordered and may have edge labels, which
here indicate semantic roles. The valency tree for
laughsin Figure 1 mentions two argument roles,
namelyA(GENT) and P(ATIENT), that are spec-
ified along the feature structures in the respec-
tive nodes. Note that features can be polarized
in sense of (Guillaume and Perrier, 2009): fea-
tures that must be specified carry an exclamation
mark, while the #-symbol is attached to “neutral-
ized” features which may not unify with another
neutralized feature. Links, finally, are represented
by circled numbers, i e.1© . . . n©.

Speaking more formally, a STUG consists
of tuples 〈σ, {φ1, . . . , φn},⌢〉 with σ being
a syntactic tree, with a set of valency trees
{φ1, . . . , φn} and a linking relation⌢, for which

〈 VP 1©

V

laughs

,

[
LEM laugh
MODE ind

]1©




LEM !
CASE nom
AGR 3rdsing




A

[
PREP at

]

P

〉

Figure 1: STUG pair forlaughs.

the following holds:

• ⌢: P (Vσ) → 2Vφ1
∪...∪Vφn , whereP (Vσ) is

the partition of the set of nodes fromσ, and
where2Vφ1

∪...∪Vφn is the power set of the
union of the sets of nodes fromφ1, . . . , φn.

• For every valency treeφi ∈ {φ1, . . . , φn}
with nodes Vi there exists at least one
〈Vsyn, Vval〉 ∈ ⌢ with Vi ∩ Vval 6= ∅.

In other words, (i) a link relates two sets of
nodes, (ii) every syntactic node participates at
most in one link and (iii) every valency tree must
be linked with the syntactic tree. Note that we
omit set braces around valency trees whenever a
STUG pair includes only one valency tree, as is
the case in Figure 1.

2.2 The combinatorial operations

While STAG uses substitution and adjunction in
both domains, STUG combines syntactic trees by
substitution and fusion, and valency trees by tree
unification.

The fusion operation(Lichte, 2010) is a kind
of tree unification where only single nodes unify,
hereafter further limited to root nodes: When syn-
tactic treesγi, γj with root nodesvi, vj are fused,
the resulting syntactic treeγ′ with root nodev′

only includesγ′
i andγ′

j, whereγ′
i is γi with vi re-

placed byv′, and whereγ′
j is γj with vj replaced

by v′. Furthermore every node fromγ′
i linearly

precedes every node fromγ′
j . A sample derivation

of John sometimes laughsusing fusion and sub-
stitution is shown in Figure 2, which also demon-
strates, that fusion allows the generated syntactic
structures to be flat.

The order of fusion is controlled via finite state
automata (FSA) that are assigned to nodes based
on their syntactic label. A sample FSA for label
VP is depicted in Figure 3. It restricts the linear
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Figure 3: Sample finite state automaton for category VP.

VP VP VP

NP ADV V

NP sometimes laughs

N

John ;

VP

NP ADV V

N sometimes laughs

John

Figure 2: Derivation ofJohn sometimes laughs.
Dashed horizontal lines stand for fusion and dashed
vertical lines stand for substitution.

order of daughter nodes in the following way: Let
lV (v) be the label ofv and letfsa(lV (v)) be the
FSA assigned tov. If v1 . . . vn is the sequence of
daughter nodes ofv in the final derived tree, the
word lV (v1) . . . lV (vn) must be inL(fsa(lV (v))).
To come back to our example, the derived tree
in Figure 2 is licit, since the label sequence NP
ADV V of the daughters of the VP node is in the
language of the corresponding FSA shown in Fig-
ure 3.

In the process of fusion, links in the syntac-
tic trees are collapsed in the following way: Let
〈Vsyni , Vvali〉 and〈Vsynj , Vvalj 〉 be the links asso-
ciated with nodesvi, vj that are replaced byv′.
After fusion there is a new link〈Vsyni \ vi ∪
Vsynj \ {vj} ∪ {v′}, Vvali ∪ Vvalj 〉. Some-
thing similar applies during substitution.

The combination of valency trees falls back
upon the more general notion of(tree) unification,
as is known, e. g., from Tree Unification Grammar
(TUG) (Popowich, 1989; Gerdes, 2004). Unify-
ing treesγ1 andγ2 to obtain treeγ3 implies that
the unifying and the resulting nodes form one iso-
morphic subtree inγ1, γ2 andγ3 respectively. In
order to narrow down the space of results, only

tree unifications with a maximal number of uni-
fied nodes are considered. In STUG, the linking
structure poses further constraints on tree unifica-
tion: (i) unifying valency trees must be co-linked;
(ii) if two unifying nodes carry links, they must
be co-linked. When two nodes unify, their fea-
tures structures unify, just like the label of unify-
ing edges.

Finally, it needs to be specified, what happens
to the links when unifying nodes of valency trees.
Roughly, the links of the resulting node form the
set union of the links of the unifying nodes. More
precisely, if nodesvi, vj are replaced byv, every
link 〈Vsyn, Vval〉 with vi ∈ Vval or vj ∈ Vval is
replaced by〈Vsyn, Vval \ {vi, vj} ∪ {v}〉.

Coming back to the STUG derivation of the
sentenceJohn sometimes laughs, Figure 4 dis-
plays the required elementary STUG pairs. Note
that the valency structure ofsometimesspecifies
a T(ENSE)-role and that the unlexicalized STUG
pair solely serves to embed NPs in a VP. The
STUG derivation can be processed in two steps:
first the syntactic tree is generated according to
Figure 2, and after that the collected valency trees
get unified into one. This two step approach is
pursued in Figure 5.

3 Expressive power

STUG is powerful enough to account for ill-
nested dependencies such as in (1):

(1) a b c d e

Assuming that the language contains only this
string, the corresponding STUG in Figure 6 ex-
ploits the fact that all words differ and every word
has a unique valency structure. Then in a flat
structure, licensed by a simple FSA directly on
the words, every node of the valency structure is
linked to the S node, so that polarized features
bring about the intended dependency relations and
nothing more.

On the other side, STUG seems not capable
of generating the counting language{an bn|n >
0} with crossed dependencies (and thus also
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〈
VP 1©

NP 2© ADV V

N sometimes laughs

John

,





[ ]1©

[ ]2©

[
LEM laugh
MODE ind

]1©

[
CASE nom
AGR 3rdsing

]
A

[
PREP at

]

P

[
LEM John
PREP null

]2© [ ]1©

[
LEM sometimes

]
T





〉

;

〈
VP 1©

NP 2© ADV V

N sometimes laughs

John

,





[
LEM laugh

MODE ind

]1©




LEM John
PREP null
CASE nom

AGR 3rdsing




2©
A

[
PREP at

]

P

[
LEM sometimes

]

T





〉

Figure 5: STUG derivation ofJohn sometimes laughs.

not the copy language). Apparently linking is
not selective enough to relateai only with bi,
while both can be in arbitrarily distant parts
of the syntactic tree. Something similar also
holds for the scrambling languageSCRind =
{σ(NP1, . . . ,NPm)Vm . . . V1|m ≥ 1 andσ is a
permutation}, where everyVi + 1 is supposed
to governVi and which is beyond the expressive
power of LCFRS (Becker et al., 1991). The count-
ing language{an bn|n > 0} with nested depen-
dencies is different is this respect, as can be seen
from the STUG in Figure 7.

If we make use of neutralized polarity in fea-
tures (indicated by #), which prevents unifica-
tion of neutralized features and therefore helps
to keep apart certain nodes in the valency tree,
it is possible to generate the MIX-language, i.e.
{w|w ∈ {a, b, c}∗, |a|w = |b|w = |c|w}, as Fig-
ure 8 proves. Furthermore the grammar in Fig-
ure 8 can be easily adapted to derive the counting
language{an bn cn dn en|n > 0} which also lies
beyond the expressive power of TAG.

Hence, STUG seems to be both more and less
powerful than TAG.

4 Formalism related questions

4.1 Valency structure = dependency
structure?

The valency structure of a sentence and its de-
pendency structure are not isomorphic. As Fig-
ure 9 shows, the contribution of functional ele-
ments such as the complementizerthat and the
passive auxiliaryis can be diverse:that only con-
tributes to the morpho-syntactic properties of the
predicate node that is linked to the VP node in
syntax; is furthermore specifies certain roles of
the corresponding predicate. In both cases, how-
ever, functional elements do not get represented
as nodes in the valency tree. This follows from
the concept of valency as a mapping based solely
on semantic roles. In contrast, the dependency
structure would include also functional elements
as single nodes, as it is a graph over words by def-
inition.
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〈 VP 1©

NP 2© ,

[ ]1©

[ ]2©

〉

〈 VP 1©

V

laughs

,

[
LEM laugh
MODE ind

]1©

[
CASE nom
AGR 3rdsing

]
A

[
PREP at

]
P

〉

〈 NP 1©

N

John

,

[
LEM John
PREP null

]
1©
〉

〈 VP 1©

ADV

sometimes

,

[ ]1©

[
LEM sometimes

]
T

〉

Figure 4: Elementary STUG pairs forJohn sometimes
laughs.

One of the benefits in choosing valency struc-
tures might be that it circumvents the notoriously
unclear (i.e. somewhat arbitrary) status of func-
tional elements in dependency representations.

Note that derived valency structures do not only
include semantic roles of arguments, but also se-
mantic roles of adjuncts (see Figure 5). Conse-
quently, they seem to have much in common with
descriptions known from scenes-and-frames se-
mantics (Fillmore, 1977a; Fillmore, 1977b).

4.2 Sister adjunction instead of fusion?

Both fusion and sister adjunction (Rambow et al.,
1995; Chiang, 2003) support the generation of
flat structures. However, they do not seem to
be interchangeable in the context of STUG (see
(Lichte, 2010) for a related discussion concerning
TT-MCTAG). While fusion merges the root nodes
of trees, sister adjunction rather draws a new edge
between nodes. Choosing sister adjunction in-
stead of fusion therefore considerably reduces the

〈 S 1©

a
,

[
LEM a

]1©

[
LEM !b

]1© [
LEM !c

]1©

〉

〈 S 1©

b
,

[
LEM b

]1©

[
LEM !d

]1©

〉 〈 S 1©

c
,

[
LEM c

]1©

[
LEM !e

]1©

〉

〈 S 1©

d
,
[

LEM d
]1©〉 〈 S 1©

e
,
[

LEM e
]1©〉

S:

s0 s1 s2 s3 s4 s5
a b c d e

Figure 6: STUG for the ill-nested dependency struc-
ture in (1).

〈 S 1©

a
,

[
LEM a

]1©

[
LEM !b

]

〉 〈 S 1©

b
,

[ ]1©

[
LEM b

]

〉

〈 S 1©

S 2© ,

[ ]1©

[ ]1©

〉

S:

s0 s1 s2 s3
a S b

b

Figure 7: STUG for the stringan bn with nested de-
pendencies.

number of nodes, to which links can be attached
in the lexicon. But since linking is a cornerstone
of STUG, it is hard to see, how a STUG with sis-
ter adjunction for the mentioned cases would look
like, let alone whether this would perform any bet-
ter.

4.3 Feature structures instead of trees?

So far valency structures are represented as un-
ordered trees whose edges carry role labels and
stand for semantic relations, some of them func-
tional in nature. It is thus debatable, whether one
should choose a representation based on features
structures instead, as they account for functional
relations more straightforwardly. To give an ex-
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〈 S 1©

a
,




A #+
B !+

C !+




1©

[ ]1©

〉 S:

s0

a, b, c

〈 S 1©

b
,




A !+
B #+
C !+




1©〉 〈 S 1©

c
,




A !+
B !+
C #+




1©〉

Figure 8: An STUG with neutralized features, marked
up by exclamation marks, for deriving the MIX-
language.

〈 VP 1©

COMP

that

,

[
COMP that
MODE !ind

]1©
〉

〈 VP 1©

V

is

,

[
PART !+
MODE ind

]1©

[
PREP by

]
A

[
CASE nom

]
P

〉

Figure 9: STUG pairs for complementizerthat and
passive auxiliaryis. Exclamation marks indicate po-
larized features.

ample, the valency tree forlaughs in Figure 1
could be replaced by the feature structure repre-
sentation in Figure 10.

On the other side, a tree-based representation
seems to pay off in cases where semantic roles
are to be underspecified or where relations are
non-functional, i.e. a single semantic role gets
assigned to several constituents. The latter hap-
pens most prominently with temporal or loca-
tional roles.

5 Some consequences: ellipsis, grammar
size and incrementality

Contrary to the amalgamation of syntax and va-
lency in the TAG framework, STUG allows for
a clear separation of syntax and valency, accord-
ing to which syntax is only concerned with the




LEM laugh
MODE ind

A




LEM !
CASE nom
AGR 3rdsing




P
[

PREP at
]




1©

Figure 10: The valency tree of Figure 1 as feature
structure.

〈
VP 1©

NP 2© ADV

N sometimes

John

,

[ ]1©

[
LEM John
PREP null

]2© [
LEM sometimes

]
T

〉

Figure 11: Derived STUG pair forJohn sometimes,
which could be the fragmentary answer to the question
Who laughs?, based on the elementary STUG pairs in
Figure 4.

linearization of words (based on their syntactic
category) and the determination of the local do-
main (based on the linking). Argument linking,
however, completely rests on the unification of va-
lency trees. This kind of separation has interest-
ing consequences for the model of syntax. In the
following we will discuss three of them involving
ellipsis, grammar size and incrementality.

5.1 Ellipsis

Since syntactic trees can combine without there
being any direct valency relation, STUG supports
the base generation of ellipsis straightforwardly,
as is shown in Figure 11 using the example of gap-
ping. While the root node in the valency tree re-
mains unspecified, the syntactic tree does not in-
clude any kind of empty placeholder for the miss-
ing verb. Furthermore neither extra rules nor ex-
tra lexical entries are involved in the process of
derivation. Reconstruction, however, has to be
guided by context, which can be thought of as set
of more or less salient valency structures.

This analysis differs fundamentally from syn-
tactic models that adhere to the amalgamation of
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syntax and valency. They start out from com-
plete syntactic representations of valency frames,
which they adapt in cases of incompleteness. In
this respect TAG accounts behave similar to ac-
counts from GB, CCG or HPSG. Either two com-
plete syntactic representations are “contracted”
(Sarkar and Joshi, 1996; Sarkar and Joshi, 1997),
or one complete syntactic representation is aug-
mented with empty words as a result of deletion
(Lichte and Kallmeyer, 2010) or insertion (Sed-
dah and Sagot, 2006), or the lexicon includes
incomplete syntactic representations as defective
variants (Sarkar, 1997). None of these strategies
is pursued in STUG.

In favour of contraction accounts one could ar-
gue, that contraction and reconstruction of ellipsis
go hand in hand. Hence no extra mechanism for
reconstruction is required. However, contraction
is only applicable in cases where ellipsis and its
antecedent can be located in the same sentence.
It is therefore hardly applicable to fragementary
answers or fragmentary corrections (Ginzburg
and Sag, 2001; Schlangen, 2003; Ginzburg and
Cooper, 2004), not to speak of discourse-inital
fragments (Stainton, 1998; Stainton, 2006). For
these cases a separate reconstruction mechanism
based on the surrounding discourse is needed any-
ways. (Lichte and Kallmeyer, 2010) propose to
relate reconstruction to the derivation tree of the
antecedent sentence.

Summing up it can be said that the sketched
STUG account to ellipsis looks promising, as no
extra syntactic mechanism is used and reconstruc-
tion relates to valency structures, which seem at
least as suitable as derivation trees.

5.2 Grammar size

For generating and maintaining a large-coverage
TAG, the use of a metagrammar system is al-
most inevitable due to the size of the grammar.
Regarding, for example, XTAG (XTAG Research
Group, 2001), (Prolo, 2002) counts 97 tree tem-
plates for intransitive, transitive and ditransitive
subcategorization frames. Taking all subcatego-
rization frames (including e. g. those for idioms)
into account, XTAG contains even 1008 verbal
tree templates. This is due to the fact, that alter-
native argument realizations tend to be derived by
means of different tree templates. In other words,
the set of tree templates is some subset of the
“Cartesian product” (Prolo, 2002) of subcatego-

rization frames, alternative linearizations and ac-
tive/passive alternations.

On top of that, optional arguments further in-
crease lexical ambiguity by joining different tree
families. For example, the finite verblaughsan-
chors intransitive tree families with and without
PP argument, thus at least ten tree templates: two
of the base configuration, three for extraction in-
cluding preposition stranding, and five for relative
clauses.

STUG helps to eliminate these two sources for
large grammars and lexical ambiguity. Alterna-
tive linearizations can be represented in one FSA,
i. e. outside elementary structures, while optional
and obligatory arguments can be differentiated lo-
cally within a valency tree. Therefore the num-
ber of elementary structures reduces substantially
compared to TAG. This already becomes apparent
with regard to the lexical STUG pair in Figure 1,
which, in combination with the simplistic FSA in
Figure 3, suffices to cover four out of the ten men-
tioned tree templates for the finite verblaughs.

But it is not only the reduction of elementary
structures that makes STUG attractive. Another
source for grammar complexity lies in the rich
feature structures with which nodes of TAG ele-
mentary trees may be equipped. XTAG defines
around 50 features and uses, for example, no less
than nine features to get the sequencing of deter-
miners in NPs right. But also the verbal projection
is equipped with an impressive number of fea-
tures. Some of them help to constrain lineariza-
tion (e. g. INV and COMP), while others pass on
case or agreement restrictions, such asASSIGN-
CASE and AGR, or just display morphological
properties of a phrasal head, auch asMODE.

By contrast, the snippets of STUG presented
above have already shown, that no features get
percolated around in the syntax tree of a STUG
pair. Instead their main purpose is to specify
nodes in the valency tree directly. Accordingly,
mediating features likeASSIGN-CASE seem to be
obsolete, as even raising verbs can directly access
the raised subject in the valency structure. This
is exemplified in Figure 12. Finally, the work of
features that constrain linearization is now done
elsewhere, namely in FSAs, making them obso-
lete as well. Hence, STUG seems to allow for
a more precise, more transparent use of features,
and it also seems to require a smaller number of
features compared to TAG/XTAG.
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〈 VP 1©

V

seems

,

[
LEM seem
MODE ind

]1©

[
LEM !
MODE inf

]1©
TH

[
CASE nom
AGR 3rdsing

]

〉

Figure 12: Lexical STUG pair for the raising verb
seems.

5.3 Incrementality

Following (Sturt and Lombardo, 2005) incremen-
tal processing does not only imply that a sen-
tence is parsed left-to-right on a word-by-word
basis, but also that a connected syntactic repre-
sentation is available for every prefix of the sen-
tence. (Sturt and Lombardo, 2005) call this prop-
erty full connectedness. Parsing with TAG, how-
ever, does not meet full connectedness out of the
box, since, e. g., elementary trees of an argument
and a modifier cannot be connected when pre-
ceding their governor. To fill this gap, two TAG
variants have been proposed so far, namely Dy-
namic TAG (Mazzei, 2005; Mazzei et al., 2007)
and PLTAG (Demberg and Keller, 2008; Dem-
berg, 2010). Note that this is not at all a prob-
lem specific to TAG, but also comparable gram-
mar formalisms such as CCG and Dependency
Grammar are affected (Demberg, 2010), which
similarly pursue an amalgamation of syntax and
valency.

Contrary to TAG, parsing with STUG can be
conducted in a fully connected manner even for
sentences likeJohn sometimes laughs, as the
derivation in Figure 2 can be read off from the left
to the right. This is mainly due to three factors:
(i) syntactic trees of governors are spinal (i. e., the
extended domain of locality is not found in the
syntactic trees, but in the valency trees) and (ii)
arguments and modifiers can always be connected
without mediation of the governor. Finally, (iii)
the derivation of the syntactic tree and the valency
tree can be done asynchronously. It remains to
be seen, how STUG compares to advanced psy-
cholinguistic models such as PLTAG. This seems
particularly interesting, for STUG does not use
traces and, moreover, has a stronger affinity for

free word order languages.

6 Conclusion

We presented a novel tree-based grammar for-
malism, Synchronous Tree Unification Grammar
(STUG), which differs significantly from usual
grammar formalisms such as TAG in that it allows
for a separation of syntax and valency. After hav-
ing described the functionality of STUG and hav-
ing explored its expressive power, we briefly dis-
cussed some prospects concerning the modeling
of ellipsis, the size and complexity of the gram-
mar, and incremental, fully connected parsing. As
encouraging as they may be, there is no doubt that
many details are still unclear and need to be elab-
orated on in future work.
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Abstract

We consider pairs of context-free tree
grammars combined through synchronous
rewriting. The resulting formalism is at
least as powerful as synchronous tree ad-
joining grammars and linear, nondeleting
macro tree transducers, while the parsing
complexity remains polynomial. Its power
is subsumed by context-free hypergraph
grammars. The new formalism has an alter-
native characterization in terms of bimor-
phisms. An advantage over synchronous
variants of linear context-free rewriting sys-
tems is the ability to specify tree-to-tree
transductions.

1 Introduction

Machine translation involves mappings between
strings in two languages, formalized asstring
transductions. Early models of string transduc-
tions include syntax-directed translation schemata
(Lewis II and Stearns, 1968; Aho and Ullman,
1969b; Aho and Ullman, 1969a). These are
precursors of more recent models of translation,
such as inversion transduction grammars (Wu,
1997), and models in the Hiero system (Chiang,
2007). The underlying assumption in such mod-
els is that source and target languages are context-
free, which is often too restrictive for practical
applications. Therefore, more powerful models
have been investigated, such as synchronous tree
adjoining grammars (STAGs) (Shieber and Sch-
abes, 1990), which assume that the translation to
be modelled is between two tree adjoining lan-
guages. Such grammars offer anextended do-
main of locality, beyond the power of context-free
grammars.

All of the above models translate between
string pairs via a hierarchical structure (i.e. a parse

tree) imposed on the source string and another
such structure imposed on the target string. These
formalisms therefore involve a mapping between
parse trees, in addition to a mapping between
strings. STAGs also involve derivation trees next
to parse trees.

Translations between trees, formalized astree
transductions, are the main focus of formalisms
such as top-down tree transducers (Rounds, 1970;
Thatcher, 1970) and bottom-up tree transducers
(Thatcher, 1973). These have attracted much in-
terest in the area of statistical machine translation
(SMT) (Knight and Graehl, 2005). Recent devel-
opments include (Engelfriet et al., 2009; Maletti,
2011; Maletti, 2012).

The rationale for treating tree transductions as
an isolated issue in machine translation is one of
modularity: parsing a source sentence to produce
a parse tree is challenging enough to be investi-
gated as a separate task, next to the problem of
transferring the source-language structure to the
target-language structure.

The awareness that phrase structure may be
discontinuous, and hence exceeds the power
of context-free formalisms, has been growing
steadily over the past few years, owing to tree-
banks for many different languages. See for ex-
ample (Kallmeyer et al., 2009) for evidence that
synchronous rewriting cannot be avoided. The
‘gap degree’ found in some treebanks in fact even
exceeds the power of tree adjoining grammars
(Gómez-Rodrı́guez et al., 2011). This suggests
that more powerful formalisms such as linear
context-free rewriting systems (LCFRSs) (Vijay-
Shanker et al., 1987) may be needed.

While LCFRSs induce derivation trees, they
lack a natural notion of derived trees. As a
consequence, transduction between strings via
synchronous LCFRSs do not, in any obvious
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way, involve source-language and target-language
parse trees. This complicates modular design
of machine translation systems, in which pars-
ing/generation of the source/target languages is
separated from transfer of structures across the
two languages.

The purpose of the present paper is to rem-
edy this by introducing a formalism that com-
bines the flexibility of synchronous context-free
and synchronous tree adjoining grammars, with
some of the additional generative capacity offered
by LCFRSs. The new formalism consists of pairs
of simple context-free tree grammars (sCFTGs)
(Rounds, 1970; Engelfriet and Schmidt, 1977;
Engelfriet and Schmidt, 1978), which are cou-
pled through synchronous rewriting. The rele-
vance of sCFTG to natural language processing
is suggested by recent findings involving lexical-
ization of tree adjoining grammars (Maletti and
Engelfriet, 2012).

Among the properties that make the new for-
malism suitable for applications in machine trans-
lation are the following. First, it is based on
tree transductions, but indirectly also describes
string transductions. It can therefore be used
to translate strings to strings, but also trees to
trees, allowing separate modules to handle pars-
ing/generation. Second, its generative capacity
contains that of synchronous tree adjoining gram-
mars, offering the potential to handle some diffi-
cult cases of non-projective linguistic structures.
Third, parsing complexity is polynomial in the
size of the input string or the input tree. Fourth,
the formalism can be straightforwardly extended
to assign probabilities to rules, whereby probabil-
ity distributions can be defined, both on the set of
pairs of trees, and on the set of pairs of strings.

2 Preliminaries

LetN = {0, 1, 2, . . .} andN+ = N\{0}. For each
n ∈ N, we let [n] stand for the set{1, . . . , n},
with [0] = ∅.

A ranked alphabetis a finite setΣ of symbols,
associated with a rank function assigning a num-
berrkΣ(σ) ∈ N to each symbolσ ∈ Σ. We write
rk for rkΣ when the alphabetΣ is understood. We
let Σ(k) denote{σ ∈ Σ | rkΣ(σ) = k}.

We fix an infinite listx1, x2, . . . of pairwise dis-
tinct variables. We writeX = {x1, x2, x3, . . .}
and Xk = {x1, . . . , xk}. We denote the set of
all ordered, labelledtreesover ranked alphabetΣ,

with variables in setY ⊆ X, by TΣ(Y ) We de-
fine TΣ to beTΣ(∅). If σ ∈ Σ(0), we may ab-
breviateσ() to σ. Very often we will deal with
sequences of variables such asx1, . . . , xk, which
we may then write in the abbreviated notation
x1,k. The same hold for sequences of trees; e.g.
t1,k = t1, . . . , tk.

Theyield of a treet is the string of symbols in
t that have rank 0, that is, the leaves, read from
left to right. Positions in trees are identified by
Gorn addresses, represented as strings of natural
numbers as usual. The set of all positions in a tree
t is denoted bypos(t). Thelabelat positionp of a
treet ∈ TΣ(Y ) is denoted byt(p) and the subtree
of t at p is denoted byt|p. The expressiont[s]p
denotes the tree obtained fromt by replacing the
subtree at positionp by s ∈ TΣ(Y ).

The set of positions in a treet labelled by a
symbola ∈ Σ ∪ X is defined asposa(t) = {p |
t(p) = a}. For finite Y , the subset ofTΣ(Y )
consisting of those trees in which every variable
in Y occurs precisely once is denoted byCΣ(Y ).

If t ∈ TΣ(Xk) andti ∈ TΣ (i ∈ [k]), then the
first-order substitutiont[t1,k] denotes the treet in
which each occurrence of the variablexi has been
replaced by the corresponding treeti

If t ∈ TΣ(Y ), t(p) ∈ Σ(k) ands ∈ TΣ(Xk),
then thesecond-order substitutiontJsKp denotes
the tree obtained fromt in which the subtree
at positionp has been replaced bys, with the
variables ins replaced by the corresponding im-
mediate subtrees oft|p, or formally tJsKp =
t[s[t|p1, . . . , t|pk]]p.

3 CFTGs

A context-free tree grammar (with states)(CFTG)
is a tupleG = (Q, q0,Σ, R), where:

• Q is a ranked alphabet (ofstates),

• q0 ∈ Q(0) (initial state),

• Σ is a ranked alphabet (ofterminals), such
thatQ ∩ Σ = ∅, and

• R is a finite set (ofrules), each of the form
q(x1,k) → τ , where q ∈ Q(k) and τ ∈
TQ∪Σ(Xk).

We write⇒p,r
G for the ‘derives’ relation, using

rule r = q(x1,k) → τ at positionp of a tree. For-
mally, we writet ⇒p,r

G t′ if t ∈ TQ∪Σ, t(p) = q
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and t′ = tJτKp. We write t ⇒G t′ if t ⇒p,r
G t′

for somep andr, and⇒∗
G is the reflexive, tran-

sitive closure of⇒G. The tree language induced
by CFTGG is JGK = {t ∈ TΣ | q0 ⇒∗

G t}. The
string language induced byG is [G] = {yield(t) |
t ∈ JGK}.

In the sequel we will focus our attention on
CFTGs where every rule is linear and nondelet-
ing. Formally, asimple CFTG (sCFTG) is a
CFTG whereτ ∈ CQ∪Σ(Xk) for each rule
q(x1,k) → τ .

A CFTGG is aregular tree grammar(RTG) if
Q = Q(0). We assume a normal form for RTG in
which right-hand side trees contain precisely one
terminal. The tree languages induced by RTGs
are calledregular tree languages.

Example 1 Fig. 1 shows a sCFTG allowing con-
junctions, under the assumption that both parts
share the same structure. The tree language con-
tains:
S(NP(John),VP(loves , and , eats)), and
S(NP(John),VP(VP(loves , haggis), and ,

VP(eats , it))),
but not for example:
S(NP(John),VP(VP(loves , haggis), and ,

eats)), nor
S(NP(John),VP(loves , and ,VP(eats , it))).

Note that if we modify the grammar to be re-
cursive, for example by changing the first two oc-
currences ofq3 into q2, then the string language is
related to the copy language{ww | w ∈ {a, b}∗}.
It is well-known that the copy language is in-
duced by a tree adjoining grammar. However, the
structure of the corresponding trees would be very
different from the trees induced by our example
sCFTG, and the latter arguably have a more direct
linguistic interpretation. ✷

4 Synchronous CFTGs

We now take a pair of simple CFTGs and syn-
chronize their derivations. For this, we need to
represent bijections between occurrences of states
in two trees. This is realized by annotating states
with indices. More precisely, we defineI(Q) =
{q u | q ∈ Q,u ∈ N+}. For t ∈ CI(Q)∪Σ(Y ) and
u ∈ N+, we letposu(t) denote the set of positions
whereu occurs as index of a state, or formally,
posu(t) = {p | ∃q[t(p) = q u ]}. Forn ∈ N, we
defineIn

Q,Σ(Y ) to be the set of trees where each
index from 1 ton occurs precisely once and no

q0 → S(NP(John), q1(loves , eats))
q1(x1, x2) → q2(VP(x1, haggis),VP(x2, it))
q1(x1, x2) → q2(x1, x2)
q2(x1, x2) →

q3(VP(x1, dearly),VP(x2, often))
q2(x1, x2) →

q3(VP(x1, truly),VP(x2, seldom))
q2(x1, x2) → q3(x1, x2)
q3(x1, x2) → VP(x1, and , x2)

Figure 1: Rules of an example sCFTG modelling two
parts of a conjunction being developed in tandem,
whereQ = {q0, q1, q2, q3}, Σ = {S , NP , VP , John ,
loves , . . .}.

other indices are present, or formally:

In
Q,Σ(Y ) = {t ∈ CI(Q)∪Σ(Y ) |

∀u[u ≤ n =⇒ |posu(t)| = 1,
u > n =⇒ |posu(t)| = 0]}

We letIn
Q,Σ denoteIn

Q,Σ(∅).
A pair [t1, t2] of trees is calledsynchronousif

each contains unique occurrences of all indices
from 1 to n and no others, or formally,t1 ∈
In
Q,Σ(Y1) and t2 ∈ In

Q,Σ(Y2) for the same value
of n. We call n the synchronization breadthof
[t1, t2].

A synchronous (simple) CFTG(SCFTG) is a
tupleG = (Q, q0,Σ, R), whereQ, q0, andΣ are
as for CFTGs, andR is a set ofsynchronous rules,
each of which is of the form:

[q(x1,k) → τ1, q′(x1,m) → τ2] (1)

whereq ∈ Q(k), q′ ∈ Q(m), andτ1 ∈ In
Q,Σ(Xk)

and τ2 ∈ In
Q,Σ(Xm) for somen. We note that

[τ1, τ2] is a synchronous tree pair. Thesynchro-
nization breadthof a rule of the form (1) is the
synchronization breadth of[τ1, τ2].

In order to define the binary ‘derives’ relation
⇒u,r

G between synchronous pairs of trees, we need
the additional notion ofreindexing. This is an
injective function that replaces each existing in-
dex in the synchronous pair by another, making
sure the new indices do not clash with those of
a chosen ruler. More precisely, lett1 andt2 be
two synchronous trees inIn′

Q,Σ. Choose an index
u ∈ [n′] and determine the unique positionsp and
p′ such thatt1(p) = q u and t2(p

′) = q′ u , for
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someq andq′. Further, choose a synchronous rule
r of the form (1). Depending onu, we define the
reindexing functionf as follows:

• f(v) = n′ + v if v < u,

• f(v) = n′ + v − 1 if v > u,

• the value off(u) can be arbitrarily chosen (it
will be ignored in the rewriting step).

For i = 1, 2, let f(ti) be ti in which every in-
dexv is replaced byf(v). We can now formally
define[t1, t2] ⇒u,r

G [t′1, t
′
2] to hold if and only if

t′1 = f(t1)Jτ1Kp andt′2 = f(t2)Jτ2Kp′ . It is easy
to show thatt′1, t

′
2 ∈ In+n′−1

Q,Σ . In other words,
one derivation step turns a synchronous tree pair
[t1, t2] into another.

For SCFTGG, we write [t1, t2] ⇒G [t′1, t
′
2]

if [t1, t2] ⇒u,r
G [t′1, t

′
2] for someu and r, and

⇒∗
G is the reflexive, transitive closure of⇒G.

The tree transduction induced by SCFTGG is
JGK = {[t1, t2] ∈ TΣ ×TΣ | [q0, q0] ⇒∗

G [t1, t2]}.
The string transduction induced byG is [G] =
{[yield(t1), yield(t2)] | [t1, t2] ∈ JGK}.

Example 2 Fig. 2 shows a SCFTG. On the input
side it models inversion of subject and main verb
following an adverbial phrase in German. ✷

5 Bimorphism characterization

Next we investigate a characterization of SCFTG
in terms of generalized bimorphisms (Arnold and
Dauchet, 1976; Arnold and Dauchet, 1982). A
bitransformation(BT) is a tupleB = (g, L, h)
where:

• L ⊆ T∆ is a regular tree language (center
language), and

• g ⊆ T∆ × TΣ (input transformation) and
h ⊆ T∆ × TΣ (output transformation) are
tree transformations.

The BT B computes the tree transformation
JBK ⊆ TΣ × TΣ, which is defined by:

JBK = g−1 ; idL ; h

whereidL is the binary identity relation onL and
the semicolon denotes (left to right) composition
of binary relations.

If the input and output tree transformation are
tree homomorphisms, then the BT is a bimor-
phism in the sense of (Arnold and Dauchet, 1976;


 q0 →

q 1

1

q 2

NP q 3

VP

, q0 →
q 1

1

q 2

NP q 3

VP




[ qNP → sie , qNP → she ]

[ qVP → wartete , qVP → waited ]
 q1(x1, x2) →

S

x1 x2

,

q1(x1, x2) →
S

x1 x2





 q1(x1, x2) →

S

q 1

PP
x2 x1

,

q1(x1, x2) →
S

q 1

PP
x1 x2




[ qPP → lange Zeit , qPP → a long time ]

Figure 2: Rules of an SCFTG.

Arnold and Dauchet, 1982) For our characteriza-
tion of SCFTG in terms of bitransformations we
need stronger input/output transformations how-
ever. For this we recall the concept of macro
tree transducer (Engelfriet, 1980; Courcelle and
Franchi-Zannettacci, 1982). It can be seen as
the combination of the concepts of top-down tree
transducer and context-free tree grammar, and
serves as formal model for syntax-directed se-
mantics (Engelfriet, 1982) in which context can
be handled.

Formally, amacro tree transducer(MAC) is a
tupleN = (Q, q0,∆,Σ, R) whereQ is a ranked
alphabet (ofstates) with Q(0) = ∅, q0 ∈ Q(1)

(initial state), ∆ andΣ are ranked alphabets (of
input symbolsandoutput symbols, resp.) withQ∩
(∆ ∪ Σ) = ∅, andR is a finite set of rules of the
form:

q(δ(y1,n), x1,k) → ζ (2)

where n, k ≥ 0, q ∈ Q(k+1), δ ∈ ∆(n), y1,
. . . , yn andx1, . . . , xk are input and output vari-
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ables ranging overT∆ and TΣ, resp., andζ ∈
RHS(n, k), whereRHS(n, k) is the smallest sub-
setRHS such that (i)xi ∈ RHS for everyi ∈ [k],
(ii) σ(ζ1,m) ∈ RHS for everym ∈ N, σ ∈ Σ(m),
and ζ1, . . . , ζm ∈ RHS, and (iii) q′(yj , ζ1,m) ∈
RHS for every j ∈ [n], q′ ∈ Q(m+1), and
ζ1, . . . , ζm ∈ RHS.

A MAC M is linear and nondeletingif for each
rule of the form (2),ζ contains exactly one occur-
rence of eachyj (j ∈ [n]) and one of eachxi

(i ∈ [k]), and contains no other variables. It is
pureif |Q(m)| ≤ 1 for everym ∈ N. It is monadic
if Q = Q(1) ∪ Q(2). It is total and deterministic
if for eachq ∈ Q andδ ∈ ∆ there is exactly one
rule with q and δ in its left-hand side. A MAC
M is called anenriched embedded tree transducer
(eEMB) if it is linear and nondeleting, pure, and
total and deterministic; an eEMBM is called an
embedded tree transducer(EMB) (Shieber, 2006)
if it is monadic.

Based on the concept of term rewriting, we can
define the binary derivation relation⇒N of N in
the usual way. The tree transformation computed
by N is the setJNK = {[t1, t2] ∈ T∆ × TΣ |
q0(t1) ⇒∗

N t2}.

Theorem 1. LetT ⊆ T∆ × T∆. Then the follow-
ing are equivalent.

1. There is a SCFTGG such thatT = JGK.

2. There are eEMBsM1 and M2 and a reg-
ular tree language L such that T =
J(JM1K, L, JM2K)K.

Proof. 1 ⇒ 2. Let G = (Q, q0,Σ, R) be a
SCFTG. We construct the RTGH = (Q ×
Q, (q0, q0), R,R′) whererkR(r) is the synchro-
nization breadth ofr for eachr ∈ R, andR′ is
constructed as follows. LetG contain a ruler
of the form (1) with synchronization breadthn.
Moreover, letq 1

1 , . . . , q n
n andq′ 1

1 , . . . , q′ n
n be all

the occurrences of indexed states inτ1 and τ2,
resp. ThenR′ contains the rule:

(q, q′) → r
(
(q1, q

′
1), . . . , (qn, q′

n)
)

We construct the eEMBM1 = (Q1, ∗0, R,
Σ, R1) where Q1 = {∗j | Q(j) 6= ∅} and
rkQ1(∗j) = j + 1. Let G contain a ruler of the
form (1) as in the construction ofH. ThenR1

contains the rule:

∗k(r(y1,n), x1,k) → τ ′
1

where τ ′
1 is obtained fromτ1 by recursively

replacing every subtree of the formq i

i (t1,ℓ)
by ∗ℓ(yi, t

′
1,ℓ). In a similar way we can de-

fine the eEMBM2 using τ2 and m instead of
τ1 and k, resp. We can prove thatJGK =
J(JM1K, L(H), JM2K)K.

Conversely, letM1 = (Q1, q0,1,∆,Σ, R1) and
M2 = (Q2, q0,2,∆,Σ, R2) be two eEMBs and
H = (Q, q0,∆, R) be a RTG in normal form. We
construct the SCFTGG = (Q′, q′

0,Σ, R′) where

Q′ = {(q, i) | q ∈ Q, i ∈ N+, Q
(i)
1 ∪ Q

(i)
2 6= ∅}

andrkQ′((q, i)) = i. Now let:

q → δ(q1, . . . , qn) be a rule inR,

q′(δ(y1,n), x1,k) → ζ1 a rule inR1, and

q′′(δ(y1,n), x1,m) → ζ2 a rule inR2.

ThenR′ contains the rule:

[(q, k)(x1,k) → ζ ′
1, (q,m)(x1,m) → ζ ′

2]

where ζ ′
1 is obtained fromζ1 by recursively

replacing every subtree of the form̄q(yj , t1,ℓ)

by (qj, ℓ)
j (t′1,ℓ). In a similar way we ob-

tain ζ ′
2 from ζ2. We can prove thatJGK =

J(JM1K, JHK, JM2K)K.

6 Parsing

In SMT it has become commonplace to use a
combination of relatively powerful syntactic mod-
els akin to context-free grammars, and weaker
models of finite-state power. The theoretical foun-
dation is the result by (Bar-Hillel et al., 1964),
allowing the construction of a context-free gram-
mar inducing the intersection of two languages,
one induced by a given context-free grammar and
another induced by a given finite automaton. The
technique carries over to several other grammat-
ical formalisms, and to tree languages next to
string languages. In the realm of synchronous
grammars, moreover, the technique generalizes to
input products and output products.

Theinput productof a tree transformationT ⊆
TΣ × TΣ and a tree languageL ⊆ TΣ, denoted
by L ✁ T , is defined as the tree transformation
idL;T . Similarly, we define theoutput productas
T ✄ L = T ; idL.

In this section, we consider application of the
technique to SCFTGs and RTGs.

Theorem 2. If G is a SCFTG andH is a RTG,
then there are SCFTGsG′ and G′′ such that
JG′K = JHK ✁ JGK andJG′′K = JGK ✄ JHK.
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Proof. We prove closure under input prod-
uct; the proof for output product is sim-
ilar. By Theorem 1 there are eEMBs
M1 and M2 and a regular tree language
L such that JGK = J(JM1K, L, JM2K)K =
JM1K−1; idL; JM2K. Therefore:

JHK ✁ JGK
= idJHK; JM1K−1; idL; JM2K
= JM1K−1; idL∩JM1K−1(JHK); JM2K

Since the class of regular tree languages is
closed under intersection and under the inverse
of macro tree transformations (cf. Thm. 7.4
of (Engelfriet and Vogler, 1985)),L′ = L ∩
JM1K−1(JHK) is a regular tree language. Hence
JHK✁ JGK = J(JM1K, L′, JM2K)K is induced by a
SCFTG, once more by Theorem 1.

In the following, we give a direct construc-
tion of the SCFTGG′ mentioned in Theorem 2
The style of the construction is close to that by
(Büchse et al., 2011).

Let G = (Q, q0,Σ, R) be a SCFTG andH
= (QH , s0,Σ, RH) be a RTG. The constructed
SCFTG G′ is of the form (Q′, (q0, s0),Σ, R′),
whereQ′ is defined by

⋃
k Q(k) × Qk+1

H andR′

is defined below.
The intuition is that we explore all portions of

trees that can be parsed simultaneously byH and
by the CFTG that is composed of the input parts
of the rules ofG. For this purpose, we construct
the RTGH(r, s, θ) = (QH , s,Σ ∪ Q ∪ Xk, Rθ),
for each ruler ∈ R of the form (1), eachs ∈ QH

and each functionθ that maps:

• each indexed stateq u in τ1 to a sequence of
rk(q) + 1 states fromQH , and

• each variablex ∈ Xk to a state fromQH .

The rules inRθ include all rules fromRH and in
addition:

• s′ → q u (s1 · · · srk(q)) for each indexed state
q u in τ1 such thatθ(q u ) = s′s1 · · · srk(q),
and

• s′ → x for eachx ∈ Xk such thatθ(x) = s′.

If τ1 is in the tree language induced byH(r, s, θ),
then we say that(s, θ) is input-consistentfor r.

We can now defineR′ to contain one rule:

[q′
1(x1,k) → τ ′

1, q2(x1,m) → τ2]

for each ruler from R of the form:

[q1(x1,k) → τ1, q2(x1,m) → τ2] (3)

and each s and θ such that (s, θ) is
input-consistent for r, where q′

1 = (q1,
sθ(x1) . . . θ(xk)) and τ ′

1 results from τ1 by
replacing eachq u by θ(q u ) u .

Let q 1

1 , . . . , q n
n be all indexed states inτ1.

Then there are up to|QH |C choices of(s, θ),
whereC = 1 + k +

∑
j∈[n] 1 + rk(qj). Let Cmax

be the maximum value ofC over different rulesr.
For checking whether a choice of(s, θ) is input-
consistent for givenr, we need to match at most
|RH | rules at each position ofH(r, s, θ) that is
labelled with a terminal. Summing over all rules
r, this means thatR′ can be constructed in time
O(|G|in ·|RH |·|QH |Cmax), where|G|in is defined
as

∑
r∈R |pos(τ1(r))|, whereτ1(r) denotesτ1 as-

sumingr is of the form (3). Deciding whether
the input product is empty amounts to deciding
whether all rules are useless. As for context-free
grammars (Sippu and Soisalon-Soininen, 1988),
this can be decided in linear time in the size of the
grammar.

The input product can be used to realize recog-
nition of strings, as follows. Given ranked alpha-
bet Σ, one can construct a RTGH inducingTΣ.
Given a stringw = a1 · · · an, with ai ∈ Σ(0) for
i ∈ [n], one can construct the RTGHw from H
such thatJHwK = {t ∈ JHK | yield(t) = w},
by the usual technique of intersection (Bar-Hillel
et al., 1964). The number of rules ofHw is
O(|Σ| · nD+1), whereD is max{rk(σ) | σ ∈ Σ}.

Deciding whether(w, v) ∈ [G] for somev can
now be done by deciding whether the input prod-
uct of Hw and G is non-empty. By the above
analysis, this can be done in polynomial time in
n, assumingG and therebyΣ are fixed. As a
side-effect of recognition, one obtains a SCFTG
G′ inducing the tree transduction{[t1, t2] ∈ JGK |
yield(t1) = w}. Appropriate output treest2 can
subsequently be extracted fromG′.

7 Relation to other formalisms

We now relate SCFTG to other formalisms that
are relevant for machine translation. First, we re-
turn to macro tree transducers, which were dis-
cussed before in Section 5.

Theorem 3. Linear, nondeleting macro tree
transducers are strongly equivalent to SCFTGs in
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which rules have the form:

[q → σ(q 1
1 , . . . , q

k

k ), q′(x1,m) → τ ] (4)

Proof. Let M = (Q, q0,∆,Σ, R) be a linear,
nondeleting MAC. We construct the SCFTGG =
(Q̄, qin,∆ ∪ Σ, R′) whereQ̄ = Q ∪ Q′ ∪ {qin},
Q′ = {q′ | q ∈ Q}, qin is a new state, and
rkQ̄(q) = rkQ(q) − 1 andrkQ̄(q′) = 0 for each
q ∈ Q, andrkQ̄(qin) = 0. Let r ∈ R be of the
form (2). For eachj ∈ [k], let pj be the unique
position such thatζ(pj1) = yj and letqj = ζ(pj).
ThenR′ contains the rule:

[q′ → δ(q′ 1

1 , . . . , q′ k

k ), q(x1,n) → ζ ′]

where ζ ′ is obtained fromζ by recursively re-
placing every subtree of the formqj(yj, ζ1,m) by

q
j

j (ζ ′
1,m). In addition,R′ contains the initial rule

[qin → q′
0, qin → q0]. It can be proven that

JMK = JGK.
Conversely, letG = (Q, q0,Σ, R) be a SCFTG

in which each rule has the form (4). We construct
the MAC M = (Q′, (q0, q0),Σ,Σ, R′) where
Q′ = Q × Q and rkQ′((q, q′)) = rkQ(q′) + 1
for every(q, q′) ∈ Q′, and ifR contains a rule of
the form (4), thenR′ contains the rule:

(q, q′)(σ(y1,k), x1,m) → τ ′

where τ ′ is obtained fromτ by recursively re-
placing every subtree of the formq′′ j (τ1,n) by
(qj, q

′′)(yj , τ
′
1,n). It can be proven thatJGK =

JMK.
Synchronous tree-adjoining grammar(STAG)

(Shieber and Schabes, 1990) captures mildly
context-sensitive phenomena in natural lan-
guages. STAGs with states (Büchse et al., 2011;
Büchse et al., 2012) are characterized by bitrans-
formations in which the input and output trans-
formations are EMBs (Shieber, 2006). Thus, in
view of Theorem 1, every STAG with states can
be simulated by a SCFTG.

Synchronous tree-substitution grammar
(STSG) (Schabes, 1990) is STAG without ad-
joining. STSGs with states (Fülöp et al., 2010)
are characterized by bitransformations in which
the input and output transformations are linear,
nondeleting tree homomorphisms (Shieber, 2004)
(also cf. Thm. 4 of (Fülöp et al., 2010)).

Extended top-down tree transducers(XTOP)
(Rounds, 1970; Arnold and Dauchet, 1976) and

extended bottom-up tree transducers(XBOT)
(Fülöp et al., 2011) are top-down tree transducers
and bottom-up tree transducers, resp., in which
the input patterns occurring in the left-hand sides
of rules may have arbitrary depth. XTOPs have
been used to specify e.g. English-Arabic transla-
tion (Maletti et al., 2009). The linear, nondelet-
ing restrictions of XTOP and XBOT are denoted
by ln-XTOP and ln-XBOT, respectively, and both
classes are strongly equivalent (cf. Prop. 3.3
of (Fülöp et al., 2011)). Moreover, nl-XTOP
(and hence, nl-XBOT) is strongly equivalent to
STSG with states, because these classes have the
same bimorphism characterization (Arnold and
Dauchet, 1976) (also cf. Thm. 4.2 of (Fülöp et
al., 2011)). Hence, the power of nl-XTOP and
nl-XBOT is subsumed by SCFTG.

A linear context-free rewriting system
(LCFRS) (Vijay-Shanker et al., 1987) is a
string-generating device that can be thought of a
context-free grammar in which each nonterminal
has a fixed number of parameter positions, each
of which contains a string. Moreover, each rule
specifies how to synthesize the strings contained
in the parameters on its right-hand side to make
up the strings for the parameters on its left-hand
side. In fact, LCFRSs are attribute grammars
with synthesized attributes only (Knuth, 1968)
interpreted over the set of strings with concatena-
tion. LCFRGs are weakly equivalent to multiple
context-free grammars (MCFGs) (Seki et al.,
1991).

The string languages induced by linear CFTGs
are the same as those induced bywell-nested
linear context-free rewriting systems (cf. foot-
note 3 of (Kanazawa, 2009)). A synchronous
variant of well-nested LCFRSs can easily be de-
fined in terms of generalized bimorphisms (see
also (Bertsch and Nederhof, 2001)), but the con-
nection to SCFTGs is yet to be clarified.

Context-free hypergraph grammars(CFHG)
(Bauderon and Courcelle, 1987; Habel and Kre-
owski, 1987; Engelfriet and Heyker, 1991) are
context-free grammars that generate hypergraphs.
Each rule of a CFHGG specifies how a hyper-
edge, carrying a state and adjacent withn nodes,
is replaced by a hypergraph withn port (or inter-
face) nodes. The set of derivation trees ofG is a
regular tree language. The hypergraph language
induced byG is the set of all hypergraphs that
only contain hyperedges labelled by terminals.
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


q(x1, x2) → σ

x1 q 2

α q′ 1

x2

, q′(x′
1) → q 1

q′ 2

x′
1

γ

α




Figure 3: Rule of a SCFTG.

Every SCFTGG can be simulated by a CFHG
H. Construction ofH out of G is relatively
straightforward, but available space does not al-
low a formal definition. Instead we give an exam-
ple.

Example 3 Consider the SCFTG rule in Fig. 3,
with statesq and q′ of rank 2 and 1, resp., and
terminalsσ, γ and α of rank 2, 1 and 0, resp.;
the (only) variable in the output part is written
x′

1 to distinguish it fromx1 in the input part.
Fig. 4 shows the corresponding CFHG rule. A
pair of synchronized states together form one hy-
peredge. Each pair of identically labelled nodes
corresponds to a single node in the host graph to
which this rule is applied, before and after the ap-
plication. ✷
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Abstract

We propose a Neo-Davidsonian semantics
approach as a framework for constructing
a semantic interpretation simultaneously
with a strictly incremental syntactic deriva-
tion using the PLTAG formalism, which
supports full connectedness of all words un-
der a single node at each point in time.
This paper explains why Neo-Davidsonian
semantics is particularly suitable for in-
cremental semantic construction and out-
lines how the semantic construction process
works. We focus also on quantifier scope,
which turns out to be a particularly interest-
ing question in the context of incremental
TAG.

1 Introduction

Incremental processing formalisms have increas-
ing importance due to the growing ubiquity of
spoken dialogue systems that require understand-
ing and generation in real-time using rich, robust
semantics. Dialogue systems benefit from incre-
mental processing in terms of shorter response
time to the user’s requests when the dialogue sys-
tem can start interpreting and serving the request
(e.g. by consulting databases, doing reference res-
olution, backchannelling or starting to generate
an answer (Aist et al., 2007; Schuler et al., 2009;
Skantze and Schlangen, 2009)) before the request
is fully stated. Another use of formalisms that
support strict incrementality is psycholinguistic
modelling: As there is a substantial amount of ev-
idence that human sentence processing is highly
incremental, computational models of human sen-
tence processing should be incremental to the
same degree. Such models can then be used to

calculate measures of human sentence process-
ing difficulty, such as surprisal, which have been
demonstrated to correspond to reading times (e.g.,
Levy, 2008; Mitchell et al., 2010).

Two strictly incremental versions of tree-
adjoining grammar (TAG; Joshi et al., 1975)
which have been proposed in recent years are DV-
TAG (Mazzei et al., 2007) and PLTAG (Demberg-
Winterfors, 2010). Incremental syntax is how-
ever only of limited interest without a correspond-
ing mechanism for calculating the incremental
semantic interpretation. And for that semantic
model to be practically useful in psycholinguis-
tic modelling or NLP applications such as speech
recognition or dialogue systems, we believe that
the semantic representation should ideally be sim-
ple, flat and usefully underspecified, in order to be
used in the future in a context of compositional
distributional semantics. We propose a frame-
work in which semantic expressions are built syn-
chronously with the syntactic tree. Simple rules
are used to integrate an elementary tree’s seman-
tic expression with the semantic expression of the
prefix tree at each stage. The semantic contribu-
tion of the new elementary tree is thereby added
to the semantic output expression in a manner that
reflects closely the order in which semantic ma-
terial has arrived. The necessary semantic anno-
tation of elementary trees can be obtained from
subcategorization frame information (PropBank,
FrameNet). We use a Neo-Davidsonian event-
based semantics with minimal recursion.

Integrating incremental syntactic analysis with
a framework of incremental semantic interpreta-
tion will allow one to model processing phenom-
ena such as the decreased processing difficulty
(1-b) (after Steedman, 2000) in comparison to
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(1-a) by downranking the main verb analysis of
sent when the subject (like flowers) is unlikely to
fill the sender role.

(1) a. The doctor sent for the patient arrived.
b. The flowers sent for the patient arrived.

Incrementally generating the semantic interpreta-
tion requires the underspecification of the output
semantics given the syntax, such as underspeci-
fying the number of arguments of a verb or (to
a greater extent than for non-incremental devia-
tions, as we will discuss below) the scope of quan-
tifiers.

This paper sets forth the initial proposal for
this semantic formalism in terms of underlying
desiderata, principles, and basic use cases. It pro-
vides one example derivation, and it outlines a
way of dealing with the question of scope ambi-
guities, an issue which affects a number of aspects
of the theoretical plausibility of a semantic for-
malism.

2 PLTAG Syntax

PLTAG (Demberg-Winterfors, 2010; Demberg
and Keller, 2009, 2008) is a strictly incremental
version of TAG. In order to achieve the strict in-
crementality (i.e., all words are always connected
under a single root), the formalism uses predic-
tion trees, which are usually not lexicalized. Each
node of a prediction tree carries markers (see in-
dices k and k in Figure 1(c)) which indicate that
the predicted node has to be verified by a canon-
ical (= non-predictive) TAG tree with matching
structure at a later point in the derivation, in or-
der to yield a valid derived tree.

This verification operation applies when an el-
ementary tree arrives that structurally matches
nodes in the prefix tree which are marked with
the prediction markers. A structural match is
thereby defined as the verification tree containing
all nodes with identical index (i.e. all nodes that
were contributed by a specific prediction tree).
Additionally, the verification tree can have further
nodes to the right of the spine (= the path from the
root to the anchor). The prediction markers are re-
moved, and the lexical item in the elementary tree
is placed in the head of the prediction tree as in
Figure 4, and any additional nodes of the verifica-
tion tree which were not part of the prediction tree
are inserted into the prefix tree. For more details

see Demberg-Winterfors (2010).

3 Semantic PLTAG

Consider the following ways of stating a com-
mand to a hypothetical restaurant reservation sys-
tem:

(2) a. Send every restaurant a reservation request.
b. Send a reservation request to every restau-

rant.

A system that derives syntax and semantics in-
crementally and simultaneously can partially dis-
ambiguate the ambiguity between the two ele-
mentary trees of “send” (see Figure 1(a)) by tak-
ing into account that restaurants are better recip-
ients than reservation requests, while reservation
requests are more typically sent. The following
sections outline how we decorate the syntactic
PLTAG trees with semantic annotations, how se-
mantic expressions are composed, and how we
deal with quantifier scope.

4 Neo-Davidsonian semantics

Neo-Davidsonian semantics (Parsons, 1990) is a
form of first-order logic that uses existentially-
bound event variables (∃e) to connect verb pred-
icates and their subcategorized arguments and
separates predicate arguments into their own,
separate event-modifying predicates connected
through conjunctions. This permits a flexible
means to underspecify function composition and
argument structure (Hunter, 2009) by greatly lim-
iting recursion (Example (3-a)) in semantic ex-
pressions.

(3) a. Happily(Eating(Candy))
b. ∃x1∃eCandy(x1)&Eaten(e, x1)&

Eating(e)&Happily(e)

The Neo-Davidsonian approach has been imple-
mented in formalisms such as Robust Minimal
Recursion Semantics (RMRS; Copestake, 2007).
We use a variant exemplified in (3-b).

Neo-Davidsonian semantics has some advan-
tages in the case of a strictly incremental parsing
process: in incremental PLTAG parsing, the pre-
diction trees do not always specify the full sub-
categorization frame of a predicate. For exam-
ple, when processing the words Peter often, the
NP tree for Peter and the auxiliary tree for often
(see Fig. 1(b)) will be connected with a prediction
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S
{∃e}

ε VP

V

send
{Send(e)}

NP↓
{Qx1Recipient(e, x1)}

NP↓
{Qx2Sent(e, x2)}

S
{∃e}

ε VP

V

send
{Send(e)}

NP↓
{Qx2Sent(e, x2)}

PPk2
{Qx1Recipient(e, x1)}

TOk2
k2

tok2
k2

(a) Ditransitive alternation of imperative send.

DT

every
{∀x}

DT

a
{∃x}

NP
{Qx}

DT↓ NN

restaurant
{Restaurant(x)}

NP
{Qx}

DT↓ NN

request
{Request(x)}

NN

NN

reservation
{Reservation(x)}

NN*

PP

TO

to

NP↓
{Qx (e, x)}

VP

RB

often
{often(e)}

VP*

(b) Canonical elementary trees for nominals, determiners, to-PP, adverbial.
NPk
{Qx}

DT↓k NNk
k

{ (x)}

Sk
{∃e}

NP↓k VPkk

(c) Prediction trees

Figure 1: Example Lexicon

tree, expressing that a verb phrase is expected and
that the structure is going to root in S, see right
hand tree in Fig. 1(c). It does however not spec-
ify the subcategorization frame of the verb that is
going to be the head of the predicted verb phrase.
Neo-Davidsonian semantics allows us to keep the
same level of underspecification in the semantics,
such that the verb-phrase prediction tree only in-
troduces the event variable ∃e, which is then avail-
able to be unified with the unbound variable of of-
ten. Furthermore, the breaking up of n-ary pred-
icates into an event predicate and a binary rela-
tion for each thematic role in Neo-Davidsonian
semantics allows us to calculate the semantic con-
tribution of a verb’s argument before having seen
all arguments.

The minimally-recursive nature of the formal-
ism also permits the order of predicates in the
formalism to reflect approximately the order in
which their corresponding syntactic fragments
were incorporated into the structure. In our
PLTAG-based formalism, we tie each elemen-
tary tree to a neo-Davidsonian expression frag-
ment which will be appended to the end of a se-
mantic structure that grows along with the parse
tree. This incorporates a notion of recency di-
rectly into our semantic expression construction, a
characteristic relevant to semantic enhancements
of PLTAG’s syntactic prediction component.

This enables the produced expressions to be
used directly in statistical prediction techniques
where order may matter, including composi-
tional distributional semantics (Mitchell and Lap-
ata, 2010) or HMM-style sequence learning tech-
niques. Its trade-off is that the semantic expres-
sions are not always guaranteed to be immediately
well-formed, particularly in the order of scopes.
However, in the later sections we discuss ways
to identify structure that needs to be rearranged,
ways that can be applied at every incremental
step.

4.1 Lexical construction and derivation

These are some relevant aspects of the lexicon’s
construction:

Verb trees are annotated at the root with an
existentially-quantified event variable. The head
node contains the verb’s own predicate, and
the nodes representing arguments have argument
predicates with entity variables. The argument
predicates correspond to thematic roles.

The semantic expressions associated with ele-
mentary trees consist of four types of variables,
entity variables, written as xn, first-order predi-
cate variables, written as , quantifier variables,
written as Qn, and event variables, written as en.

variables are associated with the predictive com-
ponent of PLTAG-based parsing and achieve their
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Sentence: Send ‖ every restaurant a reservation request
S

{∃e}

ε VP

V

send
{Send(e)}

NPk
{Qx1Recipient(e, x1)}

DT↓k NNk
k

{ (x1)}

NP↓
{Qx2Sent(e, x2)}

S
{∃e}

ε VP

V

send
{Send(e)}

NPk
{Qx2Sent(e, x2)}

DT↓k NNk
k

{ (x2)}

PPk2
{Qx1Recipient(e, x1)}

TOk2
k2

tok2
k2

Semantics: ∃eQx1Recipient(e, x1)& (x1)&Qx2Sent(e, x2) Semantics: ∃eQx2Sent(e, x2)& (x2)&Qx2Recipient(e, x1)
&Send(e) &Send(e)

Figure 2: Ambiguous derivation when ditransitive Send is received.

values whenever a verification occurs that unifies
a prediction tree with an elementary tree. Qn vari-
ables are given concrete quantifier values when-
ever an elementary tree with a quantifier is sub-
stituted into a noun elementary tree that has the
Qn variable. en variables represent events and
their connections to event participants through
role predicates.

Determiners represent their own appropriate
quantifier (e.g. ∀x). NP-rooted elementary trees
for nouns have an unspecified Q quantifier at the
root and a semantic predicate corresponding to
the noun. Nominal adjuncts (such as the example
reservation auxiliary tree) contain a correspond-
ing predicate over an unbound entity variable.

4.2 Composition rules

We describe our procedure for incremental se-
mantic parsing in terms of triggered procedures
for the incorporation of the semantic expressions
residing on nodes of the most recently attached
elementary tree. We first describe some common
characteristics of the composition procedure, and
then we describe how some frequent types of el-
ementary trees are semantically processed on ar-
rival. One aspect of our approach is that most of
the “work” in building the semantic expression is
defined in terms of the derived tree, in contrast
to other TAG semantics approaches that use the
derivation tree. We found this the simplest way to
align the verification step’s role in giving values to
prediction trees and the valuation of variables in
the semantic expressions. Expressions and vari-
ables in the derived tree are indexed to their cor-
responding forms in the semantic expression, so
that they grow in parallel.

The semantic component proceeds through

rules for unification and predicate emission. Se-
mantic predicates are emitted as conjuncts from
left to right, normally revising previous seman-
tic structure based on unification events during
PLTAG operations. Whenever an elementary tree
is either substituted, adjoined, or predicted, the se-
mantic expressions on that tree’s nodes are emit-
ted as conjuncts, once all unifications have been
resolved.1

When an unbound variable joins the structure,
it is unified with the nearest compatible variable
the shortest distance above it in the structure. (Un-
bound variables generally appear in elementary
trees representing adjunct structures like adjec-
tives.) For the xn entity variables, when they are
unified, they will be assigned the same variable
subscript. For Q quantifier variables, they will
search for the nearest quantifier or quantifier vari-
able, by the same standard of nearness. variables
are predictive and only bound during verification.

By default, all predicates are joined with con-
junction operators, except in the case where a ∀xn
is called for. Then a→ conditional operator must
be inserted when the universally-quantified NP is
complete, with all adjuncts in the restrictor of the
quantifier. We describe later a procedure to iden-
tify NP adjuncts directly from the semantic ex-
pression in order to insert the conditional operator
as needed.

4.2.1 Example derivation

Figures 2-6 represent an example derivation
based on the sentence Send every restaurant a
reservation request using the lexicon in figure 1.

1We use the word “unification” in the sense of establish-
ing strict structural identity and variable coindexation as in
the Prolog programming language.
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Sentence: Send every ‖ restaurant a reservation request
S

{∃e}

ε VP

V

send
{Send(e)}

NPk
{∀x1Recipient(e, x1)}

DTk

every
{∀x1}

NNkk
{ (x1)}

NP↓
{Qx2Sent(e, x2)}

S
{∃e}

ε VP

V

send
{Send(e)}

NPk
{∀x2Sent(e, x2)}

DTk

every
{∀x2}

NNkk
{ (x2)}

PPk2
{Qx1Recipient(e, x1)}

TOk2k2

tok2k2

Semantics: ∃e∀x1Recipient(e, x1)& (x1)&Qx2Sent(e, x2) Semantics: ∃e∀x2Sent(e, x2)& (x2)&Qx2Recipient(e, x1)
&Send(e) &Send(e)

Figure 3: Derivation remains ambiguous after every is received.

Sentence: Send every restaurant ‖ a reservation
request

S
{∃e}

ε VP

V

send
{Send(e)}

NP
{∀x1Recipient(e, x1)}

DT

every
{∀x1}

NN

restaurant
{Restaurant(x1)}

NPk
{Qx2Sent(e, x2)}

DT↓k NNkk
{ (x2)}

Semantics:∃e∀x1Recipient(e, x1)&Restaurant(x1)
&Qx2Sent(e, x2)&Send(e)& (x2)

Figure 4: The prediction NP tree is verified through
unification with the tree for restaurant.

In figure 2, the two possible trees for send are in-
troduced from the lexicon, and the semantic ex-
pressions associated with the nodes are emitted.

In figure 3, the derivation remains ambiguous
after every is received. However, the quantifier ∀
unifies with the quantifier variable represented as
Q in both the trees and in the resulting semantics.

Next, the prediction NP tree is verified through
unification with the tree for restaurant (figure 4).
The empty predicate is also filled. Semantic se-
lectional constraints abolish the second parallel
derivation. The derivation is also now ready for
the next NP prediction tree.

Prediction of a determiner and verification with
a proceeds in analogy to the first NP. We then ad-
join the noun reservation (figure 5). For brevity,

we omit the ambiguity created by the possible in-
terpretation of reservation as an argument; we are
illustrating the effect of adjunction. The variable
in Reservation(x) unifies with the nearest quan-
tified variable along the spine of the tree; nomi-
nal adjuncts generally do not bring entity variable
bindings with them. The predicate is literally ap-
pended to the semantic expression as another con-
junct.

Finally (figure 6), the prediction tree is verified
by the arrival of request, which fills out the last

predicate variable. We demonstrate in this step
an adjustment of the semantics to a form in which
the event is quantified in the lowest position and
the restrictor of ∀ is correctly placed before an in-
serted →. We outline how to make this work in
the next section.

4.3 Adjuncts and arguments
It is sometimes important to identify the parts
of the output semantic expression that pertain
to adjuncts, especially when interpreting the po-
sitions of variable scope bindings and satisfy-
ing the semantic conditions thereon. The or-
der of strict incremental appearance of predi-
cates and variables may be subject to further in-
terpretive conditions that require limited reorder-
ing of sub-expressions, depending on the appli-
cation. For example, Champollion (2011) notes
that existentially-quantified events should be in-
terpreted in the lowest possible position relative
to the bindings of the event’s arguments. This re-
quires some ability to distinguish between argu-
ment and adjunct predicates. Similarly, in order
to handle scope ambiguities soundly, the system
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must also have the capacity to distinguish between
the restrictor and the nuclear scope of a quantifier.

There are multiple ways to do this, including
from the structure of the derived tree and the or-
der in which the derivation proceeded, but we ar-
gue that most of the work can be done within the
semantic expression itself. Most trivially, nominal
adjuncts can be identified by the lack of an event
argument to their predicates. Relative clause ad-
juncts will contain their own event variables, but
will not refer to the exterior event directly. As an
illustration:

(4) a. Some flower that some bride holds wilts.
b. ∃x1Flower(x1)&[∃x2Bride(x2)

&∃e2Hold(e2)&Holder(e2, x2)

&Held(e2, x1)]&∃e1Wilt(e1)&Wilter(e1, x1)

Since e1 is the root event, we know that the rela-
tive clause “that the bride holds” does not directly
refer to it in its semantic expression and is an ad-
junct only of “the flower”. We can even deduce
from the expression that “the flower” is the host
NP for the relative clause, because “the bride” is
not directly connected to the root event as an ar-
gument. We can therefore correctly insert the→
if the matrix subject had a universal quantifier.

(5) a. Every flower that some bride holds wilts.
b. ∀x1Flower(x1)&[∃x2Bride(x2)

&∃e2Hold(e2)&Holder(e2, x2)&Held(e2, x1)]

→ ∃e1Wilt(e1)&Wilter(e1, x1)

A similar procedure can be applied to the distinc-
tion between argument clauses that appear after
verbs like “say” and adjunct clauses heralded by
“because.” Argument clauses are heralded by an
event variable that itself becomes an argument of
a role predicate of the matrix argument, as here:

(6) a. Some professor says some student failed.
b. ∃x1Professor(x1)&∃e1Say(e1)

&Speaker(e1, x1)&[∃x2Student(x2)

&∃e2Spoken(e1, e2)&Fail(e2)&Failer(e2, x2)]

In the case of an adjunct clause introduced with
“because”, there is no role predicate connecting
the subordinate event to the matrix event, which
is practically the definition of an adjunct.

4.4 Scope and Underspecification

Our example derivation in Figures 2 to 6 shows
how a syntactic tree and semantic interpretation

Sentence: Send every restaurant a reservation ‖
request S

. . . NPk
{∃x2Sent(e, x2)}

DTk

a
{∃x2}

NNk

NN

reservation
{Reservation(x2)}

NNk
{ (x2)}

Semantics:∃e∀x1Recipient(e, x1)&Restaurant(x1)
&∃x2Sent(e, x2)&Send(e)& (x2)&Reservation(x2)

Figure 5: Prediction of a determiner and verification
with a proceeds in analogy to the first NP. We then
adjoin the noun reservation.

Sentence: Send every restaurant a reservation re-
quest ‖ S

. . . NP
{∃x2Sent(e, x2)}

DT

a
{∃x2}

NN

NN

reservation
{Reservation(x2)}

NN
{Request(x2)}

Semantics:∀x1Restaurant(x1) → ∃x2Request(x2)
&Reservation(x2)&∃eRecipient(e, x1)
Sent(e, x2)&Send(e)

Figure 6: Finally, the prediction tree is verified by the
arrival of request, which fills out the last predicate
variable.

can be constructed for the sentences in (2-a).
However, it only derives one possible reading for
the sentence ∃ > ∀, i.e. there exists a single reser-
vation request, and that it is to be sent indiscrimi-
nately to all restaurants. This reading reflects the
linear order that quantifiers occurred in. It misses
the other interpretation ∀ > ∃ (which was likely
intended by the user). When sentences are derived
incrementally, we cannot choose in the derivation
to first substitute the second NP in order to get the
other reading. Therefore, we need to systemati-
cally use underspecification to get both readings.
Note that this problem also exists to a certain ex-
tent in standard LTAG (Joshi et al., 2007; Barker,
2010).

However, not all quantifier orderings are per-
missible given the syntax. Joshi et al. (2007) and
Romero and Kallmeyer (2005) present an exam-
ple of what can be seen as a challenge for current
TAG-based and movementless approaches:
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(7) Two politicians spied on some person from
every city.

They describe a situation where syntactic con-
straints prevent some readings out of all possi-
ble permutations of quantifiers. In order to for-
bid their hypothetical widest matrix scope read-
ing of every city, we use dominance constraints
(Koller et al., 2003) to implement restrictions
based on the argument-adjunct distinction in pre-
venting quantifier-raising.

Ruys and Winter (2010) describe two major
approaches to developing a formal treatment of
scope ambiguities. One of these approaches is
the covert movement approach that comes from
the Chomskyan generative tradition, sometimes
known as Quantifier Raising (QR). In this ap-
proach, alternative scope readings are found by
applying highly constrained operators over an in-
termediate representation. The other approach in-
volves directly embedding the mechanism for the
observed scope readings in the logical representa-
tion of the semantics, typically assisted by type-
raising operators.

The QR approach stems from the observation
that there appears to be a close relationship be-
tween wh-movement islands and the restrictions
on scope readings, with wh-islands partially ex-
hibited through restrictions on overt movement as
well as covert movement. In other words, where
an inverse scope reading is impossible, it is the
case in languages that are not wh in situ that the
overt wh-movement is also generally difficult or
impossible.

This insight is difficult to capture in highly
lexicalized, movement-less formalisms. Since
wh-movement is overt, it is possible to lexical-
ize these types of structures and analyse them
in a movement-less way, mostly from the sur-
face structure. Quantifier scope ambiguity, how-
ever, “lives after the syntax” in some sense: fur-
ther stipulations must be made in order to enable
readings that do not come directly from the sur-
face order. Multi-component TAG (MCTAG) for-
malisms achieve this by permitting TAG struc-
tures with ambiguous syntactic attachments for
quantifiers; then it is possible to achieve scope
ambiguity through the underspecification of the
position of the quantifiers in the semantics (Joshi
et al., 2007).

If, on the other hand, we need an explicit

representation of the quantifier positions in syn-
tax and semantics—for example, at every step in
statistically-guided predictive parsing—then we
need also to make the operations that convert se-
mantic expressions from surface to inverse scope
readings a little more explicit. Champollion
(2011) presents a means of enabling quantifier
raising in a Neo-Davidsonian semantic formalism
without movement by optionally applying a type-
shifting operator to quantified items. The change
in type is propagated up the syntactic tree via
lambda-calculus operations in order to provide an
expression with the intended scope.

However, the potential bottom-up recalculation
of the entire semantic expression is also not par-
ticularly friendly to a parsing technique that is
striving to be meaningfully incremental and pre-
dictive. Instead, we propose to bring back, in a
very limited fashion, a movement-based analysis
of QR.

For the object noun phrase in example (7), both
scopal readings are possible: there was a sin-
gle person whose origin at some point has been
every city (∃ > ∀), or for every city, there is
a person from that city (∀ < ∃)—they are in-
terchangeable. For the whole sentence, one of
several available readings is that for every city,
there is a person whom two politicians spied on
(∀ > ∃ < 2). However, a reading that is not avail-
able is *∀ > 2 > ∃—that every city has its own
pair of politicians who are spying on some person
in that city.2

2We can find a parallel for this distinction in wh-
movement islands. Consider the following question, anal-
ogous to the *∀ > 2 > ∃:

(i) *From which cities did two politicians spy on some per-
son? (with the interpretation that “from which cities”
semantically applies to “some person”).

Adjunct phrases are islands for wh-movement, leading to the
ungrammaticality of the reading. However, it is possible to
ask a highly emphatic multiple question:

(ii) Which people from which cities did two politicians spy
on?

It is possible to bring the adjunct wh along with the argu-
ment wh in this case of overt movement. In fact, many
languages (Boškovič, 2002) permit multiple wh-movement,
constrained only by island restrictions such as adjunct is-
lands. Multiple wh-movement by pied-piping is permitted in
English when the lower question is a syntactic adjunct (Re-
ich, 2002).

Furthermore, Romero and Kallmeyer (2005) present an
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Focusing specifically on relations between
quantifiers, we can define a representation and a
set of constraints that limit the possible readings
by looking at the relationships between variables
in our semantic expression formalism. We con-
struct a minimal spanning tree of variables con-
nected to the event variable of the predicate in the
main clause, which is then the root of the tree.
Each edge in the variable tree, which is roughly
analogous to a very stripped-down TAG deriva-
tion tree, represents a pair of arguments present in
a binary predicate in the expression; parent-child
relationships between event variables and entity
variables are only permitted through role predi-
cates to prevent the events of adjunct clauses from
participating in scope relations. Each xn variable
would be annotated in the tree by its associated
quantifier. For example, consider the following
interpretation of example (7) in our formalism, af-
ter the lowering of the event scope and insertion
of→:

(8) 2x1Politician(x1)&∃x2Person(x2)&∀x3

City(x3)&From(x2, x3) →
∃eSpyer(e, x1)&SpiedUpon(e, x2)&Spy(e)

The variable tree for this would be:

(9) e

2x1∃x2

∀x3
We interpret surface scope order left to right and
top down. Then we can express the interchange-
ability of ∃ and ∀ by declaring that variables in a

additional non-surface reading, ∃ > ∀, 2, where ∀ is in the
restrictor of ∃ (not surprising due to the adjunct status of
“from every city”). While the requirement for pied-piping
in English requires both wh-phrases to be fronted, this is a
restriction that belongs to the syntax. Many analyses show
that pied-piping restrictions do not necessarily hold at the
level of logical form (von Stechow, 1996; Reich, 2002), even
if island constraints do. Consequently, the additional valid
reading is not ruled out by a QR analysis based in covert
movement.

Given this parallelism, one could reasonably be tempted
to advocate for the re-adoption of movement-based analy-
ses in movementless grammatical formalisms, but at least
in the case of TAG, actually doing so would break many of
the properties of the formalism. Consequently, we only pro-
pose a form of movement-equivalent operation that focuses
on representing ambiguities in semantic structure that are not
easily accommodated in a monotonic, movementless incre-
mental parsing system.

parent-child relationship can be interpreted inter-
changeably. Another important stipulation over
variable trees is that only the immediate children
of an event variable can change their relation-
ship to the other descendants of the event variable,
which would rule out ∀ immediately taking scope
over 2 and ∃. This represents adjunct island re-
strictions on covert movement. The ∀ > ∃ >
2 reading can be licensed by actually allowing
movement to occur in a manner somewhat analo-
gous to the move operator in Minimalist accounts
with no traces.

(10) e

∃x2 e

2x1∀x3

⇒ e

∀x3 e

∃x2 e

2x1

The last step is permissible because ∀x3 is an im-
mediate child of e in the previous step. Extend-
ing this analysis to, e.g., forbid QR from caus-
ing subjacency violations can be accomplished in
approximately the following way: no entity vari-
able can rise above its own nearest ancestor event
variable except in the circumstance that the event
variable is itself a child of another event vari-
able (equivalent to successive-cyclic movement).
These scope order changes can be reflected in the
semantics, if necessary, by explicitly reordering
the affected variable bindings in the expression.
We leave a fuller exploration of the details of this
proposal to future work.

5 Concluding remarks

We have proposed here a semantic extension to
PLTAG, a syntactic formalism intended to en-
able robust, psychologically-plausible incremen-
tal parsing. This presented us the challenge of
reconciling potentially conflicting goals, such as
strict incrementality, semantic well-formedness,
psycholinguistic plausiblity, and engineering ap-
plicability. Our solution consists of a variant of
neo-Davidsonian semantics adjusted to support a
close synchronisation between the composition of
output semantic expressions and PLTAG opera-
tions such as the prediction/verification mecha-
nism.

We illustrated the formalism with an example
parse, and we described a way in which our ap-
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proach can be adapted to handle ambiguous scope
phenomena that constitute a challenge for robust
semantic representation. Potential extensions of
this work include semantic PLTAG lexicon ex-
traction from treebanks and further formalisation
of our variable tree representation of scope phe-
nomena.
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Abstract

The paper proposes an LTAG semantic
analysis to derive semantic representations
for different focus constructions in a uni-
form way. The proposal is shown via ex-
amples of different narrow focus construc-
tions, multiple foci and focus in questions.

1 Introduction

This paper proposes an analysis in Lexicalized
Tree-Adjoining Grammar (LTAG) (Joshi and Sch-
abes, 1997), that calculates the semantic rep-
resentations of various focused sentences based
on their syntactic structure and intonation pat-
tern. The paper presents a proposal of extend-
ing the focus analysis of Balogh (2009) with the
LTAG syntax-semantic interface from Kallmeyer
& Romero (2008). Balogh (2009) provides a
context-based approach of focusing, that gives a
logical-semantic analysis of (narrow) focus con-
structions within the framework of Inquisitive Se-
mantics (Groenendijk, 2009). One of the cen-
tral claims of the analysis is that focusing leads
to a special theme/rheme division of the utter-
ance, that further relates it to the underlying con-
text, and as such it regulates the coherent dialogue
flow. This approach investigates the interpretation
of focus from a semantic/pragmatic perspective,
providing an analysis of phenomena as question-
answer congruence and the exhaustive interpre-
tation of answers. However, the analysis lacks
an important part – the syntax-semantics inter-
face –, that builds the semantic representations as
theme-rheme structures of natural language sen-
tences driven by their syntactic structure.

1.1 Aims
The main aim of the current paper is twofold. It
wants to broaden the coverage of linguistics anal-
yses in LTAG and as a primary aim it wants to fill
this gap of Balogh (2009) by proposing an analy-
sis of the syntax-semantics interface that provides
the semantic representations of the different kinds
of focus constructions. These representations can
further be interpreted according to the desired se-
mantic/pragmatic framework: Inquisitive Seman-
tics (InqS) (Groenendijk, 2009). The choice for
the logical-semantic system of InqS as opposed
to, e.g., Alternative Semantics (Rooth, 1992)1 has
several motivations. One of the main aims in fa-
vor of InqS is, that its semantics and dialogue
management system offers an elegant way to ana-
lyze various discourse-related phenomena involv-
ing focus such as: focusing in answers, question-
answer relations, contrast in denial and specifica-
tion by focusing. The analysis in this paper con-
centrates on narrow focus constructions, however
a proposal of extending it to broad focus construc-
tions and focus projection is also given.

2 Frameworks

The analysis proposed in this paper offers a com-
positional way to calculate the semantic represen-
tations for different (narrow) focus constructions
in a uniform way. The analysis of the syntax-
semantics interface as introduced here is pro-
vided within the framework of Lexicalized Tree-
Adjoining Grammar, LTAG (Joshi and Schabes,
1997) with a semantic component as developed
by Kallmeyer & Joshi (2003) and Kallmeyer &
Romero (2008).

1As in the proposal from Babko-Malaya (2004), that in-
tegrates LTAG with Alternative Semantics.
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2.1 LTAG Semantics

For the semantic representation I adapt the LTAG
semantics based on unification as introduced
by Kallmeyer & Romero (2008). In this ap-
proach each elementary tree comes with a feature-
structure and a (flat) semantic representation, each
of them consisting of a set of labelled propositions
and a set of scope constraints. These propositions
and constraints contain meta-variables of individ-
uals, propositions or situations, all of them given
by boxed numbers. The feature structures are all
linked to a semantic representation and by substi-
tution and adjunction of the trees, feature struc-
tures get unified and the meta-variables get val-
ues. Also the semantic representation of the re-
sulting tree is calculated by taking the union of the
representations of the participating trees. For an
illustration of LTAG semantics see Example 2.1,
the derivation of the question Who walks? assign-
ing the semantic representation as ?∃x.walk(x).
Example 2.1 Who walks?

S

NP↓I= 1 ,whmax= 4

whmin= 3
SP= 8

NP

ε

VPP= 8
P=l1

walks

l0 : ? 4 , l1 : walk( 1 )
4 ≥ 3 , 3 ≥ 8

NPI=x,whmax= 6

whmin= 7

who

l2 : ∃x 5

6 ≥ l2, 5 ≥ 7

The S-tree of ‘walks’ comes with a seman-
tic representation consisting of two propositions:
l0 contributes the question-operator applied to a
proposition given here as the meta-variable 4 .
The proposition l1 says, that the predicate walk
is applied to the individual variable 1 that is con-
tributed by the NP-tree substituted to the given po-
sition: given by I = 1 on the feature structure
of the substitution node. Here, two special fea-
tures are introduced: WHMAX and WHMIN. These
features are inspired by the idea of a wh-scope
window from Romero & Kallmeyer & Babko-
Malaya (2004) and by the MAXS and MINS fea-

tures from Kallmeyer & Romero (2008) that indi-
cate the scope window of a given quantificational
phrase. The features MAXS and MINS determine
the maximum and minimum scope of quantifica-
tional NPs such as ‘someone’ or ‘everyone’, while
WHMAX and WHMIN indicate the scope window
for (wh-)questions and for focus. Separating these
two different scope windows has the advantage
to account for, e.g., quantifying into questions.
Next to the propositions l0 and l1, the scope con-
strains 4 ≥ 3 , 3 ≥ 8 are defined that deter-
mine the scope relations between the given propo-
sitions. The scope constrains are defined between
the propositional meta-variables and the proposi-
tional labels.

The NP-tree of the wh-phrase gets substituted
into the S-tree of ‘walks’ resulting in the equa-
tions 1 = x, 4 = 6 , 3 = 7 and since nothing is
adjoined at the VP node2, we have 8 = l1. After
these equations the combination of the semantic
representations results in:

l0 : ? 4 , l1 : walk(x), l2 : ∃x 5

4 ≥ 3 , 3 ≥ l1, 4 ≥ l2, 5 ≥ 3

Following these scope constraints, the possible
plugging is: 4 7→ l2, 5 7→ l1, 3 7→ l1, resulting
in the semantic representation as ?∃x.walks(x).

2.2 Inquisitive Semantics

In the semantic representation I follow the
language of Inquisitive Semantics, serving the
broader purpose to integrate the current analysis
with a component of semantic-pragmatic inter-
pretation and discourse modeling (e.g. modeling
question-answer relations). The semantic repre-
sentation ?∃x.walks(x) is the translation of the
wh-question Who walks? according to the logical
system of InqS.

As already introduced before, in my analysis I
adapt several ideas of the system of Inquisitive Se-
mantics (Groenendijk, 2009). The main aim be-
hind this framework is to create a logical system
that models the flow of a coherent dialogue. The
principal goal is to provide a model of information
exchange as a cooperative process of raising and
resolving issues. In the semantic interpretation of
utterances, the main source of inquisitiveness is
disjunction. The disjunction of two propositions

2To keep the examples easier, none of the following ex-
amples contain adjunction at the VP node, so in later exam-
ples I will skip the P features at the VP and S nodes.
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is naturally interpreted as providing the informa-
tion that one of the two propositions is true and
also raising the issue which one of them is true.
Hence the disjunction p ∨ q provides two possi-
bilites: either p is true or q is true, while eliminat-
ing the option that both of them are false.

Consider now the meaning of a question. Ac-
cording to the classical theories3, the meaning of a
question is the set of its (true/complete) answers.
Hence the meaning of the polar question Is it rain-
ing? (?p) is identified by the set of two proposi-
tions it is raining (p) and it is not raining (¬p)
and the questioner wants to know which one of
the two holds. Since the questioner is interested
whether p or ¬p is the case, the question ?p can
be defined as the disjunction of its two possibil-
ities: p ∨ ¬p, hence in general questions can be
defined in terms of disjunction: ?φ = φ ∨ ¬φ.
The main conclusion that can be drawn here is
that like questions, disjunctions have the charac-
teristic of introducing possibilities, and they both
get an alternative interpretation.

The system of InqS is developed in such a way
that sentences can provide data (informativeness)
and raise issues (inquisitiveness). In terms of
these two notions three meaningful sentence types
can be defined: (i) assertions: informative and not
inquisitive, (ii) questions: inquisitive and not in-
formative, and (iii) hybrids: informative and in-
quisitive. Such a hybrid type is the proposition
p ∨ q, that provides the information that ¬p ∧ ¬q
is not the case, while it raises the issue which
one of p or q is true, thus it gives two possibili-
ties. The question ?(p ∨ q) is not informative, it
does not exclude anything, it only raises the is-
sue whether p or q or ¬p ∧ ¬q is the case (three
possibilities).4 Similarly to p ∨ q the predicate
logical expression ∃x.φ also provides the infor-
mation that ¬∃x.φ is not the case and addition-
ally it raises the issue which individuals are φ.
It leads to several possibilities depending on the
number of individuals in the domain. Take, for
example, the proposition ∃x.P (x) and a small do-
main of three individuals D = {a, b, c}. The
existential expression ∃x.P (x) then excludes the
option that none of a, b, c is P , and raises the is-
sue which one is P . Relative to the given domain

3e.g. (Hamblin, 1973; Karttunen, 1977)
4Note, that ?φ is not a separate category in the syntax of

the logical language, but it is defined in terms of disjunction
as given above.

D, this expression leads to the set of three possi-
bilities: P (a), P (b), P (c). Following this line, I
assume the standard logical translation of a con-
stituent question to be of the form ?∃x.φ. A con-
stituent question is interpreted as a set of possi-
bilities, corresponding to its possible answers. I
give a Hamblin-style interpretation of questions
as sets of propositions, however with the crucial
difference that in my analysis the set contains the
proposition nobody is P as well. The wh-question
Who walks? is translated as ?∃x.walk(x) which
is the same as the disjunction of the proposi-
tions (possibilities) walk(d1) ∨ walk(d2) ∨ ... ∨
walk(dn)∨¬∃x.came(x) relative to the given do-
main of individuals.

In the logical language of Inquisitive Seman-
tics all utterances are claimed to be divided into a
theme and a rheme, where the rheme corresponds
to the information content of the given utterance
and the theme to the issue that the utterance ad-
dresses. Balogh (2009) proposes an analysis of
focused sentences claiming that focusing leads to
a special theme-rheme division. Next to the paral-
lelisms with the distinction of new and old infor-
mation in the generative view, an important differ-
ence is that in this analysis the sentences itself are
not split into two parts, but the way is defined how
to signal the inherent issue (theme) of the utter-
ance and the data it provides (rheme). The theme
of an utterance is a question, and as such it is in-
quisitive, introducing two or more possibilities. In
order to derive the special theme and rheme of a
focused sentence Balogh (2009) defines the Rule
of Division by focusing.

Definition 2.2 Rule of Division
Let α be an utterance in natural language, α′ the
translation of α in the language of InqS and \ the
operation: ϕ\ = ψ if ϕ =?ψ, otherwise ϕ\ = ϕ.

Every utterance α is divided into a theme and
rheme: TH(α);RH(α) where
TH(α) = ?∃~x(α′[ ~aF

′/~x])\; and
RH(α) = α′

This definition correctly derives the theme-
rheme division of various narrow focus construc-
tions, that further get interpreted in the sys-
tem of InqS. This proposal provides a context-
based analysis of focusing with special atten-
tion to question-answer congruence, exhaustivity,
contrast in denials, and specification. However,
the system of Balogh (2009) lacks the syntax-
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semantics interface. As it can be seen in Defini-
tion 2.2, focus marking of constituents get directly
translated in the logical language as φF not refer-
ring to the syntactic structure and the contribution
of the focused constituent.

The analysis proposed in this paper wants to
fill this gap defining the syntax-semantics inter-
face, that provide the correct semantic representa-
tion (theme-rheme pair) on basis of the syntactic
structure of the utterance.

3 Proposal

As a starting point, the current analysis suggests
the semantic representations of utterances consist-
ing of two components: one that represents the
theme and one that represents the rheme. Accord-
ing to this, each S-tree comes with a semantic rep-
resentation as the following:

〈 l0 : ? i , l1 : Rn( t1 , ..., tn )
{ i ≥ j , j ≥ l1, ...}
l1 : R

n( t1 , ..., tn )
{constraints}

〉

In this two-component representation the above
part is the representation of the theme, while the
below one is the representation of the rheme. De-
fined in this way all S-trees come with a seman-
tic representation, where the theme will lead to a
question: the issue behind, and the rheme leads to
a proposition: the semantic content.

3.1 Narrow focus constructions

The representation of focusing first of all has to
provide different structures for the different (nar-
row) focus constructions. Consider first the basic
cases of a sentence with a transitive verb: (i) none
of the arguments is focused, (ii) the subject is fo-
cused or (iii) the object is focused. All these sen-
tences lead to different theme-rheme divisions:

(1) Pim likes Sam.
; TH: ?like(p, s) + RH: like(p, s)
PIMF likes Sam.
; TH: ?∃x.like(x, s) + RH: like(p, s)
Pim likes SAMF .
; TH: ?∃y.like(p, y) + RH: like(p, s)

Take first the sentence Pim likes Sam that is
built of three elementary trees, the S-tree of the
verb and two NP-trees of the two arguments.

Example 3.1 Pim likes Sam

S

NP↓I= 1 ,whmax= 4

whmin= 3
VP

VP=l1

likes

NP↓I= 2 ,whmax= 4

whmin= 3

〈 l0 : ? 4 , l1 : like( 1 , 2 )
4 ≥ 3 , 3 ≥ l1
l1 : like( 1 , 2 )

〉

NPI=x,whmax= 8

whmin= 7

Pim

〈
l2 : pim(x)

l2 : pim(x)

〉

NPI=y,whmax= 10

whmin= 9

Sam

〈
l3 : sam(y)

l3 : sam(y)

〉

By substituting the NP-tree in the S-tree the
features on the nodes get unified (thus 1 =
x, 2 = y) and the corresponding semantic repre-
sentations are combined, resulting in the semantic
representation of the sentence as:

〈 l0 : ? 4 , l1 : like(x, y), l2 : pim(x),
l3 : sam(y), 4 ≥ 3 , 3 ≥ l1
l1 : like(x, y), l2 : pim(x),l3 : sam(y)

〉

There is one way of plugging possible here:
4 7→ l1, 3 7→ l1 , that derives the semantics rep-
resentation of the given sentence as the following,
where the theme corresponds to the polar question
Does Pim like Sam? and the rheme corresponds
to the proposition Pim likes Sam.

〈
?like(x, y), pim(x), sam(y)

like(x, y), pim(x), sam(y)

〉

3.1.1 Subject / object in focus
Sentences consisting of a transitive verb have

the possibilities of narrow focus: either the sub-
ject or the object (or both) can be focused. First,
look at the sentences in (1) with single focus. The
analysis derives the rheme as the proposition Pim
likes Sam for both, while the different focus struc-
tures lead to two different themes corresponding
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to the inherent questions: Who likes Sam? and
Whom does Pim like? respectively.

In the analysis of PIMF likes Sam with narrow
focus on the subject, we take the S-tree of ‘likes’
as above and substitute two NP-trees: for the non-
focused object the tree for ‘Sam’ as in Example
3.1, while for the focused subject we take the tree
for ‘Pim’ with its special semantics:

NPI=x,whmax= 8 ,foc=+

whmin= 7

Pim

〈 l2 : ∃x 11 ,
8 ≥ l2, 11 ≥ 7

l2 : pim(x)

〉

The semantic representation of the focused NP
contributes a special theme as an existential ex-
pression. The substitutions of the two NPs car-
ried out and the respective meta-variables unified:
1 = x, 2 = y, 8 = 4 , 7 = 3 , that leads to the
semantics:

〈 l0 :? 4 , l1 : like(x, y), l2 : ∃x 11 ,
l3 : sam(y), 4 ≥ 3 , 3 ≥ l1,
4 ≥ l2, 11 ≥ 3

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

Again, one way of plugging is possible here:
4 7→ l2, 11 7→ l1, 3 7→ l1 providing the
twofold semantic representation corresponding to
the question Who likes Sam? as the theme and
the proposition Pim likes Sam as the rheme of the
utterance.

〈
?∃x.like(x, y), sam(y)

like(x, y), pim(x), sam(y)

〉

The analysis of Pim likes SAMF is similar, we
take the sam S-tree for the non-focused subject we
substitute the tree for ‘Pim’ as before and for the
focused object we substitute the tree for ‘Sam’ as:

NPI=y,whmax= 10 ,foc=+

whmin= 9

Sam

〈 l3 : ∃y 12

10 ≥ l3, 12 ≥ 9

l3 : sam(y)

〉

The two substitutions here lead to the semantic
representations before and after plugging:

〈 l0 :? 4 , l1 : like(x, y), l2 : pim(x),
l3 : ∃y 12 , 4 ≥ 3 , 3 ≥ l1,
4 ≥ l3, 12 ≥ 3

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

〈
?∃y.like(x, y), pim(x)

like(x, y), pim(x), sam(y)

〉

Similarly to the previous example, this repre-
sentation corresponds to the question Whom does
Pim like? as the theme and to the proposition Pim
likes Sam as the rheme.

3.2 Multiple focus
After showing the basic cases, let us now turn to
more complex examples such as multiple focus.
In sentences formed of a transitive verb, not only
single focusing is possible, but also both argu-
ments can be focused in the same time: PIMF

likes SAMF . The rheme or information con-
tent of this sentence is again the proposition Pim
likes Sam, while the theme or underlying issue is
the multiple wh-question Who likes whom? The
analysis derives the correct theme-rheme division
straightforwardly, by substituting the NP-trees of
the focused arguments (see in the previous sec-
tion) into the S-tree of ‘likes’ (see Example 3.1).
The substitutions of the focused subject and ob-
ject lead to the semantic representation:

〈 l0 :? 4 , l1 : like(x, y), l2 : ∃x 11 ,
l3 : ∃y 12 , 4 ≥ 3 , 3 ≥ l1, 4 ≥ l2,
11 ≥ 3 , 4 ≥ l3, 12 ≥ 3

l1 : like(x, y), l2 : pim(x), l3 : sam(y)

〉

Here, two different pluggings are possible: (i)
4 7→ l2, 11 7→ l3, 12 7→ l1, 3 7→ l1 and (ii) 4 7→
l3, 12 7→ l2, 11 7→ l1, 3 7→ l1, yielding two se-
mantic representations, where the representations
of the theme are slightly different: at plugging
(i) ?∃x∃y.like(x, y) and at (ii) ?∃y∃x.like(x, y).
Since we have existential expressions, these two
representations are equivalent, both correspond-
ing to the question Who likes whom?

3.3 Focus in questions
The analysis proposed above gives also a straight-
forward derivation of a special construction, when
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an argument is focused within a wh-question as,
e.g. ‘Who likes SAMF ?’ Such examples appear
in, e.g., answering strategies , where the goal is
to resolve a question, which can be reached via
answering all of its (easier) sub-questions. As
Roberts (1996) shows, the question ‘Who likes
whom?’ can be resolved by the strategy of replac-
ing the original question with its sub-questions,
where the sub-question is only felicitous if it is
appropriately focused. For an illustration, con-
sider the answering strategy of the multiple wh-
question ‘Who likes whom?’:

(2) Who likes whom?
Who likes SAMF ?

Does Sam like Sam?
Does Tom like Sam?
. . .

In the derivation of ‘Who likes SAMF ?’ we
take the S-tree of ‘likes’ (example 3.2) and substi-
tute the elementary trees of the wh-phrase ‘who’
and the focused object ‘Sam’ (example 3.3):

Example 3.2 S

NP↓I= 1 ,whmax= 4

whmin= 3
S

NP

ε

VP

VP=l1

likes

NP↓I= 2 ,whmax= 4

whmin= 3

〈 l0 : ? 4 , l1 : like( 1 , 2 )
4 ≥ 3 , 3 ≥ l1
l0 : ? 4 , l1 : like( 1 , 2 )
4 ≥ 3 , 3 ≥ l1

〉

Example 3.3 ‘who’ and ‘SAMF ’

NPI=x,whmax= 6

whmin= 7

who

NPI=y,whmax= 10

whmin= 9 ,foc=+

Sam

〈 l2 : ∃x 5

6 ≥ l2, 5 ≥ 7

l2 : ∃x 5

6 ≥ l2, 5 ≥ 7

〉〈 l3 : ∃y 12

10 ≥ l3, 12 ≥ 9

l3 : sam(y)

〉

By substitution of the two NP-trees we get the
equations 1 = x, 2 = y, 4 = 6 = 10 , 3 =
7 = 9 on the theme side and 1 = x, 2 = y, 4 =

6 , 3 = 7 on the rheme side. This gives us the
still underspecified semantic representation:

〈
l0 : ? 4 , l1 : like(x, y), l2 : ∃x 5 , l3 : ∃y 12

4 ≥ 3 , 3 ≥ l0, 4 ≥ l2, 5 ≥ 3 ,
4 ≥ l3, 12 ≥ 3

l0 : ? 4 , l1 : like(x, y), l2 : ∃x 5 , l3 : sam(y)
4 ≥ 3 , 3 ≥ l0, 4 ≥ l2, 5 ≥ 3

〉

Similarily to the example with multiple foci,
at the theme side of this example two plug-
gings are possible, that derive the representations
?∃x∃y.like(x, y) and ?∃y∃x.like(x, y) that are
equivalent. On the rheme side only one plug-
ging is possible, that derives the representation
?∃x.like(x, y), pim(y). Hence, the analysis cor-
rectly derives the theme and the rheme of ‘Who
likes PIMF ?’ as the multiple wh-question ‘Who
likes whom?’ and the single wh-question ‘Who
likes Pim?’ respectively.

4 Conclusion and further issues

The approach introduced here is a proposal to-
wards an analysis of focus constructions using
LTAG with a unification based semantics. The
analysis derives the theme/rheme divisions of
different (narrow) focus constructions including
multiple foci and focusing in questions.

(3) Pim likes Sam.
; TH: ?like(x, y), pim(x), sam(y)
; RH: like(x, y), pim(x), sam(y)

PIMF likes Sam.
; TH: ?∃x.like(x, y), sam(y)
; RH: like(x, y), pim(x), sam(y)

Pim likes SAMF .
; TH: ?∃y.like(x, y), pim(x)
; RH: like(x, y), pim(x), sam(y)

PIMF likes SAMF .
; TH: ?∃x∃y.like(x, y)
; RH: like(x, y), pim(x), sam(y)

The advantage of this analysis is that all four
sentences bear the same propositional content
(rheme), while the different focus structures lead
to different inherent issues (theme) indicating that
these sentences are felicitous in different contexts.
Consequently, they relate to four different wh-
questions, which offers a straightforward way to
deal with the basic cases of question-answer con-
gruence. This analysis follows the core ideas of
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the context-based approach of Balogh (2009), that
concentrates merely on the interpretation of dif-
ferent focus structures. The above analysis pro-
vides an extension to the syntax-semantics inter-
face of Kallmeyer & Romero (2008). It deter-
mines the semantic representations as assumed in
Balogh (2009) on basis of the syntactic structures
of the sentences in a straightforward, intuitive and
compositional way.

Since this paper is a report of a work in
progress, several loose ends can be pointed out.
First of all an analysis of the relation of accent
placement and focus has to be given to deal with,
among others, the phenomenon of Focus Projec-
tion (Selkirk, 1996). The second important issue
to investigate is the relation of focusing and quan-
tifier scope as one of the main reasons of choosing
LTAG as the framework of the syntax-semantics
interface. The semantic component of LTAG as
introduced by Kallmeyer & Romero (2008) of-
fers an analysis of scope ambiguities. In their
analysis scope windows are introduced for quan-
tificational NPs by the features MAXS and MINS

signalling the maximal and minimal scope sides.
Focus and questions also bear scope properties,
different from the scope properties of quantifica-
tional NPs. To offer a uniform analysis of the sim-
ilarities and differences of these scope sides, this
paper introduces the features WHMAX and WH-
MIN as the scope window for focus and questions
(inspired by Romero & Kallmeyer & Babako-
Malaya (2004)). The distinction of the two dif-
ferent scope windows gives the possibility to deal
with the relation of focusing and quantifiers as
well as quantifying into questions.

4.1 Focus marking and accenting

In section 2, the proposal of the analysis of narrow
focus constructions was introduced, deriving a
two-fold semantics of utterances representing the
theme (underlying issue) and the rheme (proposi-
tional content). Focused constituents contribute
a special semantics to the theme of the sen-
tence meaning, yielding the corresponding wh-
question. Each elementary tree of a focused con-
stituent came with a different semantic represen-
tation as their non-focused counterpart. Focus
marking can be signaled within the feature struc-
ture of the given elementary tree, introducing the
feature FOC with possible values + and - for fo-
cused and non-focused occurences.

In the previous examples all NP arguments are
proper names with an elementary tree of a noun
phrase without further inner structure and the fo-
cus feature can appear at the maximal projection.
However, for an elegant account for focusing we
need to be able to give an analysis of the place-
ment of the pitch accent and the focus marking.
Hence, we have to account for Focus Projection as
well as focus marking within a complex NP. Fol-
lowing Selkirk’s (1996) Focus Projection princi-
ple, the same accenting can receive different focus
marking, hence different focus interpretation. As
her focus marking principles suggest, pitch accent
on the noun can lead to a narrow focus interpreta-
tion or to a broadad (VP) focus interpretation:

(4) a. John rented [a BICYCLE]F .

b. John [rented a BICYCLE]F .

An important issue for the current approach is,
how to analyze the relation between the placement
of the pitch accent and the marking of the focused
constituent. For this we need to introduce two fea-
tures FOC and PITCH that stand for focus marking
and accenting respectively. The placement of the
pitch accent is given by the feature pitch = +
coming from the lexicon together with the lexi-
cal anchor. The value of the pitch accent is then
passed to the FOC feature that appears on some
nodes of the elementary tree of the noun phrase.

NP
foc= 1

N3
foc= 1

foc= 1 ,pitch= 1

As for the focus projection, the + value of the
FOC feature can be optionally passed up from the
rightmost NP argument to the higher VP node
marking the possible focus projection (FPP). This
is not possible from the subject position (or from
the not right-most argument), the focused NP in
that position gets narrow focus intrepretation.

S

NP↓ VPFPP= 1

V� NP↓ NP↓foc= 1

However, the picture is more complex, since
by focusing we have to deal with (at least two)
different issues: (i) the information structure of
the sentence: which part of the content is the
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Focus / Topic / Background as defined in for-
mal pragmatic terms; (ii) the coherent discourse:
what is “given / retrievable” and “non-given / no-
retrievable” information.

Towards an account of these issues, first of all,
we take focus as a pragmatic notion, defined as
the part of the answer that corresponds to the wh-
part of a question. Following this definition, the
FOC feature is passed to the maximal projection
of the noun phrase, marking the whole NP as the
focus of the sentence. This raises the issue how
we can deal with complex NPs like ‘a green bi-
cycle’ where either the noun or the adjective gets
the accent. In case the noun is accented ‘a green
BICYCLEF ’, it passes the focus marking to its
maximal projection, and the whole noun phrase
will be in focus. In case, that the adjective is ac-
cented ‘a GREENF bicycle’ we can still mark the
whole NP as focus, however we have to deal with
the notion of giveness as well. Consider the fol-
lowing examples:

(5) context1: John attended a conference
where the participants rented vehicles to
move around.
What did John rent?

a. John rented [a BICYCLE]F .

b. John rented [a green BICYCLE]F .

(6) context2: John attended a conference
where all participants rented different
kinds of bicycles to move around.
What did John rent?

a. #John rented [a BICYCLE]F .

b. #John rented [a green BICYCLE]F .

c. John rented [a GREEN bicycle]F .

d. John rented [a TANDEM]F .

In context 2, the wh-question is approporiate
although the information that the rented vehicles
are all bicycles is given. The answer in (6c) is
felicitous with the focus marking of the whole
NP as the corresponding to the wh-phrase of the
question. Focus marking of the whole NP is thus
possible even if some part of the NP is already
given. Consequently, we need to distinguish the
notions of focus and given information. This ex-
ample supports the notion of focus in pragmatic
terms and the proposed analysis of focus marking.

4.2 Focus and quantifier scope

The paper introduces the special scope window
for focus and questions by the new features WH-
MAX and WHMIN. These features follow the idea
of MAXS and MINS from Kallmeyer & Romero
(2008), however, in the previous examples we
only discussed cases having only the focus win-
dow. In case we have both a quantificational NP
and a focused constituent in the sentence, the dis-
tinction of the two scope windows get relevant
and important. Consider, for example, the sen-
tence SOMEONEF walks. as an answer of the
wh-question Who walks? In this example a quan-
tificational NP is in focus, and its theme (issue)
refers to the focus/question-window by the fea-
tures WHMAX/WHIMN, while its rheme (content)
makes use of the scope window by MAXS/MINS.

Example 4.1

SP= 5

NP↓I= 1 ,whmax= 2 ,maxs= 4

whmin= 3 ,mins= 6
VPP= 5

P=l1

walks

〈 l0 : ? 2 , l1 : walk( 1 )
2 ≥ 3 , 3 ≥ l1, 4 ≥ 5 , 3 ≥ 4 , 6 ≥ 5

l1 : walk( 1 )
4 ≥ 5

〉

NPI=x,whmax= 7 ,maxs= 9

foc=+,whmin= 8 ,mins= 10

someone

〈 l2 : ∃x. 17
7 ≥ l2, 17 ≥ 8

l2 : ∃x. 15 ∧ 16 , l3 : person(x)
15 ≥ l3, 9 ≥ 16 , 16 ≥ 10

〉

By substitution of the NP-tree of ‘someone’
(with focus) into the S-tree of ‘walk’, we de-
rive the semantic representation of the sentence
SOMEONEF walks as the following.

〈
l0 :? 2 , l1 : walk(x), l2 : ∃x 17

2 ≥ 3 , 3 ≥ l1, 4 ≥ l1, 3 ≥ 4 , 6 ≥ l1,
2 ≥ l2, 17 ≥ 3

l1 : walk(x), l2 : ∃x 15 ∧ 16 , l3 : person(x)
15 ≥ l3, 4 ≥ 16 , 16 ≥ l1

〉
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That correctly derives – after plugging – the
theme of the sentence as the wh-question Who
walks? while the rheme as the proposition
someone walks.

〈
?∃x.walk(x)
∃x.person(x) ∧ walk(x)

〉
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Abstract

In this paper, we show how the interactions
between the tense, aspect and mood pre-
verbal markers in São Tomense can be for-
mally and concisely described at an abstract
level, using the concept of projection. More
precisely, we show how to encode the dif-
ferent valid orders of preverbal markers in
an abstract description of a Tree-Adjoining
Grammar of São Tomense. This description
is written using the XMG meta-grammar
language (Crabbé and Duchier, 2004).

1 Introduction

São Tomense1 is a Portuguese-based Creole lan-
guage spoken on São Tomé Island (RDSTP). Like
many (if not all) Creole Languages, it has prever-
bal markers expressing Tense and Aspect (TMA
markers in the classical literature on Creole lan-
guages, see (Holm, 1989)), as shown in (1):

(1) a. tataluga
turtle

xiga.
come

’The turtle came.’
b. tataluga

turtle
ka
IMPF

xiga.
come

’The turtle is coming.’
c. tataluga

turtle
tava
Anterior

ka
IMPF

xiga
come

’The turtle was coming.’

Several approaches have been proposed to for-
mally describe the combinations of TMA markers
in São Tomense, including tree-based descriptions
such as Tree-Adjoining Grammar (TAG) (Schang,

1The abbreviations are: ST (São Tomense) ;IMPF (im-
perfective) ; Asp (Aspect).

2000). Schang’s TAG uses adjunction (i.e., aux-
iliary trees) to encode the ordering of the TMA
markers. As we shall see in Section 5, this is not
satisfactory for several reasons. In this paper, we
propose to shift the description of TMA markers
to a meta-level, using the XMG language (Crabbé
and Duchier, 2004). The paper is structured as
follows. In section 2, we describe São Tomense
TMA system. In Section 3, we introduce the
XMG language. Section 4 focuses on the syntac-
tic properties of the TMA markers. In Section 5,
we then show how to control the TMA markers’
combinations in an XMG meta-grammar. This
meta-grammar is then compiled in order to pro-
duce a TAG where verbal elementary trees only
contain correctly ordered TMA markers (realised
as lexical nodes).

2 TMA system

Before describing the TMA markers and their
combination, let us first look at the bare verbs.

2.1 Bare Verbs

As in many languages (and as in most of the Cre-
oles), bare verbs are used to express the past per-
fective (or preterite) with dynamic processes (as
in (1-a)) and express the present tense with stative
verbs, as in (2).

(2) n
1sg

konse
know

mana
sister

bo.
your

’I know your sister.’ (*’I knew your sis-
ter’)

Stative verbs are often considered to collide with
the TMA markers (Ferraz, 1979), but several uses
of both have been noticed in ST spoken corpora
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(Schang, 2000), triggering an inchoative mean-
ing (3).

(3) e
3sg

ka
IMPF

sa
be

yo
very

godu.
fat

’He is going to be very fat.”

(Schang, 2000, p. 193) shows that bare verbs in
São Tomense are literally ”bare” and that no in-
formation on Tense or Aspect is attached to them,
and that no functional projection (containing a
zero morphem) is needed to account for the var-
ious uses of bare verbs. By contrast, the prever-
bal markers bear such temporal and aspectual fea-
tures.

2.2 Aspect

ka is the most-used aspectual marker in São
Tomense2. (Hagemeijer, 2007) and (Ferraz, 1979)
provide several examples of its uses in various
contexts, triggering habitual reading (4-a) , future
tense (4-b) and conditionality (4-c):

(4) a. Zon
John

ka
Asp

kanta
sing

ni
in

gleza.
church

’John uses to sing at church.’
b. Zoze

Jośe
ka
Asp

xiga
come

amanha.
tomorrow

’José will come tomorrow.’
c. xi

if
bo
2sg

ka
Asp

bi
come

amanha,
tomorrow

bo
2sg

ka
Asp

be
see

mu.
me

’If you come tomorrow, you’ll see
me.’

(Schang, 2000, p. 193) shows that all the various
interpretations ofkaboil down to an imperfective
reading, which is the core meaning of this marker.

2.3 Tense

Two Tense markers occupy the same position:
tava (anterior) andsa (present). Both markers
derive from the Portuguese verbestar ’to be’, in
its 3sg imperfect indicative tense form and 3sg
present tense form respectively. They inherit from
the temporal value of the etymon.

While tava can freely combine with the verb,
sagoes together withka, often pronouncedxka,3

see (5).

2Leaving aside its allomorphga.
3It can also be pronouced ’e ska bi’.

(5) a. e
3sg

tava
Tense

bi.
come

’He had come.’
b. e

3sg
sa
Tense

ka
Asp

bi.
come

’He is coming.’
c. e

3sg
tava
Tense

ka
Asp

bi.
come

’He was coming.’
d. *e sa bi.

(5-b) illustrates thesa kaor xka (its short form)
combination which triggers the progressive read-
ing. Any other combination is blocked,4 see (6).

(6) a. *e ka tava bi.
b. *e sa tava bi.
c. *e ka sa bi.

To summarize, São Tomense combines a few pre-
verbal markers in order to derive a rich range of
semantic interpretations.

3 eXtensible Meta-Grammar

As mentioned above, in this paper, we show how
to move the description of TMA markers in a
São Tomense TAG from the syntactic level (i.e.,
the TAG elementary trees) to a meta-level, us-
ing theeXtensible Meta-Grammar(XMG) frame-
work. This move makes it possible for the linguist
to concisely describe the valid TMA orders.5

XMG is a declarative language for specifying
tree-based grammars at a meta-level (Crabbé and
Duchier, 2004). Basically, XMG allows to ab-
stract over tree structures (i.e., to capture general-
izations) by defining (i) elementary tree fragments
and (ii) conjunctive / disjunctive combinations of
these fragments. Such an abstraction over a (tree)
grammar is generally called ameta-grammar. It
is compiled in order to automatically produce the
underlying grammar.6

4(Hagemeijer, 2007) reports some other combinations (sa
xka, ka ka, tava sa xka) which are firmly rejected by our in-
formants and absent from the fieldwork recordings we have.
It suggests that some variation exists. But as we focus on
standard ST we don’t take it into account. Note however that
these combinations can be seen as relaxed constraints on the
system, and do not invalidate our analyses.

5This move presupposes that TMA markers should rather
be treated as co-anchors of verbal elementary trees than an-
chors of auxiliary trees. This is motivated in Section 4.

6The compiler for the XMG language is also called
XMG, and is freely available athttps://launchpad.
net/xmg.
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The elementary tree fragments of the XMG lan-
guage correspond to tree descriptions and are en-
capsulated withinclasses. Such a class provides
the linguist with a mean to refer to a given tree de-
scription,e.g., in order to reuse it in distinct con-
textes. These tree descriptions can contain (node
or feature) variables, dominance and precedence
constraints on nodes, and labelling constraints
(association of a node with some feature struc-
ture). Note that the combinations of these tree
descriptions are also encapsulated within classes,
and that the default scope of a variable is the class.
XMG is also equipped with an inheritance mecha-
nism, which allows to import the content of a class
and access directly its variables.

The compilation of an XMG specification
amounts to (i) accumulating tree descriptions and
then (ii) solving accumulated tree descriptions.
As a result, a fully redundant grammar is gener-
ated (i.e., TAG trees grouped into tree families).

The XMG language reveals expressive enough
to describe a large amount of syntactic struc-
tures in a compact way, as shown by the var-
ious tree grammars designed with XMG for
French (Crabbé, 2005; Perrier, 2007; Gardent,
2008), English (Alahverdzhieva, 2008) and Ger-
man (Kallmeyer et al., 2008).

A particularly interesting feature of the XMG
language is that it comes with a set of built-inlin-
guistic principlesthat the linguist can activate in
order to ensure the validity of the output structures
(Crabbé et al., To appear). These principles not
only guaranty the well-formedness of the gram-
mar with respect to linguistic invariants, but also
help the linguist to highly factorise her/his meta-
grammar. Indeed, principles allow the linguist to
avoid defining numerous alternative descriptions
for exceptions, but to rather catch them during the
compilation of the meta-grammar.

In the meta-grammar for ST described in Sec-
tion 5, we use the unifications over feature struc-
tures labelling nodes, which are triggered during
tree description solving, to rule out invalid TMA
orders. In a future work, we plan to rather de-
scribe valid TMA orders via a dedicated linguistic
principle.

4 Projecting Aspect and Tense

Prior to describing our meta-grammar of ST, let us
describe interesting properties of TMA markers,
which will motivate our formal description of ST.

(Schang, 2000) and (Hagemeijer, 2007) pro-
pose a description of the properties of the TMA
markers that we complete below. Contrary to the
full verb saandtava (’be’), which can be used as
copula, as in (7),saandtavaas TMA do not have
the properties of the verbs they originate from, a
fact we will show below.

(7) a. kafe
coffee

sa
be

kentxi.
hot

’The coffee is hot.’
b. kafe

coffee
tava
be.Anterior

kentxi.
hot

’The coffee was hot.’

The question we address here is the nature ofka,
sa and tava. We present a series of tests which
shows that TMA markers behave differently from
verbs (auxiliaries included), adverbs and adjec-
tives (note that hereafter we use the reduced form
xka instead of the full formsa ka).

• Coordination

Contrary to lexical items, TMA markers
cannot be coordinated (neither overtly nor
covertly):

(8) *Zon
John

sa
Tense

i/o
and/or

tava
Tense

ka
Asp

kume.
eat

’John is and/or was eating.’

Note that the TMA markers don’t show the
properties of French and English auxiliaries
with regard to coordination.

• Reiteration

TMA markers cannot be reiterated on the
same verb (9), contrary to adverbs for in-
stance (see (Schang, 2012) for a study of lex-
ical reiteration in ST).

(9) *Zon
John

sa
Tense

sa
Tense

ka
Asp

kume
eat

/
/
*Zon
John

ka
Asp

ka
Asp

kume
eat

• Negation

Sentential negation in ST is double-headed.
The first particle comes to the immediate
left of the TMA markers and the second one
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comes in sentence-final position (see (Hage-
meijer, 2007) and (Schang, 2000) for a de-
scription).

(10) Zon
John

na
Neg1

xka
TMA

(*na)
(Neg1)

kume
eat

loso
rice

fa.
Neg2
’John doesn’t eat the rice.’

However, fa is used withoutna in partial
negation (contrastive negation):

(11) a. ami
me

fa!
Neg2

’Not me!’
b. karu

car
fa!
Neg2

’Not the car!’
c. kume

eat
fa!
Neg2

’Not eating!’
d. glavi

beautiful
fa!
Neg2

’Not beautiful!’
e. leve-leve

slowly
fa!
Neg2

’Not slowly’
f. isa

this
fa!
Neg2

’Not this one!’

(12) *{ka/xka/tava/tava ka} fa!
[Tense and Asp markers negated]

The TMA markers cannot be negated (12)
while pronouns, nouns, verbs, adjective, ad-
verbs and strong demonstratives can, as in
(11-a-f).
While English auxiliaries for instance can be
negated, TMA markers cannot (13):

(13) a. Zon
John

tava
Tense

ka
Asp

kume?
eat

’Was he eating?’
b. *Inon,

no
e
3sg

na
Neg1

tava
Tense

ka
Asp

fa.
Neg2
’No, he wasn’t.’

• Participle-like constructions

Some verbs of Portuguese origin have been
incorporated in ST lexicon with their past
participle form (ex. Port.: chegadu> ST:
xigadu). While they can be complement of
a full verb (fika ’to stay’, or sa ’to be’ (the
full verb used as copula), they cannot ap-
pear with TMA markers, as shown in (14)
(adapted from (Hagemeijer, 2007, p.132)) :

(14) a. *kinte
garden

ka/xka
TMA

balidu.
swept

b. kinte
garden

sa/fika
is/stays

balidu.
swept

’The garden has been/remains
swept’

• Question-answer pairs

TMA markers cannot form a minimal an-
swer:

(15) a. Zon
John

ka/xka
TMA

bali
sweep

kinte?
garden

’Does John sweep/is sweeping
the garden?’

b. efan,
yes

e
he

ka/xka
TMA

*(bali).
sweep

’Yes, he does.’

• VP-fronting:

(16) a. bo
you

ka/xka
TMA

bali
sweep

kinte.
garden

’you (sweep/are sweeping) the
garden.’

b. bali
sweep

kinte
garden

so
FOCUS

bo
you

ka/xka
TMA

*(bali)
sweep

’ SWEEP THE GARDENis what
he does/is doing.’

• Pseudo-cleft

(17) a. kume/dansa/kanta
eat/dance/sing

sa
is

kwa
thing

ku
that

e
he

ka/xka
TMA

fe.
do

’Eating/dancing/singing is
what he does/is doing.’
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b. *ka
Asp

kume/dansa/kanta
eat/danse/sing

sa
is

kwa
thing

ku
that

e
3sg

ka
Asp

fe.
do

In the fronted position where only the lexical
verb (without its functional projections) is al-
lowed, the TMA are excluded. No ellipsis is
allowed for the inflected verb. To describe
it in classic words, it shows that the material
copied to the focus position originates below
INFL.

We conclude from these tests that the TMA
markers are clearly functional elements, as inflec-
tional affixes in English and French are.

The reason why TMA markers are not repre-
sented as prefixes in the relevant litterature comes
from adverb placement. The adverbkwaji can be
inserted between Tense and Aspect, as in:

(18) Tataluga
turtle

sa
Tense

kwaji
almost

ka
Asp

koda.
wake-up

’The turtle is about to wake up.’

(19) Tataluga (??kwaji) xka (*kwaji) koda.

(19) shows that whenkwaji is inserted,sa and
ka cannot freely agglutinate asxka/ska. Note in-
cidentally that the agglutinated formxka is thus
built post-syntactically in phonology.

5 Describing Tense and Aspect in S̃ao
Tomense using a Meta-Grammar

(Schang, 2000) proposes an analysis in the TAG
framework which treats the TMA markers as ad-
juncts to V and uses Tense and Aspect features on
the foot node of the adjunct tree to reject invalid
combinations. However, a description based on
the concept of Extended Projections (Grimshaw,
1991) (see also (Frank, 2004) for a similar ap-
proach) better reflects the fact that TMA markers
are not adjuncts such as adjectives or adverbs are.
Consequently, we treat here TMA markers as ex-
tended projections of V, which can remain bare or
be stretched with Tense and Aspect projections.

Thus, Tense and Aspect markers are not stored
in the Lexicon (they don’t anchor any tree) but are
co-anchors of the elementary tree associated with
verbs.

Let us consider (21), which illustrates the struc-
ture of (20).

(20) e
3sg

tava
Tense

ka
Asp

kume.
eat

’He was eating.’

(21) S

N

e

TP

T

tava

AspP

Asp

ka

V

kume

In (21), S is a projection of V, the maximal func-
tional stretching of the verb.

These facts can easily be recast in XMG’s
framework. To this aim, the structure (20) is bro-
ken down into four pieces (i.e. classes) each con-
taining minimal information. These Classes are
listed below.

• CanSubject: to express what is usually
called the External Argument of the verb. It
is described in (22-a) .

• Intransitive verb: the minimal projection
of V. It is described in (22-e) .

• Aspect: as a projection of the aspectual
marker. It is described in (22-b) .

• Tensed: as a projection of Tense. Note that
Tensed refers to a disjunction of two tree
fragments, which differ according to thepast
feature labelling the Tense marker. This dis-
tinction allows us to treat the case where a
non-past Tense marker must precede an As-
pect marker. The corresponding two tree
fragments are described in (22-c) and (22-d).

(22) a. S

NP↓ V[proj:T |Asp|V ]

b. V[proj:Asp]

Asp⋄2 V[proj:V ]

c. V[proj:T ]

T[past=+] ⋄2 V[proj:Asp|V ]
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d. V[proj:T ]

T[past=−] ⋄2 V[proj:Asp]

e. V[proj:V ]

V ⋄

Thus, (21) is built up from the following conjunc-
tion of Classes:

CanSubject∧Intransitive∧Aspect∧Tensed

The featureproj(ection)is used here to rule out in-
valid combinations in the output elementary tree.7

As mentioned in Section 3, during the compila-
tion of the meta-grammar, the accumulated tree
descriptions are solved in order to produce min-
imal tree models (which correspond to the el-
ementary TAG trees of the grammar being de-
scribed). In the present case of TMA markers,
the tree description solver will compute verbal el-
ementary trees by identifying nodes belonging to
the tree fragments introduced in (22). For such a
node identification to succeed, the nodes need to
be labelled with feature structures, which unify.
While giving a linguistically motivated account
of the properties of TMA markers, theproj fea-
ture will help the meta-grammar compiler to only
produce valid elementary trees (recall that Tense
must dominate/precede Aspect and V).

From the conjunction of classes given above,
the result of the meta-grammar compilation are el-
ementary trees for intransitive verbs, including the
tree associated withkume’to eat’ depicted in (23).

(23) S

N↓ V[proj:T ]

T ⋄2 V[proj:Asp]

Asp⋄2 V[proj:V ]

V ⋄

To fill the Tense and Aspect slots, this verb ap-
pears in the Lexicon as associated with two co-
anchor equations (cf, ⋄-nodes refer to anchors and
⋄2-nodes to co-anchors in (23)):8

7In the values associated with feature proj, ”|” refers to
disjunction.

8Here, we adopt a grammar-lexicon interface comparable

• T→ tava [past = +]

• Asp→ ka

A felicitous side-effect of incorporating the
TMA markers in the elementary tree of the verb
appears when looking at the derivation tree of the
sentence “e tava ka kume” (24) where functional
information such as Tense and Aspect do not ap-
pear as adjuncts but are hold by the verb (treeα1,
treeα2 being the elementary tree of the pronoun
e ’3sg’).

(24) α1-kume[tense:past, aspect:Impf ]

α2-e

It is interesting to notice that, in this context,
TMA markers can be treated similarly to Tense
and Aspect affixes in some agglutinative lan-
guages (see (Duchier et al., 2012) for an analy-
sis of Ikota – Bantu B25 – with XMG), diverging
only in the way they combine.

Of course, treating TMA markers as co-anchors
raises the question of the production of the numer-
ous elementary trees and the computational effi-
ciency of parsing with these.

Regarding the production of elementary trees,
the use of the XMG framework makes it pos-
sible to concisely describe elementary trees (in-
cluding TMA markers), the XMG compiler being
in charge of producing the redundant elementary
trees.9

Regarding the computational efficiency of pars-
ing with TAG grammars having TMA markers
embedded in verbal elementary trees, it may not
be a problem for the following reasons. While
this treatment of TMA markers causes the gram-
mar to have a much higher number of elementary
trees (TMA markers are no longer factored out,
as it is the case when using auxiliary trees), it is
worth considering two points.

First, Creoles are known to have little morphol-
ogy (McWhorter, 2001) and ST does not allow
many transformations (no voice and no argumen-
tal affixation). The extra cost of enlarging the

to that of the XTAG project (XTAG Research Group, 2001),
where the grammar is made of unanchored trees, anchoring
being realized at parsing.

9The question on how to produce the large lexicon used to
anchor the grammar (that is, containing the co-anchor equa-
tions) remains to be answered, nonetheless one option would
be to use techniques for automatic lexicon acquisition such
as that of (Sagot, 2005).
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grammar size is thus low (and make ST grammar
size still reasonable).

Second, when replacing auxiliary trees with
co-anchoring equations, the parsing complexity
is somehow moved from the actual parsing step
(where adjunction is processed) to the lexical se-
lection and anchoring step (which is done prior
to actual parsing, seee.g. (Gardent et al., 2011)).
In other words, the complexity here raises when
selecting the right lexical entries, and anchoring
the many trees associated with these entries. But,
once the elementary trees are anchored, it will be
possible to select a pertinent subgrammar (that is,
to remove useless trees with respect to the sen-
tence to parse) using techniques such as polarity-
based filtering (Gardent et al., 2011).

6 Conclusion

In this paper, we have shown how to implement
the concept of projection at an abstract level (the
meta-grammar) in order to describe a crucial do-
main of the syntax of São Tomense, namely the
TMA markers. We claim that the TMA markers
have to be integrated in the TAG elementary trees
of verbs instead of anchoring auxiliary trees, as
it was done before (Schang, 2000). This comes
from the fact these markers can be considered as
functional elements.

In this context, we chose to use a meta-
grammatical framework, namely the XMG sys-
tem, in order to facilitate the description of verbal
elementary trees equipped with nodes for TMA
markers. Byfacilitate, we do not only mean that
the meta-grammar compiler will take care of the
tedious task of producing the numerous elemen-
tary trees concerned with TMA markers, but also
(and mainly) that an abstract level may be the
right place to implement a linguistic theory such
as that of projection used here.
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Abstract

Solid techniques based on distributional
learning have been developed targeting rich
subclasses of CFGs and their extensions in-
cluding linear context-free tree grammars.
Along this line we propose a learning al-
gorithm for some subclasses of IO context-
free tree grammars.

1 Introduction

Several efficient algorithms have been pro-
posed to learn different subclasses of context-
free grammars (CFGs) based on distributional
learning (e.g. (Clark and Eyraud, 2007; Yoshi-
naka, 2011b)). Distributional learning models
and exploits the distribution of strings in con-
texts. Those techniques have soon been gen-
eralized to mildly context-sensitive formalisms:
multiple CFGs (Yoshinaka, 2011a) and simple
(non-deleting linear) context-free tree grammars
(CFTGs) (Kasprzik and Yoshinaka, 2011). Those
formalisms can be naturally encoded by ab-
stract categorial grammars (ACGs) (de Groote and
Pogodalla, 2004), which are based on the simply
typed linear lambda calculus. By the flexible na-
ture of lambda terms, ACGs can generate various
types of data like strings, trees, meaning represen-
tations and their combinations. The distributional
learning of ACGs is discussed in (Yoshinaka and
Kanazawa, 2011).

It is quite recently shown that interesting sub-
classes of parallel MCFGs are also learnable by
a distributional learning technique (Clark and
Yoshinaka, 2012). PMCFGs are a non-linear ex-
tension of MCFGs, whose production rules may
copy arguments. They are not considered to be

an MCS formalism, but can model some (contro-
versial) non-semilinear syntactic phenomena re-
ported in linguistics.

Non-linear operations are more commonly re-
quired in generating semantic representations
than in syntax. Consequently it is a natural di-
rection of research to enhance the distributional
learning techniques for ACGs to non-linear ex-
tensions of ACGs so that we can learn pairs of
words and their meanings as lambda terms in the
style of Montague semantics. However, treating
general lambda terms involves technical difficul-
ties. Instead, this paper discusses an easier case –
the distributional learning of IO-CFTGs (Rounds,
1970; Engelfriet and Schmidt, 1977), which are
also a non-linear formalism. Although trees are
not satisfactory enough compared with lambda-
terms, trees can be used as primitive models of
meaning expressions. An example of an IO-CFTG

that generates meaning representations of English
sentences is found in Figure 1. For the sake of
simplicity, this paper does not target the learning
of word-meaning pairs, but it is possible to apply
the technique presented in this paper to a natural
formalism that generates pairs of a string and a
tree through the same context-free derivation tree.
We will concentrate on the distributional learning
of IO-CFTGs.

Every grammar formalism for which distribu-
tional learning techniques have been proposed so
far generate their languages through context-free
derivation trees, whose nodes are labeled by pro-
duction rules. The formalism and grammar rules
determine how a context-free derivation tree t is
mapped to a derived object φ(t) = T . A context-
free derivation tree t can be decomposed into a
subtree s and a tree-context c with t = c[s]. The

90



CFG rules ; IO-CFTG rules
π1 〈 I → NP VP ; I → VP(NP) 〉
π2 〈 VP → V NP ; VP(x1) → V (x1,NP) 〉
π3 〈 VP → V himself ; VP(x1) → V (x1, x1) 〉
π4 〈 V → loves ; V (x1, x2) → Love(x1, x2) 〉
π5 〈 V → hates ; V (x1, x2) → Hate(x1, x2) 〉
π6 〈 V → kills ; V (x1, x2) → Kill(x1, x2) 〉
π7 〈 V → V and V ; V (x1, x2) → ∧(V (x1, x2), V (x1, x2)) 〉
π8 〈 NP → Adam ; NP → Adam 〉
π9 〈 NP → Eve ; NP → Eve 〉
π10 〈 NP → Steve ; NP → Steve 〉

Figure 1: An IO-CFTG generating meanings expressions together with a CFG for sentences, where I is the initial
symbol.

subtree determines a constituent S = φ(s) and
the tree-context determines a contextual structure
C = φ(c) in which the constituent is plugged to
form the derived object T = C � S, where we
represent the plugging operation by �. For ex-
ample, in the CFG case, C is a string pair 〈l, r〉
and S is a string u and 〈l, r〉 � u = lur, which
may correspond to a derivation I

∗⇒ lAr
∗⇒ lur

where I is the initial symbol and A is a nonter-
minal symbol. A learner does not know how a
positive example T is derived by the target gram-
mar. A learner based on distributional learning
simply tries all the possible decompositions of a
positive example into arbitral two parts C ′ and S′

such that T = C ′ � S′ where some grammar may
derive T thorough a derivation tree t′ = c′[s′] with
φ(c′) = C ′ and φ(s′) = S′. Based on observation
on the relation between potential constituents S ′

and contextual structures C ′ collected from given
examples, she constructs her hypothesis grammar.

The literature has proposed several distribu-
tional properties that give learnable subclasses of
a concerned formalism. Those properties can be
classified into two: One, which we call primal, as-
sumes that the language generated by each nonter-
minal is characterized by a finite number of con-
stituents, whereas they are characterized by con-
textual structures in the other type, which we call
dual. Those approaches show a tidy symmetry in
the learning of CFGs (Yoshinaka, 2011b).

An important property of a formalism that
makes distributional learning approach tractable
is the linearity. A constituent S corresponding
to a subtree s of a derivation tree will not be du-
plicated through the derivation process — S “oc-

curs” in C � S just once. This property makes
the decomposition of a positive example tractable.
The PMCFGs are not a linear formalism in this
sense. Some components of a constituent S of
a PMCFG may be duplicated during the deriva-
tion process and appear more than once in C �S.
However, still the linearity property holds on the
other side. That is, no components from the con-
textual structure C will be duplicated in C � S
through the interaction with S. Based on the lin-
earity on the constituent side, Clark and Yoshi-
naka (2012) have shown that PMCFGs are learn-
able by a straightforward modification of an exist-
ing dual approach of distributional learning, while
they discussed difficulties in learning PMCFGs by
a primal approach due to the non-linearity of the
contextual structure side.

The formalism this paper targets is IO-CFTGs,
where copying operations are embedded into both
constituent and contextual sides, which contrasts
the case of PMCFGs. Therefore, the difficulty
pointed out by Clark and Yoshinaka confronts
both primal and dual approaches. This paper
discusses how we can overcome the difficulty at
the expense of restriction on our learning target.
Clark and Yoshinaka’s result on the learning of
PMCFGs is a strict generalization of the learnabil-
ity results on (M)CFGs, but our learner for IO-
CFTGs does not learn some languages which are
learnable by Kasprzik and Yoshinaka’s algorithm
for simple CFTGs. In fact, some finite languages
are not learnable by our technique despite the
strong learning scheme. Our result is presented as
a first step towards learning word-meaning pairs
by distributional learning techniques.
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2 Preliminaries

We denote the set of nonnegative integers by N.
For a ranked alphabet Σ, we denote by Σm the set
of letters of rank m ∈ N. The set TΣ of trees on Σ
is the smallest set s.t. f(t1, . . . , tm) ∈ TΣ when-
ever f ∈ Σm and t1, . . . , tm ∈ TΣ where m ≥ 0.
For t ∈ TΣ and ∆ ⊆ Σ, we denote the number
of occurrences of symbols from ∆ in t by |t|∆.
We drop the subscript ∆ if Σ = ∆. For a finite
set D of trees, we define ‖D‖ =

∑
t∈D |t|. Let

X be a countably infinite set of rank 0 variables
x1, x2, . . . . An m-stub s is a tree in TΣ∪{x1,...,xm}
in which every variable xi (1 ≤ i ≤ m) occurs at
least once. Thus 0-stub is a variable-free tree. An
m-stub is said to be p-copying if every variable
occurs at most p times. A 1-copying stub is also
called a linear stub. The set of p-copying m-stubs
is denoted by Sm,p

Σ . We will use ∗ to denote un-
limitedness: e.g. Sm,∗

Σ =
⋃

p∈N Sm,p
Σ . A leaf sub-

stitution σ is a mapping from {x1, . . . , xm} to TΣ

for some m, whose domain is extended to stubs
in the standard way: sσ is the tree obtained from
s ∈ Sm,p

Σ by substituting σ(x) for every occur-
rence of x ∈ X in t. Let Y be another ranked al-
phabet of variables, whose elements are denoted
by y with or without subscripts: y, y1, y2, . . . etc.
This paper flexibly assumes their ranks depending
on the context.

An infix substitution θ is a partial map from
Y to S∗,∗

Σ such that y ∈ Ym implies yθ ∈
Sm,∗

Σ (if defined), which is extended so that
f(t1, . . . , tm)θ = f(t1θ, . . . , tmθ) if f /∈ dom(θ)
and f(t1, . . . , tm)θ = θ(f)σ where σ(xi) = tiθ
for each i if f ∈ dom(θ). By assuming that the
order of the variables of the domain of θ is un-
derstood, a substitution { yi 7→ si | 1 ≤ i ≤ n}
is often specified as [s1, . . . , sn]. Moreover when
si = Bi(x1, . . . , xmi) for some Bi ∈ Σmi , we
write it by [B1, . . . , Bn]. An m-environment e
is a tree in TΣ∪{y} in which all subtrees rooted
by y of rank m are identical: i.e., e = e′[x1 7→
y(t1, . . . , tm)] for some trees ti ∈ TΣ and a stub
e′ ∈ S1,∗

Σ , where the rank of y is m. If y oc-
curs at most p times in e, we call it p-copying.
The set of p-copying m-environments is denoted
by Em,p

Σ . For an m-environment e ∈ Em,∗
Σ and

an m-stub s ∈ Sm,∗
Σ , e � s denotes the tree e[s].

The operation � is naturally extended to sets so
that E � S = { e � s | e ∈ E and s ∈ S } for
E ⊆ Em,∗

Σ and S ⊆ Sm,∗
Σ . When the alphabet Σ is

understood, we write Sm,p for Sm,p
Σ and so on.

For a tree set D ⊆ TΣ, we define

Subm,p(D) = { s ∈ Sm,p
Σ | ∃e ∈ Em,∗

Σ , e � s ∈ D } ,

Envm,p(D) = { e ∈ Em,p
Σ | ∃s ∈ Sm,∗

Σ , e � s ∈ D } .

We note that Sub0,∗(D) is the set of subtrees of
elements of D in the usual sense.

Lemma 1.

Subm,p(D) = { s ∈ Sm,p
Σ | ∃e ∈ Em,1

Σ , e � s ∈ D } ,

Envm,p(D) = { e ∈ Em,p
Σ | ∃s ∈ Sm,1

Σ , e � s ∈ D } .

Proof. We prove the first claim. The second one
can be shown in a similar manner. Suppose that
e � s ∈ D with s ∈ Sm,p and e ∈ Em,n for
some n > 1, where y occurs just n times in e, i.e.,

e = f [

n-times︷ ︸︸ ︷
y(~t), . . . , y(~t)] ∈ Em,n for some f ∈ S1,n,

where ~t denotes a sequence of trees of length m.
For e′ = f [y(~t), s[~t], . . . , s[~t]] ∈ Em,1, which is
obtained from e by substituting s for all but one
occurrence of y, we have e′ � s ∈ D and thus
s ∈ Subm,p(D).

Lemma 2. For fixed m and p, one can enumer-
ate all elements of Subm,p(D) and Envm,p(D) in
polynomial time.

Proof. We prove the first claim only. Suppose that
t = e � s ∈ D for some e = e′[y(t1, . . . , tm)] ∈
Em,1

Σ and s ∈ Sm,p. Let ni ≤ p be the num-
ber of occurrences of xi in s. Then s can be
written as s′[xn1

1 , . . . , xnm
m ] with a linear stub s′

where xni
i denotes the sequence of xi of length

ni. We have t = e[s′[tn1
1 , . . . , tnm

m ]]. Hence such
a pair 〈e, s〉 can be uniquely specified by the posi-
tions where s′ and ti occur in t, which are at most
1 + n1 + · · · + nm ≤ 1 + mp positions in total.
Therefore, there are at most ‖t‖1+mp elements in
Subm,p({t}) by Lemma 1 and one can enumerate
all in polynomial time.

An IO-CFTG1 is a tuple G = 〈Σ, N, P, I〉
where N and Σ are disjoint ranked alphabets
of nonterminals and terminals, respectively, P
is the set of rules and I ⊆ N0 is the set of
initial symbols. Each rule in P has the form
A(x1, . . . , xm) → s with A ∈ Nm and s ∈ Sm,∗

Σ∪N

for some m, which will be abbreviated as A → s.
We stipulate that hereafter when we denote a rule

1We consider only non-deleting CFTGs.
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as A → s′[A1, . . . , An] with Ai ∈ N for each
i, it means that |s′[A1, . . . , An]|N = n. For ex-
ample a rule A → B(B(c)) may be denoted as
A → s1[B,B] with s1 = y1(y2(c)) but is never
denoted as A → s2[B] with s2 = y1(y1(c)) or
s2 = B(y1(c)).

We define the derivation of an IO-CFTG in a
non-standard way. Derivation trees of G are de-
fined as follows.

• for every rule π = (A → s) with s ∈ S∗,∗
Σ , π

is an A-derivation tree and its yield is φ(π) =
s;

• for a rule π = (A → s[B1, . . . , Bn]) and
Bi-derivation trees τi for i = 1, . . . , n,
the tree π(τ1, . . . , τn) is an A-derivation
tree and its yield is φ(π(τ1, . . . , τn)) =
s[φ(τ1), . . . , φ(τn)];

• nothing else is an A-derivation tree.

An A-derivation tree is simply called a derivation
tree if A ∈ I . The language L(G,A) ⊆ Sm,∗

generated by A ∈ Nm is defined to be

L(G,A) = {φ(τ) | τ is an A-derivation tree } .

The language of G is defined to be⋃
A∈I L(G,A). A derivation tree-context is

a tree χ with exactly one occurrence of a rank
0 variable z such that χ[z 7→ τ ] is a derivation
tree for some A-derivation tree τ for some
A ∈ N . The mapping φ is naturally applied to
a derivation tree-context by φ(z) = y so that
φ(χ)�φ(τ) = φ(χ[τ ]), where φ(χ) ∈ Em,∗ with
m the rank of both A and y.

Example 3. Figure 1 includes a CFG on the left
column and an IO-CFTG on the right with com-
mon rule labels. π1(π8, π2(π4, π9)) is a deriva-
tion tree, which yields a string Adam loves Eve
by the CFG and a tree Love(Adam, Eve) by the
IO-CFTG.

Another derivation tree π1(π8, π3(π7(π4, π5)))
yields Adam loves and hates himself and
∧(Love(Adam, Adam), Hate(Adam, Adam)).

Corollary 4. Let τ be a derivation tree that has
an A-derivation tree τ ′ as a subtree. There is e ∈
Em,1 such that φ(τ) = e[φ(τ ′)] where m is the
rank of A.

Proof. By Lemma 1.

Lemma 5. Suppose that G∗ generates L∗, and
t ∈ L∗ is derived using a rule A0 →
s[A1, . . . , An] with A0 ∈ Nm. Then there are
si ∈ Smi,1

Σ such that s[s1, . . . , sn] ∈ Subm,p(t).

Proof. The idea of the proof is common to the one
for Lemma 1 except that copies of arguments by
other arguments require a little care. We prove the
lemma only for a special case for understandabil-
ity, which will easily be generalized. Suppose that
we have a rule π of the form

A0 → s[A1, A2]

where s[y1, y2] = y1(a(y2(b, x1)), c). Let τ1

and τ2 be A1- and A2-derivation trees such that
φ(τ1) = u1 = u′

1[x1, x1, x2] ∈ L(G∗, A1) and
φ(τ2) = u2 = u′

2[x1, x2, x2] ∈ L(G∗, A2),
where u1 contains just two occurrences of x1 and
one occurrence of x2 and so on. We then have

φ(π(τ1, τ2)) = s[u1, u2]

= u′
1[a(u′

2[b, x1, x1]), a(u′
2[b, x1, x1]), c]

∈ L(G,A0) .

Now let us consider a derivation tree τ that has
π(τ1, τ2) as a subtree. Let t = φ(τ) and u =
φ(π(τ1, τ2)). By Lemma 4, t = e[u] for some
e = t′[y(t′′)] ∈ Em,1. We then have

t = e[u′
1[a(u′

2[b, t
′′, t′′]), a(u′

2[b, t
′′, t′′]), c]]

= e[s[s1, s2]]

for

s1 = u′
1[x1, a(u′

2[b, t
′′, t′′]), x2] ∈ S2,1,

s2 = u′
2[x1, x2, t

′′] ∈ S2,1.

By G(p, q, r) we denote the class of IO-CFTGs
G such that N =

⋃r
m=1 Nm and for every rule

A → s, we have s ∈ S∗,p and |s|N ≤ q. We will
consider only grammars in G(p, q, r) with fixed
and small numbers p, q, r.

Proposition 6. The uniform membership problem
for G(p, q, r) for fixed p, q, r can be solved in
polynomial time.

Proof. This proposition is a corollary to known
results. Particularly Kanazawa’s technique that
reduces membership problems to datalog queries
will give an elegant parsing algorithm (Kanazawa,
2007; Beeri and Ramakrishnan, 1991). Yet to
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make this paper self-contained, we give a brief
sketch of a CKY-style algorithm for the prob-
lem. Let 〈G, t〉 with G ∈ G(p, q, r) and t ∈ TΣ

be an instance of the problem. For each nonter-
minal symbol A of rank m, we compute a set
QA ⊆ (Sub0,∗({t}))1+m of (1 + m)-tuples of
subtrees of t so that 〈t0, t1, . . . , tm〉 ∈ QA iff
s[t1, . . . , tm] = t0 for some s ∈ L(G,A). We ini-
tialize those sets QA to be empty and then mono-
tonically and recursively expand the sets by re-
ferring to the rules of G. We have t ∈ L(G) if
t ∈ QA for some initial symbol A ∈ I . When
all sets converge without satisfying this condition,
we conclude t /∈ L(G). Note that the bounds q
and r play a crucial role for the polynomial-time
computability.

3 Learning IO-CFTGs

Our learning scheme is identification in the limit
from positive data and membership queries fol-
lowing Clark (2010). The learner is given an infi-
nite sequence consisting of all and only trees from
a learning target L∗ and each time the learner gets
a tree, it outputs an IO-CFTG as its conjecture. The
learner has access to a membership oracle, which
answers whether an arbitrary tree belongs to L∗.
The sequence of the conjectures must eventually
converge to an IO-CFTG representing L∗.

Hereafter we fix a target language L∗. Distribu-
tional learning observes the distribution of stubs
in environments with respect to L∗. Let us define
dual polar maps as follows. For S ⊆ Sm,∗ and
E ⊆ Em,∗,

S. = { e ∈ Em,∗ | e � S ⊆ L∗ } ,

E/ = { s ∈ Sm,∗ | E � s ⊆ L∗ } .

We write S./ for (S.)/ and so on. One can easily
see that S./. = S. and E/./ = E/. A learner
extracts stubs and environments from given pos-
itive examples and ask the oracle which com-
bination of those give grammatical trees in L∗.
When a positive example t is derived by a deriva-
tion tree τ that has a A-derivation subtree τ ′ for
some A, in general there is no bound p such that
L(G,A) ⊆ Sm,p where m is the rank of A. That
is, there exist exponentially many potential con-
stituents s′ ∈ Subm,∗({t}) and extracting all such
stubs is not tractable. The same holds for the
environment side. In stead we consider only p-
copying stubs and environments. We define re-

stricted polar maps as follows:

S(E) = S. ∩ E and E(S) = E/ ∩ S .

Among the two types of approaches in the dis-
tributional learning, we first discuss the so-called
primal one.

3.1 Primal property

The following definition is an easy translation of
the k-FKP for CFGs (Yoshinaka, 2011b) to IO-
CFTGs.

Definition 7. We say that an IO-CFTG G has the
(k, p)-kernel property ((k, p)-KP) if every nonter-
minal A of rank m admits a set SA ⊆ Sm,p s.t.
|SA| ≤ k and S./

A = L(G,A)./ . We call such a
set SA a characterizing (stub) set of A.

In the CFG case, Clark et al. (2009) showed
that CFGs with the 1-FKP generate all regular lan-
guages and other simple CFLs including the Dyck
language. However the (1, p)-KP is still too strong
to describe non-linear languages.

Example 8. Let an IO-CFTG consist of the fol-
lowing rules, where Σ0 = {a}, Σ1 = {b},
Σ2 = {c}, N0 = {I,A}, N1 = {C}:

I → C(A), C → C(c(x1, x1)), C → x1,

A → b(A), A → a,

Let b0(a) = a and bi+1(a) = b(bi(a)). The
defined language consists of trees of the form
s[y 7→ bk(a)] where s is a balanced binary tree
whose internal nodes and leaves are labeled by
c and y, respectively. The nonterminal A does
not have a singleton characterizing set. Any el-
ement bk(a) of L(G,A) admits its unique envi-
ronment e = c(y, bk(a)), in the sense that {e}/ ∩
L(G,A) = bk(a). Thus the (1, p)-KP does not
hold. On the other hand, one can easily see that
{a, b(a)}, {x1, c(x1, x1)} and {a, c(a, a)} char-
acterize A, C and I , respectively (2-KP).

The primal approaches use environments to
check the correctness of constructed rules. In the
linear case, we can extract all required environ-
ments, which are linear, from given examples in
polynomial time, but in our general setting, we
have to collect non-linear environments as well,
which is computationally intractable. We further
require the following condition.
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Definition 9. We say that a language L∗ has the
(p, r, k)-fiducial environment property ((p, r, k)-
FEP) if for any S ⊆ Sm,p with m ≤ r and |S| ≤ k,
we have (S(Em,p))/ = S./.

The (p, r, k)-FEP means that to validate
whether a stub s may occur in every envi-
ronment that accepts S, it is enough to con-
firm that it is the case for every p-copying
environment. Actually the (p, r, k)-FEP is
rather strong for k > 1. The finite lan-
guage {a(d), b(d), c(d), ap+1(d), bp+1(d)} does
not have the (p, 1, 2)-FEP (c(x1) ∈ S(E1,p)/ \ S./

for S = {a(x1), b(x1)}). On the other hand, one
can show that the (p, r, 1)-FEP is satisfied by every
language. Our first learning target is the following
class:

P(p, q, r, k) = {G ∈ G(p, q, r) with the

(p, k)-KP and (p, r, k)-FEP }

The above discussion on the property shows that
the defined language class does not cover the class
of simple CFTGs with k-FKP. Checking the prop-
erty FEP is cumbersome even for the very simple
IO-CFTG in Figure 1. Yet the author found no ev-
idence suggesting that the grammar does not be-
long to P(2, 2, 2, 2).

3.2 Primal learner

Our learner (Algorithm 1) computes its conjec-
ture G(T, F ) from T =

⋃
0≤m≤r Tm with Tm ⊆

Subm,p(D) and F =
⋃

0≤m≤r Fm with Fm =
Envm,p(D) for a finite tree set D ⊆ L∗. The
nonterminal set is NT =

⋃
0≤m≤r NT

m where
NT

m = { [[S]] | S ⊆ Tm ∧ |S| ≤ k }. [[S]] ∈ I
if S ⊆ L∗. We have a rule of the form

[[S0]] → s[[[S1]], . . . , [[Sn]]]

iff for some m0, . . . ,mn ≤ r, [[Si]] ∈ NT
mi

for
i = 0, . . . , n, s ∈ Sm0,p

Σ∪{y1,...,yn} in which each of
y1, . . . , yn occurs just once in s with n ≤ q,

1. there are si ∈ Smi,1
Σ for i = 1, . . . , n such

that s[s1, . . . , sn] ∈ Tm0 ,

2. S
(Fm)
0 � s[S1, . . . , Sn] ⊆ L∗ .

Lemma 10. One can construct G(T, F ) in poly-
nomial time in ‖D‖ with the aid of a membership
oracle.

Algorithm 1 A(p, q, r, k)

Data: trees t1, t2, · · · ∈ L∗
Result: IO-CFTGs G1, G2, . . .
let D := T := F := ∅; Ĝ := G(T, F );
for n = 1, 2, . . . do

let D := D ∪ {tn}; F :=
⋃

0≤m≤r Envm(D);
if D * L(Ĝ) then

let T :=
⋃

0≤m≤r Subm,p(D);
end if
output Ĝ = G(T, F ) as Gn;

end for

Proof. By Lemma 2, one can compute T and F
in polynomial time in ‖D‖.

We discuss the first condition of the rule con-
struction. For each t ∈ Tm, there are at most
|t|1+m1 pairs of s1 ∈ Sm1,1 and t1 with just one
occurrence of y1 such that t = t1[y1 7→ s1], since
such a pair corresponds to at most 1 + m1 posi-
tions on a path from the root to a leaf of t. Recur-
sively one can determine s2, s3, . . . , sn ∈ Sm1,1

such that ti = ti+1[yi+1 7→ si+1] and y1, . . . , yi

occur in ti+1. tn will be what we would like.
There can be at most |t|n+m1+···+mn possible
choices and the enumeration can be done in poly-
nomial time.

It is easy to see that checking the second condi-
tion can be done in polynomial time with the aid
of a membership oracle.

A rule of the form [[S0]] → s[[[S1]], . . . , [[Sn]]] is
said to be incorrect if S.

0 � s[S1, . . . , Sn] * L∗.
We say that F ⊆ E∗,∗ is fiducial on T (with re-
spect to L∗) if G(T, F ) has no incorrect rules.
Clearly, if F is fiducial on T then so is every su-
perset of F .

Lemma 11. Every T admits a fiducial set F ⊆
E∗,p such that

• the cardinality |F | is polynomially bounded
by the description size of T ,

• for each e ∈ Fm there is s ∈ Sm,p such that
e � s ∈ L∗.

Proof. Suppose a rule [[S0]] → s[[[S1]], . . . , [[Sn]]]
is incorrect, which by the (p, r, k)-FEP means
S

(Em,p)
0 � s[S1, . . . , Sn] * L∗. There is e ∈ Em,p

such that e�S0 ⊆ L∗ and e�s[S1, . . . , Sn] * L∗.
If e is in F , such a rule is excluded from G(T, F ).
In this case, we have e�s ∈ L∗ for any s ∈ S0 ⊆
Sm,p.
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Lemma 12. Let Ĝ = G(T, F ) with F fiducial on
T . For any [[S0]] ∈ NT

m and e ∈ Em,∗,

e � S0 ⊆ L∗ =⇒ e � L(Ĝ, [[S0]]) ⊆ L∗ .

Proof. Suppose that e � S0 ⊆ L∗. We prove by
induction on the derivation of s0 ∈ L(Ĝ, [[S0]])
that e � s0 ∈ L∗. Let s0 ∈ L(Ĝ, [[S0]]) be de-
rived by a rule [[S0]] → s[[[S1]], . . . , [[Sn]]] with
si ∈ L(Ĝ, [[Si]]) and s0 = s[s1, . . . , sn]. Since
the rule is correct by the assumption, we have

e � s[S1, . . . , Sn] ⊆ L∗ ,

which implies

(e � s[y1, S2, . . . , Sn]) � S1 ⊆ L∗
=⇒ (e � s[y1, S2, . . . , Sn]) � s1

= e � s[s1, S2 . . . , Sn] ⊆ L∗

by the induction hypothesis on [[S1]]. By repeat-
edly applying the same argument, we finally ob-
tain

e � s[s1, . . . , sn] = e � s0 ∈ L∗ .

Lemma 13. If F is fiducial on T , then
L(G(T, F )) ⊆ L∗.

Proof. Apply Lemma 12 to an initial symbol
[[S]] ∈ I with e = y.

Suppose that G∗ ∈ P(p, q, r, k) generates L∗,
We say that T ⊆ Sub∗,∗(L∗) is adequate if (i)
Tm includes a characterizing stub set SA for every
nonterminal A ∈ Nm of G∗ and (ii) for every rule
A → s[A1, . . . , An] of G∗, there are si ∈ Smi,1

Σ

such that s[s1, . . . , sn] ∈ Tm. Clearly if T is ade-
quate, every superset of T is adequate.

Lemma 14. There is a finite set D ⊆ L∗ such
that

⋃
0≤m≤r Subm,p(D) is adequate and |D| is

polynomially bounded by the description size of
G∗.

Proof. By Lemmas 4 and 5.

Lemma 15. If T is adequate, L(G∗) ⊆
L(G(T, F )) for any F .

Proof. We show that for every rule A0 →
s[A1, . . . , An] of G∗, Ĝ has a rule [[S0]] →
s[[[S1]], . . . , [[Sn]]] where Si are characterizing sets
of Ai for i = 0, . . . , n. Suppose that e � S0 ⊆
L∗ for e ∈ Fm. Since S0 is a characteriz-
ing set for A0, we have e � L(G∗, A0) ⊆ L∗.

The fact Si ⊆ L(G∗, Ai) for i = 1, . . . , n im-
plies s[S1, . . . , Sn] ⊆ L(G∗, A0) and thus e �
s[S1, . . . , Sn] ⊆ L∗. Hence G(T, F ) has the rule
[[S0]] → s[[[S1]], . . . , [[Sn]]].

Corollary 16. If T is adequate and F is fiducial
on T , then L(G(T, F )) = L∗.

Proof. By Lemmas 12 and 15.

Proposition 17. Algorithm 1 for fixed p, q, r, k
identifies P(p, q, r, k) in the limit from positive
data and membership queries.

Proof. We first show that the conjecture never
converges to a wrong grammar. If the current
conjecture Ĝ = G(T, F ) is such that L(G∗) *
L(Ĝ), at some point some t ∈ L(G∗) \ L(Ĝ)
will be given, which expands the conjecture. If
L(Ĝ) * L(G∗), Lemma 13 implies that F is not
fiducial on T and Ĝ has an incorrect rule [[S0]] →
s[[[S1]], . . . , [[Sn]]]. Lemma 11 implies that there
is e ∈ Envm,p(L∗) such that e � S0 ⊆ L∗
and e � s[S1, . . . , Sn] * L∗, which rejects the
rule. The conjecture cannot be changed infinitely
many times. At some point T will be adequate by
Lemma 14, which fixes the nonterminal set of Ĝ.
Once T is fixed, expansion of F causes deletion
of rules, which can happen at most finitely many
times. Therefore, the conjecture converges to a
grammar representing the target.

All in all, Algorithm 1 learns P(p, q, r, k) effi-
ciently for small p, q, r, k.

3.3 Dual property
The dual properties of the (k, p)-KP and (p, r, k)-
FEP are given as follows.

Definition 18. We say that an IO-CFTG G has the
(k, p)-environment property ((k, p)-EP) if every
nonterminal A of rank m admits a set EA ⊆ Em,p

s.t. |EA| ≤ k and E/.
A = L(G,A).. We call such

a set EA a characterizing (environment) set of A.
A language L∗ has the (p, r, k)-fiducial stub

property ((p, r, k)-FSP) if for any E ⊆ Em,p with
m ≤ r and |E| ≤ k, we have (E(Sm,p)). = E/..

The grammar of Example 8 satisfies the 1-EP,
whereas 1-KP does not hold. The environment
sets {b(y)}, {y(c(a, a))} and {y} characterize A,
C and I , respectively. Hence, one might think
the dual approach is somewhat better. However,
while every tree language satisfies the (p, r, 1)-
FEP, it is not the case for (p, r, 1)-FSP. For the
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language {a(c(d, d)), b(c(d, e)), b(c(e, d))}, one
sees that b(y(e)) ∈ {a(y(d))}S1,1. \ {a(y(d))}/. .

We target the following class of tree languages
by a dual approach.

D(p, q, r, k) = {G ∈ G(p, q, r) with the

(p, k)-EP and (p, r, k)-FSP } .

3.4 Dual learner

Algorithm 2 is our learner for D(p, q, r, k), which
is quite symmetric to Algorithm 1. It com-
putes its conjecture G(H,F, T ) from H ⊆ D,
F =

⋃
0≤m≤r Fm, and T =

⋃
0≤m≤r Tm with

Fm ⊆ Envm,p(D) and Tm = Subm,p(D) for a
finite tree set D ⊆ L∗. The nonterminal set is
NF =

⋃
0≤m≤r NF

m where NF
m = { [[E]] | E ⊆

Fm ∧ |E| ≤ k } and the initial symbol set is the
singleton I = {[[{y}]]}. We have a rule of the
form

[[E0]] → s[[[E1]], . . . , [[En]]]

iff for some m0, . . . ,mn ≤ r, [[Ei]] ∈ NF
mi

for
i = 0, . . . , n, s ∈ Sm0,p

Σ∪{y1,...,yn} in which each of
y1, . . . , yn occurs just once with n ≤ q,

1. there are si ∈ Smi,1
Σ for i = 1, . . . , n such

that s[s1, . . . , sn] ∈ Subm0,p(H),

2. E0 � s[E
(Tm1 )
1 , . . . , E

(Tmn )
n ] ⊆ L∗.

Algorithm 2 B(p, q, r, k)

Data: trees t1, t2, · · · ∈ L∗
Result: IO-CFTGs G1, G2, . . .
let D := H := F := T := ∅; Ĝ := G(H,F, T );
for n = 1, 2, . . . do

let D := D ∪ {tn}; T :=
⋃

0≤m≤r Subm(D);
if D * L(Ĝ) then

let H := D and F :=
⋃

0≤m≤r Envm,p(D);
end if
output Ĝ = G(H,F, T ) as Gn;

end for

The following lemmas, corollary and proposi-
tion are exactly in parallel with those in the primal
approach, namely, Lemmas 10 to 15, Corollary 16
and Proposition 17.

Lemma 19. One can construct G(H,F, T ) in
polynomial time in ‖D‖ with the aid of a mem-
bership oracle.

A rule of the form [[E0]] → s[[[E1]], . . . , [[En]]]
is said to be incorrect if E0 � s[E/

1 , . . . , E/
n] *

L∗. We say that T ⊆ S∗,∗ is fiducial on 〈H,F 〉
(with respect to L∗) if G(H,F, T ) has no incorrect
rules. Clearly, if T is fiducial on 〈H,F 〉 then so is
every superset of T .

Lemma 20. Every 〈H,F 〉 admits a fiducial set
T ⊆ E∗,p such that

• the cardinality |T | is polynomially bounded
by the description size of 〈H,F 〉,

• for each s ∈ Tm there is e ∈ Em,p such that
e � s ∈ L∗.

Lemma 21. Suppose that T is fiducial on 〈H,F 〉.
For every [[E]] ∈ F T

m we have

E � L(G(H,F, T ), [[E]]) ⊆ L∗ .

Lemma 22. If T fiducial on 〈H,F 〉, then
L(G(H,F, T )) ⊆ L∗.

Suppose that G∗ ∈ D(p, q, r, k) generates L∗,
We say that a pair of F ⊆ Env∗,∗(L∗) and H ⊆
L∗ is adequate if Fm includes a characterizing en-
vironment set EA for every nonterminal A ∈ Nm

of G∗ and for every rule A → s[A1, . . . , An] of
G∗, there are e ∈ En,1 and s ∈ Sm0,p

Σ∪{y1,...,yn} such
that e � s ∈ H and each of y1, . . . , yn occurs
just once in s with n ≤ q. Clearly if 〈H,F 〉 is
adequate, every pair 〈H ′, F ′〉 with H ′ ⊇ H and
F ′ ⊇ F is adequate.

Lemma 23. There is a finite set D ⊆ L∗ such that
〈D,

⋃
0≤m≤r Envm,p(D)〉 is adequate and |D| is

polynomially bounded by the description size of
G∗.

Lemma 24. If 〈H,F 〉 is adequate, L(G∗) ⊆
L(G(H,F, T )) for any T .

Corollary 25. If 〈H,F 〉 is adequate and T is
fiducial on 〈H,F 〉, then L(G(H,F, T )) = L∗.

Proposition 26. Algorithm 2 for fixed p, q, r, k
identifies D(p, q, r, k) in the limit from positive
data and membership queries.

All in all, Algorithm 2 learns D(p, q, r, k) effi-
ciently.

4 Discussion

Motivated for investigating the learning of mean-
ings with words, we in this paper have discussed
how distributional learning techniques can be ap-
plicable to IO-CFTGs. Copying operations seem
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very important for generating natural meaning
representations in spite of technical difficulties in
learning non-linear structures. The approaches
presented in this paper are rather naive applica-
tions of existing techniques with additional condi-
tions, the fiducial environment property and fidu-
cial stub property, which are convenient assump-
tions for making our learners run in polynomial-
time. It is not clear whether the introduced con-
ditions are too much restrictive for meaning rep-
resentations. The author hopes this paper to be-
come a basis for other distributional properties
more reasonable for expressivity and learnability.

Generalizing the learning of IO-CFTGs to al-
most linear ACGs must be very important future
work. A simply typed lambda term is said to be
almost linear if it has no vacuous λ-abstraction
and only variables assigned atomic types may oc-
cur more than once. It is shown that almost lin-
ear lambda terms inherit nice properties of lin-
ear lambda terms (Kanazawa, 2007; Kanazawa,
2011). Targeting almost linear ACGs seems quite
promising.

Clark (Clark, 2011) has proposed an algorithm
that learns an interesting subclass of synchronous
CFGs from positive data only, where languages in
the class satisfy functionality. Though the rela-
tion between words and meanings in natural lan-
guages are not a function, the relation is very
sparse. Therefore combination of Clark’s and our
approaches is an interesting direction of further
research for a basic model of natural language
acquisition taking syntax-semantics interface into
account.
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Abstract 

While the derived trees yielded by TAG 
derivations are uncontroversially taken to 
correspond to phrase structure, the status of 
TAG derivation structures as more than a 
record of TAG operations is less certain. An 
attractive possibility is to interpret the 
derivation structure as some representation of 
semantic meaning, such as a dependency 
analysis. However, the literature has 
identified cases where doing so is 
problematic (Rambow et al., 1995, Candito 
and Kahane, 1998, Frank and van Genabith, 
2001, Gardent and Kallmeyer, 2003, 
Kallmeyer and Romero 2008), including what 
has been referred to as the Missing Link 
Problem: predicates which should have a 
dependency link are unconnected in the 
derivation structure. This paper shows that 
delayed tree-local MC-TAG (Chiang and 
Scheffler, 2008) provides a solution for 
certain types of missing links. Further, we 
observe that the regular form 2-level TAG 
solutions to the Missing Link Problem given 
in (Dras et al., 2004) can be reinterpreted 
using delayed tree-local MC-TAG: the object 
level derivations of the 2-level TAG 
derivations can be converted into legal 1-
delayed tree-local MCTAG derivations. Thus, 
delayed tree-locality maintains the possibility 
that TAG derivation structures can be more 
meaning-laden than solely a record of the 
combination of trees. 

1 Introduction 

In the mainstream generative approaches to 
grammatical structure, there is typically no 
distinction between a derivation of a sentence 
and its phrase structure. For example, in 

Chomsky’s (1995) Minimalist Program 
(formalized by Stabler (1997) and its precusors, 
the history of a valid derivation is taken to be the 
phrase structure of a grammatical construction: 
composition determines constituency. In 
contrast, a derivation in a tree-rewriting 
formalism, such as TAG, allows for an additional 
level of representation. As a mathematical object, 
each TAG derivation yields a string, a derived 
tree, and a derivation structure. When TAG is 
used for linguistic analysis, the string and 
derived tree uncontroversially correspond to the 
grammatical sentence and its phrase structure, 
respectively, but the status of the derivation 
structure as more than a record of TAG 
operations is less certain.  

An attractive possibility is to interpret the 
derivation structure as some representation of 
semantic meaning, such as a dependency analysis 
(e.g. Rambow and Joshi, 1997), and, indeed, 
there is body of work that explores the degree to 
which it is possible to equate the TAG derivation 
tree with a dependency analysis. This line of 
inquiry has identified cases where doing so is 
problematic (Rambow et al., 1995, Candito and 
Kahane, 1998, Frank and van Genabith, 2001, 
Gardent and Kallmeyer, 2003, Kallmeyer and 
Romero 2008), including what has been referred 
to as the Missing Link Problem. This particular 
mismatch stems from the way extraction is 
handled in TAG-style analyses when part of a 
lower clause ends up in the higher clause. In such 
cases, clausal complementation is carried out 
using adjoining. The resulting “stretching apart” 
of substructure in the tree for the lower clause 
eliminates the need for traces, and is a hallmark 
of TAG accounts of phenomena such as raising 
and successive-cyclic wh-movement in English. 
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The problem arises when more than one instance 
of this kind of adjoining occurs in the same tree. 

The proposed solutions to the Missing Link 
Problem can be divided into two kinds of 
approaches. The Missing Link Problem naturally 
led to the question of how to address the 
computation of TAG semantics in general, and 
the first kind of response can be roughly 
characterized as modification of the object on 
which semantics is computed, for example, by 
“enriching” the derivation structure with 
additional links (Kallmeyer, 2002), computing 
meaning based on the derived phrase structure 
tree instead of the derivation tree (Gardent and 
Kallmeyer, 2003, Frank and van Genabith, 
2001), and encoding meaning in both the 
derivation and derived tree (Kallmeyer and 
Romero, 2008). The development of TAG 
semantics is a significant and related 
contribution, but for the purposes of this paper, it 
is important to note that the status of the 
derivation tree is not the primary concern of this 
area of research. 

A second type of solution to the Missing Link 
Problem can roughly be characterized as 
modifications to the grammar such that the 
derivation structures better align with the desired 
dependency analyses. These include proposals 
that are more powerful that TAGs, such as set-
local MCTAGs (Weir, 1988) and D-tree 
Substitution Grammar (Rambow et al., 1995), as 
well as some that are weakly TAG-equivalent., 
such as regular form 2-level TAG (Dras et al., 
2004). These proposals do not include a full 
semantics for TAG, but they preserve the 
intuition that the derivation structure is a 
meaning-carrying level of representation. The 
derivation structure need not be the object over 
which semantics is computed to be useful. Note, 
for example, that the Prague Dependency 
Treebank (PDT 2.0) is annotated with multiple 
layers, with the analytical layer encoding what 
are deemed “dependency relations” and the 
tectogrammatical layer encoding what is taken to 
be the “underlying deep structure” of the 
sentence (Hajič et al, 2006). It is also worth 
noting that when the derivations of TAGs and 
TAG variants are converted into the form of 
dependency structures (in the style of Kulhmann, 
2007, Bodirsky et al., 2005), their formal 
properties as a class inform us with respect to 
coverage of dependency treebanks (Chen-Main 
and Joshi, 2012). 

The observations reported here fall under the 
second kind of response. The big picture goal is 

to understand the role of the derivation structure. 
With the intuition that the derivation structure’s 
role reaches beyond a record of operations as a 
backdrop, this paper begins to pursue the kind of 
answers afforded us by the recently introduced 
delayed tree-local MC-TAG formalism (Chiang 
and Scheffler, 2008). Delayed tree-local 
MCTAG is weakly-equivalent to standard TAG,1 
but it permits linguistic dependencies to be 
retained that are not necessarily retained in 
alternative TAG variants. This has already 
proven useful in linguistic analyses of anaphor 
binding (Chiang and Scheffler, 2008), non-local 
right node raising (Han et al., 2010), binding 
variables (Storoshenko and Han, 2010), and clitic 
climbing (Chen-Main et al. 2012). Here, we 
explore how the formalism deals with 
constructions whose standard TAG (or MCTAG) 
derivations result in missing links. We also 
observes that the solutions to the Missing Link 
Problem given in (Dras et al., 2004) can be 
reinterpreted as 1-delayed tree-local MCTAG 
derivations. We see that the increased flexibility 
of delayed tree-locality is advantageous not only 
for syntactic analyses, but also for maintaining 
the possibility that TAG derivation structures can 
be more meaning-laden than solely a record of 
the combination of trees.  

This paper is structured as follows. Section 2 
reviews two situations in which The Missing 
Link Problem arises. Section 3 first reviews 
delayed tree-local MCTAG before turning to a 
solution to one of the types of the Missing Link 
Problem. Section 4 addresses the second type of 
the Missing Link Problem. Following a brief 
review the regular form 2-level TAG solution to 
given in (Dras et al., 2004), we see how the 
solution can be recast as a delayed tree-local 
MCTAG derivation. Section 5 includes further 
discussion, raising some open questions, and 
concludes the paper.  

2 The Missing Link Problem Revisited 

Consider the construction in (1) (from Dras et al., 
2004), in which raising and cyclic wh-movement 
co-occur. 
 
 
                                                            
1 Delayed tree-local MCTAG is related to tree-local 
MCTAG with flexible composition (Joshi et al., 2003). 
Chiang and Scheffler (2008) show their weak equivalence 
by showing how any derivations in MCTAG with flexible 
composition can be converted into a 2-delayed tree-local 
MCTAG derivation. However, delayed tree-local MCTAG 
is not a formalization of MCTAG with flexible composition. 
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(a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. a) TAG derivation for What does Mary think that John seems to like?  
b) Derivation structure for (a) 

 
 
(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. a) Derivation for Does Gabriel seem to be likely to enjoy gnocchi?: Legal in 1-delayed tree-

local MCTAG, illegal in tree-local and set-local MCTAG  
(b) Derivation structure for (a) with delay marked with a dashed box 
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Figure 3: A 2-delayed tree-local MCTAG derivation. Delays are marked with dashed boxes.  
(Figure taken from Chiang and Scheffler (2008).) 

 
 

(1) What does Mary think that John seems to 
like? 

 
The derivation for (1), shown in Figure 1a, 
combines the standard TAG treatment of both 
these phenomena: Both the seems-tree for the 
raising construction and the thinks-tree for the 
bridge construction adjoin into the like-tree. The 
resulting two-fold problem can be seen in the 
corresponding derivation structure shown in 
Figure 1b: 1) the bridge verb think and the most 
embedded verb like, which have no semantic 
dependency, are connected with an edge while 2) 
the bridge verb think and the raising verb seems, 
which should have a semantic dependency, are 
unconnected. 

This case is an example of the more general 
problem that can arise when several trees are 
adjoined into distinct nodes of the same tree. 
Thus, we also see the Missing Link Problem 
arise when other long distance dependencies co-
occur with raising, e.g. Rambow et al.’s (1995) 
example, given in (2), in which topicalization out 
of an embedded clause interacts with raising. 

 
(2) Small spicy hotdogs, he claims Mary seems 
to adore. 
 

Dras et al. (2004) discuss a similar case 
involving subject-auxiliary inversion in 
conjunction with raising. A yes-no question like 
(3) is typically handled used multi-component 
TAG, with the structure for does and structure of 
seem as members of the same elementary tree 
set. The difficulty arises when another level of 
embedding is added, as in (4). 

 
(3) Does Gabriel seem to enjoy gnocchi? 
(4) Does Gabriel seem to be likely to enjoy 

gnocchi? 
 

A dependency ought to link seem to to be likely, 
with another link between to be likely and enjoy. 

To derive (4) with the desired dependencies, the 
tree set containing does and seem must combine 
with to be likely before combing into the enjoy-
tree. This derivation is shown in Figure 2. 
However, this derivation is neither tree-local nor 
set-local. (The to be likely tree cannot adjoin into 
the seem tree without adjoining into a foot node, 
and would also not yield the desired 
dependencies.) An alternative would be to permit 
multiple adjoining (Schabes and Shieber, 1994), 
but with predicative trees. A derivation structure 
for such a derivation, however, would link both 
seem and to be likely directly to enjoy, without 
the desired link between seem and to be likely.  

3 Delayed Tree-Local MCTAG and 
Desired Links 

3.1 k-Delayed Tree-Local MCTAG 

The delayed tree-local variant of MCTAG 
specifies a way to relax the restriction that all 
components of a multi-component set must 
combine into the same tree during the same 
derivational step. Each use of a multicomponent 
set introduces a delay into the derivation. A 
delay is the union of the paths in the derivation 
structure from each component of an MC-set S to 
the lowest node that dominates all members of S. 
A k-delayed tree-local MCTAG permits each 
node in the derivation structure to be a member 
of at most k delays. Figure 3 replicates the 
example of a 2-delayed tree-local derivation 
given in Chiang and Scheffler (2008). The 
dashed boxes mark the delays. Thus, a valid k-
delayed tree local MCTAG derivation permits 
members of the same MC set to compose into 
different trees, so long as all members of the MC 
set eventually compose into the same tree 
without requiring any node to belong to more 
than k delays. 
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3.2 A Solution for Raising and Subj-Aux 
Inversion 

In contrast to the traditional tree-local and set-
local variants of MCTAG, 1 delayed tree-local 
MCTAG does permit the derivation given in 
Figure 2 for our problematic raising and subj-aux 
inversion example. The derivation structure is 
given in Figure 2b, with the delay indicated by a 
dashed box. The two components of the seem 
tree set eventually both combine into the enjoy 
tree. However, the β component first adjoins into 
the to be likely tree and the combined phrase 
structure adjoins into the enjoy tree, while the α 
component (into which does substitutes) 
combines directly into the enjoy tree. This yields 
a link seem between to be likely and a link 
between to be likely and enjoy.2 

This example illustrates how delayed tree-
locality provides a straightforward solution in 
cases where two predicative trees are ultimately 
contiguous in the derived tree, but tree-locality 
and set-locality do not permit a derivation. The 
added flexibility of delayed tree-locality allows 
for a derivation in which the two predicative 
trees are combined, yielding the desired link in 
the derivation structure. 

4 Borrowing from Regular Form Two-
level TAG 

We turn now to how to deal with the more 
typical cases of the Missing Link Problem, 
where several trees are adjoined into distinct 
nodes of the same tree. To allow the predicative 
trees to combine in the desired order, we will 
need to modify the shapes of the tree. The 
strategy is to conform the derivational shape of 
this case to the derivational shape of the case 
above where the two predicative trees are 
ultimately contiguous in the derived tree. We 
appeal to the solution given in Dras et al. (2004) 
and show how it can be recast as a 1-delayed 
tree-local MCTAG derivation. 

4.1 Regular Form Two-level TAG Solution 
for Raising and Wh-movement 

Dras et al. (2004) propose a regular form 2-level 
TAG, with a meta-level grammar that generates 
                                                            
2 When using multi-component sets, the question arises as 
to how to interpret multiple links from the same set. I 
assume that the link between the component containing the 
lexical anchor of the set and its target is the primary link for 
the set. Something more may need to be said about links to 
the other components, but my chief concern here is to 
ensure that the previously missing links are now present. 

possible derivation structures and an object level 
grammar that yields derived phrase structures. 
Consider the object level derivation given in 
Figure 5 for example (1). At the object level, the 
derivation looks similar to a standard TAG 
derivation in that the combinatory operations 
combine pieces of phrase structure. The 
derivation structure for the object level (shown in 
Figure 5b), however, is the end product of a 
derivation at the meta-level. At the meta-level, 
the trees are pieces of object-level derivations. 
Figure 4a shows how the meta-level grammar 
generates the object-level derivation structure in 
Figure 5b. Figure 4b shows the history of this 
meta-level derivation. It is the derivation 
structure at this level which Dras et al. (2004) 
take to encode dependencies. Their goal is to 
match the meta-level derivation structure with a 
reasonable dependency analysis. 

A key aspect to their analysis is that the tree 
anchored by a verb can be split into two parts. 
Consider the A[like] meta-level tree in Figure 4a. 
The αS[like] node and βS/VP[like] node 
correspond to separate pieces of structure at the 
object level. As can be seem in Figure 5a, the 
αS[like] tree contains the verb itself while the 
βS/VP[like] tree contains the position for the 
subject.  It is in the meta-grammar that the two 
parts are elementary tree local. As the authors 
themselves note, this is strikingly similar to a 
multi-component TAG approach, but their 
proposed derivation would not be tree-local in 
the original sense. 

Note also that Dras et al. (2004) modifies the 
shapes of the trees by using a feature unification 
TAG where all non-terminals have the label X, 
but have top and bottom features that must be 
identical at the end of the derivation. A non-
terminal node’s part-of-speech or phrasal 
category is no longer its label, but rather, one of 
its features. However, in the figures that follow, 
the part-of-speech or phrasal category feature is 
graphically represented as a node label. It is 
crucial to adopt the modified shape of the trees to 
allow the predicative trees to combine as desired. 
The material that previously intervened between 
the think tree and the seem tree, forcing the two 
trees to be adjoined into different nodes in the 
like tree in Figure 1, is moved in two ways: 1) 
“that” is moved into a different tree, the seems 
tree, and 2) the position for the subject of like is 
extracted from the like tree as a separate piece of 
structure. Now, think may adjoin into seems, 
which later adjoins into like. The subject position  
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(a)         (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: a) 2LTAG meta-level derivation for What does Mary think that John seems to like?  
b) derivation structure for (a)  

(Adapted from Dras et al. (2004)) 
 
 

 
(a)       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)  
 
 
 
 
 
 
 
 
 

Figure 5: a) 2LTAG object-level derivation for What does Mary think that John seems to like?  
b) derivation structure for (a) 

(Adapted from Dras et al. (2004)) 
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(a) (b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. (a) 1-delayed tree-local MC-TAG Derivation for What does Mary think that John seems to 
like? (b) Derivation structure for (a) with delay marked with a dashed box 

 
 
of like adjoins into seems, achieving the correct 
word order. 

4.2 Translating into Delayed Tree-local 
MCTAG 

It is straightforward to convert Dras et al.’s 
object level derivation into an MC-TAG 
derivation that abides by 1-delayed tree-locality. 
Instead of treating the tree for like and the tree 
for its subject as part of the same object at the 
meta-level, the delayed tree-local approach treats 
the elementary object for like as a 2-component 
set.  Figure 6 is almost identical to Figure 5. The 
only differences are the braces denoting the 2-
component set and the dashed box indicating the 
delay. 3  Note that delayed tree-locality as 
formalized in (Chiang and Scheffler, 2008) does 
permit a component to be combine into another 
component from the same MC-set. This means 
that the derivational steps that were prohibited 
under tree-locality and set-locality, i.e. the β 
component of the like set adjoins into the seems 
tree, which in turn adjoins into the α component 

                                                            
3 See footnote 2 for comments on interpreting links from the 
same MC-set. 

of the like set, are now legal. As in the regular 
form 2-level TAG solution, the desired link 
between think and seems is no longer missing 
and the undesired link between think and like is 
no longer present 

We have already presented a solution for 
constructions involving both raising and subject-
Aux inversion, but we note that the alternative 
regular form 2-level TAG solution given in Dras 
et al. (2004) can also be converted into a 1-
delayed tree-local derivation. 

5 Conclusion and Discussion 

The observation that delayed tree-locality can 
provide a solution for at least two types of 
missing links bears on questions specific to the 
formalism as well as more general issues. With 
respect to k-delayed tree-local MCTAG, we can 
frame this work as complementing work 
exploiting the formalism for linguistic analysis. 
Whereas the analyses in Chiang and Scheffler 
(2008), Han et al., (2010), Storoshenko and Han 
(2010), and Chen-Main et al. (2012) can tell us 
something about the coverage of k-delayed tree-
local MCTAG (for a specific k) at the phrase 

S

VP*NP

seems

S

VP*

S/VPC

that V

e

to

VP

V

V

NP

NP

like i

S

S/VPj

NP

Mary

S

S

VP

S*V

think

V

does NP

John

NP

what

NP


like like

 like

seem what

likethink

JohnMary

105



structure level, this paper demonstrates the kind 
of “coverage” that the formalism provides at the 
derivation structure level.  

We also see how one of the derivational 
sequences that is, thus far, unique to delayed 
tree-local MCTAGs can be utilized. As shown in 
Figure 6, one component of an MC set ultimately 
combines into another component belonging to 
the same set. This allows what other TAG 
variants previously treated as contiguous pieces 
of structure to be treated instead as a 
multicomponent set. 

Additionally, the observation that the regular 
form 2-level TAG derivations given by Dras et 
al. (2004) can be straightforwardly viewed as 
legal 1-delayed tree-local MCTAG derivations 
adds a linguistic dimension to Chiang and 
Scheffler’s (2008) assertion that it is possible to 
give a formulation of TAG with flexible 
composition as a special case of regular-form 2-
level TAG. As suggested by a reviewer, a 
sensible future avenue would be to see if other 
analyses that use multiple levels (or dimensions) 
can be restated in delayed tree-local MCTAG, 
particularly for phenomena that have been 
challenging for standard TAG (e.g. Rogers’ 
(2004) analysis of scrambling). 

Turning to broader issues, this paper revisits 
the question of what linguistic information, if 
any, is encoded in a derivation structure. It also 
raises the related question of what exactly a 
dependency analysis is and what linguistic 
information it carries. Chen-Main and Joshi 
(2012) show how TAG derivation structures 
(interpreted in the form of dependency 
structures) can be the basis for measuring 
complexity and a means for assessing coverage 
of large scale corpora, but they steer away from 
claims about the meaning that might be encoded. 
As noted in the introduction, work on TAG 
semantics appears to have reached a consensus 
that the derivation structure is not the appropriate 
representation for computing semantics. The 
introduction of delayed tree-local MCTAG, 
however, renews the viability of interpreting the 
derivation tree as a dependency analysis. The 
degree to which this is possible can lead to two 
additional research avenues. One is that we retain 
the current non-derivation structure based 
approach to TAG semantics and wrestle with 
distinguishing between a dependency analysis 
and semantic analysis. The other is to reevaluate 
the coverage that is possible when TAG 
semantics uses a delayed tree-local MCTAG 
derivation structure as the object on which 

semantics is computed. Either avenue should 
lead to a greater understanding of the role of the 
derivation structure. 
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Abstract

Several authors have pointed out that the
correspondence between LTAG derivation
trees and dependency structures is not as
direct as it may seem at first glance, and
various proposals have been made to over-
come this divergence. In this paper we pro-
pose to view the correspondence between
derivation trees and dependency structures
as a tree transformation during which the
direction of some of the original edges is re-
versed. We show that, under this transform-
ation, LTAG is able to induce both ill-nes-
ted dependency trees and dependency trees
with gap-degree greater than 1, which is not
possible under the direct reading of deriva-
tion trees as dependency trees.

1 Introduction

In lexicalized tree adjoining grammar (LTAG), the
operations of substitution and adjunction establish
an asymmetric relation between two lexical items:
The elementary tree for one item is substituted or
adjoined into the elementary tree for another one.
In many cases, this relation can be interpreted as
a relation of syntactic dependency (complement-
ation or adjunction), and it is natural then to try to
interpret LTAG derivations as dependency trees.
However, as several authors have pointed out, the
correspondence between derivation trees and de-
pendency structures is not as direct as it may seem
at first glance (Rambow et al., 1995; Candito and
Kahane, 1998; Frank and van Genabith, 2001).
Examples of mismatches are in particular those
where predicates adjoin into their arguments, an
analysis that is chosen whenever an argument al-
lows for long extractions. In these cases, the edge

in the derivation tree and the syntactic depend-
ency have opposite directions.

Different strategies have been adopted to ob-
tain linguistically plausible dependency structures
using LTAG. Some proposals adopt variants of
the formalism with different derivation operations
(Rambow et al., 2001; Chen-Main and Joshi,
2012); others retrieve the missing dependencies
from the derivation tree and the derived tree (Kall-
meyer, 2002; Gardent and Kallmeyer, 2003). In
this paper we follow the second line of work in
that we take a two-step approach: To get a de-
pendency tree, we first construct a derivation tree,
and then obtain the dependencies in a postpro-
cessing step. However, in contrast to previous
work we retain the property that dependencies
should form a tree structure: We do not regard the
missing dependencies as additions to the deriva-
tion tree, but view the correspondence between
derivation trees and dependency structures as a
tree-to-tree mapping. The crucial feature of this
mapping is that it can reverse some of the edges
in the derivation tree. In particular it can ‘correct’
the directions of predicate–argument adjunctions.

The paper is structured as follows. We start
by reviewing the divergence between derivation
trees and dependency trees in Section 2. In Sec-
tion 3 we present the basic ideas behind our trans-
formation. A formalization of this transformation
is given in Section 4. In Section 5 we examine
the structural properties of the dependency trees
that can be induced using our transformation. We
propose in particular analyses for some examples
of ill-nested dependencies and of dependencies of
gap degree > 1. Under the direct interpretation,
LTAG induces the class of well-nested depend-
ency trees with gap-degree at most 1 (Bodirsky et
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Figure 1: A sample derivation

al., 2005). With our transformation, both ill-nes-
ted dependency trees and dependency trees with
gap-degree > 1 can be induced. Section 6 dis-
cusses related work and Section 7 concludes.

2 Derivations and Dependencies

A lexicalized tree adjoining grammar (LTAG,
Joshi and Schabes (1997)) consists of a finite set
of elementary trees, each of which has at least
one leaf with a lexical item. Starting from the
elementary trees, larger trees are derived by the
operations of substitution (which replaces a leaf
with a new tree) and adjunction (which replaces
an internal node with a new tree). In case of an ad-
junction, the tree being adjoined has exactly one
leaf that is marked as the foot node. Such a tree
is called an auxiliary tree. To license its adjunc-
tion to a node n, the root and foot node must have
the same label as n. When adjoining an auxiliary
tree at a node n, in the resulting tree, the subtree
with root n from the old tree is attached to the
foot node of the auxiliary tree. Non-auxiliary ele-
mentary trees are called initial trees. A complete
derivation starts with an initial tree and produces
a derived tree in which all leaves have terminal la-
bels. The history of a derivation is captured in its
derivation tree. The nodes of this tree correspond
to the elementary trees that have been used in the
derivation; the edges correspond to the operations
performed. Fig. 1 shows a sample derivation.

As can be seen from Fig. 1, in many cases
the LTAG derivation tree corresponds to a de-
pendency structure. However, the correspondence

between derivation trees and dependency struc-
tures is not always a direct one. Examples of
mismatches are in particular those where a) an
adjunction of a predicate into one of its argu-
ments occurs and b) furthermore, a higher predic-
ate adjoins into the same argument (Rambow et
al., 1995). Consider the following example:

(1) John Bill claims Mary seems to love.

A derivation of this sentence, together with the
corresponding derivation tree and a dependency
tree, is shown in Fig. 2. Here, we have a long-
distance topicalization of one of the arguments
of love. In order to account for this in a satis-
fying way, in particular without violating any of
the linguistic assumptions underlying the form of
LTAG elementary trees, one has to realize the sub-
stitution node for John in the elementary tree for
to_love while making sure that claim can end up
in between. Therefore, standardly, claim adjoins
to an S node in the to_love tree. Concerning rais-
ing verbs such as seems, the standard analysis is
to adjoin them to the VP node of the sentence to
which they contribute finiteness and tense. In this
example, seems adjoins to the VP node of to_love.

S

NP VP

V S∗

claims

S

NP S

NP VP

V NP

to_love ε

VP

V VP∗

seems

derivation tree:

to_love

1 2 21 22

John claims Mary seems
1

Bill

dependency tree:

claims

Bill seems

to_love

John Mary

Figure 2: Derivation for (1), together with the corres-
ponding derivation tree and a dependency tree

3 From Derivation to Dependency Trees

Let us inspect the derivation and dependency trees
in Fig. 2 more closely in order to understand what
the difference is. Concerning substitution nodes,
the two trees show the same predicate–argument
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Figure 3: Derivation for (2)

dependencies: John and Mary are daughters of
to_love, and Bill is a daughter of claims. The
edge between seems and to_love has the oppos-
ite direction in the derivation tree. This is due to
seems adjoining into the complement clause that
it embeds, which is separated into two discontinu-
ous parts. So, as a first attempt to characterize the
relation between LTAG derivation trees and de-
pendency trees, we can say that we should reverse
any derivation tree edges originating from com-
plement-taking adjunctions.1 More precisely, we
should replace every complement-adjoining edge
γ → γ′ with the reverse edge, and redirect the
previous incoming edge of γ (if it existed) into γ′.

This transformation works in many cases. As
an example consider the following:

1The observation that complement-taking adjunction
edges need to be reversed in order to retrieve the correct de-
pendency goes back to Rambow and Joshi (1994).

(2) Whom does John think the beautiful girl
prefers?

The derivation of (2) is given in Fig. 3. There
are different types of adjunctions: The adjunction
of think into prefers is a complement-taking ad-
junction, whose edge gets reversed. All the other
adjunctions (of does, the, and beautiful) are not
complement-taking, and therefore their edges re-
main unchanged. As a result, we obtain the de-
sired dependency tree after the tree transforma-
tion.

Now let us go back to Fig. 2. Here we
have the additional complication that there are
two complement-taking adjunctions that target the
to_love tree, and that we get different dependency
trees depending on which of the edges we reverse
first. A look at the desired tree tells us that claim
should dominate seems. Our hypothesis is that
this is related to the fact that claim adjoins higher
on the head projection line in the to_love tree than
seems.2 The address of the verbal head (i.e., the
anchor) is 221, so the verbal projection line is
ε, 2, 22, 221. The edge reversals proceed from
higher complement-taking adjunctions to lower
ones, i.e., in Fig. 4, first the adjunction of claim is
reversed and then the adjunction of seems. More
generally, for our transformation to be determin-
istic, we need to assume a total order on comple-
ment-taking adjunctions on the head projection
line. Figure 4 shows the two steps of the trans-
formation of the derivation tree for (1) that yields
the desired dependency tree.

to_love

1 2 21 22

John claim Mary seems
1

Bill

!

claim
1

Bill to_love

1 21 22

John Mary seems

!

claim

Bill seems

to_love

John Mary

Figure 4: Transformation of the derivation tree for (1)

2Kallmeyer and Romero (2008) use specific features on
the head projection line of verbs (the verbal spine in their ter-
minology) in order to retrieve the missing dependency links.
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4 Formal Version of the Transformation

In this section we give a formal account of the
transformation sketched above.

4.1 Derivation Trees as Terms
We represent derivation trees as terms, formal ex-
pressions over a signature of operation symbols
(Vijay-Shanker et al., 1987). For example, we
represent the derivation in Fig. 2 by the term t0:

t0 = to_love(John, claims(Bill), Mary, seems)

Here ‘to_love’ is an operation symbol with rank 4;
this corresponds to the fact that during the de-
rivation, four trees are substituted/adjoined into
the elementary tree for to_love. We will use the
term t0 as a running example in this section.

Note that in order to capture all information
contained in a derivation tree, each operation
symbol needs to encapsulate not only an element-
ary tree γ but also the specific addresses at which
trees were substituted/adjoined into γ. Since ad-
junctions may be optional, there will in general
be several (albeit a bounded number) of opera-
tion symbols per elementary tree, and in particular
several different versions of the symbol ‘to_love’.
To simplify our notation, we ignore this aspect of
the term representation in this paper.

4.2 Yield Functions
Each derivation tree t encodes the derivation of a
derived tree γ. This can be formalized by inter-
preting the operation symbols in t as operations
on derived trees: The symbol to_love for example
can be interpreted as a function that takes four de-
rived trees as arguments and returns the tree ob-
tained by substituting/adjoining these trees at the
specified nodes of the elementary tree for to_love.
To compute the derived tree corresponding to t0,
for example, one applies the operation corres-
ponding to to_love to the derived trees corres-
ponding to the subderivations John, claims(Bill),
Mary and seems, respectively.

Let the yield of a derived tree γ be defined as
follows. If γ is a derived initial tree, then its
yield is the one-component tuple 〈w〉, where w
is the string consisting of the symbols at the fron-
tier of γ. If γ is a derived auxiliary tree, then its
yield is the pair 〈w1, w2〉, where w1 and w2 are
the strings corresponding to the parts of the fron-
tier of γ to the left and to the right of the foot node,

respectively. The yield of the derived tree cor-
responding to a derivation tree t can be obtained
by associating with each operation symbol in t a
yield function (Weir, 1988). To illustrate the idea,
suppose that the yields of the four subterms of t0
are given as 〈John〉, 〈Bill claims, ε〉, 〈Mary〉, and
〈seems, ε〉, respectively. Then the full yield (1) is
obtained by assigning the following yield function
to ‘to_love’:

to_love(〈x11〉, 〈x21, x22〉, 〈x31〉, 〈x41, x42〉) =

〈x11 x21 x31 x41 to_love x42 x22〉

In the context of our transformation, yields may
consist of more than two strings, so yield func-
tions will be operations on arbitrary (finite) tuples
of strings. We only require that they are non-
copying and non-deleting, as in LCFRSs (Weir,
1988). This means that each yield function f can
be defined by an equation of the form

f($x1, . . . , $xm) = 〈α1, . . . ,αk〉

where the $xi are vectors of variables and α1 · · · αk

is a string over these variables and symbols from
the yield alphabet in which each variable oc-
curs exactly once. We adopt the convention that
the variables in the vector $xi should be named
xi1, . . . , xiki

. In this case, the defining equation
of a yield function is uniquely determined by the
tuple on its right-hand side. We call this tuple
the template of f , and use it as a unique name
for f . This means that we can talk about e.g.
the standard binary concatenation function as ‘the
yield function 〈x11 x21〉’.

The yield function associated with an operation
symbol in a derivation tree can be extracted in a
systematic way; see Boullier (1999) for a proced-
ure that performs this extraction in the formalism
of range concatenation grammars.

4.3 Direct Interpretation
The direct interpretation of a derivation tree as a
dependency tree can be formalized by interpreting
symbols as operations on dependency trees (Kuhl-
mann, 2013). Continuing our running example,
suppose that for each subtree of t0 we are not only
given a string or a pair of strings as before, but
also a corresponding dependency tree. Then the
symbol to_love has a straightforward reading as
constructing a new dependency tree for the full
sentence (1): Preserve all the old dependencies,
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and add new edges from to_love to the roots of the
dependency trees associated with the subterms.

4.4 Transformation
We illustrate the formal transformation by means
of our running example. In order to convey the
intuitive idea, we first present the transformation
as an iterative procedure, in much the same way as
in Section 3. Then, in a second step, we show how
the transformation can be carried out in a single
top–down traversal of the initial derivation tree.

Starting from the tree t0, we will reverse some
edges and change some operation symbols to ob-
tain the modified tree

t1 = claims′(seems′(to_love′(John, Mary)), Bill)

When interpreting this transformed tree as out-
lined in Section 4.3, we will obtain the plausible
dependency tree shown in Fig. 2.

In a first step, we want to reverse the direction
of the edge from to_love to claims, so the trans-
formed derivation tree should have the form

t′0 = claims′(to_love′′(John, Mary, seems), Bill)

However, the yield of t0 and t′0 should be the
same. To achieve this, we change the yield func-
tions of to_love and claims from

to_love ! 〈x11 x21 x31 x41 to_love x42 x22〉
claims! 〈x11 claims, ε〉

in the source derivation tree t0 to

claims′ ! 〈x11 x21 claims x12 x13〉
to_love′′ ! 〈x11, x21 x31 to_love x32, ε〉

in the target derivation tree t′0.
The idea is illustrated in Fig. 5, which shows

the schematic structure of the yield of a derived
tree that results from the adjunction of an auxil-
iary tree β2 (grey part) into an auxiliary tree β1

(white parts). In the term representation, the yield
functions associated with β1 and β2 take the forms

f1 = 〈v1 x1 v2, v3 x2 v4〉 and f2 = 〈w1, w2〉,
respectively, where the variables x1, x2 in f1 are
placeholders for the two components of the tuple
returned by f2. When we now reverse the edge
between β1 and β2, but want the resulting term
to have the same yield as before, then we need to
change the yield functions into

∗

v1

w1

v2 v3

w2

v4

Figure 5: Schematic structure of the yields involved in
an adjunction

f ′
2 = 〈x1 w1 x2, x3 w2 x4〉 f ′

1 = 〈v1, v2, v3, v4〉.
In the second step, we want to reverse the direc-

tion of the edge from to_love to seems and obtain

t1 = claims(seems(to_love(John, Mary)), Bill)

as above. Again, the yield of t′0 and t1 should be
the same. We therefore change the yield functions
of to_love and seems from

to_love′′ ! 〈x11, x21 x31 to_love x32, ε〉
seems! 〈seems, ε〉

in the source derivation tree t1 to

seems′ ! 〈x11, x12 seems x13 x14, x15〉
to_love′ ! 〈x11, x21, to_love, ε, ε〉

in the target derivation tree t1. Note that the yield
of to_love′′ no longer has the schematic structure
of Fig. 5, but consists of three discontinuous seg-
ments (even though the third segment is empty).
More generally, each step of our transformation
may increase the fan-out of the yield functions
that are involved.

4.5 Macro Tree Transducers
To implement our transformation in a single pass
over the initial derivation tree, we use a macro tree
transducer (Engelfriet and Vogler, 1985). Macro
tree transducers extend standard top–down tree
transducers by the ability to pass the output of the
translation of a subtree to the translation of an-
other subtree as an argument. We illustrate how
we take advantage of this ability by means of the
derivation tree t0. To obtain the tree t1, we apply
the following rule to t0:

〈q0, to_love(x1, x2, x3, x4)〉 →
〈q2, x2〉(〈q4, x4〉(to_love′(〈q1, x1〉, 〈q3, x3〉)))
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The informal reading of this rule is: ‘To translate
an input tree of the form to_love(t1, t2, t3, t4):
translate the subtrees t1 and t3 (corresponding
to John and Mary); attach the outputs of these
translations as arguments of the modified symbol
to_love′; attach the resulting tree to the output of
the translation of t4 (seems); and attach the tree
resulting from that to the output of the translation
of t2 (claims). The qi are states that can be used
to communicate a limited amount of contextual
information to the translations of the subtrees. In
our case, they are used to transport information
about how to modify the yield functions. Each
rule of the macro tree transducer encapsulates the
full set of modifications to the yield functions that
are necessary to simulate the reversals of the com-
plement-taking adjunctions.

In the macro tree transducer for our running ex-
ample, the rules for the translations of seems and
claims have access to a special variable y that will
be instantiated with the output of the translation of
the subtrees for to_love and seems, respectively:

〈q4, seems〉(y) → seems′(y)

〈q2, claims(x1)〉(y) → claims′(y, 〈q21, x1〉)

These rules produce the following output trees:

seems! seems′(to_love′(john, mary))

claims! claims′(seems′(· · · ), bill)

Concerning the complexity of parsing, our
transformation is linear in the size of the deriv-
ation tree. Consequently, parsing (i.e., obtain-
ing derived, derivation, and dependency tree for
a given input) is still polynomial both in the size
of the input string and in the size of the grammar,
as in the case of standard TAG. This is a differ-
ence compared to tree-local MCTAG where, due
to the fact that adjunctions at different nodes of
an elementary tree are no longer completely inde-
pendent from each other, the universal recognition
problem is NP-complete (Søgaard et al., 2007).

5 Structural Properties

In this section, we reconsider some examples in-
volving ill-nested dependency structures and de-
pendency structures with gap-degree > 1 that
have been argued to be problematic for TAG. If
we assume that LTAG derivation trees are depend-
ency trees, TAG is limited to well-nested depend-
ency trees of gap-degree ≤ 1 (Bodirsky et al.,

VP

VP gekauft

VP NP∗

VP NP↓

ε

VP

VP
NP

ein Buch

VP

VP∗ VP

das teuer war

VP

VP VP∗

habe

NP

ich

VP

NP↓ VP∗ für
NP

da
derivation tree:

Buch

gekauft teuer

habe ich für

da

dependency tree:

gekauft

habe ich für Buch

da teuer

Figure 6: LTAG derivation for (3)

2005). We will see that if the transformation de-
scribed above is applied to a TAG derivation tree,
then this limit is no longer given.

5.1 Ill-Nestedness

Consider the following ill-nested dependency
structures in German, both taken from Chen-Main
and Joshi (2012). (3) combines a dafür-split with
an NP containing an extraposed relative clause.
(4) combines a split quantifier with an NP having
an extraposed relative clause.

(3) Da habe ich ein Buch für gekauft das
that have I a book for bought which
teuer war
expensive was
‘for that I bought a book which was expensive’

(4) Bücher hat der Student drei gekauft
books has the student three bought
der am meisten Geld hatte
who the most money had
‘the student with the most money bought three
books’

Assuming that adjunctions to complements
have to be reversed in order to obtain the correct
dependencies, we can analyze (3) with the TAG
derivation from Fig. 6. The adjunction of gekauft
to Buch then has to be reversed. As a result, we
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gekauft

hat Bücher Student

drei Geld

Figure 7: Derivation for (4)

obtain the dependency tree in the lower part of
Fig. 6. Note that we assume a feature structure
based TAG where the CAT (= category) feature
can be different in the top and bottom structures
of a node, requiring an adjunction. In Fig. 6 the
Buch tree requires the adjunction of a VP tree that
takes an NP-complement.3

The second example for ill-nested dependen-
cies, (4), is slightly more complicated since both
split constituents are arguments of the same verb.
In order to deal with this, we need to adjoin one
of the arguments. This is a major change to stand-
ard TAG analyses since there is no argument slot
in the sense of substitution or foot node for this
argument. The selection of this argument has
to be done via the features, namely via the CAT

feature of the node where the argument adjoins.
The derivation is shown in Fig. 7. Here, the only
complement taking adjunction is the adjunction of
gekauft into der Student; the corresponding edge
is reversed by our transformation. This yields the
correct dependency tree.

5.2 Gap-Degree > 1

Now let us move to examples of gap-degree
greater than 1, such as (5). The analysis of this
sentence involves an NP that is split into three
non-adjacent parts, was für Bücher von Chomsky
die spannend sind. This is again an example from
Chen-Main and Joshi (2012).

3With this feature-based modeling of adjunction con-
straints, the requirement that root and foot node have the
same labels in auxiliary trees is no longer assumed.

VP

NP VP
NP

was für Bücher PP↓

VP

VP∗ VP

die spannend waren

PP

von Chomsky

VP

VP VP∗

hast
NP

du

VP

NP↓ NP∗ gelesen

Figure 8: LTAG derivation for (5)

Derivation tree:
was für Bücher

von Chomsky gelesen die spannend waren

hast du
Dependencies:

gelesen

hast du was für Bücher

von Chomsky die spannend waren

Figure 9: Derivation tree and dependencies for (5)

(5) Was für Bücher hast du von Chomsky
what type of books have you by Chomsky
gelesen die spannend sind
read which exciting are
‘what type of books by Chomsky have you read
that are exciting’

This example could be analyzed as in Fig. 8.
Again, we assume that an adjunction into a
complement (here gelesen adjoins into its object
Bücher) is an adjunction that needs to be reversed.
As a result, we obtain the derivation and depend-
ency structures in Fig. 9.4

5.3 Generalization
From these examples we have already seen that,
under the new interpretation of derivation trees as
dependency structures, TAG can generate ill-nes-
ted dependencies and dependencies of gap degree
> 1. A question is whether the gap-degree is lim-
ited at all. And here the answer is no. Or rather,
there is a grammar-dependent limit on the max-
imal number of gaps a derivation can generate.

4Note that this example involves a complement-taking
adjunction that does not take place above the lexical anchor.
We leave the investigation of possible nodes for comple-
ment-taking adjunctions for future research.
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As we have seen, gaps arise from complement-
taking adjunctions where each of these adjunc-
tions can introduce two new gaps (to the left and
right of the spine of the auxiliary tree). Further-
more, the number of such adjunctions is limited
by the maximal number of internal nodes per ele-
mentary tree. In addition to this, the tree itself can
be a non-complement taking auxiliary tree that
contains a gap below its foot node. Consequently,
the following holds under our transformation:

Claim. Let G be an LTAG, and let k be the max-
imal number of internal nodes in a tree of G. Then
the gap-degree of the dependency trees induced
by G is upper-bounded by 2(k − 2) + 1.

This is actually surprising, given that previ-
ous assumptions were that LTAG is too limited
to generate the dependency structures needed for
natural languages (Kuhlmann, 2010). As shown
in this paper, instead of moving to a TAG vari-
ant different from standard LTAG, one can also
use standard LTAG and assume the transforma-
tion described in this paper as the operation that
induces the underlying dependency structure. In
this sense, this paper opens a different perspective
on LTAG, showing that the claim about the lim-
itations of LTAG concerning dependency trees is
not valid if the induction of dependencies is taken
to be an operation on the derivation tree that is
different from just the identity.

6 Related Work

The mismatch between TAG derivation trees and
dependency structures has been known for a long
time, and several solutions have been proposed.
These fall, roughly, into two classes. On the
one hand, several authors have proposed to use
a variant of TAG that yields different derivation
trees than standard TAG. On the other hand, some
approaches keep standard TAG while exploring
ways to obtain the missing links from the deriva-
tion tree. Our approach falls into the second class.

Concerning the first class, one of the earli-
est proposals was D-Tree Substitution Grammar
(Rambow et al., 2001). The idea is to use tree de-
scriptions instead of trees. These tree descriptions
contain dominance links whenever different parts
of an elementary tree can be split. Arguments are
added by substitution but an ‘extracted’ part of an
argument, linked to the lower part by a domin-
ance link, can be separated from this lower part

and end up much higher. This gives more flex-
ibility concerning the modeling of discontinuities
and non-projective dependencies.

Another LTAG variant that has been discussed
a lot recently in the context of the ‘missing link
problem’ is tree-local MCTAG with flexible com-
position (Joshi et al., 2007; Chen-Main and Joshi,
2012), formalized by the notion of delayed tree-
locality (Chiang and Scheffler, 2008). The idea
is roughly to perform the reversal of complement-
taking adjunctions not on the derivation tree, but
already during derivation. More precisely, instead
of considering such an operation as a standard ad-
junction, it is considered as a wrapping operation
directed from the adjunction site to the auxiliary
tree. Consider for instance the derivation in Fig. 3.
If we take the adjunction of the think tree into
the prefer tree to be a wrapping of prefer, split
at its internal S node, around the think tree. If
this is reflected in the derivation tree by an edge
from prefer to think, then one obtains the lower
tree in Fig. 3 as a derivation tree. Chen-Main and
Joshi (2012) provide analyses for the examples
from Section 6 using tree-local MCTAG with flex-
ible composition. In contrast to their approach, in
our proposal flexible composition is replaced by a
transformation on the derivation trees. As a res-
ult, for the construction of the derivation tree, we
keep standard TAG and we can still use its pars-
ing techniques. The choice to remain with stand-
ard TAG however requires some relaxation of the
predicate argument cooccurrence principle since,
as we have seen in with the analysis of (4), we
sometimes have to adjoin arguments and express
their selection via features of an internal node.

Concerning the use of TAG with some addi-
tional means to retrieve the desired dependencies
from the derivation tree, this has been pursued
by Kallmeyer (2002), where the derivation tree
is explicitly enriched with additional links, and
by Gardent and Kallmeyer (2003) and Kallmeyer
and Romero (2008), where these links are indir-
ectly constructed via feature percolation. How-
ever, these approaches do not provide an explicit
transformation from derivation trees to depend-
ency structures.

7 Conclusion

In this paper we have addressed the relation
between LTAG derivation trees and linguistically
plausible dependency trees. We have formalized
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the correspondence between the two as an edge-
reversing tree transformation, and shown that, un-
der this transformation, LTAG can induce depend-
ency trees that cannot be induced under the direct
interpretation.

We used our approach to analyze some of
the problematic examples from the literature. It
turned out that, given our transformation, these
examples can be treated using only TAG, i.e.,
without multiple components. This is a nice result
since it means that parsing (yielding derived, de-
rivation and dependency tree) is polynomial both
in input and grammar size. The latter is not the
case for tree-local MCTAG.

In future work we hope to address the question
whether there are linguistic phenomena that are
not covered by our approach, and to carry out a
more systematic and comprehensive comparison
of the various proposals that have been put for-
ward to address the ‘missing link problem’.
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Abstract

Using a Feature-Based Lexicalised Tree
Adjoining Grammar (FB-LTAG), we
present an approach for generating pairs
of sentences that are related by a syntactic
transformation and we apply this approach
to create language learning exercises.
We argue that the derivation trees of
an FB-LTAG provide a good level of
representation for capturing syntactic
transformations. We relate our approach to
previous work on sentence reformulation,
question generation and grammar exercise
generation. We evaluate precision and
linguistic coverage. And we demonstrate
the genericity of the proposal by applying
it to a range of transformations including
the Passive/Active transformation, the
pronominalisation of an NP, the assertion /
yes-no question relation and the assertion /
wh-question transformation.

1 Introduction

Textbooks for language learning generally in-
clude grammar exercises. For instance,Tex’s
French Grammar1 includes at the end of each
lecture, a set of grammar exercises which target
a specific pedagogical goal such as the one shown
in Figure 1 for learning to form questions. The
aim of those exercises is to facilitate the acquisi-
tion of a specific grammar point by presenting the

1Tex’s French Grammar http://www.laits.
utexas.edu/tex/ is an online pedagogical reference
grammar which is arranged like many other traditional
reference grammars with the parts of speech (nouns, verbs,
etc.) used to categorize specific grammar items (gender
of nouns, irregular verbs). Individual grammar items are
explained in English, exemplified in a dialogue, and finally
tested in self-correcting, fill-in-the-blank exercises.

learner withexercises made up of short sentences
involving a simple syntax and a restricted vocab-
ulary.

As argued in (Perez-Beltrachini et al., 2012),
most existing work on the generation of gram-
mar exercises has concentrated on the automatic
creation of exercises whose source sentences are
“real life sentences” extracted from an existing
corpus. In contrast, we aim at generating text-
book style exercices i.e., exercices whose syntax
and lexicon are controlled to match the linguistic
content already acquired by the learner.

Moreover, in computer aided language learn-
ing (CALL), much of the work towards gener-
ating exercices has focused on so-called objec-
tive test items i.e., test items such as multiple
choice questions, fill in the blank and cloze exer-
cise items, whose answer is strongly constrained
and can therefore be predicted and checked with
high accuracy. Thus, (Chen et al., 2006) describes
a system called FAST which supports the semi-
automatic generation of Multiple-Choice and Er-
ror Detection exercises while (Aldabe et al., 2006)
presents the ArikiTurri automatic question gener-
ator for constructing Fill-in-the-Blank, Word For-
mation, Multiple Choice and Error Detection ex-
ercises.

Few studies, however, have been conducted on
the generation of transformation based exercices
such as illustrated in Figure 1.

In this paper, we present an approach for gener-
ating transformation exercices such as (1), where
the query (Q) is a sentence and the solution (S) is
related to the query by a syntactic transformation.

(1) Instruction:Modify Q so that the underlined
verb is in passive.
Q: John hopes that Mary likesPeter.
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Interrogative pronouns. Transform each sentence into the c orresponding question.
Example: Rita parle DE LA POLITIQUE. You write: De quoi est-c e que Rita parle?
1. Bette parle DE TAMMY.
2. Corey a besoin D’UNE BIERE.
3. Fiona t él éphone A RITA.
4. Joe-Bob sort AVEC TEX.
5. LE PROF dérange Joe-Bob.
6. LES DEVOIRS dérangent Joe-Bob.
7. Paw-Paw fait UNE SIESTE (nap).
8. Tammy cherche TEX.
9. TAMMY cherche Tex.

Figure 1: Grammar exercises from theTex’s French Grammartextbook

S: John hopes that Peter is liked by Mary.

To control the syntax and the lexicon of the ex-
ercices produced, we take a grammar based ap-
proach and make use of generation techniques.
More specifically, we generate sentences using a
Feature-Based Lexicalised Tree Adjoining Gram-
mar (FB-LTAG) for French (SemTAG). We show
that the rich linguistic information associated with
sentences by the generation process naturally sup-
ports the identification of sentence pairs related by
a syntactic transformation. In particular, we argue
that the derivation trees of the FB-LTAG gram-
mar provide a level of representation that captures
both the formal and the content constraints gov-
erning transformations. The content words and
the grammatical functions labelling the tree nodes
permit checking that the two sentences stand in
the appropriate semantic relation (i.e., fully iden-
tical content or identical content modulo some lo-
cal change). Further, the syntactic properties la-
belling these nodes (names of FB-LTAG elemen-
tary tree names but also some additional informa-
tion provided by our generator) permits ensuring
that they stand in the appropriate syntactic rela-
tion.

The structure of the paper is the following. We
start (Section 2) by discussing related work focus-
ing on studies that target the production of syn-
tactic reformulations. We then go on to present
our approach and show that it permits generating
different types of transformations (Section 3). In
Section (4), we discuss results concerning linguis-
tic coverage, precision and recall. Section (5) con-
cludes with pointers for further research.

2 Related work

In linguistics, transformations (Harris, 1957;
Chomsky, 1957) model recurrent linguistic rela-
tions between sentence pairs. For instance, a
transformation can be used to define the relation

between the active and the passive voice version
of the same sentence. Formally, transformations
were stated as tree-transducers on phrase structure
trees and they defined either structure changing
or structure building (generalised transformation)
operations.

In computational linguistics, transformations
and more generally, structure changing and struc-
ture building rules have been used in such tasks as
text simplification (Siddharthan, 2010), text sum-
marising (Cohn and Lapata, 2009) and question
generation (Piwek and Boyer, 2012). In these ap-
proaches however, the transformation relation is
not necessarily defined on phrase structure trees.
For instance, for the question generation task,
(Yao et al., 2012) has argued that Assertion/WH-
Question transformations are best defined on se-
mantic representations. Conversely, for text sim-
plification, (Siddharthan, 2010) has convincingly
shown that dependency trees are better suited as
a representation on which to define text simplifi-
cation rules than both phrase structure trees and
semantic representations.

(Siddharthan, 2011) presents a user evaluation
comparing different re-generation approaches for
sentence simplification. He notes in particular
that annotators preferred those transformations
that are closer in syntax to the original sentence.
To achieve this, rules for word ordering are ei-
ther added to the transform rules or coded as con-
straints within the input to a generator. In contrast,
in our approach, syntactic similarity can be de-
duced by tree comparison using the rich linguistic
information associated by the generator with the
FB-LTAG derivation trees.

(Chandrasekar and Srinivas, 1997) describes an
algorithm by which generalised rules for simplifi-
cation are automatically induced from annotated
training material. Similar to our work, their ap-
proach makes use of TAG derivation trees as a
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Cl V Prep N↓
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Tree PropertyCleftAgent

Figure 2: Grammar, Derivation Tree and Example Tree Property (Bottom right) for the sentenceC’est Tammy
qui fait la tarte(It is Tammy who bakes the pie)

base representation. Using a corpus of complex
sentences parsed and aligned with the correspond-
ing simplified sentences, the tree comparison al-
gorithm they propose permit inducing simplifica-
tion rules between dependency trees derived from
TAG derivation trees. Although similar to our ap-
proach, (Chandrasekar and Srinivas, 1997)’s pro-
posal differs from ours in several ways. First,
while we focus on transformations, they work on
simplifications relating e.g., a sentence contain-
ing a relative clause to two base clauses. Second,
the trees on which they define their transforma-
tions are reconstructed in a rather ad hoc man-
ner from the TAG derivation trees and from in-
formation extracted from the TAG derived trees.
In contrast, we make use of the derivation trees
produced by theGraDe algorithm. Third, while
their work is limited to sentences containing rel-
ative clauses, we consider a wider range of trans-
formations. Fourth, their approach targets the au-
tomatic acquisition of simplification rules while
we manually define those.

3 Generating Transformation-related
sentences

To generate pairs of sentences that are related by
a transformation, we proceed in two main steps.

First, we construct a generation bank by gener-
ating sentences from underspecified semantic rep-
resentations using theGraDe algorithm (Gardent
and Kruszewski, 2012). This generation bank
stores sentences that have been generated using
GraDe together with the detailed linguistic in-
formation associated by this algorithm with each
sentence in particular, its derivation tree.

Second, filters are used to retrieve from the gen-
eration bank sentence pairs that provide the query
and the solution to a given transformation type ex-
ercise. These filters are defined on derivation trees
and make use of the rich linguistic information
associated by our generator with those derivation
trees.

In what follows, we start by describing the
grammar used and the information contained in
the derivation trees produced byGraDe. We then
go on to motivate the use of derivation trees as
a structure on which to base the identification of
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Figure 3: Derived (top) and Derivation (bottom) Trees for the active voiced sentenceC’est Tex qui a fait la tarte
(It is Tex who baked the pie) and its passive variant

transformationally related sentences. Finally, we
present the derivation tree filters used to identify
pairs of transformationally related sentences.

3.1 Grammar

The grammar used by the surface realiser is called
SemTAG. It is a Feature-Based Lexicalised Tree
Adjoining Grammar (FB-LTAG, (Vijay-Shanker
and Joshi, 1988)) for French augmented with a
unification-based compositional semantics as de-
scribed in (Gardent and Kallmeyer, 2003).

Figure 2 shows an example FB-LTAG grammar
and the derivation tree associated with the sen-
tenceC’est Tammy qui fait la tarte(It is Tammy
who bakes a pie).

The basic elements of FB-LTAG are calledel-
ementary trees. Each elementary tree is labelled
with feature structures and is associated with at
least one lexical item called theanchor of that
tree. Elementary trees are of two types: auxiliary
(to model recursion) and initial (to capture predi-
cate/argument dependencies). They are combined
using two operations,substitutionand adjunction.
The result of combining elementary trees together
is both a derived tree (representing phrase struc-
ture) and a derivation tree (describing the process
by which a derived tree was produced). More

specifically, an FB-LTAG derivation tree indicates
which FB-LTAG elementary trees were used to
construct the parse tree and how they were com-
bined: each node in a derivation tree is labelled
with the name of an elementary trees used in the
derivation and each edge indicates which oper-
ation (substitution or adjunction) was applied to
combine the two trees related by the edge.

As shown in Figure 2, the derivation trees pro-
duced byGraDe contain additional information2.
Nodes are labelled not only with the name of an
elementary tree but also with the lemma anchor-
ing that tree, the feature structure associated with
the anchor of that tree and thetree propertiesof
that tree.

We use feature structure information to iden-
tify the grammatical function of an argument and
to verify that two transformationally related sen-
tences are syntactically and morpho-syntactically
identical up to the transformed part.

Tree properties are abstractions over tree de-
scriptions. These properties are produced by the
grammar compiler computing the grammar out
of a more abstract grammar specification. They
name the tree descriptions that were used to build

2In Figure 2, edge labels are omitted for simplicity.
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the FB-LTAG elementary trees. Thus, for in-
stance, the tree propertyCleftAgentnames the tree
description appearing at the bottom right of Fig-
ure 2; and the elementary treeα2 in Figure 2 is
associated with the tree propertiesActive, Cleft-
Subj,CanObjindicating that this tree was built by
combining together the tree descriptions named
Active, CleftSubjandCanObj.

3.2 Why Derivation Trees?

As discussed in Section 2, previous work on syn-
tactic transformations has experimented with dif-
ferent levels of representation on which to define
transformations namely, dependency trees, phrase
structure tree and semantic representations. While
providing detailed information about the syntax
and the informational content of a sentence, FB-
LTAG derivation trees provide both a more ab-
stract description of this information than derived
trees and a richer representation than semantic
formulae.

Figure 3 illustrates the difference between de-
rived and derivation trees by showing those trees
for the sentencesC’est Tex qui a fait la tarte (It
is Tex who baked the pie)and C’est par Tex que la
tarte a ét́e faite (It is by Tex that the pie was baked).
While the derived trees of these two sentences
differ in their overall structure (different struc-
ture, different number of nodes), their derivation
trees are identical up to the tree properties of
the verb. Moreover, the tree properties of the
active ({Active,CleftSubj,CanObj}) and of the pas-
sive ({passive,cleftAgent,canSubj}) verb capture the
changes in argument and verb realisation typi-
cal of a passive transformation. In other words,
derivation trees provide a level of description that
is simpler (less nodes) and that better supports
the identification of tranformationally related sen-
tences (more similar configurations and explicit
description of changes in argument and verb real-
isation).

Derivation trees are also better suited than
semantic formulae to capture transformations
as, in some cases3, the semantic representa-
tions of two transformationally related sentences

3Whether two syntactically distinct sentences share the
same semantics depends on the grammar. In the grammar
we use, the semantic representations aims to capture the truth
conditions of a sentence not their pragmatic or informational
content. As a result, Passive/Active variations do share the
same semantics.

may be identical. For instance, in our gram-
mar, Active/Passive, canonical/inverted subject
and cleft/non cleft argument variations are as-
signed the same semantics. As shown above,
for those cases, the tree properties labelling the
derivation trees provide a direct handle for identi-
fying sentences related by these transformations.

3.3 Derivation Tree Filters
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Figure 4: Tree filter types (tree schemas on the left de-
pict source sentence derivation trees and those to their
right their transform)

To identify transformationally related sen-
tences, we define tree filters on derivation trees.
These filters make use of all the information
present in the FB-LTAG derivation trees produced
by GraDe namely, the tree names, the lemmas,
the feature structures and the tree properties la-
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belling the nodes of these trees.
Figure 4 shows the general filtering patterns we

used to handle four types of transformations used
in language learning: Active/Passive, NP/pronoun
(pronominalisation), NP/Wh-NP (WH-questions)
and Assertion/Yes-No questions.

Filters (a) and (d) are used for the Ac-
tive/Passive and for the canonical/inverted subject
variations. Filter (a) relates two trees which are
identical up to either one node differing in its tree
properties. It applies for instance to the deriva-
tion trees shown in Figure 3. Filter (d) is used
for cases such asJohn wants Mary to like him / John
wants to be liked by Marywhere the two derivation
trees differ both in the tree properties assigned to
want (CanSubj, CanObj, SentObj↔ CanObj, Sen-
tObj) and in the tree properties assigned tolike (In-
fSubj, CanObj↔ InfSubj, CanAgent); and where an
additional node is present due to the presence of
the pronounhim in the active sentence and its ab-
sence in the passive variant.

Filter (b) is used for the NP/Pronoun transfor-
mation and relates two trees which in addition to
having one node with different tree properties also
differ in that an NP node and its subtree maps to a
pronoun node.

Filter (c) relates two trees which are identical
up to the addition of an auxiliary tree of typeβqm.
As we shall see below, this is used to account for
the relation between an assertion and a question
including a question phrase (i.e.,n’est ce pas / Isn’t
it, est ce que, invertedt’il or question mark).

Finally, Filter (e) is used for the assertion/wh-
question transformation and matches pairs of
trees such that an NP containingn modifiers in
one tree becomes a WH-NP with any number of
thesen modifiers in the other tree.

We now discuss in more detail the derivation
tree filters specified for each type of transforma-
tions.

3.4 Meaning Preserving Transformations

In SemTAG, semantic representations aim to cap-
ture the truth conditions of a sentence not their
pragmatic or informational content. As a result,
some sentences with different syntax share the
same semantics. For instance, all sentences in
(2b) share the semantics in (2a).

(2) a. L0:properq(C HR HS) L1:named(C tammy)
L1:indiv(C f sg) qeq(HR L1) L3:love(EL TX
C) L3:event(EL pst indet ind) L4:properq(TX

HRX HSX) L5:named(TX tex) L5:indiv(TX m sg)
qeq(HRX L5)

b. Tex loves Tammy, It is Tex who loves Tammy,
It is Tammy whom Tex loves, Tammy is loved
by Tex, It is Tammy who is loved by Tex, It is
by Tex that Tammy is loved, etc.

The syntactic and pragmatic differences be-
tween these semantically identical sentences is
captured by their derivation trees and in partic-
ular, by the tree properties labelling the nodes
of these derivation trees. More generally, Ac-
tive/Passive sentence pairs, canonical/cleft (e.g.,
Tex loves Tammy / It is Tex who loves Tammyand
Canonical/Inverted Subject variations (e.g.C’est
Tex que Tammy adore / C’est Tex qu’adore Tammy
may lead to derivation trees of identical struc-
ture but distinct tree properties. In such cases,
the transformationally related sentence pairs can
therefore be captured using the first type of deriva-
tion filter i.e., filters which related derivation trees
with identical structure but distinct tree proper-
ties. Here, we focus on the Active/Passive vari-
ation.

The differences between an active voice sen-
tence and its passive counterpart include lexical,
morphological and syntactic differences. Thus for
instance, (3a) differs from (3b) in that the verb
agrees with the proper nameTammyrather than
the pronounil ; the clitic is in the oblique case (lui)
rather that the nominative (il ); the subject NPIl
has become a PP headed by the prepositionpar;
the passive auxiliarŷetre and the prepositionpar
have been added to support the passive voice con-
struction.

(3) a. Il regarde Tammy (He watches Tammy)
b. Tammy est regardée par lui
(Tammy is watched by him)

In (Siddharthan, 2010), these variations are
handled by complex node deletion, lexical
substitution, insertion, and node ordering rules.
By contrast, to identify Active / Passive

variations, we search for pairs of derivation trees
that are related by an Active/Passive derivation
tree filter namely, a filter that relates two trees
which are identical up to a set of tree properties
labelling a single node pair. We specify as many
Active/Passive tree property patters as there are
possible variations in argument realisations. For
instance, for a transitive verb, some of the defined
tree property patterns are as follows:
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Active/Passive Tree Property Patterns

{Active, CanSubj, CanObj}
↔ {Passive, CanSubj, CanAgent}
{Active, CliticSubj, CanObj}
↔ {Passive, CanSubj, CanAgent}
{Active, WhSubj, CanObj}
↔ {Passive, InvertedSubj, WhAgent}
{Active, RelSubj, CanObj}
↔ {Passive, CanSubj, RelAgent}
{Active, CleftSubj, CanObj}
↔ {Passive, CanSubj, CleftAgent}

In sum, in our approach, the possible differ-
ences in morphological agreement between ac-
tive and passive sentences are accounted for by
the grammar; differences in argument realisation
(Object/Subject, Subject/Agent) are handled by
the tree filters; and lexical differences due to ad-
ditional function words fall out of the FB-LTAG
coanchoring mechanism.

As should be clear from the derivation tree be-
low, our approach supports transformations at any
level of embedding. For instance, it permits iden-
tifying the pairTammy sait que Tex a fait la tarte /
Tammy sait que la tarte áet́e faite par Tex (Tammy
knows that Tex has baked the pie / Tammy knows that
the pie has been baked by Tex).

α0-savoir:{ ... }

α2-faire
{Passive,CanAgent,CanSubj} α4-tammy:{ ... }

α1-tex:{ ... } α5-avoir:{ ... } α3-tarte:{ ... }

β1-la:{ ... }

It also supports a fine grained control of the Ac-
tive/passive variants allowing both for cases with
multiple variants (4a) and for transitive configura-
tions with no passive counterpart (4b,d).

(4) a. C’est la tatou qu’il adore
C’est par lui que la tatou est adorée
C’est lui par qui la tatou est adorée
It is the tatoo that he loves / It is the tatoo that
is loved by him

b. Tex veut faire une tarte
** Une tarte veutêtre faite par Tex
Tex wants to bake a pie / ** A pie wants to be
baked by Tex

c. Tex semble faire une tarte
Une tarte semblêetre faite par Tex
Tex seems to bake a pie / A pie seems to be
baked by Tex

d. Tex mesure 1.80m
** 1.80m est mesuŕe par Tex
Tex measures 1.80m ** 1.80m is measured
by Tex

(4a) is accounted for by specifying a tree filter
including the tree property mappingCleftSubject
↔ CleftAgentwhereCleftAgentsubsumes the two
types of clefts illustrated in (4a).

The lack of passive in (4b) and (4d) is ac-
counted for by the grammar: since (4b) does not
licence a passive, the starred sentence will not be
generated. Similarly, because the verbmesurer / to
be X tall is not passivable, the starred sentence in
(4d) will not be produced.

3.5 Meaning Altering Transformations

When the content of two sentences differs, in par-
ticular, when a content word is deleted or added,
the derivation trees of these sentences may have
a different structure. In those cases, we use fil-
ters that relate derivation trees with distinct tree
structures namely, filters (b), (c), (d) and (e) in
Figure 4.

NP/Pronoun To handle the NP/Pronoun, we
use the filter sketched in Figure (4b) which re-
lates derivation trees that are identical up to an
NP subtree replaced by a node labelled with a
pronoun. In this way the difference between the
derivation tree ofle tatou(two nodes) andqui (one
node) does not prevent the identification of sen-
tence pairs such as (5a).

(5) a. Le tatou chante
Il chante (Personal pronoun)
The tatoo sings/He sings

b. Quel tatou chante ?
Qui chante ? (WH-Personal Pronoun)
Which tatoo sings?/Who sings?

NP/Wh-NP For wh-questions, the main diffi-
culty is to account for variations such as (6) be-
low where a complex NP with several modifiers
can map to a Wh-NP with different numbers of
modifiers. To capture these various cases, we use
two tree filters. The first filter is similar to filter
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(b) in Figure 4 and matches NP/WH-Pronoun sen-
tences (e.g., 6a-b where the NPLe grand tatou avec
un chapeau qui dort sous le palmiermaps to a WH-
Pronounqui). The second tree filter is sketched
in Figure (4e). It matches NP/Wh-NP sentences
(e.g., 6a-c/f) where an NP matches to a WH-NP
headed by a WH-Determiner, the head noun and
any number of modifiers.

(6) a. Le grand tatou avec un chapeau qui dort
sous le palmier ronfle.
Qui ronfle ? Quel tatou ronfle ? Quel
grand tatou ronfle? Quel tatou avec un
chapeau ronfle ? Quel tatou qui dort sous
un palmier ronfle ? etc.
The big tatoo with a hat who sleeps under
the palmtree snores/ Who snores? Which
tatoo snores? Which tatoo with a hat snores?
Which tatoo who sleeps snores? etc.

Yes-No Question. In French, yes/no questions
can be formed in several ways:

(7) a. Le tatou chante
Le tatou chante t’il? (Inverted t’il)
Est ce que le tatou chante ? (est ce que)
Le tatou chante? (Intonation)
Le tatou chante n’est ce pas? (n’est ce
pas (isn’t it))
The tatoo sings / Does the tatoo sing? The
tatoo sings? The tatoo sings doesn’t it?

b. Vous chantez
Chantez vous? (Inverted Subject)
You sing/Do you sing?

For cases such as (7b), we require the deriva-
tion trees to be identical up to the tree property
mapping CliticSubject↔ InvertedCliticSubject.
For cases such as (7a) on the other hand, we use
the filter sketched in Figure (4c) that is, a filter
which requires that the derivation trees be iden-
tical up to a single additional node licenced by a
question phase (i.e.,t’il, est ce que, n’est ce pasor a
question mark).

4 Evaluation

We carried out an experiment designed to assess
the genericity, the correctness, the coverage and
the recall of the approach. In what follows, we
describe the grammar and lexicon used in that ex-
periment; the sentence set used for testing; and
the results obtained.

Grammar and Lexicons. The SemTAGgram-
mar used contains around 1300 elementary trees
and covers auxiliaries, copula, raising and small
clause constructions, relative clauses, infinitives,
gerunds, passives, adjuncts, wh-clefts, PRO con-
structions, imperatives and 15 distinct subcate-
gorisation frames. The syntactic and morpho-
syntactic lexicons used for generating were tai-
lored to cover basic vocabulary as defined by the
lexicon used inTex’s French Grammar. The syn-
tactic lexicon contains 690 lemmas and the mor-
phological lexicon 5294 forms.

Generated Sentences. To populate the gener-
ation bank, we inputGraDe with 52 semantic
formulae corresponding to various syntactic and
semantic configurations and their interactions4:
including all types of realisations for verb argu-
ments (cleft, pronominalisation, relative, question
arguments); Intransitive, Transitive and ditransi-
tive verbs; Control, raising and embedding verbs;
Nouns, common nouns, personal strong and weak
pronouns; standard and Wh- determiners.

From these 52 semantic formulae,GraDe pro-
duced 5748 sentences which we stored in a
database together with their full semantics and
their derivation tree.

Results. Table 1 summarises the results of our
experiment. It indicates the number of source
sentences manually selected so as to test differ-
ent syntactic configurations for each type of trans-
formation considered (S), the number of transfor-
mations found for these source sentences (T), the
number of tree filters used for each type of trans-
formation (TF) and the precision obtained (ratio
of correct transformations).

The low number of tree filters relative to the
number of syntactic configurations explored in-
dicates a good level of genericity: with few fil-
ters, a transformation can be captured in many
distinct syntactic contexts. For instance, for the
Active/passive transformation, 8 filters suffice to
capture 43 distinct syntactic configurations.

As expected in an approach where the filters
are defined manually, precision is high indicating
that the filters are accurate. The generated pairs
marked as incorrect by the annotator are all cases
where the transformed sentence was ungrammat-
ical; in other words, the filters were accurate.

4We restrict the tense of the verb of the main clause to
present and indicative mode
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S T TF Precision
Active/passive 43 38 8 88.5
Pronominalisation 36 33 7 73
Wh-Questions 25 20 7 88
YN-Questions 24 20 5 90.5

Table 1: Source Sentences (S), Transformations of
Source Sentences (T), Number of Filters (F) and Pre-
cision (Ratio of correct transformations)

Finally, the relatively low number of transfor-
mations found relative to the number of source
sentences (e.g., 38 transforms for 43 source sen-
tences in the Active/passive case) is mainly due to
transformed sentences that are missing from the
generation bank either because the corresponding
input semantics is missing or because of gaps in
the grammar or the lexicon. However, for few
cases missing filters were identified as well.

5 Conclusion

We presented an approach which is, to the best
of our knowledge, the first approach for generat-
ing grammar exercices covering a wide range of
structure changing transformations. And we ar-
gued that FB-LTAG derivation trees naturally sup-
port the identification of sentences that are related
by a syntactic transformation.

In current work, we are pursuing two main di-
rections. First, we are investigating how to ac-
count for more complex transformations such as
Tom ate because of his hungerandHis hunger caused
Tom to eat. In particular, we plan to explore in how
far the approach developed on dependency trees
by (Siddharthan, 2010) can be ported to Sem-
TAG derivation trees. Second, drawing on (Chan-
drasekar and Srinivas, 1997)’s work, we are inves-
tigating how to develop an algorithm that can in-
duce derivation tree filters from FB-LTAG deriva-
tion trees.
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Abstract

Linear Context-Free Rewriting System
(LCFRS) is an extension of Context-Free
Grammar (CFG) in which a non-terminal
can dominate more than a single continu-
ous span of terminals. Probabilistic LCFRS
have recently successfully been used for
the direct data-driven parsing of discontin-
uous structures. In this paper we present a
parser for binary PLCFRS of fan-out two,
together with a novel monotonous estimate
for A∗ parsing, with which we conduct ex-
periments on modified versions of the Ger-
man NeGra treebank and the Discontinuous
Penn Treebank in which all trees have block
degree two. The experiments show that
compared to previous work, our approach
provides an enormous speed-up while de-
livering an output of comparable richness.

1 Introduction

In many constituency treebanks, the syntactic an-
notation takes the form of Context-Free Grammar
(CFG) derivation trees, i.e., of trees with no cross-
ing branches. Discontinuous structures (Huck and
Ojeda, 1987) cannot be modeled with CFG and
are therefore handled by an additional mecha-
nism in such an annotation. In the Penn Tree-
bank (PTB) (Marcus et al., 1993), for instance, a
combination of trace nodes and co-indexation la-
bels is used in order to establish implicit edges.
In other treebanks, e.g., the German NeGra (Skut
et al., 1997) and TIGER (Brants et al., 2002)
treebanks, crossing branches are allowed.1 This
way, all parts of a discontinuous constituent can

1The annotation differences between TIGER and NeGra
are minor and can be neglected for the purpose of this work.

be grouped under a single node. There is no
fundamental difference between both represen-
tations: PTB-style annotation can be converted
into a NeGra/TIGER-style annotation. This has
been done in the Discontinuous Penn Treebank
(DPTB) (Evang and Kallmeyer, 2011).

For data-driven parsing with Probabilistic CFG
(PCFG), the annotation information concerning
discontinuities must be discarded, because it ex-
ceeds the expressivity of CFG. For NeGra, there
exist two methods, namely (i) attaching non-
head daughters of discontinuous constituents to
higher positions in the tree, such that the crossing
branches disappear (the NeGra distribution con-
tains a version of the treebank in which this trans-
formation is readily carried out), or (ii) introduc-
ing an additional non-terminal node for each con-
tinuous part of a discontinuous constituent (Boyd,
2007). As an example, figure 1 shows the annota-
tion of (1) before and after both transformations.

(1) Der
The

CD
CD

wird
will

bald
soon

ein
a

Buch
book

folgen
follow

“Soon, the CD will be followed by a book.”

For PCFG parsing with the PTB, trace nodes
and co-indexation are simply discarded. With ei-
ther of these transformations, discontinuities are
lost and cannot be restored from the parser output.
However, the fact that about 25%, resp. 20% of
all sentences in NeGra, resp. the PTB contain dis-
continuities (Maier and Lichte, 2011; Evang and
Kallmeyer, 2011) shows that this is an undesir-
able situation and that these structures warrant a
proper treatment.

Linear Context-Free Rewriting System
(LCFRS), an extension of CFG, has been estab-
lished as an appropriate candidate for modeling
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Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP*VP*VP*

NK NK

NP

OCOCHD SB

S

OC

Resolved crossing branches, Boyd (2007)

Figure 1: Crossing branches removal for NeGra. Note
that the argument structure is changed as a result of the
removal of the crossing branches.

discontinuities (Maier and Lichte, 2011). In
LCFRS, a single non-terminal can span k ≥ 1
continuous blocks of a string. A CFG is simply
a special case of an LCFRS in which k = 1. k
is called the fan-out of the non-terminal, and a
corresponding constituent is said to have block
degree k. It has been shown that probabilistic
data-driven parsing on the basis of Probabilistic
LCFRS (PLCFRS) is feasible and gives good re-
sults while preserving discontinuity information
(Kallmeyer and Maier, 2010; Maier, 2010; van
Cranenburgh et al., 2011; Evang and Kallmeyer,
2011; van Cranenburgh, 2012; Maier, 2012).

The major problem of PLCFRS parsing is
its high computational complexity. A binarized
PCFG can be parsed in O(n3), parsing a bina-
rized LCFRS takes O(n3k) (Seki et al., 1991),
where k is the fan-out of the grammar (the max-
imal fan-out of any of its non-terminals). The
parsers from the literature allow for an unbounded
k. This leads to parsing times beyond practically
acceptable values for sentences longer than 25 to
30 words.

In this paper, our goal is to show that by re-

stricting the block degree, resp. the fan-out to two,
(i) one can express almost all the information con-
tained in the discontinuous treebank annotation of
NeGra and the DPTB, and (ii) one can obtain a
parser which is faster by an order of magnitude.

We proceed as follows. In section 2, we present
definitions of PLCFRS, as well as of trees and
the notion of block degree. In section 3, we de-
scribe how to bring the trees of both the DPTB
and NeGra to block degree two. Unlike the trans-
formations used for PCFG parsing, our transfor-
mations preserve the discontinuity information in
almost all cases. Section 4 introduces PLCFRS
as a formalism for data-driven parsing. In sec-
tion 5, we present a data-driven parser for binary
PLCFRS of fan-out two which uses an efficient
case-by-case strategy, together with a new outside
estimate for A∗ parsing. Section 6 contains exper-
iments on the transformed NeGra as well as on the
Discontinuous Penn Treebank. We use both the
new parser and rparse, the parser used in our
previous work (Kallmeyer and Maier, 2010). Our
experiments show that given equal conditions, we
achieve an enormous speed-up while obtaining an
output of a comparable richness. Finally, section
7 concludes the article.

2 Definitions

We notate LCFRS with the syntax of Simple
Range Concatenation Grammars (SRCG) (Boul-
lier, 1998), a formalism equivalent to LCFRS.

An LCFRS (Vijay-Shanker et al., 1987) is a
tuple G = (N,T, V, P, S) where a) N is a fi-
nite set of non-terminals with a function dim:
N → N determining the fan-out of each A ∈ N ;
b) T and V are disjoint finite sets of terminals
and variables; c) S ∈ N is the start symbol with
dim(S) = 1; d) P is a finite set of rewriting rules

A(α1, . . . , αdim(A))→ A1(X
(1)
1 , . . . , X

(1)
dim(A1)

)

· · ·Am(X
(m)
1 , . . . , X

(m)
dim(Am))

where A,A1, . . . , Am ∈ N , X(i)
j ∈ V for 1 ≤

i ≤ m, 1 ≤ j ≤ dim(Ai) and αi ∈ (T ∪ V )∗ for
1 ≤ i ≤ dim(A), for a rank m ≥ 0. For all r ∈
P , every variable X occurring in r occurs exactly
once in the left-hand side (LHS) and exactly once
in the right-hand side (RHS). The rank of G is the
maximal rank of any of its rules, its fan-out is the
maximal fan-out of any of its non-terminals. If
G has rank u and fan-out v, then G is an (u, v)-
LCFRS.
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A(ab, cd)→ ε (〈ab, cd〉 in yield of A)
A(aXb, cY d)→ A(X,Y ) (if 〈X,Y 〉 in yield of A,

then also 〈aXb, cY d〉 in
yield of A)

S(XY )→ A(X,Y ) (if 〈X,Y 〉 in yield of A,
then 〈XY 〉 in yield of
S)

L = {anbncndn |n > 0}

Figure 2: Sample LCFRS

A rewriting rule describes how to compute the
yield of the LHS non-terminal from the yields of
the RHS non-terminals. The yield of S is the lan-
guage of the grammar. See figure 2 for a sample
LCFRS.

A probabilistic LCFRS (PLCFRS) is a tuple
〈N,T, V, P, S, p〉 such that 〈N,T, V, P, S〉 is a
LCFRS and p : P → [0..1] a function such that
for all A ∈ N : ΣA(~x)→~Φ∈P p(A(~x)→ ~Φ) = 1.

A tree over a sentence w = w1 · · ·wn, n ≥ 1,
is a labeled ordered directed graph D = (V,E, r)
with V a set of nodes, E : V × V a set of edges
and r ∈ V a single dedicated root node, where
every v ∈ V \ {r} has exactly one incoming
edge and r has no incoming edges. All vl ∈ V
with no outgoing edges are called leaves or ter-
minals, and Vl is the set of all leaves or termi-
nals. The labeling of D is given by a function
Λ : V → N ∪ {1, . . . , n}, where N a set of
non-terminal labels, for all vi ∈ Vl, 1 ≤ i ≤ n,
Λ(vi) = i, and for all v ∈ V \ Vl, Λ(v) ∈ N .
The function π gives the yield of the node; more
precisely, for all v ∈ V , π(v) = {i ∈ Λ(u) |
u ∈ V is a leaf and there is a 〈v, u〉 ∈ E∗}. The
ordering of D is given by the relation ≺ which is
such that for all v1, v2, v1 ≺ v2 iff min(π(v1)) ≤
min(π(v2)).

The yield blocks of v are given by a partition
of π(v) into maximal continuous sequences of in-
tegers. The block degree of v is the number of
blocks of v, its gap degree is its block degree mi-
nus one. A gap of v is a tuple (i, k) such that
i ∈ π(v), k + 1 ∈ π(v) and j /∈ π(v) for
i+ 1 ≤ j ≤ k.

3 Treebanks with Block-Degree Two

3.1 Removing Spurious Gaps
In the DPTB as used by Evang and Kallmeyer
(2011),2 the maximal block degree is three. Mo-

2Thanks to Kilian Evang for providing us with his origi-
nal data.

tivated by the suspicion (Evang, p.c.) that the
cases of block degree three are spurious, i.e.,
caused only by punctuation, we move all punc-
tuation terminals to the least common ancestor of
their resp. left and right non-punctuation termi-
nal neighbors. This is essentially the algorithm
of Levy (2005), pp. 163. It leaves us with only
11 sentences containing nodes with more than one
(non-spurious) gap. For our experiments, we re-
move those sentences; an investigation of their
properties is left for future work.

In the NeGra annotation, punctuation and a
very small number of other elements such as parts
of ungrammatical sentences are not included in
the annotation, i.e., the corresponding nodes are
attached at the root node. They cause a very
high, linguistically meaningless block degree of
40. In order to avoid gaps which contain noth-
ing but those elements, we attach them lower.3

Since aside from (punctuation) terminals, non-
terminals may be concerned, we extend Levy’s
strategy as follows. Let n be a node origi-
nally attached to the root node, furthermore let
nl1 , . . . , nlk , nr1 , . . . , nrm , k,m ≥ 0, be all left,
resp. right siblings of n for which it holds that
both Sl = {min(π(n))} ∪ (

⋃k
i=1 π(nli)) and

Sr = {max (π(n))}∪(
⋃m
j=1 π(nrj )) are continu-

ous sequences of integers. We select as an attach-
ment target the least common ancestor node of the
terminals tl, tr with π(tl) = {(min(Sl)−1)} and
π(tr) = {(max (Sr) + 1)}. If tr or tl do not exist,
we do not move n. This algorithm improves over
the strategy from Maier (2012), pp. 189, in the
sense that the latter does not remove all spurious
gaps. We call the new strategy T1.

3.2 Block Degree Two for NeGra

For NeGra, we introduce a novel series of linguis-
tically motivated transformations which ensures
that all resulting trees have block degree two. The
block degrees of the treebank after each transfor-
mation are listed in table 1.

Verbs There is no consensus about the analysis
of German verb phrases (VPs) and auxiliaries in
particular, cf. Bouma and van Noord (1998) for a
discussion. In the interest of a small block degree
of the trees in NeGra, we change the VP anno-

3This is a necessary preprocessing step for PCFG parsing
as well since those elements are equally unattached in the
version of NeGra with resolved crossing branches.
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Figure 3: Verb transformation on original tree from
fig. 1

tation principles and group auxiliary verbs under
the same VP as the corresponding full verb. We
furthermore insert a VP for all finite verbs and
their dependents except the subject (identified by
the labels in the treebank), since in the original
NeGra annotation, only non-finite verbs project to
a VP. See figure 3 for an example.

The positions of the newly introduced VPs in-
fluences the attachment points for the punctuation
attachment. As the second transformation T2 we
therefore first perform the verb transformation we
just described, followed by T1.

Parentheticals Parenthetical sentences such as
(2) are annotated as embedding the enclosing sen-
tence and therefore lead to an additional gap in the
latter.

(2) . . . ,
. . . ,

so
as

argumentierten
argued

die
the

Richter,
judges,

. . .

. . .
“. . . , the judges argued, . . . ”

We structurally identify them (not lexically) and
attach them as low as necessary such that they do
not create a gap. This is motivated by the anno-
tation of TüBa-D/Z (Telljohann et al., 2012), an-
other German treebank, where parenthetical sen-
tences are left unattached. T3 consists of T2, fol-
lowed by the parenthetical transformation.

Remainder Eventually, T4 consists of T3 fol-
lowed by a transformation inspired by the stan-
dard crossing branches resolution for NeGra. We
re-attach material to higher positions iff it causes
a block degree higher than two. Thereby, we first
consider sentential modifiers, then modifiers in
general and only finally constituents of any sort.
T4 only treats a tiny fraction of all sentences; how-
ever, it does change structures for which a block
degree higher than two can be linguistically jus-
tified, such as di-transitive adjectives and verbs
in particular word order configurations. A more

Blocks Orig. T1 T2 T3 T4

1 7,704 14,927 10,898 10,944 10,944
2 5,275 4,988 9,333 9,361 9,658

3 3,585 679 370 297 -
4 1,917 8 1 - -
5 998 - - - -
≥ 6 1123 - - - -

Table 1: Number of sentences in NeGra with a certain
block degree before and after transformations

careful investigation of T4 is left for future work.

4 PLCFRS for Data-Driven Parsing

LCFRSs can be extracted directly from treebanks
with a direct annotation of discontinuities (Maier
and Søgaard, 2008). The difference between
treebank PLCFRS and PCFG extraction is, intu-
itively, that in PLCFRS variables are used to de-
scribe the blocks which are dominated by a non-
terminal. In other words, an argument boundary
in a production corresponds to a block bound-
ary of the corresponding non-terminal in the tree,
and the fan-out of an extracted rule is equal to
the block degree of the treebank non-terminal
corresponding to the rule’s LHS non-terminal.
Consider again the original tree from figure 1.
From the discontinuous VP Der CD . . . bald
. . . folgen we extract the rule VP(X1, X2, X3)→
NP(X1)ADV (X2)VVINF (X3). The LHS non-
terminal has fan-out three due to the fact that the
VP has block degree three.

When applied to a treebank of block degree
two, the extraction algorithm yields grammars of
fan-out two. In order to obtain a (2, 2)-PLCFRS,
i.e., for rank reduction, we use the optimal bina-
rization algorithm of Kallmeyer (2010), p. 150,
which yields a minimal fan-out, resp. number of
variables per binarized rule. As in PCFG pars-
ing, we use markovization (Kallmeyer and Maier,
2010). We use standard Maximum Likelihood es-
timation. See section 6 for further experimental
details.

5 A CYK Parser for (2, 2)-PLCFRS

5.1 The Parser

Just as Kallmeyer and Maier (2010), we use a
probabilistic CYK parser (Seki et al., 1991). The
general CYK deduction system is shown in figure
4. Its items have the form [A, ~ρ], with A ∈ N and
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Scan:
0 : [A, 〈〈i, i+ 1〉〉] A POS tag of wi+1

Unary:
in : [B, ~ρ]

in+ | log(p)| : [A, ~ρ]
p : A(~ρ)→ B(~ρ) ∈ P

Binary:
inB : [B, ~ρB ], inC : [C, ~ρC ]

inB + inC + | log(p)| : [A, ~ρA]
where p : A( ~ρA) → B( ~ρB)C( ~ρC) is an instantiated
rule.
Goal: [S, 〈〈0, n〉〉]

Figure 4: Weighted CYK deduction system for LCFRS

ID Type G30T E30

1 A(X)→ B(X) 49 235
2 A(X,Y)→ B(X,Y) 1 4
3 A(XY)→ B(X) C(Y) 14,430 11,777
4 A(X,Y)→ B(X) C(Y) 1,644 312
5 A(XYZ)→ B(X,Z) C(Y) 621 205
6 A(X,YZ)→ B(X,Y) C(Z) 100 45
7 A(X,YZ)→ B(X,Z) C(Y) 142 94
8 A(XY,Z)→ B(X,Z) C(Y) 172 10
9 A(XY,Z)→ B(X) C(Y,Z) 582 108
10 A(XY,ZU)→ B(X,Z) C(Y,U) 7 0
11 A(XY,ZU)→ B(X,U) C(Y,Z) 0 0
12 A(X,YZU)→ B(X,Z) C(Y,U) 12 3
13 A(XYZ,U)→ B(X,Z) C(Y,U) 12 2
14 A(XYZU)→ B(X,Z) C(Y,U) 13 6

Figure 5: LCFRS rule types and numbers of occur-
rence in binarized grammars (cf. section 6)

~ρ a vector of ranges characterizing all components
of the span of A. We specify a simpler, special-
ized deduction system which takes advantage of
the fact that due to our maximum fan-out of two,
we can rely on only encountering rules of certain
forms. The second column of figure 5 schemati-
cally displays all 14 different rule types the parser
must handle.

In the specialized deduction system, unary
items now take the form [A, i, j] and binary items
take the form [A, i, j, k, l], where A ∈ N and
i, j, resp. k, l are spans dominated by A with
0 ≤ i < j < k < l ≤ n. The goal item is
[S, 0, n]. We replace the old Unary and Binary
deduction rules in figure 4 with 14 new rules, one
per production type. Figure 6 shows the new scan
rule and the complete rules for type 1, type 6 and
type 10, which should make the basic idea clear.
Note that there is no need to refer to instantiations
anymore. Our case-by-case strategy is similar to
the one employed by Kato et al. (2006).

As in our previous work, we specify the set

Scan:
0 : [A, i, i+ 1]

A POS tag of wi+1

Complete1:
in : [B, i, j]

in+ | log(p)| : [A, i, j]
where p : A(X)→ B(X) ∈ P .

Complete6:
inB : [B, i, j, k, l], inC : [C, l, u]

inB + inC + | log(p)| : [A, i, j, k, u]
where p : A(X,Y Z)→ B(X,Y )C(Z) ∈ P .

Complete10:
inB : [B, i, x, k, y], inC : [C, x, j, y, l]
inB + inC + | log(p)| : [A, i, j, k, l]

where p : A(XY,ZU)→ B(X,Z)C(Y,U) ∈ P

Figure 6: Weighted CYK deduction rules for 2-LCFRS

of parse items using the algorithm of weighted
deductive parsing (WDP) (Nederhof, 2003). In
WDP, one maintains a priority queue of items,
sorted by the resp. Viterbi inside scores. The top-
most item is always processed first. WDP guaran-
tees optimality, i.e., that the best parse is found.

5.2 A Novel Outside Estimate

One can speed up parsing by adding to the Viterbi
inside score of an item an estimate of its Viterbi
outside score, in other words, an estimate of the
cost of completion of the item to a complete
parse. This has proven to be successful for both
PCFG (Klein and Manning, 2003) and PLCFRS
(Kallmeyer and Maier, 2010). As outside esti-
mate, one uses the outside probability of a sum-
mary of the item, i.e., of an equivalence class
of parse items. The difficulty for PLCFRS is to
choose the summary such that optimality is main-
tained through the two estimate properties ad-
missibility and monotonicity (Klein and Manning,
2003).

Here, we present the novel LN estimate, which
is based on a summary that records only the sum
of the span lengths and the length of the entire
sentence. It is the first practically computable es-
timate which allows for maintaining optimality.

The estimate is computed offline up to a cer-
tain maximal sentence length lenmax. We spec-
ify the estimate computation with the deduction
system in figure 7.4 The items have the form
[X, len, slen] with X ∈ N , dim(X) ≤ len ≤
slen . The value in(X, l) for a non-terminal X
and a length l, 0 ≤ l ≤ lenmax is an estimate of

4A simpler deduction system for the estimate computa-
tion for (2, 2)-LCFRS would be possible as well, along the
lines of the simplification of the CYK parser.
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Axiom :
0:[S,len,len]

1≤len≤lenmax

Unary:
w:[X,lX ,slen]

w+| log(p)|:[A,lX ,slen]
where p : X(~α)→ A(~α) ∈ P

Binary-right:
w:[X,lX ,slen]

w+in(A,lX−lB)+| log(p)|:[B,lB ,slen]

Binary-left:
w:[X,lX ,slen]

w+in(B,lX−lA)+| log(p)|:[A,lA,slen]
where, for both rules,

p : X(~α)→ A( ~αA)B( ~αB) ∈ P .

Figure 7: LN estimate (span and sentence length)

POS tags:
0:[A,1]

A a POS tag

Unary:
in:[B,l]

in+| log(p)|:[A,l]
p:A(~α)→B(~α)∈P

Binary:
inB :[B,lB ],inC :[C,lC ]

inB+inC+| log(p)|:[A,lB+lC ]

where either p : A( ~αA)→ B( ~αB)C( ~αC) ∈ P or
p : A( ~αA)→ C( ~αC)B( ~αB) ∈ P .

Figure 8: Inside estimate with total span length

the inside score of an X category with a span of
length l. Its computation is specified in figure 8.

The outside estimate for a sentence length n
and for some predicate C with a span ~ρ =
〈〈l1, r1〉, . . . , 〈ldim(C), rdim(C)〉〉 where len =

Σ
dim(C)
i=1 (ri − li) is then the minimal weight of

[C, len, n].

We will show in the following that the LN esti-
mate maintains optimal search by being both ad-
missible and monotonic. Since the weight of the
outside estimate for an item is always lower or
equal to the actual outside probability, given the
input, the weight of an item in the agenda is al-
ways lower or equal to the log of the actual prod-
uct of inside and outside probability of the con-
stituent represented by the item. Therefore, the
LN estimate is admissible. In order to prove that
the estimate is also monotonic, we look at the
CYK deduction rules when being augmented with
the estimate. Only Unary and Binary are relevant
since Scan does not have antecedent items. The
two rules are now as follows:

Unary:
inB+outB :[B,~ρ]

inB+| log(p)|+outA:[A,~ρ]

where p : A(~α)→ B(~α) ∈ P .

Binary:
inB+outB :[B, ~ρB ],inC+outC :[C, ~ρC ]

inB+inC+| log(p)|+outA:[A, ~ρA]

where p : A( ~ρA)→ B( ~ρB)C( ~ρC) is an instan-
tiated rule. (Here, outA, outB and outC are the
respective outside estimates of [A, ~ρA], [B, ~ρB]
and [C, ~ρC ].)

We have to show that for every rule, if this rule
has an antecedent item with weight w and a con-
sequent item with weight w′, then w ≤ w′.

We start with Unary. To show: inB + outB ≤
inB + | log(p)| + outA. Because of the Unary
rule for computing the outside estimate and be-
cause of the unary production, we obtain that,
given the outside estimate outA of [A, ~ρ], the out-
side estimate outB of the item [B, ~ρ] is at most
outA+ | log(p)|, i.e., outB ≤ | log(p)|+outA. 2

Now we consider the rule Binary. We treat
only the relation between the weight of the C
antecedent item and the consequent. The treat-
ment of the antecedent B is symmetric. To show:
inC + outC ≤ inB + inC + | log(p)| + outA.
Assume that lB is the length of the components
of the B item and n is the sentence length. Then,
because of the Binary-right rule in the computa-
tion of the outside estimate and because of our
instantiated rule p : A( ~ρA) → B( ~ρB)C( ~ρC),
we have that the outside estimate outC of the
C-item is at most outA + in(B, lB) + | log(p)|.
Furthermore, in(B, lB) ≤ inB . Consequently
outC ≤ inB + | log(p)|+ outA. 2

6 Experiments

We have implemented the parser within the API
of rparse in order to provide equal conditions.
The new parser will be made available under
GNU GPL.5 For all experiments, we have used
the newest Oracle Java 7, running on Debian
Linux on a series of Intel Xeon X5690 nodes at
3.46GHz.

6.1 Data and Experimental Setup

We perform experiments with both the English
DPTB and the German NeGra. The names of the
data sets will have the prefixes E (for the DPTB)

5See http://www.phil.hhu.de/rparse for
more information.
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and G (for NeGra). We create two versions of Ne-
Gra in which we limit the sentence lengths to 30
and 40 words respectively and investigate the tree-
bank after T4 (data set name suffix T) (only for 30
words) and after T1 (data set name suffix O) (for
30 and 40 words). The names of the data sets are
consequently: G30O (for the 30-word data set af-
ter T1) and G30T, resp. G40T (for the 30- and 40-
word data sets after T4). As for the DPTB, we cre-
ate one data set E30 with a sentence length limit
of 30. In E30, we reattach punctuation tokens as
described in section 3.1. For training, resp. test-
ing we use the first 90%, resp. the last 10% of
each data set. The parser is provided with gold
POS tags.

We extract PLCFRSs from our data sets as
described before and binarize them using the
optimal binarization algorithm from Kallmeyer
(2010). For E30 we cannot resort to determinis-
tic left-to-right binarization as done by Evang and
Kallmeyer, since it results in a binarized gram-
mar of fan-out three. Note that in general, given
an unbinarized LCFRS production with a fan-out
of two, finding a binarization which does not in-
crease the fan-out cannot be guaranteed if its RHS
has a length > 3 (Gómez-Rodrı́guez et al., 2010;
Rambow and Satta, 1999). However, with the
optimal algorithm, we have not observed an in-
creased fan-out in practice, neither for NeGra,
nor for the DPTB. Figure 5 shows the occurrence
counts of the 14 different production types in the
binarized grammars of G30T and E30. For the
choice of the remaining parsing parameters, we
exploit the results of Maier (2012): We do not use
unary rules during binarization and markovize the
binarized grammars with v = 1, h = 2.

6.2 Parsing Speed

We first investigate the speed of the new parser on
both NeGra and the DPTB.

NeGra The upper graph in figure 9 shows the
average parsing times of both parsers on G40T.
The speed-up provided by the case-by-case strat-
egy of the new parser is enormous. The average
parsing time for a sentence of length 40 (a com-
mon upper length limit in PCFG parsing litera-
ture, see, e.g., Klein and Manning (2003)) drops
from several hours with rparse to slightly under
3 minutes with the new parser. Note that the pars-
ing complexity is not changed. The speed gain
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Figure 9: Average parsing times and items for G40T
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Figure 10: Average parsing times and items for E30
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Precision Recall F1

G30O 74.6 74.5 74.5
G30T 71.8 71.7 71.8

G30O-S 73.6 73.8 73.7
G30T-V 73.5 73.6 73.5

Table 2: Parsing results for NeGra

can be attributed to the fact that it is much cheaper
to perform the simple integer comparisons of the
specialized Complete rules (fig. 6) than to pro-
vide a comparison operation for range vectors of
an arbitrary length (Maier, 2012, p. 176). This
becomes more clear when regarding the pseudo-
code formulation of the similar case-by-case strat-
egy of Kato et al. (2006).

As for the LN estimate, we can observe that it
effectively reduces the number of items which are
produced (cf. the lower graph in fig. 9). However,
it has less effect than the estimates presented in
previous work (Kallmeyer and Maier, 2010). This
indicates that the context summary consisting of
the sum of the span lengths and the total sentence
length provides too few information. For (2, 2)-
LCFRS, unlike for full LCFRS, the full SX esti-
mate from Kallmeyer and Maier should be com-
putable and should deliver better results. We post-
pone this to future work.

DPTB The upper graph in figure 10 shows the
average parsing times for both parsers on E30. We
can see that the speed gain with the new parser
is similar to the one we obtain on NeGra. The
behavior of the LN estimate is also similar to its
behavior in the NeGra experiments (cf. the lower
graph in fig. 10).

6.3 Output Quality

For the qualitative evaluation of the parser output,
we use the extended evalbmeasure for PLCFRS
(Maier, 2010). We report labeled precision, recall
and F1.

NeGra In order to investigate how the trans-
formed treebank behaves compared to the unmod-
ified treebank, we run rparse on G30O and the
new parser on G30T. Intuitively, one might ex-
pect that the less flat annotation of the transformed
treebank leads to better results (Rehbein and van
Genabith, 2007), however, as can be seen in table
2, the results on G30T are worse. We can identify

two major reasons for this: The status of subjects
and different types of verb phrases.

Subjects can be identified structurally in the
transformed treebank, because they are attached
below S while other arguments are part of the
newly introduced VPs. In the original treebank,
when disregarding grammatical functions (such
as we do), subject NPs are indistinguishable from
other NPs. In other words, with the transformed
treebank, the parser must cope with the addi-
tional tasks of identifying subjects. We therefore
produce a minimally modified version of G30O,
G30O-S, in which subjects can be identified by
node labels. In the original annotation, the edge
label SB designates subjects. We rename all NPs
with an SB edge to NP-SB. Subjects which con-
sists only of a single word are attached directly to
the sentence in the original annotation, we project
them to a new single NP-SB node instead. The
results get about 0.8 points worse (cf. tab. 2), re-
flecting the difficulty of the task.

Verb phrases also have a different status in the
transformed treebank. While per definition in the
original annotation, the VP label only designates
non-finite VPs, in the transformed treebank, we
have both finite and non-finite VPs. We therefore
produce a modified version of G30T, G30T-V, in
which we change the label of a VP to VPFIN if
it has a finite lexical head. Similar linguistically
motivated splits have successfully been used be-
fore (Maier, 2010). It turns out that the results
for G30T-V and G30O-S lie very close together
(again cf. tab. 2).

DPTB For the sake of completeness we report
the results for the DPTB as well. On E30, we
obtain LP 76.15, LR 70.94, and therefore a LF1

of 73.45. Our parameter settings have not been
tried before on the DPTB (Evang, 2011; Evang
and Kallmeyer, 2011), therefore there are no pre-
vious result to compare to.

7 Conclusion

The goal of this paper on data-driven PLCFRS
parsing was to show that by restricting the block
degree of trees used for grammar extraction,
resp. the fan-out of the resulting grammars to two,
(i) one can express almost all the information con-
tained in the discontinuous treebank annotation of
NeGra and the DPTB, and (ii) one obtains a parser
which is much faster than a parser for general
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LCFRS on the same data. The first contribution of
this paper is a series of treebank transformations
for NeGra and the DPTB which produces trees of
a block degree of at most two. Unlike transforma-
tions for PCFG parsing, our transformations al-
most completely preserve the annotation informa-
tion on discontinuities. The second contribution is
an efficient data-driven parser for (2, 2)-PLCFRS,
to be extracted from the converted treebanks. The
evaluation of experiments with this parser on both
NeGra and the Penn Treebank shows that an enor-
mous speed-up has been achieved in comparison
to earlier PLCFRS parsers, all while obtaining an
output of comparable richness.
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Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Mark-Jan Nederhof. 2003. Weighted deductive pars-
ing and Knuth’s algorithm. Computational Linguis-
tics, 29(1):1–9.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting sys-
tems. Theoretical Computer Science, 223(1-2):87–
120.

Ines Rehbein and Josef van Genabith. 2007. Eval-
uating evaluation measures. In Proceedings of
NODALIDA-2007.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On Multiple Context-
Free Grammars. Theoretical Computer Science,
88(2):191–229.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme
for free word order languages. In Proceedings of
ANLP, pages 88–95.

Heike Telljohann, Erhard W. Hinrichs, Sandra Kübler,
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Abstract

We review a number of different ‘algebraic’
perspectives on TAG and STAG in the frame-
work of interpreted regular tree grammars
(IRTGs). We then use this framework to derive
a new parsing algorithm for TAGs, based on
two algebras that describe strings and derived
trees. Our algorithm is extremely modular, and
can easily be adapted to the synchronous case.

1 Introduction

Much of the early and recent literature on tree-ad-
joining grammars (TAG) is concerned with work-
ing out the formal relationships between TAG and
other grammar formalisms. A common approach in
this line of research has been to conceive the way in
which TAG generates a string or a derived tree from
a grammar as a two-step process: first a derivation
tree is generated, then this derivation tree is mapped
into a term over some algebra and evaluated there.
Under this view, one can take different perspectives
on how the labour of generating a string or derived
tree should be divided between the mapping process
and the algebra. In a way that we will make pre-
cise, linear context-free rewriting systems (LCFRSs,
Weir (1988)) push much of the work into the algebra;
Shieber (2006)’s analysis of synchronous TAG as bi-
morphisms puts the burden mostly on the mapping
procedure; and a line of research using context-free
tree languages (CFTLs), of which Maletti (2010) is a
recent representative, strikes a balance between the
other two approaches.

This research has done much to clarify the formal
connections between TAG and other formalisms in

terms of generative capacity. It has not been par-
ticularly productive with respect to finding new al-
gorithms for parsing, training, and (in the synchron-
ous case) decoding. This is regrettable because stand-
ard parsing algorithms for TAG (Vijay-Shanker and
Joshi, 1985; Shieber et al., 1995) are complicated,
require relatively involved correctness proofs, and
are hard to teach. A similar criticism applies to pars-
ing algorithms for LCFRSs (Burden and Ljunglöf,
2005). So far, no new parsing algorithms have arisen
from Shieber’s work on bimorphisms, or from the
CFTL-based view. Indeed, Maletti (2010) leaves the
development of such algorithms as an open problem.

This paper makes two contributions. First, we
show how a number of the formal perspectives on
TAG mentioned above can be recast in a uniform
way as interpreted regular tree grammars (IRTGs,
Koller and Kuhlmann (2011)). IRTGs capture the
fundamental idea of generating strings, derived trees,
or other objects from a regular tree language, and
allow us to make the intuitive differences in how dif-
ferent perspectives divide the labour over the various
modules formally precise.

Second, we introduce two new algebras. One cap-
tures TAG string languages; the other describes TAG
derived tree languages. We show that both of these
algebras are regularly decomposable, which means
that the very modular algorithms that are available
for parsing, training, and decoding of IRTGs can be
applied to TAG. As an immediate consequence we
obtain algorithms for these problems (for both TAG
and STAG) that consist of small modules, each of
which is simpler to understand, prove correct, and
teach than a monolithic parser. As long as the gram-
mar is binary, this comes at no cost in asymptotic
parsing complexity.
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The paper is structured as follows. In Section 2,
we introduce some formal foundations and review
IRTGs. In Section 3, we recast three existing per-
spectives on TAG as IRTGs. In Sections 4 and 5, we
present algebras for derived trees and strings in TAG;
we apply them to parsing in Section 6. Section 7
concludes and discusses future work.

2 Interpreted Regular Tree Grammars

We start by introducing some basic concepts.

2.1 Foundations
A signature is a finite set ˙ of function symbols f ,
each of which has been assigned a non-negative in-
teger called its rank. We write f jn to indicate that f
has rank n. For the following, let ˙ be a signature.

A tree over ˙ takes the form t D f .t1; : : : ; tn/,
where f jn 2 ˙ and t1; : : : ; tn are trees over ˙ . We
write T˙ for the set of all trees over ˙ . The nodes
of a tree can be identified by paths � 2 N� from the
root: The root has the address ", and the i th child of
the node with the address � has the address �i . We
write t .�/ for the symbol at path � in the tree t , and
t # � for the subtree of t at � .

A context over ˙ is a tree C 2 T˙[f�g which
contains a single leaf labeled with the hole �. C Œt�
is the tree in T˙ which is obtained by replacing the
hole in C by some tree t 2 T˙ . We write C˙ for the
set of all contexts over ˙ .

A ˙-algebra A consists of a non-empty set A
called the domain and, for each function sym-
bol f jn 2 ˙ , a total function f A W An ! A, the
operation associated with f . Symbols of arity 0 are
also called constants. The trees in T˙ are called the
terms of this algebra. We can evaluate a term t 2 T˙
to an object JtKA 2 A by executing the operations:

Jf .t1; : : : ; tn/KA D f
A.Jt1KA; : : : ; JtnKA/ :

One algebra that we will use throughout the paper
is the string algebra A� over some alphabet A. Its
elements are the strings over A; it has one binary
operation “�”, which concatenates its two arguments,
and one constant for each symbol in A which evalu-
ates to itself. Another important algebra is the term
algebra T˙ over some ranked signature ˙ . The do-
main of the term algebra is T˙ , and for each symbol
f jn 2 ˙ , we have f T˙ .t1; : : : ; tn/ D f .t1; : : : ; tn/,
i.e. every term evaluates to itself.

If some function f A is partial, then A is a partial
algebra; in this case there may be terms that do not
have a value.

A (tree) homomorphism is a total function
hW T˙ ! T� that expands symbols of ˙ into trees
over � while following the structure of the input
tree. Formally, h is specified by pairs .f; h.f //,
where f 2 ˙ is a symbol with some rank n, and
h.f / 2 T�[fx1;:::;xng is a term with variables. The
value of a term t D f .t1; : : : ; tn/ 2 T˙ under h is

h.f .t1; : : : ; tn// D h.f /Œh.t1/=x1; : : : ; h.tn/=xn� :

2.2 Regular Tree Languages
Sets of trees can be specified by regular tree gram-
mars (RTGs) (Gécseg and Steinby, 1997; Comon
et al., 2008). Formally, an RTG is a construct
G D .N;˙;P; S/ where N and ˙ are signatures
of nonterminal and terminal symbols, S 2 N is a
start symbol, and P is a finite set of production rules
of the form A ! t , where A 2 N and t 2 TN[˙ .
Every nonterminal has rank 0. The language gener-
ated by G is the set L.G / � T˙ of all trees with only
terminal symbols that can be obtained by repeatedly
applying the production rules, starting from S .

The class of languages that can be generated by
regular tree grammars are called regular tree lan-
guages (RTLs). They share many of the closure prop-
erties that are familiar from regular string languages.
In particular, if L1 and L2 are regular and h is a
homomorphism, then L1 \ L2 and h�1.L/ are also
regular. If h is linear, then h.L1/ is regular as well.

2.3 Interpreted RTGs
Koller and Kuhlmann (2011) extend RTGs to inter-
preted regular tree grammars (IRTGs), which specify
relations between arbitrary algebras. In this paper,
we will focus on relations between strings and (de-
rived) trees, but IRTGs can be used also to describe
languages of and relations between other kinds of
algebras.

Formally, an IRTG G is a tuple .G ; I1; : : : ; Ik/
consisting of an RTG G and k � 1 interpretations
I1; : : : ; Ik . Each interpretation Ii is a pair .hi ;Ai /

of an algebra Ai and a tree homomorphism hi that
maps the trees generated by G to terms over Ai (see
Fig. 1). The language L.G/ is then defined as

L.G/ D f.Jh1.t/KA1 ; : : : ; Jhk.t/KAk / j t 2 L.G /g :
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Figure 1: Our unified perspective on grammar formalisms: (a) ordinary grammar formalisms; (b) synchronous for-
malisms; (c) multiple “inputs” and “outputs”.

result of this can be (non-standardly) recorded as a
derivation tree, whose nodes are labeled by names
of production rules, and in which a rule application
a1 is the child of another a2 if a1 introduced a non-
terminal occurrence that was expanded by a2. In a
second step, we can transform this derivation tree
into a string by interpreting each rule application as
a string-concatenation operation.

While this picture seems complicated for context-
free grammars by themselves, the separation into
two different generative processes (first a derivation
tree, then the string from the derivation tree) is appli-
cable much more widely and, we argue, widely use-
ful. The general picture looks as follows. Consider
a regular tree grammar G over a signature Σ, an al-
gebra A with signature ∆, and a homomorphism h :
TΣ → T∆. If we apply h to any tree t ∈ L(G), we
obtain a term over A, which we can interpret as an
element of A. By collecting all such terms, we ob-
tain a language LA(G, h) = {�h(t)�A | t ∈ L(G)}
of elements of A. This perspective is illustrated in
Fig. 1a.

We can define an obvious membership problem:
Given some element a ∈ A, is a ∈ LA(G, h)? We
can also define a parsing problem: For every ele-
ment a ∈ LA(G, h), compute (some compact repre-
sentation of)

parsesA,G,h(a) = {t ∈ L(G) | �h(t)�A = a}.

We call the trees over Σ derivation trees, and the
trees in parses(a) the derivation trees of a.

In the case of context-free grammars, it is known
that the language of derivation trees is a regular tree
language (Comon et al., 2007). It is defined by an
RTG G over the signature of production rule names
of the context-free grammar G. For every produc-
tion rule r of the form A → ω1A1 . . . Anωn+1

(where A and all Ai are nonterminals, and the ωi are

S → NP VP
VP → V NP
NP → John
NP → Mary

V → loves

r1

r3 r2

r5 r4

Figure 2: A context-free grammar and one of its deriva-
tion trees.

possibly empty strings of terminals), G contains a
rule A → r(A1, . . . , An). We interpret such deriva-
tion trees into strings in the string algebra As over
some terminal alphabet T ; the elements of this alge-
bra are the strings in T ∗, and we have constants for
the elements of T and a binary string concatenation
operation ·. As a last step, we use a homorphism h to
map each rule into a term over As: for the above rule
r, we have h(r) = ω1 · x1 · . . . · xn · ωn+1. It can be
shown that under this construction, LAs(G, h) is ex-
actly L(G), the string language of the original gram-
mar.

For illustration, consider the context-free gram-
mar in Fig. 2a, and let’s say we want to parse the
sentence “John loves Mary”. The RTG for the gram-
mar contains rules such as S → r1(NP, V P );
it generates the derivation tree shown in Fig. 2b.
This tree can now be interpreted using a homomor-
phism h with h(r1) = x1 · x2, h(r3) = John,
etc. h maps the derivation tree in Fig. 2b to the
term (John · loves) · Mary over As, which eval-
uates to the string “John loves Mary”. This means
that it is a derivation tree of that string. In fact,
parses(“John loves Mary”) is the set that contains
only this derivation tree.

string transducer); these differences simply amount
to the appropriate selection of algebras and homo-
morphisms.

Plan of the paper. The paper is structured as fol-
lows. We will start by laying the formal foundations
in Section 2. We will then show how to combine bi-
morphisms with algebraic interpretations and illus-
trate the approach on several grammar formalisms in
Section 3. We will define generic algorithms in Sec-
tion 4. Section 7 discusses related work, and Sec-
tion 8 concludes.

2 Formal foundations

A signature is a finite set Σ of function symbols f ,
each of which has been assigned a non-negative in-
teger called its rank. Given a signature Σ, we can
define a (finite constructor) tree over Σ as a finite
tree whose nodes are labeled with symbols from Σ
such that a node with a label of rank n has exactly n
children. We write TΣ for the set of all trees over Σ.
Trees can be written as terms; f(t1, . . . , tn) stands
for the tree with root label f and subtrees t1, . . . , tn.
The nodes of a tree can be identified by the paths
π ∈ N∗ from the root to the node: The root has ad-
dress �, and the i-th child of the node below path π
has the address πi. We write t(π) for the symbol at
path π in the tree t.

A Σ-algebra A consists of a non-empty set A
called the domain and, for each symbol f ∈ Σ with
rank m, a total function fA : Am → A, called the
operation associated with f . We can evaluate a term
t ∈ TΣ to an object �t�A ∈ A by executing the op-
erations:

�σ(t1, . . . , tm)�A = fA
σ (�t1�A, . . . , �tm�A) .

Sets of trees can be specified by regular tree
grammars (Gécseg and Steinby, 1997; Comon et
al., 2007). Formally, such a grammar is a structure
G = (N,Σ, P, S), where N is a signature of nonter-
minal symbols, all of which are taken to have rank 0,
Σ is a signature of terminal symbols, S ∈ N is a
distinguished start symbol, and P is a finite set of
productions of the form B → t, where B is a non-
terminal symbol, and t ∈ TN∪Σ. The productions
of a regular tree grammar are used as rewriting rules
on terms. More specifically, the derivation relation
of G is defined as follows. Let t1, t2 ∈ TN∪Σ be

terms. Then G derives t2 from t1 in one step, de-
noted by t1 ⇒G t2, if there exists a production of
the form B → t and t2 can be obtained by replacing
an occurrence of B in t1 by t. The language L(G)
generated by G is the set of all terms t ∈ TΣ that can
be derived, in zero or more steps, from the term S.

A (tree) homomorphism is a function h : TΣ →
T∆ which expands symbols of Σ into (possibly mul-
tiple) symbols of ∆ while following the structure
of the input tree. Formally, h is defined by a term
h(f) ∈ T∆∪{x1,...,xn} for each f ∈ Σ, where n is
the rank of f and the xi are variable symbols of rank
0. Given a term t ∈ TΣ, h(t) is defined recursively
by

h(f(t1, . . . , tn)) = h(f){h(t1)/x1, . . . , h(tn)/xn},

where {t�1/x1, . . . , t
�
n/xn} represents a substitution

that replaces all occurrences of xi with the respec-
tive t�i. A homomorphism is called linear if every
term h(f) contains each variable at most once.

Finally, a tree transducer is a device M for de-
scribing binary relations between trees; the first tree
in each pair is usually seen as the input and the sec-
ond as the output. They generalize string transduc-
ers to the tree case and are defined in more detail in
(Comon et al., 2007). A useful way of thinking of
a tree transducer is in terms of bimorphisms. A bi-
morphism is a triple B = (h1,G, h2) of an RTG G
and two homomorphisms h1, h2; it represents the bi-
nary relation {(h1(t), h2(t)) | t ∈ L(G)}. vielleicht
brauchen wir das hier gar nicht

3 Grammar formalisms based on tree
automata

We will now present a unified framework of
synchronous and non-synchronous grammar for-
malisms in terms of regular tree languages, tree ho-
momorphisms, and algebras. We will illustrate the
framework using ordinary context-free grammars
and synchronous tree-substitution grammars, but the
framework is much more general than this, and we
will hint at this at the end of the section.

3.1 Ordinary grammars
The process of generating a string from a context-
free grammar G can be seen as a two-step process.
In a first step, we generate a derivation of G by ex-
panding nonterminals using production rules. The

h

Figure 1: Our unified perspective on grammar formalisms: (a) ordinary grammar formalisms; (b) synchronous for-
malisms; (c) multiple “inputs” and “outputs”.

result of this can be (non-standardly) recorded as a
derivation tree, whose nodes are labeled by names
of production rules, and in which a rule application
a1 is the child of another a2 if a1 introduced a non-
terminal occurrence that was expanded by a2. In a
second step, we can transform this derivation tree
into a string by interpreting each rule application as
a string-concatenation operation.

While this picture seems complicated for context-
free grammars by themselves, the separation into
two different generative processes (first a derivation
tree, then the string from the derivation tree) is appli-
cable much more widely and, we argue, widely use-
ful. The general picture looks as follows. Consider
a regular tree grammar G over a signature Σ, an al-
gebra A with signature ∆, and a homomorphism h :
TΣ → T∆. If we apply h to any tree t ∈ L(G), we
obtain a term over A, which we can interpret as an
element of A. By collecting all such terms, we ob-
tain a language LA(G, h) = {�h(t)�A | t ∈ L(G)}
of elements of A. This perspective is illustrated in
Fig. 1a.

We can define an obvious membership problem:
Given some element a ∈ A, is a ∈ LA(G, h)? We
can also define a parsing problem: For every ele-
ment a ∈ LA(G, h), compute (some compact repre-
sentation of)

parsesA,G,h(a) = {t ∈ L(G) | �h(t)�A = a}.

We call the trees over Σ derivation trees, and the
trees in parses(a) the derivation trees of a.

In the case of context-free grammars, it is known
that the language of derivation trees is a regular tree
language (Comon et al., 2007). It is defined by an
RTG G over the signature of production rule names
of the context-free grammar G. For every produc-
tion rule r of the form A → ω1A1 . . . Anωn+1

(where A and all Ai are nonterminals, and the ωi are
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Figure 2: A context-free grammar and one of its deriva-
tion trees.

possibly empty strings of terminals), G contains a
rule A → r(A1, . . . , An). We interpret such deriva-
tion trees into strings in the string algebra As over
some terminal alphabet T ; the elements of this alge-
bra are the strings in T ∗, and we have constants for
the elements of T and a binary string concatenation
operation ·. As a last step, we use a homorphism h to
map each rule into a term over As: for the above rule
r, we have h(r) = ω1 · x1 · . . . · xn · ωn+1. It can be
shown that under this construction, LAs(G, h) is ex-
actly L(G), the string language of the original gram-
mar.

For illustration, consider the context-free gram-
mar in Fig. 2a, and let’s say we want to parse the
sentence “John loves Mary”. The RTG for the gram-
mar contains rules such as S → r1(NP, V P );
it generates the derivation tree shown in Fig. 2b.
This tree can now be interpreted using a homomor-
phism h with h(r1) = x1 · x2, h(r3) = John,
etc. h maps the derivation tree in Fig. 2b to the
term (John · loves) · Mary over As, which eval-
uates to the string “John loves Mary”. This means
that it is a derivation tree of that string. In fact,
parses(“John loves Mary”) is the set that contains
only this derivation tree.
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morphisms.
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in Section 2. We will then show how to combine bi-
morphisms with algebraic interpretations and illus-
trate the approach on several grammar formalisms in
Section 3. We will define generic algorithms in Sec-
tion 4. Section 7 discusses related work, and Sec-
tion 8 concludes.

2 Formal foundations

A signature is a finite set Σ of function symbols f ,
each of which has been assigned a non-negative in-
teger called its rank. Given a signature Σ, we can
define a (finite constructor) tree over Σ as a finite
tree whose nodes are labeled with symbols from Σ
such that a node with a label of rank n has exactly n
children. We write TΣ for the set of all trees over Σ.
Trees can be written as terms; f(t1, . . . , tn) stands
for the tree with root label f and subtrees t1, . . . , tn.
The nodes of a tree can be identified by the paths
π ∈ N∗ from the root to the node: The root has ad-
dress �, and the i-th child of the node below path π
has the address πi. We write t(π) for the symbol at
path π in the tree t.

A Σ-algebra A consists of a non-empty set A
called the domain and, for each symbol f ∈ Σ with
rank m, a total function fA : Am → A, called the
operation associated with f . We can evaluate a term
t ∈ TΣ to an object �t�A ∈ A by executing the op-
erations:

�σ(t1, . . . , tm)�A = fA
σ (�t1�A, . . . , �tm�A) .

Sets of trees can be specified by regular tree
grammars (Gécseg and Steinby, 1997; Comon et
al., 2007). Formally, such a grammar is a structure
G = (N,Σ, P, S), where N is a signature of nonter-
minal symbols, all of which are taken to have rank 0,
Σ is a signature of terminal symbols, S ∈ N is a
distinguished start symbol, and P is a finite set of
productions of the form B → t, where B is a non-
terminal symbol, and t ∈ TN∪Σ. The productions
of a regular tree grammar are used as rewriting rules
on terms. More specifically, the derivation relation
of G is defined as follows. Let t1, t2 ∈ TN∪Σ be

terms. Then G derives t2 from t1 in one step, de-
noted by t1 ⇒G t2, if there exists a production of
the form B → t and t2 can be obtained by replacing
an occurrence of B in t1 by t. The language L(G)
generated by G is the set of all terms t ∈ TΣ that can
be derived, in zero or more steps, from the term S.

A (tree) homomorphism is a function h : TΣ →
T∆ which expands symbols of Σ into (possibly mul-
tiple) symbols of ∆ while following the structure
of the input tree. Formally, h is defined by a term
h(f) ∈ T∆∪{x1,...,xn} for each f ∈ Σ, where n is
the rank of f and the xi are variable symbols of rank
0. Given a term t ∈ TΣ, h(t) is defined recursively
by

h(f(t1, . . . , tn)) = h(f){h(t1)/x1, . . . , h(tn)/xn},

where {t�1/x1, . . . , t
�
n/xn} represents a substitution

that replaces all occurrences of xi with the respec-
tive t�i. A homomorphism is called linear if every
term h(f) contains each variable at most once.

Finally, a tree transducer is a device M for de-
scribing binary relations between trees; the first tree
in each pair is usually seen as the input and the sec-
ond as the output. They generalize string transduc-
ers to the tree case and are defined in more detail in
(Comon et al., 2007). A useful way of thinking of
a tree transducer is in terms of bimorphisms. A bi-
morphism is a triple B = (h1,G, h2) of an RTG G
and two homomorphisms h1, h2; it represents the bi-
nary relation {(h1(t), h2(t)) | t ∈ L(G)}. vielleicht
brauchen wir das hier gar nicht

3 Grammar formalisms based on tree
automata

We will now present a unified framework of
synchronous and non-synchronous grammar for-
malisms in terms of regular tree languages, tree ho-
momorphisms, and algebras. We will illustrate the
framework using ordinary context-free grammars
and synchronous tree-substitution grammars, but the
framework is much more general than this, and we
will hint at this at the end of the section.

3.1 Ordinary grammars
The process of generating a string from a context-
free grammar G can be seen as a two-step process.
In a first step, we generate a derivation of G by ex-
panding nonterminals using production rules. The
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Figure 1: Our unified perspective on grammar formalisms: (a) ordinary grammar formalisms; (b) synchronous for-
malisms; (c) multiple “inputs” and “outputs”.
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derivation tree, whose nodes are labeled by names
of production rules, and in which a rule application
a1 is the child of another a2 if a1 introduced a non-
terminal occurrence that was expanded by a2. In a
second step, we can transform this derivation tree
into a string by interpreting each rule application as
a string-concatenation operation.

While this picture seems complicated for context-
free grammars by themselves, the separation into
two different generative processes (first a derivation
tree, then the string from the derivation tree) is appli-
cable much more widely and, we argue, widely use-
ful. The general picture looks as follows. Consider
a regular tree grammar G over a signature Σ, an al-
gebra A with signature ∆, and a homomorphism h :
TΣ → T∆. If we apply h to any tree t ∈ L(G), we
obtain a term over A, which we can interpret as an
element of A. By collecting all such terms, we ob-
tain a language LA(G, h) = {�h(t)�A | t ∈ L(G)}
of elements of A. This perspective is illustrated in
Fig. 1a.

We can define an obvious membership problem:
Given some element a ∈ A, is a ∈ LA(G, h)? We
can also define a parsing problem: For every ele-
ment a ∈ LA(G, h), compute (some compact repre-
sentation of)

parsesA,G,h(a) = {t ∈ L(G) | �h(t)�A = a}.

We call the trees over Σ derivation trees, and the
trees in parses(a) the derivation trees of a.

In the case of context-free grammars, it is known
that the language of derivation trees is a regular tree
language (Comon et al., 2007). It is defined by an
RTG G over the signature of production rule names
of the context-free grammar G. For every produc-
tion rule r of the form A → ω1A1 . . . Anωn+1

(where A and all Ai are nonterminals, and the ωi are
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Figure 2: A context-free grammar and one of its deriva-
tion trees.

possibly empty strings of terminals), G contains a
rule A → r(A1, . . . , An). We interpret such deriva-
tion trees into strings in the string algebra As over
some terminal alphabet T ; the elements of this alge-
bra are the strings in T ∗, and we have constants for
the elements of T and a binary string concatenation
operation ·. As a last step, we use a homorphism h to
map each rule into a term over As: for the above rule
r, we have h(r) = ω1 · x1 · . . . · xn · ωn+1. It can be
shown that under this construction, LAs(G, h) is ex-
actly L(G), the string language of the original gram-
mar.

For illustration, consider the context-free gram-
mar in Fig. 2a, and let’s say we want to parse the
sentence “John loves Mary”. The RTG for the gram-
mar contains rules such as S → r1(NP, V P );
it generates the derivation tree shown in Fig. 2b.
This tree can now be interpreted using a homomor-
phism h with h(r1) = x1 · x2, h(r3) = John,
etc. h maps the derivation tree in Fig. 2b to the
term (John · loves) · Mary over As, which eval-
uates to the string “John loves Mary”. This means
that it is a derivation tree of that string. In fact,
parses(“John loves Mary”) is the set that contains
only this derivation tree.
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Finally, a tree transducer is a device M for de-
scribing binary relations between trees; the first tree
in each pair is usually seen as the input and the sec-
ond as the output. They generalize string transduc-
ers to the tree case and are defined in more detail in
(Comon et al., 2007). A useful way of thinking of
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We will now present a unified framework of
synchronous and non-synchronous grammar for-
malisms in terms of regular tree languages, tree ho-
momorphisms, and algebras. We will illustrate the
framework using ordinary context-free grammars
and synchronous tree-substitution grammars, but the
framework is much more general than this, and we
will hint at this at the end of the section.

3.1 Ordinary grammars
The process of generating a string from a context-
free grammar G can be seen as a two-step process.
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Figure 1: Schematic view of some IRTGs. (a) Monolingual grammar, k D 1, L.G/ � A; (b) synchronous grammar,
k D 2, L.G/ � A � A0; (c) generalized synchronous grammar with n “input” and m “output” interpretations,
k D mC n, L.G/ � A1 � : : : �An �A01 � : : :A

0
m.

The trees in L.G / correspond to derivation trees in
TAG; the elements of L.G/ are the objects described
by the grammar. For instance, all context-free string
languages can be described using k D 1 and the
string algebra mentioned above (see Fig. 1a). String
relations defined by synchronous CFGs or STSGs are
exactly those described by IRTGs with k D 2 and
two such algebras (Fig. 1b).

When parsing IRTGs, we are given input objects
on a number of interpretations, and look for those
derivation trees t 2 L.G / that are consistent with
these input objects. Consider the case where we
have an input object a 2 A1 for a single interpreta-
tion; we are looking for the trees t 2 L.G / such that
Jh1.t/KA1 D a. Many important algebras (including
the string and term algebras) are regularly decompos-
able: for each a 2 A1, there is an RTG D.a/ – the
decomposition grammar of a – such that L.D.a//
is the set of all terms over A1 that evaluate to a.
Then the set of parses is L.G /\ h�11 .L.D.a///. Us-
ing the closure properties of RTLs, this can be com-
puted with a variety of generic algorithms, including
bottom-up and top-down algorithms for intersection.

Under the IRTG perspective, the distinction
between “monolingual” and synchronous grammars
boils down to the choice of k D 1 (Fig. 1a) vs. k > 1
(Fig. 1b,c). The parsing algorithm generalizes eas-
ily to the synchronous case, and supports both the
synchronous parsing of multiple input interpretations
and the decoding into multiple output interpretations.
See Koller and Kuhlmann (2011) for details.

3 Perspectives on TAG

There is an extensive literature on relating TAG
to other grammar formalisms. In this section, we
provide a uniform view on some of the most import-
ant such analyses by recasting them as IRTGs.

Derivation Trees. The fundamental insight that en-
ables us to convert TAGs into IRTGs is that the set
of derivation trees of a TAG G forms a regular tree
language (Vijay-Shanker et al., 1987). In the formu-
lation of Schmitz and Le Roux (2008), we can obtain
an RTG G describing the derivation trees by using
a nonterminal set fNS ; NA j N nonterminal of Gg;
the start symbol is SS . G is defined over a signature
whose symbols are the names of the elementary trees
in G. The production rules encode the way in which
these elementary trees can be combined using substi-
tution (by expanding a nonterminal of the form NS )
and adjunction (by expanding a nonterminal of the
form NA). In this way, the derivation trees of the
example grammar from Fig. 2a are described by an
RTG G0 D .N0; ˙0; P0; S0/ with productions

SS ! ˛1.NPS ; SA; VPA/

NPS ! ˛2.NPA/

VPA ! ˇ1.VPA/

SA; VPA; NPA ! nop

Notice that every node at which an adjunction may
take place is represented by a nonterminal symbol,
which must be expanded by a production rule. If
no adjunction takes place, we expand it with a rule
of the form N ! nop, which is available for every
nonterminal N (see Fig. 2b).

LCFRS. The view of TAG as a linear context-free
rewriting system (LCFRS; Weir (1988)) can be seen
as an IRTG as follows. Consider a ˙0-algebra AL

whose values are the derived trees of the TAG gram-
mar G. AL interprets each symbol in the derivation
tree as a complex tree-building operation which spells
out the derived trees. For instance, ˛AL

1 is a function
(on three arguments, because ˛1 has rank 3) which
takes an initial tree t1 and two auxiliary trees t2 and
t3 as arguments, and returns the tree which results
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Figure 2: A TAG grammar (a), together with a derivation tree (b) and a derived tree (c). The “nop” nodes in the
derivation tree indicate that no adjunction took place where one was possible, and are only needed for technical reasons.

from substituting and adjoining t1, t2, and t3 into ˛1
at appropriate places. Using such functions, one can
directly interpret the tree ˛1.˛2.nop/; nop; ˇ1.nop//
as the derived tree in Fig. 2c. Therefore, for the
IRTG GL D .G0; .id;AL//, where id is the identity
homomorphism on T˙0 , L.GL/ is exactly the set
of derived trees of G. One could instead obtain an
IRTG for describing the string language of G by us-
ing an interpretation into a ˙0-algebra of strings and
string tuples in which the elementary trees evaluate
to appropriate generalized concatenation operations.

STAG as Bimorphisms. Shieber (2004) proposes
a different perspective on the generative process of
synchronous tree substitution grammar (STSG). He
builds upon earlier work on bimorphisms and repres-
ents an STSG as an IRTG .G0; .h1; T�1/; .h2; T�2//,
where T�1 and T�2 are appropriate term algebras. In
this construction, the homomorphisms must carry
some of the load: In an STSG whose left-hand side
contains the trees ˛1 and ˛2 from Fig. 2a, we would
have h1.˛1/ D S.x1; VP.sleeps//. Shieber (2006)
later extended this approach to STAG by replacing
the tree homomorphisms with embedded push-down
transducers, a more powerful tree rewriting device.

Context-Free Tree Languages. Finally, Mönnich
(1998) noticed that the language of derived trees of
a TAG grammar is always a (monadic) context-free
tree language (CFTL). It has been known since the
seminal paper of Engelfriet and Schmidt (1977) that
every CFTL can be generated by evaluating the trees
of a regular tree language in a specific tree algebra
that Engelfriet and Schmidt call the “tree substitution
algebra”; we will call it the YIELD algebra T Y˙ here
to avoid confusion, after the name of the evaluation
function. Using this insight, we can capture Mön-

nich’s perspective by describing the derived trees of
a TAG grammar with an IRTG .G0; .h; T

Y
˙ //, where

h is a homomorphism that spells out the elementary
trees. Essentially, TAG derived trees are generated
by using a TSG of “building instructions” (spelled
out by the homomorphisms in a way that is similar
to Shieber’s), and evaluating the derived trees of the
TSG in the YIELD algebra. This idea was made ex-
plicit for TAG by Morawietz and Mönnich (2001)
and applied to STAG by Maletti (2010).

Discussion. These three different perspectives on
TAG as IRTGs are summarized in Fig. 3. The choice
of perspective has a significant impact on the al-
gorithms that are natural for it, and the challenges one
faces in developing them. The LCFRS view pushes
the work of constructing a derived tree almost entirely
into the algebra, which is relatively complicated and
not binary. This makes it tricky to define a uniform
algorithm for computing D.w/ for an input string
w. When an LCFRS is used to encode an STAG
grammar, it is also inconvenient to define a parsing
or decoding algorithm that only gets a left string
as its input. Shieber’s perspective pushes almost
all of the work into the translation from derivation
trees to derived trees. Parsing involves computing
the pre-image of D.w/ under embedded push-down
transducers, which is harder than for ordinary homo-
morphisms. The YIELD approach strikes a balance
between these two extremes, in that the workload is
more evenly balanced between the (ordinary) homo-
morphism and the algebra. To our knowledge, no
parsing or decoding algorithms for strings based on
this perspective have been worked out; Maletti (2010)
leaves this as an open problem. In the remainder of
this paper we will fill this gap.
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homomorphisms algebras parsing synchronous

LCFRSs identity complex + (+)
bimorphisms embedded pushdown term - +
CFTLs tree homomorphisms YIELD - +

this paper tree homomorphisms YIELD (simplified) + +

Figure 3: Perspectives on TAG.

4 An Algebra for Derived Trees

We will first introduce an algebra for derived trees
and show how it can be used to cast TAG as an IRTG.
We will then introduce a suitable TAG string algebra
in Section 5.

4.1 The Tree Algebra TD�
The intuition of the derived tree algebra is that ad-
junction can be modeled using two substitutions of
trees into a context. Take an auxiliary tree as a con-
text C with a hole in place of the foot node, and say
we want to adjoin it at some node � in the tree t . This
can be done by splitting t into a context application
C 0Œt 0�, where C 0 is the context in t with root " and
hole � . The result of the adjunction is then simply
C 0ŒC Œt ��. In the derivation tree algebra, we use a
special symbol @, which inserts its second argument
into the hole of its first argument. Thus, in this al-
gebra the term @.C 0;@.C; t// evaluates to the result
of the adjunction. The @ operation is a special case
of the composition symbols cn;k used in the YIELD
algebra of Engelfriet and Schmidt (1977). A similar
intuition underlies the idea of “lifting” in Morawietz
and Mönnich (2001), and the work of Maletti (2010).

Let � be a ranked signature of node labels. We
define the algebra TD� of all TAG derived trees over
� as a partial algebra whose domain contains all trees
over � and all contexts over �; that is, the domain is
T� [ C�. Every f jk 2 � is a k-place operation in
TD� . It takes k arguments t1; : : : ; tk 2 T� [ C�. It
is defined if either t1; : : : ; tk are all trees, or at most
one of them is a context. In either case, it returns the
result f .t1; : : : ; tk/. In addition, TD� has a constant
� that evaluates to the empty context �. Finally, the
binary operation @ substitutes an element of TD� into
a context. It is defined for arguments C; t where t
is a context and t is either a context or a tree. It
returns C Œt�; this is a tree if t is a tree, and a context
otherwise.

4.2 An IRTG for TAG Derived Tree Languages
For any given TAG grammar G that uses some al-
phabet � of node labels in its derived trees, we can
now construct an IRTG G D .G ; .ht ; T

D
� // such that

L.G/ consists of exactly the derived trees that are
generated byG. We choose G to be a˙ -RTG that de-
scribes exactly the derivation trees ofG, and we need
to construct the homomorphism ht that maps deriv-
ation trees into “building instructions” for derived
trees, i.e. terms of TD� .

Each node in the derivation tree is labeled with the
name ˛ of an elementary tree (or nop); the subtrees
below it describe trees that are combined with this
elementary tree using substitution and adjunction.
The purpose of ht .˛/ is to spell out the way in which
˛ does this combining. Substitution is modeled by
simply leaving a variable in ht .˛/ in the appropriate
place; it will be filled with the initial tree when ht
is evaluated. Adjunction is modeled through the @
operator, as indicated above. Formally, let

A! ˛.B1S ; : : : ; B
k
S ; B

kC1
A ; : : : ; BnA/

be the (unique) rule in G that contains the symbol ˛.
Let i be a function that maps each substitution node
� in ˛ to the position of the nonterminal occurrence
that corresponds to � in the right-hand side of this
rule, i.e. to a number between 1 and k. Likewise, let i
map each node at which an adjunction may take place
to the position of the adjunction nonterminal, i.e. a
number between k C 1 and n. We define a function
h˛ for each ˛ that maps nodes � of ˛ to terms over
TD� , and let ht .˛/ D h˛."/. Then h˛.�/ D xi.�/
if � is a substitution node; h˛.�/ D a if � is a
lexical leaf with label a; h˛.�/ D � if � is a foot
node, and

h˛.�/ D @.xi.�/; f .h˛.�1/; : : : ; h˛.�n//

if � is a non-leaf with label f . In this way, we can
construct ht .˛/ for each elementary tree ˛.

139



We illustrate this construction by con-
verting the grammar of Fig. 2a into an
IRTG G D .G0; .ht ; T

D
� //, where � D

fS2; NP1; VP2; VP1; John0; sometimes0; sleeps0g.
The subscripts are needed to distinguish occurrences
of the label same “VP” in Fig. 2c with different
ranks. The homomorphism ht looks as follows:

ht .˛1/ D @.x2; S2.x1;@.x3; VP1.sleeps////

ht .˛2/ D @.x1; NP1.john//

ht .ˇ1/ D @.x1; VP2.sometimes;�//

ht .nop/ D �

Notice how the ability of ˛1 to allow adjunction at the
S2 and VP2 nodes translates into uses of @, which
perform the adjunctions by inserting the contexts
(= auxiliary trees) that are passed in x2 and x3, re-
spectively, in the right places. The NP substitution
happens by simply inserting the tree (= initial tree)
that is passed in x1. The term ht .ˇ1/ illustrates how
the contexts that model the auxiliary trees are built
by combining � (which stands for the empty context
containing just one hole) into larger structures. The
term ht .nop/ simply evaluates to the empty context;
adjoining it anywhere leaves a tree unchanged.

When applied to the derivation tree
in Fig. 2b, the homomorphism ht re-
turns the term @.�; S2.@.�; NP1.john//;
@.@.�; VP2.sometimes;�//; VP1.sleeps////.
This term evaluates to the derived tree in Fig. 2c.

5 A String Algebra for TAG

Now consider how the basic ideas from Section 4
can be applied to obtain an algebra for TAG string
languages. The domain of any such algebra must
contain both strings (for the yields of initial trees)
and pairs of strings (for the yields of auxiliary trees:
one string to the left of the foot node and one string
to the right). We have several options in defining
the operations on such an algebra. One option is to
use the same signature as for the derived tree algebra
from Section 4. Unfortunately, this has the effect that
the algebra contains operations of rank greater than
two, which increases the parsing complexity.

5.1 The TAG String Algebra AT

We choose to instead build a binary string algebra.
The string algebra AT for TAG over the finite alpha-
bet A is a partial algebra whose domain contains all

strings and all pairs of strings over A; that is, the
domain is A� [ .A� � A�/. We write w for a string
and w D .w1; w2/ for a string pair.

Every element a of A is a constant of AT with
aA

T

D a. There is also a constant � with �A
T

D

."; "/. AT has a binary partial concatenation opera-
tion conc, which is defined if at least one of its two
arguments is a string. When defined, it concatenates
strings and string pairs as follows:

concA
T

.w1; w2/ D w1w2

concA
T

.w1; w2/ D .w1w21; w22/

concA
T

.w1; w2/ D .w11; w12w2/

Finally, there is a binary partial wrapping operation
wrap, which is defined if its first argument is a string
pair. This operation wraps its first argument around
the second, as follows:

wrapA
T

.w1; w2/ D w11w2w12

wrapA
T

.w1; w2/ D .w11w21; w22w12/

Notice that these operations closely mirror the op-
erations for well-nested LCFRSs with fan-out 2 that
were used in Gómez-Rodríguez et al. (2010).

5.2 An IRTG for TAG String Languages

We can useAT to construct, for any given TAG gram-
mar G over some alphabet A of terminal symbols, an
IRTG G D .G ; .hs; A

T // such that L.G/ consists
of exactly the strings that are generated by G. We
again describe the derivation trees using a ˙ -RTG G .
Say that AT is a �-algebra. It remains to construct a
homomorphism hs from T˙ to T�.

This is most easily done by defining a second ho-
momorphism hst that maps from TD� to AT . hst
effectively reads off the yield of a tree or context, and
is defined by mapping each operation symbol of TD�
to a term over AT . In particular, it breaks tree-con-
structing symbols f 2 � in TD� up into sequences of
binary concatenation operations. Thus hs D hst ı ht
becomes a homomorphism from ˙ into terms of AT .

hst .f / D conc.x1; : : : ; conc.xk�1; xk// if k � 2

hst .f / D x1 if f j1
hst .f / D f if f j0
hst .@/ D wrap.x1; x2/

hst .�/ D �
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To describe the string language Fig. 2a, we can
use the IRTG .G0; .hs; A

T //, for the alphabet A D
fjohn; sometimes; sleepsg. The homomorphism hs
comes out as follows:

hs.˛1/ D wrap.x2; conc.x1;wrap.x3; sleeps///

hs.˛2/ D wrap.x1; john/

hs.ˇ1/ D wrap.x1; conc.sometimes;�//

hs.nop/ D �

Each hs.˛/ encodes the operation of the
elementary tree ˛ as a generalized concatena-
tion function on strings and string pairs. Ap-
plying hs to the derivation tree in Fig. 2b
produces the term wrap.�; conc.wrap.�; john/;
wrap.wrap.�; conc.sometimes;�//; sleeps///. This
term evaluates in AT to “John sometimes sleeps.”

5.3 Synchronous Grammars

In summary, for any TAG grammar G, we can
obtain an IRTG .G ; .hs; A

T // for the strings de-
scribed by G, and an IRTG .G ; .ht ; T

D
� // for the

derived trees. Both IRTGs use the same central RTG
G . This means that we can combine both views
on TAG in a single IRTG with two interpretations,
G D .G ; .hs; A

T /; .ht ; T
D
� //.

We can take this idea one step further in order
to model synchronous TAG grammars. An STAG
grammar can be seen as an RTG generating the de-
rivation trees, plus two separate devices that build
the left and right derived tree from a given deriv-
ation tree (Shieber, 2004; Shieber, 2006). Each
“half” of the STAG grammar is simply an ordin-
ary TAG grammar; they are synchronized with each
other by requiring that in each STAG derivation,
the individual TAG components must use the same
derivation tree. As we have seen, an individual
TAG grammar can be represented as an IRTG with
two interpretations. We can therefore represent an
STAG grammar as an IRTG with four interpretations,
G D .G ; .h1s ; A

T
1 /; .h

1
t ; T

D
�1
/; .h2s ; A

T
2 /; .h

2
t ; T

D
�2
//.

The language of G consists of four-tuples contain-
ing two derived trees and their two associated string
yields – one each for the left and right-hand side of
the STAG grammar. Notice that unlike in the LCFRS
view on STAG, the four individual components are
kept separate at all points, and decoding any com-
bination of inputs into any combination of outputs is
straightforward.

6 Decomposing the Parsing Algorithm

With these two algebras in place, all that remains to
be done to define parsing and decoding algorithms
for TAG and STAG is to show that AT and TD� are
regularly decomposable; then the generic algorithms
for IRTG can do the rest.

6.1 Decomposition in the String Algebra

A term t that evaluates to some string or string pair
w in the string algebra AT describes how w can be
built recursively from smaller parts using concaten-
ation and wrapping. Just as in a CKY parser, these
parts are either spans Œi; k� identifying the substring
wi : : : wk�1, or span pairs Œi; j; k; l� identifying the
pair .wi : : : wj�1; wk : : : wl�1/ of substrings.

We can obtain a decomposition grammar D.w/
for w by using these spans and span pairs as nonter-
minals. The production rules of D.w/ spell out how
larger parts can be built from smaller ones using con-
catenation and wrapping operations, as follows:

Œi; k�! conc.Œi; j �; Œj; k�/

Œi; j; k; l�! conc.Œi; j 0�; Œj 0; j; k; l�/

Œi; j; k; l�! conc.Œi; j; k; k0�; Œk0; l �/

Œi; l �! wrap.Œi; j; k; l�; Œj; k�/

Œi; j; k; l�! wrap.Œi; i 0; l 0; l �; Œi 0; j; k; l 0�/

Œi; i C 1�! wi

Œi; i; j; j �! �

The start symbol of D.w/ is the span that corres-
ponds to the entire string or string pair w. If w is a
string of length n, it is Œ1; n C 1�; for a string pair
w D .w1 : : : wm�1; wm : : : wn/ 2 A

T , the start sym-
bol is Œ1;m;m; nC 1�. Notice that the size of D.w/
is O.n6/ because of the second wrapping rule, and
the grammar can also be computed in time O.n6/.

6.2 Decomposition in the Derived Tree Algebra

The parts from which a term over the derived tree
algebra TD� builds some derived tree or context � 2
TD� are the subtrees or the contexts within � . Each
subtree can be identified by its root node � in � ; each
context can be identified by its root � and its hole � 0.

Thus we can obtain a decomposition grammar
D.�/ using a nonterminal A� to indicate the sub-
tree starting at � and a nonterminal B�=� 0 to indicate
the context from � to � 0. As above, the rules spell
out the ways in which larger subtrees and contexts
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can be constructed from smaller parts:

A� ! f .A�1; : : : ; A�n/ t.�/ D f jn

A� ! @.B�=� 0 ; A� 0/ � 0 node in t # �

B�=� 0 ! f .A�1; : : : ; B�i=� 0 ; : : : ; A�n/ �i � � 0; t .�/ D f jn

B�=� 0 ! @.B�=� 00 ; B� 00=� 0/ � < � 00 � � 0

B�=� ! �

Again, the start symbol is simply the representa-
tions of � itself. If � is a tree, it is A"; for a context
with hole � , the start symbol is B"=� . If � has n
nodes, the grammar D.�/ has O.n3/ rules because
of the second rule for @.

6.3 Decomposing the TAG Parsing Algorithm

To illustrate the use of these decomposition grammars
in the context of the parsing algorithm of Section 2,
we parse the string w D “John sometimes sleeps”
using the IRTG G D .G0; .hs; A

T // for the string
perspective on the example grammar from Fig. 2 (cf.
Section 5).

Step 1: Decomposition Grammar. First, the
parser computes the decomposition grammar D.w/.
As explained above, this grammar has the start sym-
bol Œ1; 4� and rules given in Fig. 4 (among others).
The complete grammar generates a set of 72 terms
over AT , each of which evaluates to w. The term
that is important here is wrap.�; conc.wrap.�; john/;
wrap.wrap.�; conc.sometimes;�//; sleeps///. Cru-
cially, the TAG grammar is completely irrelevant
at this point: L.D.w// consists of all terms over
AT which evaluate to w, regardless of whether they
correspond to grammatical derivation trees or not.

Step 2: Inverse Homomorphism. Next, we com-
pute an RTG G 0 for h�1s .L.D.w///. This grammar
describes all trees over ˙ that are mapped by hs into
terms that evaluate to w. Its nonterminal symbols are
still spans and span pairs, but the terminal symbols
are now names of elementary trees. The grammar
has the start symbol Œ1; 4� and the following rules:

Œ1; 4�! ˛1.Œ1; 2�; Œ1; 1; 4; 4�; Œ2; 3; 4; 4�/

Œ1; 2�! ˛2.Œ1; 1; 2; 2�/

Œ2; 3; 4; 4�! ˇ1.Œ2; 2; 4; 4�/

Œ1; 1; 4; 4�! nop

Œ1; 1; 2; 2�! nop

Œ2; 2; 4; 4�! nop

Œ1; 2�! john

Œ2; 3�! sometimes

Œ3; 4�! sleeps

Œ1; 1; 2; 2�! �

Œ1; 2�! wrap.Œ1; 1; 2; 2�; Œ1; 2�/

Œ3; 3; 4; 4�! �

Œ2; 3; 4; 4�! conc.Œ2; 3�; Œ3; 3; 4; 4�/

Œ2; 2; 4; 4�! �

Œ2; 3; 4; 4�! wrap.Œ2; 2; 4; 4�; Œ2; 3; 4; 4�/

Œ2; 4�! wrap.Œ2; 3; 4; 4�; Œ3; 4�/

Œ1; 4�! conc.Œ1; 2�; Œ2; 4�/

Œ1; 4�! wrap.Œ1; 1; 4; 4�; Œ1; 4�/

Œ1; 1; 4; 4�! �

Figure 4: The decomposition grammar.

An algorithm that computes G 0 is given by Koller
and Kuhlmann (2011). The basic idea is to simulate
the backwards application to the rules ofD.w/ on the
right-hand sides of the rules of the homomorphism hs .
As an example, consider the rule

hs.˛1/ D wrap.x2; conc.x1;wrap.x3; sleeps///

If we instantiate the variables x2; x1; x3 with the
spans Œ1; 2�, Œ1; 1; 4; 4� and Œ2; 3; 4; 4�, respectively,
then the backwards application of D.w/ yields Œ1; 4�.
This warrants the first production of G 0.

Step 3: Intersection. G 0 is an RTG that represents
all derivation trees that are consistent with the input
string; these are not necessarily grammatical accord-
ing to G. On the other hand, G0 generates exactly the
grammatical derivation trees, including ones that do
not describe the input string. To obtain an RTG for
the derivation trees that are grammatical and match
the input, we intersect G0 and G 0. This yields a gram-
mar G 00 whose nonterminals are pairs of nonterminals
from G0 and G 0 and the following rules:

SŒ1;4� ! ˛1.NPŒ1;2�; SŒ1;1;4;4�; VPŒ2;3;4;4�/

NPŒ1;2� ! ˛2.NPŒ1;1;2;2�/

VPŒ2;3;4;4� ! ˇ1.VPŒ2;2;4;4�/

SŒ1;1;4;4� ! nop

NPŒ1;1;2;2� ! nop

VPŒ2;2;4;4� ! nop

As expected, L.G 00/ contains a single tree, namely
the derivation tree in Fig. 2b.
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Discussion. G 00 is essentially a standard TAG parse
chart forw. We have obtained it in three steps. Step 1
was an algebra-specific decomposition step; this was
the only step in the parsing algorithm that was partic-
ular to TAG. Steps 2 and 3 then performed generic op-
erations on RTGs, and are exactly the same whether
we would parse with respect to TAG, context-free
grammars, or a grammar formalism that describes
objects in some other algebra. Thus this is a TAG
parsing algorithm which decomposes into three parts,
each of which is easier to understand, teach, and
prove correct than a monolithic algorithm.

The runtime of the overall algorithm is O.n6/ as
long as both the algebra and the underlying RTG
are binary. The string algebra was binary by design;
furthermore, the RTG of every IRTG that encodes
a TAG can be brought into a binary normal form
(Gómez-Rodríguez et al., 2010). If we are parsing
input on several interpretations simultaneously, e.g.
in STAG parsing, binarization is not always possible
(Huang et al., 2009), and the parsing algorithm takes
exponential runtime. See also Koller and Kuhlmann
(2011) for a discussion of binarization.

7 Conclusion

We have shown how a variety of formal perspect-
ives on TAG can be uniformly understood in terms of
IRTGs. By introducing two new, regularly decompos-
able algebras for strings and derived trees, we have
shown how to obtain a modular parsing algorithm
for TAG and STAG. This algorithm can be adapted
to support synchronous parsing and decoding. For
IRTGs with weighted RTGs, which are capable of
capturing PTAG (Resnik, 1992) and synchronous
PTAG, we can also perform Viterbi parsing and EM
training on the parse chart.

The general advantage of the parsing algorithm
presented here is that it decomposes into simple com-
ponents. Recombining these yields an algorithm that
is essentially identical to the standard CKY parser
for TAG (Shieber et al., 1995). We can obtain other
parsing algorithms by varying the way in which inter-
section and inverse homomorphisms are computed.
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Abstract

We discuss four previously published
parsing algorithms for parallell multiple
context-free grammar (PMCFG), and ar-
gue that they are similar to each other, and
implement an Earley-style top-down algo-
rithm. Starting from one of these algo-
rithms, we derive three modifications – one
bottom-up and two variants using a left cor-
ner filter. An evaluation shows that sub-
stantial improvements can be made by us-
ing the algorithm that performs best on a
given grammar. The algorithms are imple-
mented in Python and released under an
open-source licence.

We start by introducing the necessary concepts.
Then we discuss four previously published PM-
CFG algorithms, and argue that they are similar.
We take Angelov (2009) as a starting point for
introducing three new parsing strategies. Finally
we discuss various optimizations of the parsing
strategies and give a small evaluation.

1 Background

1.1 PMCFG

Let Σ and N be sets of terminal and nonter-
minal symobls, respectively. A parallel multi-
ple context-free grammar (PMCFG) (Seki et al.,
1991) consists of a set of context-free produc-
tion rules A → f( ~B), where A ∈ N and ~B =
B1, . . . , Bn ∈ N are nonterminals. f is a lin-
earization function:

f : (Σ∗)δ(B1) × · · · × (Σ∗)δ(Bn) → (Σ∗)δ(A)

where δ(X) is the fan-out, or dimension, of the
non-terminal X . The linearization function f is

S → f(A) f(〈x, y〉) = 〈x y〉
A→ g(A) g(〈x, y〉) = 〈a x b, c y d〉
A→ h() h() = 〈a b, c d〉

Figure 1: A grammar that recognizes the langauge
{anbncndn | n > 0}.

S → f(A) f.1 = 〈1.1〉 〈1.2〉
A→ g(A) g.1 = a 〈1.1〉 b g.2 = c 〈1.2〉 d
A→ h() h.1 = a b h.2 = c d

Figure 2: The same grammar in variable-free form.

normally written like this:

f
(〈
x1,1 . . . x1,δ(B1)

〉
, . . . ,

〈
xn,1 . . . xn,δ(Bn)

〉)

=
〈
α1, . . . , αδ(A)

〉

where each αi is sequence of terminal symbols
and bound variables. However, in this paper
we write the linearizations in variable-free form,
where each bound variable xd,r is written as a pair
of the form 〈d.r〉. We use f.s to denote the sth
constituent of the linearization, i.e. αs.

Figure 1 contains an example grammar recog-
nizing the language anbncndn, and its variable-
free form is shown in figure 2. The fanouts of this
grammar are δ(S) = 1 and δ(A) = 2.

1.2 MCFG and LCFRS
A linearization function is linear if no argument
constituent 〈d.r〉 occurs more than once in the
right-hand side. It is non-erasing if all possible ar-
gument constituents occurs in the right-hand side.

A multiple context-free grammar (MCFG) is
a PMCFG where all linearization functions are
linear. A linear context-free rewriting system
(LCFRS) (Vijay-Shanker et al., 1987) is a linear
and non-erasing PMCFG. Erasingness does not
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add to the expressive power, and therefore LCFRS
and MCFG are weakly equivalent. However,
reduplication does give extra expressive power, so
PMCFG is a proper extension of MCFG/LCFRS
(Seki et al., 1991).

1.3 Emptiness and left corners
We define the context-free approximation of a
PMCFG rule A → f( ~B) to be δ(A) context-free
rules A.r → βr, where βr is the linearization f.r
with every occurrence of 〈d.s〉 replaced by Bd.s.
The nonterminals of the context-free approxima-
tion are of the form A.r.

We define (⇒) as the standard reflexive and
transitive rewriting relation on the context-free
approximation. We say that a constituent A.r is
empty if A.r ⇒ ε. We define the left corner rela-
tion as: A.r . x iff A.r ⇒ x β for some β, where
x is either a terminal w or a constituent B.s.

1.4 Non-empty grammars
Our algorithms can handle all kinds of PMCFG
grammars, but the two bottom-up variants work
much better if the grammar has no empty lin-
earizations, i.e., if A.r 6⇒ ε for all constituents
A.r. This is discussed further in section 4.3.

All grammars with empty linearizations can be
transformed to nonempty grammars (Seki et al.,
1991). We use an adaptation of an algorithm
for context-free grammars. The transformation
does not lose any important information, and it is
straightforward to translate parse trees back into
the original grammar efficiently.

2 Existing parsing algorithms

Most existing parsing algorithms require that the
grammar is a LCFRS or a subclass thereof (Bur-
den and Ljunglöf, 2005; de la Clergerie, 2002;
Gómez-Rodríguez et al., 2008; Kallmeyer, 2010;
Kallmeyer and Maier, 2009; Kanazawa, 2008),
often in some kind of normal form such as a bi-
narized or an ordered LCFRS. There are some al-
gorithms that can handle general PMCFG gram-
mars (Angelov, 2009; Boullier, 2004; Ljunglöf,
2004), including the algorithms presented in this
paper. This is important when parsing Grammat-
ical Framework (GF) grammars (Ranta, 2011),
since the algorithm for converting a GF grammar
results in an erasing PMCFG (Ljunglöf, 2004).

In this section we give an informal introduc-
tion to the algorithm by Angelov (2009), and dis-

S → A1A2 S → A′1A
′
2 S → A′′1 A

′′
2 . . .

A1 → a b A′1 → aA1 b A′′1 → aA′1 b . . .

A2 → c d A′2 → cA2 d A′′2 → cA′2 d . . .

Figure 3: Infinite context-free equivalent of the exam-
ple PMCFG in figure 1.

cuss its similarities with three other algorithms
(Kallmeyer and Maier, 2009; Kanazawa, 2008;
Ljunglöf, 2004). We argue that all four algorithms
implement the same basic Earley-style top-down
parsing algorithm.

2.1 Angelov’s top-down algorithm

Angelov (2009) views a PMCFG as a CFG with
a possibly infinite number of nonterminals and
rules. Note that the term “infinite CFG” is an oxy-
moron, since such a grammar can recognize non-
context-free languages. E.g., the infinite CFG
shown in figure 3 is equivalent to the grammar
in figure 1, which recognizes a non-context-free
language.

Since this CFG is infinite, it cannot be calcu-
lated from the PMCFG beforehand. But given a
certain input string, there are only a finite number
of nonterminals and rules that are used in the final
parse trees. Angelov’s idea is to dynamically cre-
ate nonterminals and rules during parsing: When-
ever the parser has recognized a new constituent r
of a nonterminal A, between input positions i−j,
it creates a new nonterminal A′ = A(i, j, r), and
new grammar rules for A′.

2.2 Similarity with other approaches

Angelov’s dynamic CFG is not conceptually dif-
ferent from the parsing algorithms described by
other authors. The new nonterminals are all of
the form A′ = A(i1, j1, r1) . . . (in, jn, rn), which
is equivalent to the PMCFG nonterminal A, cou-
pled with a sequence of the constituents that have
been found during parsing. This is similar to how
other algorithms store their found constituents:

• Angelov (2009) uses an ordered sequence
where the constituents are stored in the order
they are found.

• Ljunglöf (2004, section 4.6) separates the
nonterminal A from the “range record” Γ,
which is a set containing the found con-
stituents.
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Angelov Ljunglöf K&M Kanazawa

A(i1, j1, r1) {r1 : i1-j1} 〈i1-j1, ?, . . . , ?〉 A1(i1, j1)

A(i1, j1, r1) . . . (in, jn, rn) {r1 : i1-j1, . . . , rn : in-jn} 〈i1-j1, . . . , in-jn〉 An(i1, j1, . . . , in, jn)

Table 1: How different algorithms denote similar derived facts.

• Kallmeyer and Maier (2009) also separates
the nonterminal A from the “range vector”
Φ, which is a ordered tuple of ranges. In a
range vector, the constituents that are not yet
found are uninstantiated.

• Kanazawa (2008) derives successively in-
creasing Datalog facts of arity (2× the num-
ber of found constituents).

In table 1 we can see how the different authors
denote similar derived facts. The first row corre-
sponds to when the first constituent r1 of a non-
terminal A has been found spanning the positions
i1 − j1. The second row corresponds to when the
parser has found all n constituents of A.

All the discussed algorithms use the same gen-
eral top-down parsing strategy: First they predict
the toplevel nonterminal, followed by its children,
and further down until they reach the lexical rules.
Then they try to match the lexical rules with the
next input token, and so on. This strategy is a
PMCFG version of Earley’s context-free parsing
algorithm (Earley, 1970).

2.3 Bottom-up parsing

However, there are alternative context-free pars-
ing strategies which have not been adopted
for PMCFG parsing (Sikkel and Nijholt, 1997;
Moore, 2004). Ljunglöf (2004, section 4.6.1)
makes an attempt at bottom-up prediction, but it
is not very efficient. The problem with a pure
bottom-up approach is that the algorithm will rec-
ognize all constituents independently, and then it
is very costly to combine the constituents further
up in the parse tree.

The solution we adopt in the next section is to
always use a top-down parsing strategy to recog-
nize additional constituents. This means that the
different prediction strategies in sections 3.4–3.6
only apply when recognizing the first constituent
of a grammar rule.

3 Three new algorithms

We describe our parsing algorithms as deduc-
tive parsing systems (Shieber et al., 1995; Sikkel,
1998), where we infer a set of parse items called
a chart. Furthermore, we assume that the input is
given as n input tokens w1w2 . . . wn.

3.1 Parse items
We use four different kinds of parse items, and we
divide the chart into four indexed sets, Aj,k, Fj,k,
Pk and Rk, where j ≤ k are input positions. The
fundamental item is the active item:

[ r : α • β | A→ f( ~B) ] ∈ Aj,k

which says that the parser is trying to find the
constituent A.r using the linearization f.r = αβ.
It has already found α between the positions j and
k, but is still looking for β.

The other parse items are strictly not necessary,
but they simplify our presentation of the algo-
rithms. The following predict item says that the
parser is looking for a constituent A.r starting in
position k:

[ ?A.r ] ∈ Pk

When the parser finds the constituent A.r be-
tween j and k, it creates a new nonterminal A′ =
A(j, k, r), and infers both a dynamic grammar
rule and a passive item:

[A′ → f( ~B) ] ∈ Rk [A.r : A′ ] ∈ Fj,k

The dynamic rule is used whenever a parent
searches for a new constituent of a partly recog-
nized A child. The passive item says that A.r has
been found between j and k, and is used when the
parser combines the recognized constituent with
an active item looking for A.r.

We have reformulated Angelov’s algorithm
slightly so that it fits better with our alternative
parsing strategies. Angelov does not use predict
items, but we have added them since they simplify
the filtered bottom-up parsing strategy (Moore,
2004). Another difference is that we separate the
original (static) grammar rules A → f( ~B) from
the dynamic rules [A′ → f( ~B) ].
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predict-item
[ r : α • 〈d.s〉 β | A→ f( ~B) ] ∈ Aj,k

[ ?Bd.s ] ∈ Pk

predict-next
[A→ f( ~B) ] ∈ Rj [ ?A.r ] ∈ Pk

[ r : • β | A→ f( ~B) ] ∈ Ak,k

f.r = β, j ≤ k

scan
[ r : α • wk β | A→ f( ~B) ] ∈ Aj,k−1
[ r : α wk • β | A→ f( ~B) ] ∈ Aj,k

complete
[ r : α • | A→ f( ~B) ] ∈ Aj,k

[A′ → f( ~B) ] ∈ Rk [A.r : A′ ] ∈ Fj,k
A′ = A(j, k, r)

combine
[ r : α • 〈d.s〉 β | A→ f( ~B) ] ∈ Ai,j [Bd.s : B′d ] ∈ Fj,k

[ r : α 〈d.s〉 • β | A→ f( ~B[d := B′d]) ] ∈ Ai,k

Figure 4: General inference rules

3.2 General inference rules

Most of the inference rules will be reused by the
alternative algorithms, so we split the inference
rules into general rules (which are used by all al-
gorithms), and algorithm-specific rules. The gen-
eral inference rules are shown in figure 4. Since
we want to be able to use different prediction
strategies for the first constituent, and still predict
additional constituents top-down, we have split
Angelov’s top-down prediction into two separate
inference rules. The rule that predicts additional
constituents is included here as predict-next.

The inference rules predict-item, scan and
complete are mutually exclusive, since their an-
tecedent is an active item which either looks for a
nonterminal, a terminal, or nothing at all. The rule
predict-item infers a predict item for Bd.s from
an active item looking for 〈d.s〉. The scan rule
moves the dot forward if the active item is look-
ing for the next input tokenwk. The complete rule
applies when the dot is at the end of the lineariza-
tion, and it derives a dynamic rule and a passive
item, together with a fresh dynamic nonterminal
A′ = A(j, k, r).

The fundamental inference rule is combine,
which takes one active item looking for a nonter-
minal Bd.s starting in position j, and one passive
item that has found Bd.s between j and k. The
combine rule moves the dot of the active item for-
ward, but it also updates the nonterminal child Bd
to B′d = Bd(j, k, s).

Now, if the active item that is inferred by com-
bine, in a later parsing stage wants to find another
constituent of B′d (say B′d.u starting in position
p ≥ k), the item [ ?B′d.u ] ∈ Pp is infered by
predict-item. This in turn triggers predict-next to
look for a dynamic rule [B′d → g(. . .) ]. But since
that rule was inferred at the same time as the pas-
sive item [Bd.s : B′d ] ∈ Fj,k, predict-next will
start recognizing the constituent B′d.u.

3.3 Top-down prediction
The only infenrence rules that are specific to a
parsing strategy are the prediction rules. An-
gelov’s (2009) unfiltered top-down strategy con-
sists of the two rules shown in figure 5. Whenever
there is a predict item looking for A.r (where A
is a grammar nonterminal, not a dynamic one),
predict-topdown finds all A rules in the grammar
and adds them as active items.

The parsing process is initiated by init-
topdown, which predicts the starting nonterminal
S at the beginning of the string.

3.4 Bottom-up prediction
In bottom-up parsing we predict a nontermi-
nal constituent only when its first symbol has
been found (Ljunglöf and Wirén, 2010, section
4.4.4). There are three possibilities, depending on
whether the first symbol is a terminal, a nonter-
minal, or if the constitutent is empty. They con-
stitute the inference rules predict-bottomup, scan-
bottomup and scan-empty, respectively.
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init-topdown
[ ?S.r ] ∈ P0

start(S)

predict-topdown
[ ?A.r ] ∈ Pk

[ r : • β | A→ f( ~B) ] ∈ Ak,k

A→ f( ~B), f.r = β

Figure 5: Top-down prediction

predict-bottomup
[Bd.s : B′d ] ∈ Fj,k

[ r : 〈d.s〉 • β | A→ f( ~B[d := B′d]) ] ∈ Aj,k

A→ f( ~B), f.r = 〈d.s〉 β

scan-bottomup
[ r : wk • β | A→ f( ~B) ] ∈ Ak−1,k

A→ f( ~B), f.r = wk β

scan-empty
[ r : • | A→ f( ~B) ] ∈ Ak,k

A→ f( ~B), f.r = ε

Figure 6: Bottom-up prediction

The rule predict-bottomup is triggered when we
have found a passive item covering the first con-
stituent 〈d.r〉 of f.r. Since Bd.r is found, we can
directly move the dot past 〈d.r〉, but then we have
to update the nonterminal Bd to the dynamic non-
terminal B′d, in the same way as combine does.

One problem with this algorithm is that scan-
empty adds an item for every empty constituent
A.r and every position k in the input. Depending
on the grammar, this can lead to a very large chart.
There are several ways to solve this: One is to
let scan-bottomup and predict-bottomup skip over
initial empty constituents, similar to the context-
free GHR algorithm (Graham et al., 1980). An-
other possibility is to only infer an empty con-
stituent A.r if it can be followed by the input to-
ken starting in position k. Our solution is to use
the left corner relation as a filter, see section 3.6.

3.5 Filtered top-down prediction

The problem with the top-down algorithm is that
it predicts lots of useless items that cannot pos-
sibly be inferred from the input tokens. So, we
augment predict-topdown with a filter, shown in
figure 7. Using this filter the parser can only pre-
dict a new A.r item in position k if the next input
token wk+1 is a left corner (A.r . wk+1), or if the
constituent is empty (A.r ⇒ ε).

This filter is not as strict as it can be, since it
doesn’t test empty constituents against the input.

One way of making it stricter would be to only
predict empty constituents that can be followed
by the next input token wk+1.

3.6 Filtered bottom-up prediction

A problem with bottom-up prediction is that it
infers lots of items that cannot be used in a fi-
nal parse tree. We adapt a context-free left cor-
ner strategy (Moore, 2004) to our bottom-up al-
gorithm. The modified inference rules are shown
in figure 8.

Each inference rule now requires a predict item
[ ?D.u ], such that D.u . A.r. In other words,
the parser will only predict a constituent A.r if
it is the left corner of another constituent D.u that
the parser is already looking for. To initialize this
left corner filter, we borrow the init-topdown rule
from the top-down strategy.

3.7 Other possible filters

Kallmeyer and Maier (2009) discuss two addi-
tional filters. The length filter prohibits parse
items that are too long to fit in the sentence. The
terminal filter checks that all terminals in a lin-
earization occurs among the input tokens, and in
the same order.

We have not incorporated their filters in our
parser implementations, but we see no reason why
this could not be done.
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init-topdown
[ ?S.r ] ∈ P0

start(S)

predict-topdown
[ ?A.r ] ∈ Pk

[ r : • β | A→ f( ~B) ] ∈ Ak,k

{
A→ f( ~B), f.r = β

A.r ⇒ ε ∨ A.r . wk+1

Figure 7: Top-down prediction with bottom-up filtering

init-topdown
[ ?S.r ] ∈ P0

start(S)

predict-bottomup
[ ?D.u ] ∈ Pj [Bd.s : B′d ] ∈ Fj,k

[ r : 〈d.s〉 • β | A→ f( ~B[d := B′d]) ] ∈ Aj,k

{
A→ f( ~B), f.r = 〈d.s〉 β
D.u . A.r

scan-bottomup
[ ?D.u ] ∈ Pk−1

[ r : wk • β | A→ f( ~B) ] ∈ Ak−1,k

{
A→ f( ~B), f.r = wk β

D.u . A.r

scan-empty
[ ?D.u ] ∈ Pk

[ r : • | A→ f( ~B) ] ∈ Ak,k

{
A→ f( ~B), f.r = ε

D.u . A.r

Figure 8: Bottom-up prediction with left corner filtering

4 Incrementality and optimizations

Let us define stage k to be all sets Ai,k, Fi,k, Pk

and Rk that end in position k. Then we can say
that a parser is incremental if all sets in stage k
are computed before it starts computing the sets
in stage k+1. All our inference rules are straight-
forward to implement incrementally, since no an-
tecedent belongs to a later stage than the state be-
longing to the consequent item.

If we assume that the implementation is incre-
mental, we can make some optimizations, some
more obvious than others. One immediate conse-
quence is that predict-next never needs to check if
j ≤ k since it is trivially satisfied. But there are
more things that can be optimized.

4.1 Dynamic rules

As the rule is stated in figure 4, if predict-next is
triggered by the predict item, it will have to search
through all sets R0, . . . , Rk to find a matching dy-
namic rule. However, if parsing is performed in-
crementally, we do not have to separate the rules
into different sets, but we can instead add all dy-
namic rules to one big set R.

4.2 Optimizing previous stages
The passive sets Fj,k are only used in stage k.
This means that when the parser starts building
the k + 1 sets, it can discard all sets Fj,k from
stage k. The same holds for the predict items Pk,
except in the filtered bottom-up algorithm.

Furthermore, since all dynamic nonterminals
A′ = A(j, k, r) are created in stage k, they be-
come static in later stages. This means that when
stage k is completed, we can replace all stage k
nonterminals with atomic values, such as fresh
integers. It is more efficient to compare atomic
values than to compare sequences of the form
A(i1, j1, r1) . . . (in, jn, rn).

Angelov (2009) implements both these opti-
mizations, and also the previous one merging the
dynamic rule sets into one big set R.

4.3 Filtered bottom-up and empty rules
If the grammar contains empty constituents, the
filtered bottom-up strategy in figure 8 could be
very slow. This is because every time a new
predict item [ ?D.u ] ∈ Pk is inferred, predict-
bottomup tries to find some passive item [Bd.s :
B′d ] ∈ Fk,k that is a left corner of D.u. Most
of the time this fails, or the active item that is
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English Resource English FraCaS Swedish FraCaS

Nr. terminals (w) 1,549 1,549 208

Nr. nonterminals (A) 189 194 274

Nr. constituents (A.r) 4,663 4,728 3,178

Nr. grammar rules (A→ f( ~B)) 43,910 2,992 1,967

Nr. linearizations (f.r = α) 256,855 74,709 35,365

Nr. left corner pairs (D.u . A.r) 323,471 256,865 915,650

Table 2: The grammars used for testing

English Resource English FraCaS Swedish FraCaS

Nr. terminals (w) 1,549 1,549 208

Nr. nonterminals (A) 211 231 468

Nr. constituents (A.r) 20,669 22,422 8,017

Nr. grammar rules (A→ f( ~B)) 45,919 135,121 103,334

Nr. linearizations (f.r = α) 567,818 1,318,915 3,701,923

Nr. left corner pairs (D.u . A.r) 400,657 424,709 2,288,044

Table 3: The test grammars with empty constituents removed

the consequence will already be in the chart. In
the end, lot of useless work will be performed by
predict-bottomup.

This problem completely disappears if the
grammar does not have any empty constituents.
In that case all passive items will span at least one
input token, i.e., j < k, and the predict items will
always be from an earlier parsing state.

4.4 Building the sets in stages
Especially the bottom-up strategies benefit from
a grammar without empty constituents. In that
case, the bottom-up strategies have no use scan-
empty, and the side condition in predict-topdown
can be simplified. Furthermore, combine can only
be triggered by the passive item, since the active
item will be from an earlier parsing state.

If the grammar is non-empty, the inference
rules also say something about in which order the
sets can be built. As an example, if the grammar
is non-empty, the set Ak,k can only be created by
predict-next from Pk which on the other hand is
built by predict-item from Ajk (j ≤ k). This
means that Ak,k and Pk depend on each other.

By analyzing all inference rules, we come to
the following build order, where j < k:

Aj,j ,Pj ⇒ Aj,k,Fj,k ⇒ Rk ⇒ Ak,k,Pk

This ordering suggests the following pseudo-code

for parsing n tokens using a non-empty grammar:

1. Build the sets P0 and A0,0

[init-topdown, pred.-topdown, pred.-item]

2. For each k between 1 and n:

(a) Build Aj,k and Fj,k (for all j < k)
[complete, combine, scan,
scan-bottomup, pred.-bottomup]
As a side-effect, this will also add
new rules to R

(b) Build Pk and Ak,k

[pred.-topdown, pred.-item, pred.-next]

5 Evaluation

We performed a small evaluation of our four pars-
ing strategies. We tested two English grammars
and one Swedish grammar written in GF (Ranta,
2011) on 100 randomly selected sentences from
the FraCaS textual inference problem set (Cooper
et al., 1996). One of the English grammars is
the GF English Resource grammar (Ranta, 2009)
with the FraCaS lexicon added. The other two
grammars and the Swedish translations of the sen-
tences are taken from the FraCaS GF Treebank
(Ljunglöf and Siverbo, 2011).
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English Resource English FraCaS Swedish FraCaS
chart time /item chart time /item chart time /item

Top-down 721,000 9,2 s 13 µs 96,000 1,7 s 18 µs 96,000 1,7 s 18 µs

Bottom-up 144,000 2,5 s 17 µs 51,000 1,1 s 21 µs 167,000 3,8 s 23 µs

Filtered top-down 239,000 3,2 s 13 µs 38,000 0,8 s 21 µs 27,000 0,5 s 20 µs

Filtered bottom-up 27,000 0,5 s 17 µs 8,000 0,2 s 20 µs 17,000 0,6 s 34 µs

Table 4: Average chart size per sentence, parse time per sentence and parse time per chart item.

5.1 Non-empty bottom-up grammars
As explained in section 4.3, the bottom-up strate-
gies perform especially poorly if the grammars
contain empty constituents. So we also created
non-empty versions of the grammars. Table 2
contains some statistics about the grammars and
table 3 about their non-empty versions. The ta-
bles show that the size of the grammar can ex-
plode quite dramatically when removing empty
constituents, but it depends on the grammar. E.g.,
the number of rules in the FraCaS grammars in-
crease by 50 times, while the Resource grammar
is almost unaffected.

Despite the dramatic increase of the grammar
size, the non-empty grammars always outperform
the empty grammars when doing bottom-up pars-
ing. On the other hand, the top-down strategies
perform much worse on the empty grammars.
Therefore we tested the bottom-up strategies on
the empty grammars, and the top-down strategies
on the original grammars.

5.2 Test results
We tested each of the four parsing strategies on
each of the three grammars and their test sen-
tences. The results are given in table 4, which
contains the average size of the chart after pars-
ing each test sentence, together with the aver-
age parsing time and the average parsing time per
chart item. The tests were run on a 2GHz Intel
Core2Duo processor with 4GB RAM.

It is clear from the table that the filtered algo-
rithms outperform the unfiltered ones, and that the
filtered bottom-up algorithm is the fastet most of
the time. However, we have only tested on three
quite similar grammars, so the results could very
well be different when testing on other grammars.

Note the increase in parsing time per item for
the filtered bottom-up algorithm on the Swedish
grammar. This is most certainly caused by the
extreme size of the non-empty Swedish grammar,

forcing the Python interpreter to perform garbage
collection much more often than usual.

6 Final remarks

We compared four previously published PM-
CFG/LCFRS parsing algorithms, and argued that
they all implement the same top-down Earley
style algorithm without bottom-up filtering. From
Angelov’s (2009) algorithm we derived three new
PMCFG parsing algorithms, one pure bottom-up
variant and two variants using a left corner fil-
ter. An initial evaluation suggested that these new
algorithms can increase PMCFG parsing perfor-
mance dramatically, at least for some grammars.

6.1 The correct-prefix property

An algorithm satisfies the correct-prefix property
(CPP) if it aborts and reports a failure as soon as
it reads a prefix that is not a prefix of any correct
string in the grammar (Nederhof, 1999).

Angelov’s (2009) original top-down algorithm
already satisfies CPP, and since the filtered top-
down algorithm does not add any additional parse
items it also satisfies CPP.

The filtered bottom-up algorithm would also
be prefix-correct if the left corner relation was
perfect. But we extract the left corners from a
context-free approximation, which means that the
relation is over-generating. Therefore some non-
CPP parse items can be pass through the left cor-
ner filter, which means that neither of the bottom-
up algorithms satisfy CPP.

6.2 Implementation

We have implemented all four algorithms as a li-
brary in the programming language Python. The
library is released under an open-source licence
and can be downloaded or forked from the fol-
lowing URL:

http://github.com/heatherleaf/MCFParser.py
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Abstract

There is a tension between the idea that id-
ioms can be both listed in the lexicon, and
the idea that they are themselves composed
of the lexical items which seem to inhabit
them in the standard way. In other words, in
order to maintain the insight that idioms ac-
tually contain the words they look like they
contain, we need to derive them syntacti-
cally from these words. However, the en-
tity that should be assigned a special mean-
ing is then a derivation, which is not the
kind of object that can occur in a lexicon
(which is, by definition, the atoms of which
derivations are built), and thus not the kind
of thing that we are able to assign meanings
directly to. Here I will show how to resolve
this tension in an elegant way, one which
bears striking similarities to those proposed
by psychologists and psycholinguists work-
ing on idioms.

1 Introduction

One standard conception of the lexicon is that it is
a set of form-meaning pairs, usually just the bare
minimum needed to derive in a systematic way
all the other form-meaning pairings constitutive
of the language (Di Sciullo and Williams, 1987).
Under this conception of the lexicon, an idiom, as
its meaning is by definition not predictable given
its form, must be a lexical item. Given that id-
ioms are able to occur in syntactic environments
where their parts are separated by arbitrarily large
amounts of material, as in 1, it then follows, under
this conception of the lexicon, that lexical items
must (be able to) have complex internal structure,
of the sort that is amenable to syntactic manipula-
tion.

(1) The cat seems to have been let out of the
bag.

This treatment of idioms is unsatisfying in the
following way. It is natural to think that the
word ‘cat’ occurs in the idiom ‘let the cat out of
the bag’, and not just a synchronically unrelated
string of phonemes /c/, /a/, /t/. However, as id-
ioms are simply entered en masse into the lexicon,

and are therefore not derived objects, they cannot
be said to contain the words they look like they
contain. In other words, the word ‘cat’ occurs in
‘let the cat out of the bag’ under this conception
of the lexicon to the very same degree it occurs in
‘catastrophe’ (i.e. not at all).

In order for the word ‘cat’ to actually occur
in the idiomatic expression ‘let the cat out of the
bag’, the idiomatic expression must have a deriva-
tion that uses the word ‘cat’.1 But then it would
seem that we must assign a non-predictable mean-
ing to a non-lexical item.

There are thus two (mutually incompatible)
roles that a lexicon plays. It is on one hand the set
of syntactic building blocks, and on the other the
repository of form-meaning pairings. In this pa-
per I will show how the transductive (‘two-step’)
approach to grammar (Morawietz, 2003) disen-
tangles these two notions. The transductive ap-
proach to grammar defines the expressions gener-
ated in two steps: first, in terms of a set of deriva-
tion trees, and second, in terms of operations turn-
ing these derivation trees into the objects (sounds,
and meanings) that they are the derivations of. We
propose that the mapping between derivation tree
and derived object be not a simple transduction,
but rather an extended one in the sense of Graehl
et al. (2008). These transducers implement ex-
actly the kind of ‘bounded subderivation’ transla-
tion suggested by Shieber (1994). This ennables
us to dissolve the tension between listing idioms
on the one hand, and allowing them to be derived,
on the other – they are derivationally complex, but
interpretatively atomic.

Compare this approach with the general picture
painted by Chomsky (1995):

A language, in turn, determines an infi-
nite set of linguistic expressions (SDs),

1This is true by definition: an expression A contains all
and only those expressions that its immediate constituents
contain, along with its immediate constituents. (Note that
this implicitly involves identifying an expression with its
derivation; we don’t say of ambiguous expressions that they
contain all the expressions that occur in any of their deriva-
tions, but rather that under one reading, the expression con-
tains one set of expressions, and under another, another.)
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each a pair 〈π, λ〉 drawn from the inter-
face levels (PF,LF), respectively.

According to the two-step approach, each lan-
guage determines an infinite set of linguistic ex-
pressions d, which are then mapped to inter-
face interpretable elements π and λ by opera-
tions Π and Λ, respectively. Λ will be viewed
as the repository of atomic syntax-meaning pair-
ings, and Π as the repository of atomic syntax-
form pairings, while these may make reference
to syntactic atoms, they are defined over entire
derivation trees, and thus can make reference to
larger chunks than single nodes.

The remainder of this paper is structured as fol-
lows. In section 2 we present some formal prelim-
inaries. Our proposal is presented in more detail
in §3. Section 5 explores linguistic aspects of id-
ioms from this perspective. Section 6 is the con-
clusion.

2 Background

Lambda terms provide a simple and uniform pre-
sentation of structured objects (trees, strings) and
of mappings between them. Given a denumerably
infinite set X of variables, and a set C of con-
stants, the set of lambda terms over C is defined
by the following grammar:

M ::= X |C |(MM) |λX.M

The usual notions of β, η, and α reduction apply
(Barendregt, 1984), and we do not distinguish be-
tween terms which are β, η, or α equivalent.

We are interested in lambda terms which can
be (simply) typed. Given a finite set A (of atomic
types), we define the set T (A) of types as the clo-
sure of A under pairing. When writing elements
of T (A), we treat pairing as associating to the
right; (a, (b, c)) will be written simply as abc. We
write t0 := t and tn+1 := ttn. The order of an
atomic type is 1, and of a function type ab is the
greater of ord(a) + 1 and ord(b). A linear Higher
Order Signature (HOS) is a triple Σ = 〈C,A, τ〉
where C and A are finite sets (of constants and
atomic types, respectively), and τ : C → T (A) is
a function assigning types over A to each c ∈ C.
We adopt the notational convention that a HOS
Σi consists of Ci, Ai, and τi. A HOS is of order n
just in case the highest order type assigned to any
constant is n.

x :α`Σ x :α
Γ`ΣM :αβ ∆`ΣN :α

Γ,∆`Σ(MN) :β

Γ,x :α`ΣM :β
Γ`Σ λx.M :αβ `Σ c : τ(c)

Figure 1: Deriving typing judgments

A typing context Γ is a finite map from vari-
ables to types. We write x :α to indicate the typ-
ing context defined only on x, mapping x to α.
Given typing contexts Γ,∆, their union Γ,∆ is
defined iff they have disjoint domains (i.e. no vari-
able is assigned a type in both Γ and ∆). A typing
judgment Γ`ΣM :α indicates that M has type α
in context Γ, with respect to HOS Σ. A typing
judgment is derivable just in case it is licensed
by the inference system in figure 1.2 The lan-
guage Λα(Σ) at type α of HOS Σ is defined to be
the set of lambda terms which have the type α in
the empty context (Λα(Σ) := {M : `ΣM :α}).
We write Λ(Σ) to denote the set of all well-typed
lambda terms over Σ.

A tree is a first order term (i.e. a term of atomic
type) over a second order HOS (which we will
call a tree signature). Here a constant corresponds
to a node of a tree, and its arguments (which are
themselves trees) to its daughters. A tree con-
text is a second order term over a second order
HOS. A set of trees is regular iff it is the lan-
guage Λα(Σ) at some atomic type α of some tree
signature Σ. The atomic types in this case corre-
spond to states of a tree automaton, and a constant
c of type a1a2 · · · ana corresponds to a production
c(a1, . . . , an) → a. A string is a second order
term over a second order HOS all of whose con-
stants have type αβ for some atomic types α, β
(which we will call a string signature). As an
example, λx.x represents the empty string, and
λx.a(b(x)) the string “ab”. As before, the types
correspond to states of an NFA, and the function
type αβ assigned to a constant c to a transition
fromα to β reading c (without ε transitions). A set
of strings is regular iff it is the language Λαβ(Σ)
of some string signature Σ, for α, β atomic types

2Because the rules for variables and constants require
particular typing contexts, lambda bindings are necessar-
ily non-vacuous. Furthermore, because contexts are finite
maps, and context union is only defined over disjoint con-
texts, lambda bindings are necessarily linear.
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Σ1

Σ2

L

Figure 2: ACGs, graphically

(here α is the start state of the NFA, and β the
(unique) final state).

A linear homomorphism L from HOS Σ1 to
HOS Σ2 is a pair of maps F : A1 → T (A2)
and G : C1 → Λ(Σ2) such that for any c ∈
C1, `Σ2 G(c) : F̂ (τ1(c)), where F̂ is F extended
pointwise over T (A1); this simply demands that
the lambda term a constant is mapped to has a type
which is appropriately related to the type of the
original constant. The order of a linear homomor-
phismL is the maximum order of the image under
it of an atomic type.3

Our proposal is formalized using abstract cat-
egorial grammars (ACGs). An ACG (de Groote,
2001) G = 〈Σ1,Σ2,L, α〉 consists of a pair of
higher order signatures Σ1 (called its abstract vo-
cabulary) and Σ2 (its concrete vocabulary), a lin-
ear homomorphism L (called a lexicon) between
them, and a designated type α inA1. The abstract
language of an ACG G is the set Λα(Σ1), and
its concrete language is the set L(Λα(Σ1)) :=
{L(M) : M ∈ Λα(Σ1)}. It will be convenient
to depict ACGs graphically, as in figure 2.

We write G(m,n) for the set of ACGs G with
m the order of its abstract vocabulary, and n the
order of its lexicon. Thinking of the abstract vo-
cabulary as the ‘derivation structures’, ACGs with
a second order abstract vocabulary (i.e. those in
G(2) :=

⋃
n∈N G(2, n)) represent grammar for-

malisms with regular derivation tree languages
(de Groote and Pogodalla, 2004). The set of con-
crete tree languages defined by G(2) is exactly the
set of tree languages generated by hyperedge re-
placement grammars (Kanazawa, 2010), and the
concrete string languages defined by G(2) is ex-
actly the set of multiple context free languages
(Salvati, 2007).

3ord(L) := max({ord(L(a)) : a ∈ A1})

3 Proposal

We focus on grammars with regular derivation
tree languages; in particular tree adjoining gram-
mars (Joshi, 1987) and minimalist grammars (Sta-
bler, 1997).

The derived structures generated by a grammar
in both of these grammar formalisms can be given
in terms of a transducer of a particular sort acting
on a regular set of derivation trees – in the case of
tree adjoining grammars the transducer is a simple
macro tree transducer (Shieber, 2006), and in the
case of minimalist grammars it is a linear deter-
ministic multi-bottom up tree transducer (Kobele
et al., 2007; Mönnich, 2007).

Importantly, natural semantic analyses for both
grammar formalisms can be given in terms
of a similar tree transduction over the deriva-
tion (Nesson, 2009; Kobele, 2006), allowing
a ‘synchronous’ representation whereby lexical
items ` are represented as triples of the form
〈h1(`),cat(`), h2(`)〉, where h1, h2 are the de-
rived structure and semantic structure transduc-
tions respectively, and cat(`) is the relevant cat-
egorical information (the state the regular tree au-
tomaton recognizing the well-formed derivation
trees is in upon scanning `).4 The ‘standard’ ap-
proach to idioms in (synchronous) TAG is to enter
them directly into the lexicon (Shieber and Sch-
abes, 1990) – this amounts to introducing a new
atomic lexical item `idiom, with (possibly com-
plex) images under h1 and h2. While idiomatic
expressions have not been handled in published
work on MGs, this is also the obvious approach
here too. While judicious choice of the derived
structures associated with `idiom may allow for
the ability of idiomatic material to be affected by
syntactic operations, it does not capture the in-
tuition that idioms actually contain the words it
seems they do. To do this, we move to extended
transductions (we discuss for simplicity homo-
morphisms: transductions without state). The
kernel of an extended homomorphism is a finite
relation between tree contexts: H ⊂ TΣ(X) ×
T∆(X). This kernel is thus the repository of non-
predictable interpretations of derivation tree con-
texts. Intuitively, H will map kick(the(bucket))
directly to die, as well as, indirectly via its

4The second component, cat(`), is only implicit in the
standard presentations of synchronous TAGs, e.g. (Shieber
and Schabes, 1990) (but is partially indicated by the links).
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components, to kick(ιx.bucket(x)). Note
that, in the case we are primarily interested in
here in which only the semantic map is ‘non-
compositional’, we have two objects which can
be weighted – the set of lexical items, and the
kernel of the semantic homomorphism. This is
in line with the psycholinguistic findings (more
on which in §5.2) (Titone and Connine, 1999)
that (1) idioms seem to behave as though they are
syntactically complex (weights over the lexicon)
and (2) idioms themselves have different frequen-
cies which subjects are sensitive to (weights over
the extended transducers). In the remainder of
this paper, we use abstract categorial grammars
to work out this approach to idioms.

4 An ACG perspective

Viewing extended transducers from the perspec-
tive of abstract categorial grammars (ACGs) (de
Groote, 2001) gives us a uniform way of visual-
izing this approach to idioms, one which explains
the attraction of treating idioms as complex lexi-
cal items. Simply put, applying an extended trans-
ducer to a term t is the same as applying a non-
extended transducer to the inverse homomorphic
image of t under the map hex : Σ∪∆→ TΣ(X),
which maps elements of Σ to themselves, and el-
ements of ∆ to contexts over Σ. (∆ represents the
idioms as atomic objects.) (Second order) ACGs
provide a uniform notation for the macro and the
multi bottom-up transducers mentioned above –
both are defined in terms of a common set A of
‘abstract λ-terms’ which are mapped via homo-
morphism L to a set of ‘concrete λ-terms’ C. The
differences between macro and multi bottom-up
transductions are cashed out in terms of the homo-
morphisms and the nature of the concrete terms
(de Groote and Pogodalla, 2004). Synchronous
grammars are given in terms of two ACGs sharing
the same abstract language A, but with different
homomorphisms LΠ and LΛ to different concrete
languagesC1 (derived syntax) andC2 (semantics)
respectively as illustrated in figure 3 (cf. (Pogo-
dalla, 2007)).

An ACG representation of an extended trans-
duction τ from the terms of HOS A to those of
HOS C is obtained as follows. First, we cre-
ate a HOS X , whose constants represent the left
hand sides of the extended transducer rules, and
a homomorphism LX expanding constants in X
to the terms over A which they represent. Then

A

C1

LΠ

C2

LΛ

Figure 3: An ACG Perspective on Synchronous Gram-
mars

X

C

rhs(τ)

A

LX

Figure 4: Representing an extended transducer τ

the right hand sides of the extended transducer
rules are implemented via a homomorphism from
X to C. In the degenerate case where τ is
a non-extended transduction, A and X are the
same and the map LX is the identity function.
This is shown in figure 4. As a concrete ex-
ample, consider an extended (linear) bottom-up
transducer t from TΣ to T∆. The HOS A has
a single atomic type o, and constants σ ∈ Σ of
type orank(σ), similarly for C and ∆. The atomic
types of the HOS X are the states of the trans-
ducer. For each rule ρ = q(D[x1, . . . , xn]) →
E[q1(x1), . . . , qn(xn)], we have in X a con-
stant cρ of type q1 · · · qnq, whose image under
LX : X → A is λx1, . . . , xn.E(x1) · · · (xn),
and whose image under L : X → C is
λx1, . . . , xn.D(x1) · · · (xn).

From the synchronous perspective, it is natural
to begin with the non-extended case, as shown in
figure 3. Adding ‘extension’ on the semantic side,
so as to describe idioms, we must introduce a new
abstract language X , which is simply the original
abstract language of derivation terms A with an
extra atomic constant for each idiom. Then the
semantic homomorphism LΛ is defined from X
to C2, and the derived syntactic homomorphism
is the composition of the mapping LX from X to
A, which maps elements of A to themselves, and
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X

A
LX

C1

LΠ

C2

LΛ

Figure 5: Semantically Extended Synchronous Gram-
mars

X

C1

LΠ ◦ LX

C2

LΛ

Figure 6: An ACG Perspective on Idioms as Lexical
Items

idiomatic constants to the complex (derivational)
objects they appear to be, and the mapping LΠ

from A to C1. Here we see that idioms are both
lexical items (elements of X) and derived (com-
plex objects in A). This is shown in figure 5.

Indeed, the standard approach to idioms,
whereby they are simply lexical items, is obtained
from ours by eliminating the HOS A by compos-
ing the maps LX and LΠ, as shown in figure 6.
Distinguishing between A and X , as we propose
here, does however have two (potential) benefits,
as discussed in sections 4.1, where we propose
a similar approach to morphological suppletion,
and 5.2, where we suggest that our approach has
some psychological plausibility.

4.1 Interface Uniformity
In decompositional (i.e. non-lexicalist) ap-
proaches to syntax, the notion of word-hood is
divorced from the notion of syntactic terminal –
words are conceived of as syntactically complex
objects. In this sort of approach, an additional
interface is needed to mediate between syntax
and morphology, so as to permit suppletive forms

X

Y

C1

LΠ

C2

LΛ

A

LX

LY

Figure 7: A w-shaped ACG

(go + Past ; went). A natural idea is to take
both the mapping from syntax to semantics and
the one from syntax to morphology to be of the
same kind; an extended transduction.

In our ACG setting, this amounts to introducing
a new abstract language Y , and a new lexicon LY
mapping terms in Y to terms in A. The lexicon Π
from A to C1, the concrete language of strings, is
replaced by one from Y to C1. This gives rise to a
new ‘w-shaped’ way of combining ACGs, shown
in figure 7. In the figure, we see that the deriva-
tion tree language is no longer directly mapped to
any derived structure language (and has become
therefore a concrete language). Instead, it serves
only to coordinate the abstract languages X and
Y , making sure that the strings and meanings they
produce are ‘of the same derivation’. Note also
that we are no longer able to eliminate the HOSA
(and recover the standard approach to idioms out-
lined in figure 6) as the relation betweenX andC1

(or between Y and C2) is no longer functional.
Parsing in a w-shaped ACG is a matter of com-

puting the inverse image of LΠ, then its image
under LY , then its inverse image under LX , and
then finally its image under LΛ; in other words,
the composition LΛ ◦ L−1

X ◦ LY ◦ L−1
Π . Whereas

application of a lambda homomorphism to a rec-
ognizable set of terms does not usually preserve
recognizability, here the mappings LX and LY
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are both first order (as they map atomic types to
atomic types) and lexicalized (abstract constants
are mapped to non-combinators), and thus do in-
deed preserve recognizability. Hence a regular set
of strings (over the concrete HOS C1) is mapped
to a regular set of trees over the abstract HOS X .

The fact that the maps LX and LY are first or-
der distinguishes our proposal formally from the
related one proposed by Dras (1999) in the con-
text of textual paraphrase, which, from our per-
spective, introduces a sequence of ever more ab-
stract languages, which are related to each other
by maps of the same complexity as the maps LΠ

and LΛ. (There it is described as deriving tree
languages which are then interpreted as derivation
tree languages and so on.)

5 Linguistics

5.1 Constraints on Idiomatic Structure
Linguists have formulated various constraints on
possible idioms, in particular that dependents of
a head can belong to an idiom only if the head
belongs as well (Koopman and Sportiche, 1991;
O’Grady, 1998). This constraint is naturally im-
plemented in the present context by adopting a
TAG-like perspective on derivations, whereby the
operations of the grammar are left implicit, and
the lexical items are treated as constants of higher
rank. Then any first order subterm of a deriva-
tion tree satisfies this constraint. This move addi-
tionally rules out completely unlexicalized idioms
and constructions.5 This perspective on deriva-
tion trees can be easily adapted into the mini-
malist grammar framework, where the rank of
each lexical item is the number of positive selec-
tor features6 it has.7 Although the set of well-
formed minimalist derivation trees is not the al-
gebra freely generated over this signature, it is a
regular subset thereof.

5For example, λx, y.merge(move(y), z) is a first order
term over a HOS for (standard presentations of) minimalist
derivations. It could be the image of some idiom under the
map LS .

6Recall that minimalist grammar categories are finite lists
of syntactic features, which are either positive or negative
versions of either licensing (for the move operation) or se-
lection (for merge) feature types.

7It is also not necessary in the TAG framework, where
one could treat elementary trees as nullary function symbols,
and adjoin and substitute as binary ones.

5.1.1 Syntactic Permeability
Empirical ‘puzzles’ about idioms, such as

their variable permeability to syntactic operations
(Nunberg et al., 1994), must be dealt with by
fine-tuning the syntactic analysis; canonical anal-
yses of voice phenomena in MGs (as in (Kobele,
2006)) treat the voice head as taking a verb phrase
as an argument – an idiom which is not passiviz-
able must include the voice head, whereas one
which is must not.

As an example, consider the idiom “kick the
bucket” (‘die’), which cannot be passivized.8

Adopting the naı̈ve formalization of standard
transformational analyses from Kobele (2006),
we could represent the idiomatic interpreta-
tion of this phrase by means of a unary ab-
stract constant ckick the bucket, which is inter-
preted semantically as die, and derivationally
as λx.act(kick(the(bucket)))(x).9 On the
other hand, idioms like “let the cat out of the bag”
(‘reveal a secret’) can be passivized (and then sub-
ject to raising, and other transformations). While
there is no analysis of prepositions in Kobele
(2006), we can treat let as a raising to object verb,
and adapt a small clause analysis of the following
form:10

[V let [sc[Dthe cat] out [P of the bag]]

We represent this in terms of a
nullary abstract constant clet cat out of bag,
which is semantically interpreted as
λx.some(secret)(λy.reveal(y)(x)), and
which is derivationally interpreted as
let(out(P(of(the(bag))))(the(cat)))

Finally, an idiom like “throw the book at”
(‘punish severely’) illustrates the need for con-
stants corresponding not to subtrees, but to deriva-
tion tree contexts. Adopting again an overly
simplistic approach to prepositions, we repre-
sent this passivizible idiom using the unary ab-
stract constant cthrow book at, which is seman-
tically interpreted as λx.severely(punish(x)),

8This means that sentences like “The bucket was kicked”
can have only a literal interpretation.

9Lexical entries:
〈act,=V +k =d v〉 〈kick,=d V〉
〈the,=n d -k -q〉 〈bucket, n〉

10Lexical entries:
〈let,=sc V〉 〈out,=p =d sc〉
〈of,=d +k +q P〉 〈P,=P p〉
〈bag, n〉 〈cat, n〉
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and is interpreted as the derivational term
λx.Adj(throw(the(book)))(P(at(x))).11

5.1.2 Transformationalism
In general, treating idioms via extended trans-

ducers (as done here) puts great pressure on the
type system of the grammar formalism (if it is de-
sired to have a single abstract constant represent-
ing the idiom in all of its glory). As one of the
arguments for transformational analysis continues
to be the variety of syntactic contexts which per-
mits idiomatic interpretation, it is perhaps no sur-
prise that the minimalist analyses sketched here
go some ways in achieving the ideal of assign-
ing a single type to the idiomatic abstract con-
stant. However, the particular constraints on id-
iom shape in place here rule out certain otherwise
reasonable transformational analyses, such as the
implementation of the raising analysis of relative
clauses in Kobele (2006).

5.2 Psycholinguistics
Adopting a ‘levels’ perspective on the relation
between grammar and parser (Marr, 1982), a
‘search’ perspective on parsing still needs a way
to order nodes in the agenda. A natural strategy
here is to use weights assigned to lexical entries.
Perhaps the main substantive difference between
our proposal and ‘standard’ treatments of idioms
is the availability of two ‘lexica’ – the HOSs A
(for derivations) and X (for idioms) – for dif-
ferential weighting (see figure 5). The standard
treatment, according to which idioms are lexical
items (as in figure 6), does not have access to the
HOS A. We will need to make a linking theory
precise, but, generally speaking, this setup will
predict that idioms behave in certain respects as
though they were indeed composed of the syntac-
tic atoms it appears they contain. We claim that
the literature on priming is consistent with this
prediction (Cutting and Bock, 1997; Titone and
Connine, 1999; Peterson et al., 2001; Sprenger
et al., 2006; Konopka and Bock, 2009). Priming
is the phenomenon whereby a prior exposure to
some linguistic object token facilitates the com-
prehension of another token of that type, and in-
creases the likelihood of producing a token of that
type.

11Lexical entries:
〈throw,=d V〉 〈Adj,=V =p V〉
〈at,=d +k +q P〉 〈P,=P p〉
〈book, n〉 〈cat, n〉

In order to account for the fact that words
can prime idioms which contain them, and vice
versa, Sprenger et al. (2006) (following Cutting
and Bock (1997)) propose that the mental lexicon
is structured as a graph; the lexicon contains id-
ioms, along with links to their constituent parts.
Priming works by increasing the weights attached
not only to a single node, but to all of its immedi-
ate neighbors. (And thus kick will prime the node
kick as well as its neighbors kick the bucket, kick
the can, . . . ) One defect of this account is that it
does not explain why certain nodes are linked to
others. Still, it bears an obvious resemblance to
the ACG account presented here – its nodes are
the elements of HOSX (which is the HOSAwith
extra constants for idioms), and the links are given
by the lexicon LX .

First, a (sketch of a) naı̈ve linking theory. We
assume that priming effects are to be captured
by updating weights on lexical items, and that
the weights of all and only the lexical items in
a successful parse are increased.12 Under this
view, priming effects come about due to an in-
creased weight of the primed lexical item as a
result of having used it previously in a success-
ful parse. For our preliminary purposes here, we
will say that a derivation d′ primes derivation d
(of sentence s) given grammar G just in case
WeightGd′ (d) > WeightG(d), where Gx is
the result of updating the weights of lexical items
in parse x (i.e. the weight of d is higher in the
reweighted grammar than in the original gram-
mar).

Now, taking the unique derivation d′ of the
sentence “John kicked Mary” as our primer, and
the idiomatic derivation d of the sentence “Susan
will kick the bucket” as our primee, we have that
the weight of d in the ‘idiomatic’ HOS X is the
same as in Xd′ , but that the weight in the ‘deriva-
tional’ HOSA is less than inAd′ (as the weight of
the constant ckick was increased after parsing d′).
Taking the overall weight of a term t in G to be
a monotonic function f of its weight in X and its
weight in A, we have that d is primed.

12This is an ‘off-line’ implementation of priming effects,
which neglects the role played by alternative parses of the
sentence; Slevc and Ferreira (to appear) demonstrate that
priming may occur from failed parses.
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6 Conclusion

The noncompositional aspect of idiomatic expres-
sions is most naturally dealt with in terms of ex-
tended transducers. The ACG perspective allows
for a generalization to a wide variety of transducer
types, and language families. In addition to being
a principled formal account of idioms, the present
story allows for a natural connection to the psy-
cholinguistic data.

What we have not explained is the intuition
that, in some idioms (such as let the cat out of
the bag), certain parts of the idioms (e.g. the cat)
seem to be associated with certain parts of the id-
iomatic meaning (e.g. the secret). That this intu-
ition may in fact be deserving of an explanation
is suggested by Horn (2003) (building on work by
Nunberg et al. (1994)), who argues that this sort
of ‘semantic transparency’ is a good predictor of
whether the internal structure of an idiom can be
subject to syntactic manipulation.
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Abstract

We propose a method for the extraction of
a Tree Adjoining Grammar (TAG) from a
dependency treebank which has some rep-
resentative examples annotated with phrase
structures. We show that the resulting TAG
along with corresponding dependency struc-
ture can be used to convert a dependency
treebank to a TAG-based phrase structure
treebank.

1 Introduction

In this paper, we address the problem of extract-
ing a Tree Adjoining Grammar (TAG) from a tree-
bank which has been annotated manually for de-
pendency structure (DS), and which has a small
set of representative example sentences manually
annotated for both DS and phrase structure (PS).
There has been much work on TAG extraction
from PS treebanks (e.g., (Xia, 1999; Chen, 1999)).
In those studies, heuristics are used to “cut up” the
PS trees of entire sentences into elementary trees,
which are then collected into a grammar.

This paper extends the previous work and
makes the following novel contributions:

• We present a method for extracting a TAG
from a DS treebank augmented with a set of
representative examples of (DS, PS) pairs.

• We show that the resulting TAG paired with
DS subtrees can be interpreted as conversion
rules for converting the DS treebank to a PS
treebank.

The structure of the paper is as follows. In Sec-
tion 2, we review the relevant properties of the
Hindi Treebank, which serves as the source of our
examples in this paper. We then discuss the crucial
notion of “consistency” in Section 3, and present

our basic algorithm in Section 4. We then dis-
cuss two issues which require extensions to our
agorithm: empty categories (Section 5) and long-
distance word order variations (Section 6). These
extensions are sketched, but we do not present
them in full detail due to lack of space. Finally,
we discuss remaining issues in Section 7 and then
conclude.

2 The Hindi Treebank

In this paper, we use the Hindi Treebank (HTB)
(Palmer et al., 2009) as an example, but the princi-
ples we present are language-independent. Com-
pared to other existing treebanks, the HTB is un-
usual in that it contains three layers: dependency
structure (DS), PropBank-style annotation (PB)
(Kingsbury et al., 2002) for predicate-argument
structure, and an independently motivated phrase-
structure (PS) annotation which is automatically
derived from the DS plus the PB. The treebank is
created in three steps. The first step is the manual
annotation of DS. The second step is PropBank-
ing, which focuses on adding the lexical predicate-
argument structure on top of DS. The third step
is the automatic creation of PS, which is done by
a DS-to-PS conversion process that takes DS and
PB as input and generates PS as output.

Figure 1 (top row) shows the three layers for Ex
(1), a sentence with the unaccusative verb break.
Because the three layers are independently mo-
tivated, they have a certain freedom in choos-
ing how they represent syntactic phenomena. In
this example, the DS layer decides to treat unac-
cusative verbs the same way as unergative (such
as sleep), and marks their subjects as a k1. In con-
trast, the PB makes the distinction, marking the
subject of an unaccusative verb as an ARG1, not
ARG0 (as is the case for the subjects of unerga-
tive verbs); PS also makes the distinction, by in-

162



a. DS tree: b. PB annotation: c. PS tree:

broke/V

k1
windows/N

vmod
suddenly/Adv

Predicate: break
Frame id: break.1
ARG1: windows

VP

NPi

N
windows

VP-Pred

ADVP

Adv
suddenly

VP-Pred

NP

NULL
CASEi

V
broke

d. DSconst tree: e. DSderiv tree:

broke/V

k1i
windows/N

vmod
suddenly/Adv

k2
CASEi/NULL

broke/V(e5)

k1
windows/N(e3)

vmod
suddenly/Adv(e2)

Figure 1: The three annotation levels of the HTB: Dependency Structure, PropBank, and Phase Structure (top
row); the consistent DS (DSconst) and the derivation tree (DSderiv) obtained from these structures (bottom row);
ei in the DSderiv tree refers to elementary trees in Figures 5-6.

dicating movement from the object position to the
subject position using a coindexed trace.

(1) khir.kiyã:
windows.F

acaanak
suddenly

t.uut.ı̃:
broke.FPl

‘The windows broke suddenly.’

3 Consistency between DS and PS

In our previous study (Xia et al., 2009; Bhatt et
al., 2011), we proposed a DS-to-PS conversion al-
gorithm, which extracts conversion rules from a
small number of (DS, PS) pairs, and then applies
the rules to a new DS to generate a PS for the DS.

The algorithm introduces two concepts: con-
sistency and compatibility. A DS and a PS tree
are consistent if and only if there exists an assign-
ment of head words for the internal nodes in the
PS such that after merging all the (head child, par-
ent) nodes in the PS, the new PS is identical to
the DS. In Figure 1, the DS in (a) and the PS in
(c) are not consistent because the empty category
CASE appears only in (c). In contrast, the depen-
dency structure in (d), where CASE is added to the
original DS as a k2 dependent of the verb, is con-
sistent with the PS in (c). A DS and a PS analysis

for a linguistic phenomenon are compatible if the
(DS,PS) tree pairs for the sentences with that phe-
nomenon are consistent.

Bhatt and Xia (2012) demonstrate that auto-
matic, high-quality DS-to-PS conversion is facil-
itated when the analyses chosen by the DS and
PS guidelines for most linguistic phenomena are
compatible; for the phenomena with incompati-
ble analyses, manually written rules transform DS
to an intermediate representation called DSconst

(const stands for consistency). The process of cre-
ating DSconst from a DS is explained in that pa-
per.

We are currently using the algorithm to auto-
matically generate the PS trees in the HTB, given
the manual annotation of the DS and PB layers.
The process is illustrated in Figure 2.1 The pro-
cess assumes that there is a small set of sentences
with all three layers of annotation, which are used
in the training stage of the conversion to extract

1PB is part of the input for the conversion process because
it provides certain information (e.g., unaccusative vs. unerga-
tive distinction) that is not present in the DS. For the sake of
simplicity, we still call the process “DS-to-PS conversion”,
though “DS+PB-to-PS conversion” would be more complete.
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conversion rules. The rules are then applied to the
DS and PB for the new sentences in the test stage
to generate PS. For instance, if the DS and PB in
Figure 1a. and 1b. are the input to the training
stage, the system will create DSconst in Figure 1d.
From the (DSconst, PS) pair (Figure 1d. and 1c.),
the system will automatically extract the conver-
sion rules in Figure 3. If these rules are applied
to the same DSconst tree in the test stage, the PS
created by the system will be identical to the one
in Figure 1c. The details of the algorithm can be
found in (Xia et al., 2009; Bhatt and Xia, 2012).

(a) Training stage

(b) Test stage

create

create

extract
rules

rules
apply

 DS

 DS

 PB

 PB

 PS

 PS

 conversion rules

 conversion rules

DS

DS

DS

DS

const

const

const

const

Figure 2: The flow chart for DS-to-PS conversion

4 Basic TAG Extraction Algorithm

Given a dependency treebank DTB and a set of
(DS, PS) pairs, the goals of this study are (1) to
design the algorithm that extracts a TAG from the
DTB, and (2) transforms the DTB into a treebank
for the extracted TAG–that is, for each sentence in
the DTB, we want to create a derivation tree and a
derived tree for the sentence based on the extracted
TAG with the requirement that the derived tree is
consistent with the DSconst for the sentence.

One possible approach works as follows: (1)
run the DS-to-PS conversion algorithm described
in Section 3 on the DTB to generate a PS tree-
bank; (2) extract a TAG from the PS treebank by
adapting an existing grammar extraction algorithm
(e.g., (Xia, 1999; Chen, 1999)); (3) run a TAG
parser to generate a set of parse trees for each
sentence in the DTB; (4) for each sentence in the
DTB, to maintain the dependency relation in its
DS, a filter is needed to throw away all the parse
trees generated in (3) that are not consistent with
the DSconst for that sentence.

This approach has several limitations. First, it
requires adapting a grammar extraction algorithm

in Step (2) and writing a filter in Step (4). Second,
it is highly inefficient; for instance, many parse
trees generated in Step (3) will later be thrown
away in Step (4). Third, the connection between
dependency relation in the DTB and elementary
trees in the extracted TAG is not represented as
the latter is extracted from the PS produced in Step
(1), not from the DS directly.

We propose a new approach (see Figure 4),
which not only extracts a TAG from a dependency
treebank directly, but also provides a new way for
converting DS to PS. Compared to the DS-to-PS
conversion algorithm (see Figure 2), the second
modules in the training and test stages are differ-
ent and the definition of conversion rules is ex-
tended. In the original definition, the lefthand side
of a conversion rule is a dependency link, and the
righthand side is similar to a context-free rule. In
the new definition, the lefthand side is a subtree
of a DS that includes a head and either all its argu-
ments or one adjunct with the adjunct’s arguments,
and the righthand side is an elementary tree. We
call the new rule etree-based rule (etree for ele-
mentary tree).

(a) Training stage

(b) Test stage

 DS

 DS

 PB

 PB

 PS

etree-based rules

const
DS

DS const

DSconst

create

create

etree-based rules

DS deriv

extract etree-
based rules

DS
const

create

and build PS

PS

Figure 4: The flow chart for converting the HTB into a
TAG-based treebank

4.1 Extracting etree-based conversion rules
and TAGs

The training stage, as in Figure 4(a), has two mod-
ules. The first module is the same as the first mod-
ule in the DS-to-PS conversion algorithm and is
described in (Bhatt and Xia, 2012). The second
module takes (DSconst,PS) pairs as input and out-
puts etree-based rules, and Table 1 shows its pseu-
docode.

Xia et al. (1999) described an algorithm that
extracts TAGs from a PS treebank. Given a phrase
structure T, the algorithm extracts a TAG in four
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Figure 3: Conversion rules extracted from the (DSconst,PS) pair in Figure 1, which is produced by the DS-to-PS
conversion process in Figure 2.

Input: TreePairs is a set of (DSconst, PS) pairs
ArgTable is a set of (head-POS-tag, dep-types)

Output: ConvRules is a set of etree-based conversion rules

Algorithm: ExtConvRules(TreePairs, ArgTable)
(1) ConvRules = φ;
(2) for each (DSconst, PS) pair in TreePairs
(3) // Step 1: Make argument/adjunct distinction in the DSconst

(4) for each internal node h in DSconst

(5) mark each child d of h as argument or adjunct based on ArgTable

(6) // Step 2: Choose head child and make argument/adjunct distinction in the PS
(7) for each dependency link (d, h) in DSconst, do the following in the PS
(8) find the lowest ancestor of d and h in PS and call it Y
(9) let Xd be Y ’s child that dominates d and Xh be Y ’s child that dominates h
(10) mark Xh as the head child of Y
(11) mark Xd as an argument or adjunct child of Y based on the label of d in line (5)

(12) // Step 3: deflat the PS and extract etrees from it
(13) deflat the PS so that arguments and adjuncts are not siblings
(14) extract etrees from the deflatted PS

(15) // Step 4: create conversion rules
(16) for each node h in DSconst

(17) for each adjunct child d of h
(18) create a rule where the lefthand side is a subtree of DSconst with dependency
(19) link (d, h) and links between d and all its argument children (if any),
(20) and the righthand side is the corresponding auxiliary tree anchored by d
(21) if (h is the root of DSconst) or (h is not marked as an adjunct child of its parent)
(22) create a rule where the lefthand side is h with all its argument children in the
(23) DSconst, and the righthand side is the corresponding initial tree anchored by h
(24) add the rules to ConvRules

(25) return ConvRules

Table 1: Algorithm for extracting etree-based conversion rules
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Input: ConvRules which is extracted from the training stage
ArgTable is the same as the one used in the training stage
A new DSconst

Output: A set of PSs for the input DSconst

Algorithm: BuildPS(ConvRules, ArgTable, DSconst)
(1) DSderiv= DSconst

(2) DSderiv has an extra field EtreeSet[n] that stores the possible etrees for node n

(3) // Step 1: make argument/adjunct distinction in DSconst

(4) for each internal node h in DSderiv

(5) mark each child d of h as argument or adjunct based on ArgTable

(6) // Step 2: Find etrees for the nodes in DSconst

(7) for each node h in DSconst

(8) for each adjunct child d of h
(9) find rules in ConvRules whose lefthand side is a subtree of DSconst that
(10) includes the dependency link (d, h) and links between d and its arguments
(11) EtreeSet[d] = the etrees in these matched rules
(12) if (h is the root of DSconst) or (h is not marked as an adjunct child of its parent)
(13) find rules in ConvRules whose lefthand side is a subtree of DSconst that
(14) includes h and all its argument children (if any)
(15) EtreeSet[h] = the etrees in these matched rules

(16) // Step 3: Build PSs from DSderiv

(17) PSset = φ
(18) for each combination of etrees in DSderiv

(19) (In a combination, one etree is picked from EtreeSet[n] for each node n in DSderiv)
(20) generate PSs from the combination
(21) add these PSs to PSset

(22) return PSset

Table 2: Algorithm for building PSs for a given DSconst
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steps: (i) for each internal node n in T, select one
of its children as head child according to a head
percolation table; (ii) for other children of n, deter-
mine whether each child is an argument or an ad-
junct of n using an argument table; (iii) deflat the
PS so that arguments and adjuncts are not siblings;
(iv) extract etrees from deflatted PS by decompos-
ing the PS into pieces and gluing some pieces to-
gether to form etrees.

The algorithm in Table 1 can be seen as an ex-
tension of the algorithm in (Xia, 1999). First, be-
cause its input includes DSconst, the dependency
relation is already given between words so Step (i)
is no longer needed; second, argument/adjunct dis-
tinction is made on DSconst first (see Step 1) and
then carried over to PS (see Step 2). Step 1 uses
an argument table which specifies what kind of de-
pendents are considered as arguments of a head.
For instance, if dependents with k1, k2, or k4 role
labels are considered arguments of a verb, the ar-
gument table will include an entry (v, k1/k2/k4).
Step 2 makes the argument/adjunct distinction in
the PS based on the decision made in the DS. Step
3 is identical to Steps (iii)-(iv) and it extracts etrees
from the deflatted PS. Step 4 links subtrees in the
DSconst to extracted etrees to form etree-based
rules. Each subtree in an etree-based rule includes
a head and either all its arguments (this determines
how many substitution nodes the etree has) or one
adjunct of the head and the adjunct’s arguments (if
any). The righthand side of the etree-based rules
form a TAG.

Given the (DSconst, PS) pair in Figure 1d
and 1c, the extracted rules are shown in Figure 5.
Compared to the rules in Figure 3, etree-based
rules have extended locality.

4.2 Generating PS from DS

The test stage (see Figure 4(b)) also has two mod-
ules: the first one is the same as the one in the
training stage. Table 2 shows the algorithm for
the second module. The algorithm has three steps.
The first step makes argument/adjunct distinction
in the input DSconst.

The second step finds the etrees that each word
in the DSconst could anchor. This is done by
forming a subtree of DSconst that a word be-
longs to (similar to Step 4 in Table 1) and then
selecting conversion rules that match that sub-
tree. The etrees in those selected conversion rules
are stored with the node in DSconst, resulting in

a new tree called DSderiv. The subscript de-
riv in DSderiv stands for derivation tree because
DSderiv is just like the derivation tree in the TAG
except that it does not include the positions of sub-
stitution/adjoining operations and which etree the
word anchors in the current sentence is not deter-
mined.

The third step produces a set of PSs from the
DSderiv. The set could have more than one PS due
to various types of ambiguity. In principle, one
could imagine that there is already a one-to-many
mapping between the DSconst the PS. We do not
handle ambiguities that have such a source as we
consider these to be a treebank design flaw. Either
side should be enriched or modified during the de-
sign process to eliminate intrinsically ambiguous
mappings. However, ambiguity can arise despite
careful design of the levels of representation. For
example, in Hindi adverbs can occur before or af-
ter the subject. From the DS and PS trees for a
sentence such as (1), the rule with adjunction at the
VP-Pred-level will be extracted (the second rule in
Figure 5), while the DS and PS trees for acaanak
khir. kiyã: t.uut. ı̃: (“suddenly the windows broke”)
yields a rule with adjunction at the VP-level. Thus,
we have an ambiguous rule. Most of the time this
does not matter since word order resolves the ad-
junction level, but if the subject is empty we ob-
tain two possible derivations using two different
etrees. Another, related type of ambiguity arises
when there are multiple instances of a node label
in one tree, allowing for multiple derivation us-
ing the same etrees. Consider a simple case of a
verb that has a left adjunct as well as a right ad-
junct: L V R. Let us assume that, according to the
conversion rules, both L and R can adjoin at the
VP level. This will lead to two PSs, one with L
attached higher than R, and the other with R at-
tached higher than L.

5 Empty Categories

In the basic algorithm outlined in Section 4,
DSderiv is isomorphic to DSconst by design. The
problem with that design is that DSconst may in-
clude nodes labeled with empty categories (ECs)
(see Figure 1d.), meaning that some etrees in the
resulting TAG would be “lexicalized” by an EC
and that could cause difficulty when using the
TAG for parsing.

To solve this problem, we make two minor revi-
sions to the basic algorithm: in the rule extraction
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Figure 5: Etree-based rules extracted by the algorithm in Table 1 from the (DSconst,PS) pair in Ex (1)

module (see Table 1), if in the DSconst a head has
a dependent which is an EC, then the EC (along
with its phrase structure projection, if any) is in-
cluded in the etree for the head word (see the etree
in Figure 6). Similarly, in the creating DSderiv

module (see Table 2), the EC leaf node will be re-
moved from DSderiv as it is already included in
the etree for its parent node.

V

N

NP

VP

VNP

k1
VP-Predk2

i

NULL i

i

i

NULL
CASE

(e5)(d5)

Figure 6: The new etree-based rule extracted from the
(DSconst, PS) pair in Figure 1. It will replace the first
and last rules in Figure 5

In the case of our unaccusative example, the
extracted TAG will include the rule in Figure 6,
which replace the first and last rules in Figure 5.
The new DSderiv is in Figure 1e., where e2 and e3
are two etrees in Figure 5, and e5 is the etree in
Figure 6.2

6 Issues in Word Order

It has been known for a long time that in a lexi-
calized TAG, the derivation tree is a lexical depen-
dency tree (since the nodes are bijectively identi-
fied with the words of the sentence), and that this
dependency structure is not necessarily the lin-
guistically plausible structure (Rambow and Joshi,
1997; Candito and Kahane, 1998; Rambow et al.,
2001). Consider the following example (2):

2It is not a coincident that in this example DSderiv and
DS are isomorphic, as the DS-to-DSconst module involves
adding ECs and DSconst-to-DSderiv involves removing ECs.
But in theory, DSderiv and DS are not necessarily always
isomorphic as the DS-to-DSconst module is not limited to
adding ECs.

(2) kitaabẽ
books.F

mẼ-ne
I-Erg

khariid-nii
buy-Inf.F

caah-ii
want-Pfv.F

‘Books, I had wanted to buy.’

Here, the standard analysis is that the matrix
clause anchored on want is adjoined into the em-
bedded clause anchored on buy, which results in
a derivation structure in which the buy node dom-
inates the want node, contrary to the dependency
representation. Furthermore, it has been known
that if we want the etrees and the derivation struc-
ture to have a linguistic interpretation, then certain
word orders in free word order languages cannot
be derived using a TAG (Rambow, 1994; Chen-
Main and Joshi, 2008). Consider the following
example.

(3) mẼ-ne
I-Erg

yeh
this

kitaab
book

sab-se
all-Instr

khariid-ne-ko
buy-Inf-Acc

kah-aa
say-Pfv
‘I told everyone to buy this book.’

In (3), this book is an argument of the embed-
ded verb buy, and is placed between the matrix
verb’s two arguments. While this can be derived
by a TAG, it would require an etree headed by buy
to have a VP foot node, which has no plausible
linguistic interpretation (since buy does not have a
clausal argument).

Both problems have a common solution: non-
local multicomponent TAGs with dominance links
(nlMC-TAG-DL), for example in the definition
given in (Rambow et al., 2001) as D-Tree Substi-
tution Grammars (DSG). In a DSG, there is only
the substitution operation, but all links in trees
are interpreted as non-immediate dominance links;
in fact, the trees can be seen as tree descriptions
rather than as trees; this allows components of
trees to move up and be inserted into other trees.
For large-scale grammar development in DSG, see
(Carroll et al., 1999).

There are good reasons to want to try and re-
strict the generative power of a formal system used
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for the description of syntax: on the one hand,
we may want to restrict the formal power in order
to obtain parsing algorithms of certain restricted
complexities (Kallmeyer, 2005), and on the other
hand, we may want to make assumptions about the
underlying formalism in order to make predictions
about what word orders are grammatical (or plau-
sible) (Chen-Main and Joshi, 2008). However, in
this paper we do not address the tradeoff between
non-local and restricted MC-TAG systems, and we
do not present empirical arguments from Hindi in
order to address the issue of what formal com-
plexity is required for the syntactic description of
Hindi. We leave those issues to future work. In-
stead, we assume a simple framework in which we
can explore the issue of grammar extraction.

The algorithm for extraction of a TAG can be
extended straightforwardly to an algorithm for ex-
tracting a DSG: whenever in DSconst we have a
node labeled with an empty category which is co-
indexed with a node which is higher in the tree (in
a c-command relationship), then we put the two
etrees resulting from those two nodes into one set,
and add a dominance relation. The step for creat-
ing DSderiv should also be revised accordingly to
indicate that the two etrees belong to one set.

7 Conclusion

We have given a basic algorithm for the extrac-
tion of a TAG from a dependency treebank which
has some representative examples annotated with
phrase structures. This TAG can be used for any
purpose TAGs can be used, such as parsing or gen-
eration, but we can also use etree-based conversion
rules to convert the entire DS treebank to a TAG-
based treebank. We have also sketched how this
basic algorithm can be extended to handle empty
categories and word order variation.

There are several important remaining issues.
The first issue is ambiguity. Ideally, we want to
have exactly one PS and one TAG derivation tree
for each DSconst in the test stage because we can
then transform the original dependency treebank
into a treebank for the extracted TAG. However, as
discussed in Section 4.2, the second module in the
test stage may produce multiple PSs for a given
DSconst. One possible way to reduce spurious
ambiguity is to look at the PS trees in the train-
ing data where ambiguity of attachment can arise.
If there are regularities in these situations (for ex-
ample, lowest attachment possible, and a certain

order for attaching left and right adjuncts), then
that information could be passed to the test stage
to reduce ambiguity.

The second issue is unseen rules. The etree-
based rules are extracted from the (DSconst, PS)
pairs in the training stage. If the number of such
representative examples is small, it is unlikely that
the rules extracted from the pairs are complete
enough to cover the DSconst subtrees in the test
stage. Some kind of backoff strategy is needed to
handle such cases. We will study both issues in the
future.
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Abstract

We discuss a class of constraint-based
grammars, Lexicalized Well-Founded
Grammars (LWFGs) and present the
theoretical underpinnings for learning
these grammars from a representative
set of positive examples. Given several
assumptions, we define the search space
as a complete grammar lattice. In order
to prove a learnability theorem, we give
a general algorithm through which the
top and bottom elements of the complete
grammar lattice can be built.

1 Introduction

There has been significant interest in grammar
induction on the part of both formal languages
and natural language processing communities. In
this paper, we discuss the learnability of a re-
cently introduced constraint-based grammar for-
malism for deep linguistic processing, Lexical-
ized Well-Founded Grammars (LWFGs) (Mure-
san, 2006; Muresan and Rambow, 2007; Mure-
san, 2011). Most formalisms used for deep lin-
guistic processing, such as Tree Adjoining Gram-
mars (Joshi and Schabes, 1997) and Head-driven
Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994) are not known to be accompanied
by a formal guarantee of polynomial learnabil-
ity. While stochastic grammar learning for sta-
tistical parsing for some of these grammars has
been achieved using large annotated treebanks
(e.g., (Hockenmaier and Steedman, 2002; Clark
and Curran, 2007; Shen, 2006)), LWFG is suited
to learning in resource-poor settings. LWFG’s
learning is a relational learning framework which
characterizes the importance of substructures in
the model not simply by frequency, as in most pre-
vious work, but rather linguistically, by defining a

notion of representative examples that drives the
acquisition process.

LWFGs can be seen as a type of Definite
Clause Grammars (Pereira and Warren, 1980)
where: 1) the Context-Free Grammar backbone
is extended by introducing a partial ordering re-
lation among delexicalized nonterminals (well-
founded), 2) nonterminals are augmented with
strings and their syntactic-semantic representa-
tions; and 3) grammar rules have two types of
constraints: one for semantic composition and
one for ontology-based semantic interpretation
(Muresan, 2006). In LWFG every string w is as-
sociated with a syntactic-semantic representation
called semantic molecule

(
h
b

)
. We call the tuple

(w,
(
h
b

)
) a syntagma:

(big table,
0BBBBBB@h

264cat np
head X

nr sg

375
b

D
X1.isa = big, X .Y =X1, X .isa=table

E

1CCCCCCA
)

The language generated by a LWFG consists of
syntagmas, and not strings.

There are several properties and assumptions
that are essential for LWFG learnability: 1) par-
tial ordering relation on the delexicalized nonter-
minal set (well-founded property); 2) each string
has its linguistic category known (e.g., np for the
phrase big table); 3) LWFGs are unambiguous;
4) LWFGs are non-terminally separable (Clark,
2006). Regarding unambiguity, we need to em-
phasize that unambiguity is relative to a set of
syntagmas (pairs of strings and their syntactic-
semantic representations) and not to a set of natu-
ral language strings. For example, the sentence I
saw the man with a telescope is ambiguous at the
string level (PP -attachment ambiguity), but it is
unambiguous if we consider the syntagmas asso-
ciated with it.
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In this paper, for clarity of presentation, we
make abstraction of the semantic representation
and grammar constraints, and discuss the theo-
retical underpinnings of Well-Founded Grammars
(WFGs), which have all the properties of LWFGs
that assures polynomial learnability. By defin-
ing the operational and denotational semantics of
WFGs, we are able to formally define the repre-
sentative set of WFGs. Giving several assump-
tions, we define the search space for WFG learn-
ing as a complete grammar lattice by defining the
least upper bound and the greatest lower bound
operators. The grammar lattice preserves the
parsing of the representative set. We give a the-
orem showing that this lattice is a complete gram-
mar lattice. In order to give a learnability theorem,
we give a general algorithm through which the top
and the bottom elements of the complete grammar
lattice can be built. The theoretical results ob-
tained in this paper hold for the LWFG formalism.
This theoretical result proves that the practical al-
gorithms introduced by Muresan (2011) converge
to the same target grammar.

2 Well-Founded Grammars

Well-Founded Grammars are a subclass of
Context-Free Grammars where there is a partial
ordering relation on the set of non-terminals.
Definition 1. A Well-Founded Grammar (WFG)
is a 5-tuple, G = 〈Σ, NG,�, P, S〉 where:

1. Σ is a finite set of terminal symbols.
2. NG is a finite set of nonterminal symbols,

where NG ∩ Σ = ∅ .
3. � is a partial ordering relation on the set of

nonterminals NG

4. P is the set of grammar rules, P = PΣ∪PG,
PΣ ∩ PG = ∅, where:
a) PΣ is the set of grammar rules whose
right-hand side are terminals, A → w,
where A ∈ NG and w ∈ Σ (empty string
cannot be derived). We denote pre(NG) ⊆
NG the set of pre-terminals, pre(NG) =
{A|A ∈ NG, w ∈ Σ, A→ w ∈ PΣ}.
b) PG is the set of grammar rules A →
B1 . . . Bn, where A ∈ (NG − pre(NG)),
Bi ∈ NG. For brevity, we denote a rule by
A → β, where A ∈ (NG − pre(NG)), β ∈
N+
G . For every grammar rule A → β ∈ PG

there is a direct relation between the left-
hand side nonterminal A and all the nonter-
minals on the right-hand side Bi ∈ β (i.e.,

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−, ∗,÷, (, )}
NG = {D,Sum,Prod, Lbr,Rbr,N, F, T,E}
pre(NG) = {D,Sum,Prod, Lbr,Rbr}

PΣ PG

D → 0|1|2|3|4|5|6|7|8|9 N → D
Sum→ +|− N → N D
Prod→ ∗|÷ F → N
Lbr → ( F → Lbr E Rbr
Rbr →) T → F

T → T Prod F
E → T
E → E Sum T

Figure 1: A WFG for Mathematical Expressions

A � Bi, or Bi � A). If for all Bi ∈ β
we have that A � Bi and A 6= Bi, the
grammar rule A → β is an ordered non-
recursive rule. Each nonterminal symbol
A ∈ (NG − pre(NG)) is a left-hand side
in at least one ordered non-recursive rule. In
addition, the empty string cannot be derived
from any nonterminal symbol and cycles are
not allowed.

5. S ∈ NG is the start nonterminal symbol, and
∀A ∈ NG, S � A (we use the same notation
for the reflexive, transitive closure of �).

Besides the partial ordering relations �, in
WFGs the set of production rules P is split in
PΣ and PG. For learning, PΣ is given, while the
grammar rules in PG are learned.

In Figure 1 we give a WFG for Mathematical
Expressions that will be used as a simple illus-
trative example to present the formalism and the
foundation of the search space for WFG learning.

Every CFG G = 〈Σ, NG, PΣ ∪ PG, S〉 can
be efficiently tested to see whether it is a Well-
Founded Grammar.

The derivation in WFGs is called ground
derivation and it can be seen as the bottom
up counterpart of the usual derivation. Given
a WFG, G, the ground derivation relation, ∗G⇒,
is defined as: A→w

A
∗G⇒w

(A → w ∈ PΣ), and

Bi
∗G⇒wi, i=1,...,n A→B1...Bn

A
∗G⇒w w=w1...wn

(w ∈ Σ+).

The language of a grammar G is the set of all
strings generated from the start symbol S, i.e.,
L(G) = {w|w ∈ Σ+, S

∗G⇒ w}. The set of all
strings generated by a grammar G is Lw(G) =

{w|w ∈ Σ+, ∃A ∈ NG, A
∗G⇒ w}. Extending the
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notation, the set of strings generated by a nonter-
minal A of a grammar G is Lw(A) = {w|w ∈
Σ+, A ∈ NG, A

∗G⇒ w}, and the set of strings
generated by a rule A → β of a grammar G is
Lw(A → β) = {w|w ∈ Σ+, (A → β)

∗G⇒ w},
where (A → β)

∗G⇒ w denotes the ground deriva-

tion A ∗G⇒ w obtained using the rule A→ β in the
last derivation step. For a WFG G, we call a set
of substrings Ew ⊆ Lw(G) a sublanguage of G.

Operational Semantics of WFGs. It has been
shown that the operational semantics of a CFG
corresponds to the language of the grammar
(Wintner, 1999). Analogously, the operational se-
mantics of a WFG, G, is the set of all strings gen-
erated by the grammar, Lw(G).

Denotational Semantics of WFGs. As discussed
in literature (Pereira and Shieber, 1984; Wint-
ner, 1999), the denotational semantics of a gram-
mar is defined through a fixpoint of a transforma-
tional operator associated with the grammar. Let
I ⊆ Lw(G) be a subset of all strings generated by
a grammarG. We define the immediate derivation
operator TG : 2Lw(G) → 2Lw(G), s.t.: TG(I) =

{w ∈ Lw(G)| if (A→ B1 . . . Bn) ∈ PG ∧ Bi ∗G⇒
wi ∧ wi ∈ I then A

∗G⇒ w}. If we denote
TG ↑ 0 = ∅ and TG ↑ (i + 1) = TG(TG ↑ i),
then we have that for i = 1, TG ↑ 1 = TG(∅) =

{w ∈ Lw(G)|A ∈ pre(NG), A
∗G⇒ w}.This cor-

responds to the strings derived from preterminals,
i.e., w ∈ Σ. TG is analogous with the immediate
consequence operator of definite logic programs
(i.e., no negation) (van Emden and Kowalski,
1976; Denecker et al., 2001). TG is monotonous
and hence the least fixpoint always exists (Tarski,
1955). This least fixpoint is unique, as for def-
inite logic programs (van Emden and Kowalski,
1976). We have lfp(TG) = TG ↑ ω, where ω
is the minimum limit ordinal. Thus, the denota-
tional semantics of a grammar G can be seen as
the least fixpoint of the immediate derivation op-
erator. An assumption for learning WFGs is that
the rules corresponding to grammar preterminals,
A→ w ∈ PΣ, are given, i.e., TG(∅) is given.

As in the case of definite logic programs, the
denotational semantics is equivalent with the op-
erational one, i.e., Lw(G) = lfp(TG) . Based
on TG we can define the ground derivation length
(gdl) for strings and the minimum ground deriva-
tion length (mgdl) for grammar rules, which are

key concepts in defining the representative set ER
of a WFG.

gdl(w) = min
w∈TG↑i

(i)

mgdl(A→ β) = min
w∈Lw(A→β)

(gdl(w))

2.1 Properties and Principles for WFG
Learning

In this section we present the main properties of
WFGs, discussing their importance for learning.

1) Partial ordering relation � (well-founded).
In WFGs, the partial ordering relation � on the
nonterminal set NG allows the total ordering of
grammar nonterminals and grammar rules, which
allows the bottom-up learning of WFGs. WFG
rules can be ordered or non-ordered, and they
can be recursive or non-recursive. In addition,
from the definition of WFGs, every non-terminal
is a left-hand side in at least one ordered non-
recursive rule, cycles are not allowed and the
empty string cannot be derived, properties that
guarantee the termination condition for learning.

2) Category Principle. Wintner (Wintner, 1999)
calls observables for a grammar G all the deriv-
able strings paired with the non-terminal that de-
rives them: Ob(G) = {〈w,A〉|w ∈ Σ, A ∈
NG, A

∗G⇒ w}, i.e., w ∈ Lw(A). We call w
a constituent and A its category. For example,
we can say that 1+1 is a constituent having the
category expression (E), 1*1 is a constituent hav-
ing the category term (T), and 1 is a constituent
having the categories digit(D), number (N), fac-
tor (F), term (T), expression (E). The Category
Principle for WFGs states that the observables are
known a-priori. When learning WFGs, the input
to the learner are observables 〈w,A〉. The cate-
gory is used by the learner as the name of the left-
hand side (lhs) nonterminal of the learned gram-
mar rule. The Category Principle is met for natu-
ral language, where observables (i.e., constituents
and their linguistic categories) ca be identified:
e.g., 〈formal proposal, NP〉, 〈very loud, ADJP〉.
3) Representative Set of a WFG (ER). Given
an unambiguous1 Well-Founded Grammar G, a
set of observables ER is called a representa-
tive set of G iff for each rule (A → β) ∈ PG
there is a unique observable 〈w,A〉 ∈ ER s.t.

1A WFG G is unambiguous if every string in L(G) has
only one derivation.
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ID ER Egen − ER

1 〈1, N〉
2 〈11, N〉 〈111, N〉
3 〈1, F 〉 〈11, F 〉
4 〈(1), F 〉 〈(11), F 〉 〈((1)), F 〉 〈(1 ∗ 1), F 〉 〈(1 + 1), F 〉
5 〈1, T 〉 〈11, T 〉 〈(1), T 〉
6 〈1 ∗ 1, T 〉 〈1 ∗ 11, T 〉 〈11 ∗ 1, T 〉 〈1 ∗ (1), T 〉 〈(1) ∗ 1, T 〉 〈1 ∗ 1 ∗ 1, T 〉
7 〈1, E〉 〈11, E〉 〈(1), E〉 〈1 ∗ 1, E〉
8 〈1 + 1, E〉 〈11 + 1, E〉 〈1 + 11, E〉 〈(1) + 1, E〉 〈1 + (1), E〉 〈1 ∗ 1 + 1, E〉, 〈1 + 1 ∗ 1, E〉 〈1 + 1 + 1, E〉

Figure 2: Examples for Learning the WFG in Figure 1

gdl(w) = mgdl(A → β), where w ∈ Lw(G).
The nonterminal A is the category of the string
w. ER contains the most simple strings ground
derived by the grammar G paired with their cat-
egories. From this definition it is straightforward
to show that |ER| = |PG|. The partial ordering
relation on the nonterminal set induces a total or-
der on the representative set ER as well as on the
set of grammar rules PG.

For the WFG induction, the representative set
ER will be used by the learner to generate hy-
potheses (i.e., grammar rules). The category will
give the name of the left-hand side nonterminals
(lhs) of the learned grammar rules. An exam-
ple of a representative set ER for the mathemat-
ical expressions grammar from Figure 1 is given
in Figure 2. For generalization the learner will
use a generalization set of observables Egen =

{〈w,A〉|A ∈ NG ∧ A ∗G⇒ w}, where ER ⊆ Egen.
An example of a generalization setEgen for learn-
ing the WFG from Figure 1 is given in Figure 2.

4) Semantics of a WFG reduced to a general-
ization set Egen. Given a WFG G and a gener-
alization set Egen (not necessarily of G) the set

S(G) = {〈w,A〉|〈w,A〉 ∈ Egen ∧ A ∗G⇒ w}
is called the semantics of G reduced to the gen-
eralization set Egen. In other words, S(G) will
contain all the pairs 〈w,A〉 in the generalization
set whose strings w can be ground-derived by the
grammar G, w ∈ Lw(G). Given a grammar rule
rA ∈ PG, we call S(rA) = {〈w,A〉|lhs(rA)=A ∧
〈w,A〉 ∈ Egen∧rA ∗G⇒ w} the semantics of rA re-
duced toEgen. The cardinality of S is used during
learning as performance criterion.

5) ER-parsing-preserving. We present the
rule specialization step and the rule general-
ization step of unambiguous WFGs, such that
they are ER-parsing-preserving and are the in-
verse of each other. The property of ER-parsing-
preserving means that both the initial and the spe-

cialized/generalized rules ground-derive the same
stringw of the observable 〈w,A〉 ∈ ER. The rule
specialization step:

A→αBγ B→β
A→αβγ

is ER-parsing-preserving, if there exists

〈w,A〉 ∈ ER and rg
∗G⇒ w and rs

∗G′⇒ w, where rg
= A → αBγ , rB = B → β, rs = A → αβγ and
rg ∈ PG, rB ∈ PG ∩ PG′ , rs ∈ PG′ . We write

rg
rB
` rs.2 The rule generalization step, which

is also ER-parsing-preserving, is defined as the
inverse of the rule specialization step and denoted

by rs
rB
a rg.

Since 〈w,A〉 is an element of the representa-
tive set, w is derived in the minimum number of
derivation steps, and thus the rule rB is always
an ordered, non-recursive rule. Examples of ER-
parsing-preserving rule specialization steps are
given in Figure 3, where all rules derive the same
representative example 1+1. In the derivation step

E → N Sum D
N→D
` E → D Sum D the

ordered, non recursive rule rB = N → D is
used. If the recursive rule N → N D were
used, we would obtain a specialized rule E →
N D Sum D which does not preserve the pars-
ing of the representative example 1+1.

From both the specialization and the general-
ization step we have that Lw(rg) ⊇ Lw(rs).

The goal of the rule specialization step is to ob-
tain a new target grammar G′ from G by special-

izing a rule of G (G
r
` G′). Extending the no-

tation to allow for the transitive closure of rule
specialization, we have that G

∗
` G′, and we say

that the grammarG′ is specialized from the gram-
mar G, using a finite number of rule specializa-
tion steps that are ER-parsing-preserving. Simi-
larly, the goal of the rule generalization step is to

2Grammar G is non-terminally separable (Clark, 2006).
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E → E Sum T
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS

E → T Sum T
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → E Sum F
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS

E → F Sum T
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → T Sum F
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → E Sum N
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS

E → N Sum T
`

uukkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → F Sum F
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → T Sum N
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → E Sum D
`

uukkkkkkkkkkkkkkk

E → D Sum T

` ))SSSSSSSSSSSSSS E → N Sum F
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → F Sum N
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → T Sum D
`

uukkkkkkkkkkkkkkk

E → D Sum F

` ))SSSSSSSSSSSSSSS E → N Sum N
`

uukkkkkkkkkkkkkkk

` ))SSSSSSSSSSSSSSS E → F Sum D
`

uukkkkkkkkkkkkkkk

E → D Sum N

` ))SSSSSSSSSSSSSSS E → N Sum D
`

uukkkkkkkkkkkkkkk

E → D Sum D

Figure 3: ER-parsing preserving rule specialization steps for the grammar in Figure 1.

obtain a new target grammar G from G′ by gen-
eralizing a rule of G′. Extending the notation to
allow for transitive closure of rule generalization,

we have thatG′
∗
a G, and we say that the grammar

G is generalized from the grammar G′ using a fi-
nite number of rule generalization steps that are
ER-parsing-preserving. That is, ER is a repre-
sentative set for both G and G′. The ER-parsing-
preserving property allows us to define a class of
grammars that form a complete grammar lattice
used as search space for WFGs induction, as de-
tailed in the next section.

6) Conformal Property. A WFG G is called
normalized w.r.t. a generalization set Egen, if
none of the grammar rules rs of G can be fur-
ther generalized to a rule rg by the rule general-
ization step such that S(rs) ⊂ S(rg). A WFG
G is conformal w.r.t. a generalization set Egen
iff ∀〈w,A〉 ∈ Egen we have that w ∈ Lw(G),
andG is unambiguous and normalized w.r.t. Egen
and the rule specialization step guarantees that
S(rg) ⊃ S(rs) for all grammars specialized from
G. This property allows learning only from posi-
tive examples.

7) Chains. We define a chain as a set of ordered
unary branching rules: {Bk → Bk−1, . . . , B2 →
B1, B1 → β} such that all these rules ground-
derive the same string w ∈ Σ+ (i.e., Bk �
Bk−1 · · · � B1 and B0 = β, such that Bi

∗G⇒ w
for 0 ≤ i ≤ k, where Bi ∈ NG for 1 ≤ i ≤
k). For our grammar {E → T, T → F, F →
N,N → D} is a chain, all these rules ground-
deriving the string 1. Chains are used to general-
ize grammar rules during WFG learning (Fig. 3).

All the above mentioned properties are used
to define the search space of WFG learning as a

complete grammar lattice.

2.2 Grammar Lattice as Search Space

In this section we formally define a grammar lat-
tice L = 〈L,w〉 that will be the search space for
WFG learning. We first define the set of lattice
elements L.

Let > be a WFG conformal to a generalization
setEgen that includes the representative setER of

the grammar > (Egen ⊇ ER). Let L = {G|>
∗
`

G} be the set of grammars specialized from >.
We call > the top element of L, and ⊥ the bot-

tom element of L, if ∀G ∈ L,>
∗
` G ∧ G

∗
` ⊥.

The bottom element, ⊥, is the grammar special-
ized from >, such that the right-hand side of all
grammar rules contains only preterminals. We
have S(>) = Egen and S(⊥) ⊇ ER.

There is a partial ordering among the elements
ofL (the subsumptionw), which we define below.

Definition 2. If G,G′ ∈ L, we say that G sub-

sumes G′, G w G′, iff G
∗
` G′ (i.e., G′ is special-

ized from G, and G is generalized from G′)

We have that for G,G′ ∈ L, if G w G′ then
S(G) ⊇ S(G′). That means that the subsumption
relation is semantic based.

In sum, the set L contains the grammars spe-
cialized from>, while the binary subsumption re-
lation w establishes a partial ordering in L. The
top element of the lattice> is a normalized WFG,
the bottom element ⊥ is a grammar specialized
from >, whose rules’ right-hand sides consist of
preterminals, and all the other lattice elements are
WFGs that preserve the parsing of the representa-
tive set. In Figure 3, the rule (E → E Sum T ) ∈
P>, the rule (E → D SumD) ∈ P⊥ and all rules
ground-derive the representative string 1+1.
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(c) Example for lub and glb

Figure 4

In order for L = 〈L,w〉 to form a lattice, we
must define two operators: the least upper bound
(lub), g and the greatest lower bound (glb), f,
such that for any two elements G1, G2 ∈ L, the
elements G1 g G2 ∈ L and G1 f G2 ∈ L exist
(Tarski, 1955).

We first introduce the concept of boundary. Let
rA ∈ P> be a rule in grammar >, and r′A its spe-
cialized rule in grammar G ( > w G) (see Fig-
ure 4a). Let pt(rA

∗>⇒ w) be the parse tree corre-

sponding to the ground-derivation rA
∗>⇒ w. We

call boundary of a grammar G ∈ L relative to
pt(rA

∗>⇒ w),3 the right-hand side of the corre-

sponding rule r′A ∈ PG, r
′
A
∗G⇒ w, i.e. bd(G) =

{B|r′A ∈ PG ∧ B ∈ rhs(r′A)}4(see Figure 4a).
For the example in Figure 4c, the rule in grammar
> is E → E Sum T , the rule in grammar G1 is
E → D Sum T . Thus, bd(G1) = {D,Sum, T}
We define the bottom-side bs(G) of a grammarG

relative to the parse tree pt(rA
∗>⇒ w), as the for-

est composed of all the subtrees in pt(rA
∗>⇒ w)

whose roots are on bd(G) (e.g., subtrees with
roots at B1, B2, B3, B4 in Figure 4a). For the
example in Figure 4c, bs(G1) will be the forest of

subtrees of the parse tree pt(r>
∗>⇒ 1+1) with the

roots D, Sum and T on the boundary bd(G1) of
grammar G1. We define the top-side ts(G) of a

grammarG relative to the parse tree pt(rA
∗>⇒ w),

as the subtree in pt(rA
∗>⇒ w) rooted at A and

3All grammars G ∈ L are ER-parsing-preserving and all
boundaries of G are in the parse trees of the ground deriva-
tions of > grammar rules.

4The notation of bd(G), ts(G), bs(G) ignores the rule
relative to which these concepts are defined, and in the re-
mainder of this paper we implicitly understand that the rela-
tions hold for all grammar rules.

whose leaf nodes are on bd(G) (e.g., B1, B2, B3

and B4 in Figure 4a). For the example in Figure
4c, ts(G1) will be the subtree of the parse tree

pt(r>
∗>⇒ 1+1) rooted at E and the leaf nodesD,

Sum and T on the boundary bd(G1) of the gram-
mar G1. We have that ts(G) ∩ bs(G) = bd(G),

ts(G) ∪ bs(G) = pt(rA
∗>⇒ w).

For any two elements G1, G2 ∈ L, the lub ele-
ment of G1, G2 is the minimum element that has
the boundary above the boundaries of G1 and G2.
The glb element of G1, G2 is the maximum ele-
ment that has the boundary below the boundaries
of G1 and G2. Thus, lub and glb are defined such
that for all grammar rules we have:

ts(G1 gG2) = ts(G1) ∩ ts(G2)

bs(G1 fG2) = bs(G1) ∩ bs(G2)
(1)

as can be seen in Figure 4b, 4c.5 In order to have a
complete lattice, the property must hold ∀G ⊆ L:

ts(gG∈GG) =
⋂

G∈G
ts(G)

bs(fG∈GG) =
⋂

G∈G
bs(G)

(2)

Lemma 1. L = 〈L,w〉 together with the lub
and glb operators guarantees that for any two
grammars G1, G2 ∈ L the following property
holds:G1 gG2 w G1, G2 w G1 fG2

Theorem 1. L = 〈L,w〉 together with the lub
and glb operators forms a complete lattice.

Proof. Besides the property given in Lemma 1,
lub and glb operators are computed w.r.t. (2),
such that we have ts(gG∈LG) =

⋂
G∈L ts(G) =

5The intersection of two trees is the maximum common
subtree of those two trees, and similarly for forests of trees.

176



S(!) = Egen

S(G2)

S(G1)

ER

S(⊥)

S(G1 ! G2)

S(G1 " G2)

Figure 5: WFG semantics reduced to Egen

ts(>), bs(fG∈LG) =
⋂
G∈L bs(G) = bs(⊥),

which gives the uniqueness of > and ⊥ ele-
ments.

Similar to the subsumption relation w, the
lub g and glb f operators are semantic-based.
In the complete lattice L = 〈L,w〉, ∀G1, G2 ∈ L
we have:

S(G1 gG2) ⊇ S(G1) ∪ S(G2).

S(G1 fG2) ⊆ S(G1) ∩ S(G2)
(3)

Thus, the complete grammar lattice is semantic-
based (Figure 5). It is straightforward to prove
that L = 〈L,w〉 has all the known properties
(i.e., idempotency, commutativity, associativity,
absorption, > and ⊥ laws, distributivity).

2.3 Learnability Theorem
In oder to give a learnability theorem we need to
show that ⊥ and > elements of the lattice can be
built. Through Algorithm 1 we show that giving
the set of examples ER and Egen, the ⊥ grammar
can be built and the> grammar can be learned by
generalizing the⊥ grammar. The grammar gener-
alization is determinate if the rule generalization
step is determinate. Before describing Algorithm
1 we introduce the concepts of determinate gen-
eralizable and give a lemma that states that given
a grammar> conformal with Egen, for any gram-
mars G specialized from >, all the grammar rules
are determinate generalizable if all the chains of
the > grammar are known.

Definition 3. A grammar rule r′A ∈ PG is de-
terminate generalizable if for β ∈ rhs(r′A) there
exists a unique rule rB = (B → β) such that

r′A
rB
a rA with S(r′A) ⊂ S(rA). We use the nota-

tion r′A
1⊂
a rA for the determinate generalization

step with semantic increase.

The only rule generalization steps allowed in
the grammar induction process are those which
guarantee the relation S(rs) ⊂ S(rg) that ensures
that all the generalized grammars belong to the
grammar lattice. This property allows the gram-
mar induction based only on positive examples.

We use the notation r′A
rB⊂
a rA for the generaliza-

tion step with semantic increase.
This step can be nondeterminate due to chain

rules. Let ch> be a chain of rules in a WFG >
conformal w.r.t a generalization set Egen, ch> =
{Bk → Bk−1, . . . , B2 → B1, B1 → β}. All
the chain rules, but the last, are unary branching
rules. The last rule is the minimal chain rule. For
our example, ch> = {E → T, T → F, F →
N,N → D}. For the ⊥ grammar of a lattice
that has > as its top element, the aforementioned
chain becomes ch⊥ = {Bk → β⊥, . . . , B2 →
β⊥, B1 → β⊥}, where β⊥ contains only preter-
minals and the rule order is unknown. By the ER-
parsing-preserving property of the rule specializa-
tion step, the same string is ground-derived from
the ch⊥ rules. Thus, the ⊥ grammar is ambigu-
ous. For our example, ch⊥ = {E → D,T →
D,F → D,N → D}.

We denote by ch = {rk, . . . , r2, r1}, one or
more chains in any lattice grammar, where the
rule order is unknown. The minimal chain rules
rm can always be determined if rm ∈ ch s.t.

∀r ∈ ch − {rm} ∧ rm
r
a rmg we have that

S(rm) = S(rmg) (see also MinRule algorithm).
By the consequence of the conformal property, the

generalization step rm
r
a rmg is not allowed, since

it does not produce any increase in rule seman-
tics. That is, a minimal chain rule cannot be gen-
eralized by any other chain rule with an increase
in its semantics. Given ch⊥ and the aforemen-
tioned property of the minimal chain rules we can
recover ch> by Chains Recovery algorithm.

Lemma 2. Given a WFG> conformal w.r.t a gen-
eralization set Egen, for any grammar G derived
from > all rules are determinate generalizable if
all chains of the grammar > (i.e., all ch>) are
known (i.e., recovered by Chains Recovery
algorithm).

Proof. The only case of rule generalization step
nondeterminism with semantic increase is intro-
duced by the derivation of the unary branching
rules of ordered ch>, which yields the unordered
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ID P⊥ P>
1 N → D N → D
2 N → D D N → N D
3 F → D F → N
4 F → Lbr D Rbr F → Lbr E Rbr
5 T → D T → F
6 T → D Prod D T → T Prod F
7 E → D E → T
8 E → D Sum D E → E Sum T

Figure 6: Examples of P⊥ and learned P>

ch⊥, where Bi → β⊥
Bj→β⊥⊂
a Bi → Bj holds

for allBj ≺ Bi. Thus, keeping (or recovering) the
ordered ch> in any grammar G derived from >,
all the other grammar rules are determinate gen-
eralizable.

We now introduce Algorithm 1, which given
the representative set ER and the generalization
set Egen, builds the ⊥ and > grammars. First, an
assumption in our learning model is that the rules
corresponding to the grammar preterminals (PΣ)
are given. Thus, for a given representative setER,
we can build the grammar⊥ in the following way:
for each observable 〈w,A〉 ∈ ER the category A
gives the name of the left-hand side nonterminal
of the grammar rule, while the right-hand side is
constructed using a bottom-up active chart parser
(Kay, 1973) (line 1 in Algorithm 1). For our math-
ematical expressions example, given ER in Fig-
ure 2 and PΣ in Figure 1, the rules of the bottom
grammar P⊥ are given in Figure 6.

Algorithm 1 Top(ER, Egen)

1: P⊥ ← Bottom(ER)
2: P> ← Chains Recovery (P⊥, ER, Egen)
{P> is determinate generalizable }

3: while ∃r ∈ P> s.t. r
1⊂
a rg do

4: r ← rg;
5: end while
6: return P>

In order to build the > element (lines 2-5 in
Algorithm 1), we first need to apply the Chain
recovery algorithm to the lattice ⊥ grammar
(line 2 in Algorithm 1). Chains Recovery
first detects all ch = ch⊥ which contain rules
with identical right-hand side (line 5-6). Then,
all ch⊥ rules are transformed in ch> by general-
izing them through the minimal chain rule (lines

10-17). The generalization step r
rm⊂
a rg guar-

Algorithm 2 Chains Recovery

1: Input: P⊥, ER, Egen

2: Output: P⊥ which contains all ch>
3: while ER 6= ∅ do
4: 〈w, c〉 ← first(ER)

5: ch← {r ∈ P⊥|r ∗⊥⇒ w} {ch = ch⊥}
6: lch← {lhs(r)|r ∈ ch}
7: for each c ∈ lch do
8: ER ← ER − {〈w, c〉}
9: end for

10: while |ch| > 1 do
11: rm ← MinRule(ch)
12: ch← ch− {rm}
13: lch← lch− {lhs(rm)}
14: for each r ∈ P⊥∧lhs(r) ∈ lch s.t. r

rm⊂
a rg

do
15: r ← rg
16: end for
17: end while
18: end while
19: return: P⊥

Algorithm 3 MinRule
1: Input: the chain ch
2: for each rm ∈ ch do
3: find← true
4: for each r ∈ ch− {rm} do

5: if rm
r

a rmg ∧ S(rm) ⊂ S(rmg) then
6: find← false
7: end if
8: end for
9: if find == true then

10: return rm
11: end if
12: end for

antees the semantic increase S(rg) ⊃ S(r) for all
the rules r which are generalized through rm, thus
being the inverse of the rule specialization step in
the grammar lattice. The rules r are either chain
rules or rules having the same left-hand side as
the chain rules. The returned set P⊥ contains all
unary branching rules (ch>) of the > grammar.
The efficiency of Chain Recovery algorithm
is O(|ER| ∗ |β| ∗ |Egen|). Therefore, in Algorithm
1 the set P> initially contains determinate gener-
alizable rules and the while loop (lines 3-5,
Alg 1) can determinately generalize all the gram-
mar rules. In Figure 6, the grammar P> is learned
by Algorithm 1, based only on the examples in
Figure 2 and PΣ in Figure 1.

Theorem 2 (Learnability Theorem). If ER is
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the representative set of a WFG G conformal
w.r.t a generalization set Egen ⊇ ER, then
Top(ER, Egen) algorithm computes the lattice >
element such that S(>) = Egen.

Proof. Since G is normalized, none of its
rule can be generalized with increase in se-
mantics. Starting with the ⊥ element, after
Chains Recovery all rules that can be gen-
eralized with semantic increase through the rule
generalization step, are determinate generaliz-
able. This means that the grammar generalization
sequence⊥, G1, . . . , Gn,>, ensures the semantic
increase of S(Gi) so that the generalization pro-
cess ends at the semantic limit S(>) = Egen.

For WFGs which have rules that can be ei-
ther left or right recursive, the top element is
unique only if we impose a direction of gener-
alization in the rule’s right-hand side (e.g., left
to right). Another way to guarantee uniqueness
of the top element is to add constraints at the
grammar rules. In our example, if we augment
de grammar nonterminals with expression val-
ues (semantic interpretation) and we add con-
straints at the grammar rules we have E(v) →
E(v1) Sum(op) T (v2) : {v ← v1 op v2}. With
the generalization example 〈5 − 3 − 1, E(1)〉 ∈
Egen we can generalize the rule E → T Sum T
only to E → E Sum T and not to E →
T Sum E because 1 = (5 − 3) − 1 and 1 6=
5 − (3 − 1). For our Lexicalized Well-Founded
Grammars this problem is solved by associating
strings with their syntactic-semantic representa-
tions and by having semantic compositional con-
straints at the grammar rule level.

3 Conclusions

In this paper, we discussed the learnability of Lex-
icalized Well-Founded Grammars. We introduced
the class of well-founded grammars and presented
the theoretical underpinnings for learning these
grammars from a representative set of positive ex-
amples. We proved that under several assump-
tions the search space for learning these gram-
mars is a complete grammar lattice. We presented
a general algorithm which builds the top and the
bottom elements of the complete grammar lattice
and gave a learnability theorem. The theoretical
results obtained in this paper hold for the LWFG
formalism, which is suitable for deep linguistic
processing.
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Abstract

In this work, we present a generalization of
the state-split method to probabilistic hyper-
graphs. We show how to represent the deriva-
tional stucture of probabilistic tree-adjoining
grammars by hypergraphs and detail how
the generalized state-split procedure can be
applied to such representations, yielding a
state-split procedure for tree-adjoining gram-
mars.

1 Introduction

The state-split method (Petrov et al., 2006) allows
the successive refinement of a probabilistic context-
free grammar (PCFG) for the purpose of natural
language processing (NLP). It employs automatic
subcategorization of nonterminal symbols: in an
iteration of a split-merge cycle, every nontermi-
nal of the PCFG is split into two, along with the
corresponding grammar rules, whose probabilities
are distributed uniformly to the split rules. The re-
sulting PCFG’s rule probabilities are then trained
on an underlying treebank using the Expectation-
Maximization algorithm (Dempster et al., 1977)
for maximum-likelihood estimation on incomplete
data. Finally, split nonterminal symbols which do
not contribute to a significant increase in likelihood
are merged back together. This counteracts an ex-
ponential blowup in the number of nonterminals
and prevents, to some degree, the phenomenon of
overfitting.

The in-house developed statistical machine trans-
lation toolkit Vanda (Büchse et al., 2012) offers
state-splitting for the refinement of its language
models. Vanda’s internal representation of the
various weighted tree grammar, automaton and
transducer formalisms utilized for translation is
by means of probabilistic hypergraphs, i.e., graphs

consisting of vertices and hyperedges, where each
of the latter connects a (possibly empty) sequence
of tail vertices to a head vertex and is assigned a
probability. Hence, our implementation of state-
split operates on such hypergraphs as underlying
data structures. The connection between parsing
and hypergraphs is well-known in the field of NLP
(Klein and Manning, 2004), where a hypergraph
represents the derivation forest of a certain word. In
our system, however, we use such a probabilistic hy-
pergraph to represent the whole derivational struc-
ture of a grammar, with a one-to-one correspon-
dence between hyperpaths and grammar deriva-
tions. We apply well-known product constructions
from the theory of weighted automata, going back
to Bar-Hillel et al. (1961) and generalized to the
case of weighted tree automata by Maletti and Satta
(2009), to restrict them to the derivations of a given
word.

The mildly context-sensitive generative capacity
of tree-adjoining grammars (TAG) is well-suited to
the purpose of NLP (Joshi and Schabes, 1991). tree-
adjoining grammars allow two basic operations
to rewrite and derive trees: substitution, where a
tree’s leaf node is replaced with another tree, and
adjoining, which can be seen as the second-order
substitution of a context (called an auxiliary tree)
into another tree.

Probabilistic tree-adjoining grammars (PTAG)
(Schabes, 1992; Resnik, 1992) assign to every de-
rived tree an associated probability. They can also
be incorporated into Vanda by an appropriate rep-
resentation with hypergraphs. Such PTAGs can
be extracted from treebank corpora, as detailed by
Chen et al. (2006). The idea to refine these gram-
mars furthermore by executing the already imple-
mented state-split procedure on their hypergraph
representations arises naturally. The main contribu-
tion of the work at hand is a formalization of this
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idea. However, one should note that our proposed
method does not just apply to PTAG, but should
carry over to many grammar formalisms that can be
represented by hypergraphs. In our formalization,
we have to deal with a complication, introduced by
the nature of adjunction in TAG. For this purpose,
we introduce split relations.

An alternative to our approach to state-splitting
PTAG is the one taken by Shindo et al. (2012),
where a method for symbol refinement of proba-
bilistic tree substitution grammars is presented.
Since tree substitution grammars are just tree-
adjoining grammars without adjoining sites (and
indeed, adjoining can be simulated by the combina-
tion of a tree substitution grammar which encodes
adjoining explicitly, and a yield function which
performs these encoded operations, cf. (Maletti,
2010)), it is possible that their technique can be
adapted to the more general setting. This would
have the additional advantage that smoothing by
backoff to simpler context-free grammar rules is in-
corporated in their system, increasing performance
in the case of sparse data, while we do not cover
smoothing in the work at hand.

Note that, although most of the preliminaries
may be safely skimmed, we want to point out that
our definitions of first- and second-order substitu-
tion are slightly non-standard (but they enable a
concise formalization of TAG).

2 Preliminaries

In the following, we will denote the set of non-
negative integers by N. The set {1, . . . , k} shall be
abbreviated by [k]. The set of the non-negative real
numbers will be denoted by R≥0, and the closed
interval between two reals a and b by [a, b].

The set of finite words over a set A is written as
A∗, ε ∈ A∗ is the empty word and A+ = A∗ \ {ε}.
The reflexive-transitive closure of a binary relation
R shall be denoted by R∗.

2.1 Unranked Trees
We call a finite set Σ of symbols an alphabet. Given
a finite set A and alphabet Σ, let ΣA denote the
alphabet of all σa with σ ∈ Σ, a ∈ A. Note that
the new symbol σa is merely a syntactic construct
and should be identified neither with σ nor a.

Presuming an alphabet Σ and set A, the set
UΣ(A) of unranked trees over Σ indexed by A
is the smallest set U such that A ⊆ U and for
every n ∈ N, t1, . . . , tn ∈ U , and σ ∈ Σ, also

σ(t1, . . . , tn) ∈ U . For a tree σ() we will just
write σ and UΣ(∅) will be denoted by UΣ. The
set of positions pos(t) of a tree t ∈ UΣ(A) is de-
fined by pos(σ(t1, . . . , tn)) = {ε} ∪ {iw | i ∈
[n], w ∈ pos(ti)} and t(w) denotes the label of t
at position w.

Throughout the rest of the paper, let X =
{x1, x2, . . .} denote an infinite set of variables
and, for n ∈ N, let Xn = {x1, . . . , xn}. Simi-
larly, let Y = {y1, y2, . . .}, let Yn = {y1, . . . , yn}
for n ∈ N, and Z = {z}. Given k ∈ N, we call
a tree t ∈ UΣ(A ∪ ∆X) (resp. t ∈ UΣ∪∆Y

(A))
proper in Xk (resp. Yk) if for every i > k, there
is no appearance of δxi (resp. of δyi) in t, and for
every i ∈ [k], there is exactly one position in t
labeled with δxi (resp. δyj ), for some δ ∈ ∆. This
unique δ ∈ ∆ will be denoted by lbt(xi) (resp.
lbt(yj)).

For an alphabet Σ and k ∈ N, we denote first-
order substitution of the trees s1, . . . , sk ∈ UΣ into
t ∈ UΣ(ΣXk

) by t[x1/s1, . . . , xk/sk] ∈ UΣ, ab-
breviated by t[x/s]. The tree t[x/s] is the result of
replacing every node in t which is labeled by σxi ,
for i ∈ [k] and some σ ∈ Σ, by the tree si. Sim-
ilarly, for s ∈ UΣ(A) and t ∈ UΣ(Z), let t[z/s]
denote the tree obtained from t by replacing every
node that is labelled with z by s.

For every alphabet Σ and k ∈ N, second-
order substitution of the trees s1, . . . , sk ∈
UΣ(Z) into the tree t ∈ UΣ∪ΣYk

will be de-
noted by tJy1/s1, . . . , yk/skK ∈ UΣ, or shorter,
by tJy/sK. For every symbol σ ∈ Σ and vari-
able yi ∈ Yk, we define σyi(t1, . . . , tn)Jy/sK =
si[z/σ(t1Jy/sK, . . . , tnJy/sK)], and we define
σ(t1, . . . , tn)Jy/sK = σ(t1Jy/sK, . . . , tnJy/sK)
for σ ∈ Σ.

2.2 Hypergraphs

A hypergraph is a tuple (V,E, µ, g) where the
set V contains the graph’s vertices and E the hy-
peredges (or just edges). Edge connectivity is de-
noted by the function µ : E → V + and g ∈ V
is the graph’s goal vertex. For a hyperedge e
with µ(e) = a0a1 · · · an, we define its head as
hd(e) = a0, its tail as tl(e) = a1 · · · an and its
arity as ar(e) = n. The set of a-hyperpaths Ha

G

of a hypergraph G = (V,E, µ, g), a ∈ V , is the
largest set of trees H ⊆ UE such that for every
d ∈ H , w ∈ pos(d), we have hd(d(ε)) = a,
|{v ∈ pos(d) | v = wi, i ∈ N}| = | tl(e)|,
and tl(d(w)) = hd(d(w1)) · · · hd(d(wn)), where
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Figure 1: PTAG G with trees α1, α2 and β

n = | tl(e)|. The hyperpaths of G are its g-
hyperpaths: HG = Hg

G.
A tuple (V,E, µ, g, p) is called a probabilistic

hypergraph (phg) if (V,E, µ, g) is a hypergraph
and p : E → [0, 1] assigns a probability to every
hyperedge. We will denote the class of all proba-
bilistic hypergraphs byH and assume definitions
for unweighted hypergraphs to carry over to the
probabilistic case. The probability of a derivation
d ∈ HG is defined to be

P (d | G) =
∏

w∈pos(d)

p(d(w)).

In the following, we will fix the phg G
(resp. G′, G′′) to be of the form
(V,E, µ, g, p) (resp. (V ′, E′, µ′, g′, p′),
etc.).

2.3 Tree-Adjoining Grammars

In our definition of tree-adjoining grammars, the
variable xi (resp. yj) in a symbol σxi (resp. σyj )
will be used to tag σ with the information that it
labels the ith substitution (resp. jth adjoining) site
of the respective tree. The variable z in an auxiliary
tree denotes the tree’s foot node. This formalization
allows us, among others, to give a straightforward
definition of derived trees.

A tree-adjoining grammar (TAG) is a tuple
G = (Σ, S,S,A) where Σ is an alphabet, S ∈ Σ
is called the start symbol, S ⊆ UΓ(∆) the set of
initial trees, and A ⊆ UΓ(∆ ∪ Z) the set of aux-
iliary trees, with Γ = Σ ∪ ΣY and ∆ = ΣX . We
demand for every t ∈ S ∪ A that t(ε) ∈ Σ, and
that there are n, m ∈ N such that t is proper in Xn

and in Ym. In the following, we will denote these
unique n and m by rk1(t), resp. rk2(t). Moreover,
we require that for every t ∈ A, z appears exactly
once in t.

A probabilistic tree-adjoining grammar (PTAG)
is then a tuple G = (Σ, S,S,A, P,Q) such
that (Σ, S,S,A) is a TAG, P : S ∪ A → [0, 1]
maps trees to their probabilities and Q =
(Qt : Yrk2(t) → [0, 1])t∈S∪A assigns to adjoining
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Figure 2: Hypergraph representation of G

sites the probability of their activation. We will
denote the class of all PTAG by T .

In the following, the PTAG G
(resp. G′) will be assumed to be
of the form (Σ, S,S,A, P,Q) (resp.
(Σ′, S′,S ′,A′, P ′, Q′)).

Let us examine an example PTAG G, with Σ =
{A,B,C, c, b}, S = A, initial trees S = {α1, α2},
and an auxiliary tree A = {β}. Refer to Fig. 1,
which depicts the tree α1 with two substitution
sites labeled, resp., with symbols A and C, as well
as one adjoining site, labeled with B. To the right
are the initial tree α2 and the auxiliary tree β, both
with no substitution or adjoining sites. The foot
node of β is indicated by z.

We denote the conditional probability that an
elementary tree t with root symbol A is used to
rewrite substitution or adjoining sites that are la-
beled withA by P (t). For G, e.g., let P (α1) = 0.9,
P (α2) = 0.5, and P (β) = 0.6. The probabil-
ity that the adjoining site in α1, tagged with y1,
is activated during a derivation, is denoted by
Qα1(y1). In the case of this running example, let
Qα1(y1) = 0.7.

3 Hypergraph Representations

For every PTAG G, we can construct a hypergraph
G = hg(G), whose hyperpaths stand in a one-to-
one correspondence to the grammar’s derivations.
Hence, we will call G a hypergraph representation
of G.

In our following definition, such a hypergraph
hg(G) can contain three different types of vertices.
The vertices of the first type model the derivation
of initial trees. These vertices are just copies of the
symbols of G: for every symbol A ∈ Σ, a vertex
A is introduced. Refer to Fig. 2, which depicts the
hypergraph hg(G) that represents the derivational
structure of the PTAG G from our running example.
Its A- and C-hyperpaths model derivation of initial
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trees with respective root symbols. Other, irrelevant,
vertices of this form are omitted from the figure.

The second vertex type helps in the derivation
of auxiliary trees. For each A ∈ Σ, the hypergraph
contains a corresponding vertex A?. In Fig. 2, the
only relevant vertex of this form is B?, whose hy-
perpaths represent derivations of auxiliary trees
with root symbol B.

Lastly, for every adjoining site that appears in an
elementary tree t and is tagged with yi, we include
a vertex S(t, yi). This vertex is used to explicitly
model the decision to activate or not to activate the
corresponding adjoining site. In the figure, there is
only one such vertex, S(α1, y1).

The hyperedges of hg(G) can also be classified
by their intended meaning: a hyperedge of the form
s(α) signifies the substitution of the initial tree
α during a derivation. Its head vertex is its root
symbol. Its tail vertices are, in order, the labels of
α’s substitution sites (indicating that the derivation
must continue with derivations of trees with the
respective symbols at their root) and the vertices
S(α, yi) modelling its adjoining sites (these indi-
cate the necessary decision on activating the sites).
In Fig. 2, we see, among others, s(α1), whose head
vertex A corresponds to α1’s root symbol, while
its two tail vertices C stand for its respective sub-
stitution sites, and S(α1, y1) for its adjoining site.

Hyperedges of the form a(β), with β an elemen-
tary auxiliary tree, possess essentially the same
structure as the former, but signify derivation of
auxiliary trees. In the figure, the only edge of this
form is a(β). Its head vertex is B? because β’s root
symbol is B, and it has no tail vertices, since there
are no sites in β.

Finally, the hyperedge y(t, yi) (resp. n(t, yi))
encodes the information that an adjoining site in
t was activated (deactivated). Both have S(t, yi)
as head, and while n(t, yi) has no tail, the tail of
y(t, yi) signifies that the derivation should continue
with the adjoining of an auxiliary tree. In Fig. 2,
e.g., y(α1, y1) models the activation of the site
that corresponds to its head vertex S(α1, y1), and
has the tail vertex B?, because that site is labeled
with B.

The probabilities of these hyperedges are taken
over from P and Q in the obvious way. Formally,
we define hg(G) = G with

V ={A,A? | A ∈ Σ}
∪ {S(t, yi) | t ∈ S ∪ A, i ∈ [rk2(t)]},

E ={s(t) | t ∈ S} ∪ {a(t) | t ∈ A}
∪ {y(t, yi), n(t, yi) | t ∈ S ∪A, i ∈ [rk2(t)]},

goal vertex g = S, and

µ(s(t)) = AB1 · · ·Bn S(t, y1) · · · S(t, ym),

µ(a(t)) = A?B1 · · ·Bn S(t, y1) · · · S(t, ym),

µ(y(t, yj)) = S(t, yj)C
?
j ,

µ(n(t, yj)) = S(t, yj),

where n = rk1(t), m = rk2(t), A = t(ε), Bi =
lbt(xi) for i ∈ [n], and Cj = lbt(yj) for j ∈ [m],
while

p(s(t)) = P (t), p(y(t, yj)) = Qt(yj),

p(a(t)) = P (t), p(n(t, yj)) = 1−Qt(yj).

Note that for our simple running example from
Fig. 1, there are only two possible derivations of
trees with root symbol A: in the first one, we sub-
stitute two instances of α2 into α1, and, after ac-
tivation of the adjoining site in α1, adjoin β into
this site. The corresponding A-hyperpath in Fig. 2
is d1 = s(α1)

(
s(α2), s(α2), y(α1, y1)

(
a(β)

))
.

Alternatively, we can ignore the adjoining site,
and arrive at the corresponding derivation d2 =
s(α1)

(
s(α2), s(α2), n(α1, y1)

)
.

Given such a hyperpath that represents a PTAG
derivation, we can compute the derivation’s de-
rived tree in a bottom-up manner with the function
yd: Hhg(G) → UΣ(X ∪ Z) defined by

yd(s(t)(d1, . . . , dn, d
′
1, . . . , d

′
m))

= t[x/ yd(d)]Jy/ yd(d′)K
yd(a(t)(d1, . . . , dn, d

′
1, . . . , d

′
m))

= t[x/ yd(d)]Jy/ yd(d′)K
yd(y(t, yj)(d)) = yd(d)

yd(n(t, yj)) = z,

where again n = rk1(t), m = rk2(t), and yd(d)
denotes the element-wise application of yd to all
d1, . . . , dn, analogously for yd(d′).

For example, for d1 from above, we can compute
its derived tree as

yd(d1) = α1[x1/α2, x2/α2]Jy1/βK
= A

(
C(c),By1(c,C(c))

)
Jy1/βK

= A
(
C(c), β

[
z/B(c,C(c))

])

= A
(
C(c),B

(
b,B(c,C(c))

))
.

4 State-Split Hypergraphs

In this section, we will detail how to generalize
the state-split method presented by Petrov et al. to
hypergraphs that represent PTAGs.
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S(α1, y1)〈1〉
y(α1, y1)〈21〉

S(α1, y1)〈2〉

y(α1, y1)〈12〉
B?〈1〉 B?〈2〉

y(
α

1
,y

1
)〈
1
1
〉 y(α

1 ,y
1 )〈2

2〉

Figure 3: Crossing hyperedges

As explained in the introduction, the state-split
algorithm proceeds in three distinct phases: first of
all, it splits every vertex into two, and then it trains
the probabilities of the resulting hyperedges on a
given treebank corpus, using the EM algorithm. In a
third step, vertices which do not increase likelihood
are merged back together. However, due to the
nature of adjunction in tree-adjoining grammar, the
splits and merges cannot be quite as liberal as in
the case of context-free grammars.

The reason for this will be shown immediately,
but first and foremost, let us define how to represent
split vertices. Given a hypergraphG, for any a ∈ V ,
and b ∈ {0, 1, 2}, define

a〈b〉 =

{
(a, b) if b ∈ {1, 2}
a if b = 0.

For a vertex a, the so-defined a〈1〉 and a〈2〉 will
denote the two vertices which result from splitting
a, while a〈0〉 is just a notation for the merged-back-
together vertex a. We will also have to annotate
split hyperedges in this way: for a hyperedge e ∈ E
with ar(e) = n, as well as a tuple b ∈ {0, 1, 2}n+1,
we introduce the syntax e〈b〉, which stands for
(e, b).

Given this notation, we can examine the men-
tioned complication of the state-split procedure,
which arises when splitting hyperedges of the form
y(t, yj). Let us assume that the vertices S(α1, y1),
B?, as well as the hyperedge y(α1, y1) from Fig. 2
are to undergo subcategorization.

If we split the vertices and hyperedges indiscrim-
inately, we arrive at the situation displayed in Fig. 3:
each of the vertices has been split into two copies,
and four new y-hyperedges were introduced. What
is the meaning of these hyperedges? In a hyperpath
representing a PTAG derivation, the appearance
of the hyperedge y(α1, y1)〈11〉 signifies that the
adjoining site in α1, labeled with the split symbol

B〈1〉, is activated, and next, an auxiliary tree with
equal root symbol must be adjoined into it.

However, there is a problem with the hyperedge
y(α1, y1)〈21〉 which crosses the shaded ellipses in
the figure (and, analogously, with y(α1, y1)〈12〉).
This hyperedge can be interpreted as activation of
the mentioned adjoining site, labeled with B〈1〉,
and preparation of adjoining an auxiliary tree with
root symbol B〈2〉. This stands in conflict to the
concept of adjoining, where the label of the node
to be replaced must be identical to the symbol at
the root of the auxiliary tree.

There are several distinct possibilities to handle
this complication. First of all, one could just do
away with the above condition regarding adjoining.
Actually, such a relaxation of the formalism was
already proposed by Rogers (2003), resulting in
non-strict tree-adjoining grammars.

As a second option, the formalism of TAG could
be extended by introducing states (cf. (Büchse et
al., 2011) for synchronous TAG). In this modifica-
tion, the derivational structure of the grammar is no
longer dependent on the labels of adjoining and sub-
stitution sites, this information is instead encoded
into the states, which only appear as intermediate
symbols in a derivation. Performing the splits and
merges on such states, instead of symbols, could
also remedy the problem.

However, for this work, we chose to stick to a
conceptually simpler solution, thus staying close to
the established notion of tree-adjoining grammar:
we just disallow the creation of such crossing hyper-
edges during the split-merge cycle; or, to put it dif-
ferently, we only introduce a hyperedge y(t, y)〈i j〉
into the split hypergraph if i = j. Hence, in
Fig. 3, only the two hyperedges y(α1, y1)〈11〉 and
y(α1, y1)〈22〉, which are both “within” the two
shaded ellipses, would be generated.

To formalize this idea, we augment the state-split
method with what we call split relations. Given a
hypergraph G which is to undergo a split-merge
cycle, a split relation on G is a symmetric relation
R ⊆ V ×V on the graph’s vertices. If a hyperedge
e from G connects, among others, two vertices a1

and a2 such that a1Ra2, then the idea is to split
e only into such hyperedges which connect either
only a1〈1〉 and a2〈1〉, or only a1〈2〉 and a2〈2〉, but
not, e.g., a1〈1〉 and a2〈2〉.

This invariant must also be heeded when we
merge back together parts of the hypergraph: for
example, if a1Ra2, we cannot merge back together
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a1〈1〉 and a1〈2〉 but leave a2〈1〉 and a2〈2〉 split at
the same time. Hence, what we must consider is
merging all elements which are (in-)directly related
by R simultaneously together. More succinctly, the
objects considered to be merged must be the equiv-
alence classes of the reflexive-transitive closure R∗

of R, which we also call split classes.

4.1 Splitting
When we split the vertices of a hypergraph, we
must take care that the created hyperedges respect
the supplied split relation R, as explained above.

This is achieved by the following function
splitR, which splits every node and introduces
new hyperedges respecting R. Given a hyper-
graph G and split relation R ⊆ V × V , we let
splitR(G) = G′ with

V ′ = {a〈b〉 | a ∈ V, b ∈ {1, 2}},
E′ = {e〈b0, . . . , bk〉 | e ∈ E,µ(e) = a0 · · · ak,

b0, . . . , bk ∈ {1, 2},
aiRaj implies bi = bj},

µ′(e〈b0, . . . , bk〉) = a0〈b0〉 · · · ak〈bk〉,
where µ(e) = a0 · · · ak,

g′ = g〈1〉, and

p′(e〈b0, . . . , bk〉) =
p(e)

2c

where c = |{e〈b′〉 ∈ E′ | b′ = b0 · · · bk}|.
Note that the probabilities of hyperedges are dis-
tributed uniformly to their split copies in G′. In an
implementation, these should be slightly random-
ized to give starting values for the EM algorithm,
as mentioned by Petrov et al. (2006).

The split hypergraph’s number of hyperedges is
exponential in their arity. We can try to mitigate the
problem of this exponential blowup by binarizing
the trees of the TAG which was initially extracted
from a corpus, following the description of Lang
(1994).

4.2 Merging
As explained above, we have to merge all elements
of a split class back together simultaneously. This
will be denoted with the following function. Let
G′ = splitR(G) be a hypergraph resulting from a
split, R ⊆ V × V a split relation, and C ∈ V/R∗
one of its split classes. The hypergraph which re-
sults from merging C back together is denoted by
G′′ = mergeCR(G′) with

V ′′ = V ′ \ {a〈b〉 | a ∈ C, b ∈ {1, 2}} ∪ C,

E′′ = {e〈b′0, . . . , b′k〉 | e〈b0, . . . , bk〉 ∈ E′,
µ(e) = a0 · · · ak,
ai ∈ C implies b′i = 0,

ai 6∈ C implies b′i = bi},
where we write o(e〈b′0, . . . , b′k〉) = e〈b0, . . . , bk〉
for the relation of e〈b′0, . . . , b′k〉 to e〈b0, . . . , bk〉,
µ′′(e〈b0, . . . , bk〉) = a0〈b0〉 · · · ak〈bk〉,

where µ(e) = a0 · · · ak,

g′′ =

{
g if g ∈ C
g′ otherwise, and

p′′(e′′) =





∑

e′∈o−1(e′′)

p′(e′)/2 if hd(e) ∈ C

∑

e∈o−1(e′′)

p′(e′) otherwise

Note that the probabilities of hyperedges which are
merged back together are summed up. In the case
that a hyperedge’s head vertex is merged, we have
to normalize the resulting probability.

4.3 Treebank Corpora and Likelihood

During the split-merge procedure, we want to train
the split hypergraph representations on a supplied
treebank. Following the presentation of Prescher
(2005), we will abstract away from the concrete
data structures which might be used to represent
a collection of trees, and just define a treebank
corpus as a function K : UΣ → R≥0, assigning to
every tree over an alphabet Σ a certain frequency,
such that the set of trees with non-zero frequency
is finite.

Let us assume that G0 = hg(G) is the hyper-
graph representation of a PTAG G and Gn is the
result of n split-merge cycles on G0. Then we can
define the likelihood of a corpus K : UΣ → R≥0

on Gn as

L(K | Gn) =
∏

t∈UΣ

(∑

d∈HGn
yd(un(d))=t

P (d | Gn)
)K(t)

=
∏

t∈UΣ

( ∑

d′∈HG0
yd(d′)=t

( ∑

d∈HGn

un(d)=d′

P (d | Gn)
))K(t)

. (1)

Hereby, the function un removes n levels of an-
notation from an annotated derivation, for every
n ∈ N. It is defined as the homomorphic exten-
sion of the function ũn on hyperedges to unranked
trees, where ũ is defined for every hyperedge e by
ũ0(e) = e, and for n > 1, ũn(e〈b〉) = ũn−1(e).
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Algorithm 1 The state-split algorithm

Require: phg G, n ∈ N, corpus K : UΣ → R≥0

1: function STATESPLIT(G,n,K)
2: G0 ← G
3: compute split relation R0

4: for all i ∈ [n] do
5: Gi ← SPLITMERGE(Gi−1, Ri−1,K)
6: update split relation Ri−1 to Ri−1

7: end for
8: return Gn
9: end function

Note that in (1), for every t ∈ UΣ with non-zero
frequency, there are only finitely many derivations
d′ ∈ HG0 , which can be determined by employing
a TAG parser at the beginning of the state-split
process. For each of these d′ we can compute the
value of the innermost sum in a bottom-up manner,
similarly to the computation of inside probabilities
as described by Petrov et al. (2006).

In the following, given a hypergraph Gn, n > 0,
we will identify yd(d) with yd(un(d)), for every
d ∈ HGn .

4.4 Overview of the Algorithm
Now we can denote the state-split algorithm for
hypergraphs in pseudocode, cf. Alg. 1. After com-
puting the initial split relation, the algorithm’s outer
loop (ll. 4–7) executes n split-merge cycles on G
using the treebank corpus K for training. Addition-
ally, in each step it updates the split relation to the
newly generated hypergraph.

Note that the concrete computation of split
classes depends strongly on the grammar formal-
ism represented by the hypergraph, hence we leave
it abstract in the general formulation of the algo-
rithm. In our case, where we use tree-adjoining
grammars as underlying formalism, we can instanti-
ate it as follows:R0 is defined as the finest symmet-
ric relationR such that, for every vertex of the form
S(t, yi) in G0, we have (S(t, yi), lbt(yi)

?) ∈ R.
Similarly, given a split relation Ri−1, the updated
split relation Ri is the finest symmetric relation R
such that, for every b ∈ {0, 1, 2} and pair a1〈b〉,
a2〈b〉, if a1〈b〉 and a2〈b〉 are vertices in Gi such
that a1Ri−1 a2, then a1〈b〉Ra2〈b〉.

The split-merge cycle (cf. Alg. 2) can be consid-
ered as the core of the state-split algorithm. Sup-
plied with a phg G, split relation R on G, and
treebank corpus K, SPLITMERGE first of all splits
the nodes of G, as defined in section 4.1. Then it

Algorithm 2 A split-merge cycle

Require: phg G, R ⊆ V × V , corpus
K : UΣ → R≥0

1: function SPLITMERGE(G,R,K)
2: G′ ← splitR(G)
3: G′ ← EMTRAIN(G′,K)
4: for all C ∈ V/R∗ do
5: G′′ ← mergeCR(G′)
6: if L(G′′ | K)/L(G′ | K) ≥ λ then
7: G′ ← G′′

8: end if
9: end for

10: return G′
11: end function

uses the EM algorithm for maximum likelihood es-
timation on incomplete data to train the newly-split
phg on the treebankK. Finally, in ll. 4–9, each split
class is tentatively merged back together, and if the
concomitant loss in likelihood does not fall below
a certain factor λ ∈ [0, 1], this merge is taken over
permanently. As noted by Petrov et al., this com-
bats the exponential blow-up of the hypergraph, as
well as the phenomenon of overfitting.

For the sake of completeness, let us give a rough
sketch of the EM algorithm for training state-split
hypergraphs on treebank corpora, following the
exposition of Prescher (2005). Given a phg G
and a treebank corpus K, the EM algorithm al-
ternatingly repeats two computations, called the
Expectation step (E-step) and the Maximization
step (M-step), until the increase in likelihood of the
newly-computed hypergraph on the corpus K falls
beneath a certain threshold δ ∈ R.

Note that the EM algorithm is not guaranteed
to find the actual global maximum of the likeli-
hood, however, as already shown by Dempster et al.
(1977), the likelihoods of the respective grammars
are monotonically non-decreasing, and so at least a
local maximum can be approximated.

In the algorithm’s E-step, a complete-data cor-
pus C : HG → R≥0 on the hyperpaths of G is
generated by distributing the frequencies of every
derived tree t ∈ UΣ in the corpus K to the hyper-
paths representing derivations of t, weighted by
their conditional probability given t. The M-step
then uses this complete-data corpus to compute
hyperedge probabilities by relative frequency es-
timation. Thereby, cte(d) denotes the number of
appearances of the hyperedge e in the derivation d,
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Algorithm 3 EM for (state-split) hypergraphs

Require: phg G, corpus K : UΣ → R≥0

1: function EMTRAIN(G,K)
2: repeat
3: G′ ← G
4: E-Step: define C : HG → R by:
5: C(d)=K(yd(d))·P

(
d | yd(d), G

)

6: M-step: set new probabilities:
7: for all e ∈ E do
8: p(e)←

∑
d∈HG

C(d)·cte(d)∑
d∈HG

C(d)·cthd(e)(d)

9: end for
10: until L(G|K)− L(G′|K) < δ
11: return G
12: end function

and cthd(e)(d) the number of appearing hyperedges
with the same head vertex as e.

One might remark that this concise, but formu-
laic presentation of EM is not immediately suitable
for implementation, but, using the derivation em-
ployed by Gupta and Chen (2011), it is straightfor-
ward to bring it into the form of the well-known
Inside-Outside algorithm, which has been adapted
to PTAG by Schabes (1992).

5 State-Split preserves Hypergraph
Representations

After all these definitions, we might ask ourselves
the following question: given a hypergraph repre-
sentation G of some PTAG G, does the hypergraph
which results from an application of the split-merge
cycle to G still represent a PTAG? This question
indeed arises quite naturally, after all it is an im-
portant requirement for the correctness of the state-
split procedure for PTAGs with hypergraphs.

If we denote the result of a split-merge cy-
cle on a phg G by sm(G), and the class of all
hypergraph representations of probabilistic tree-
adjoining grammars byHT , then this question can
essentially be answered by proving the inclusion

sm(HT ) ⊆ HT . (2)

But the validity of this inclusion does certainly
depend on the formal definition ofHT . Indeed, for
the definition which comes to mind first, in which
we just fixHT to be the set {hg(G) | G ∈ T }, i.e.
the image of the class of all PTAGs under hg, the
inclusion is not valid! This is due to the annotation
of vertices and hyperedges in a split-merge cycle:
hypergraphs that contain, for example, a vertex

G G

G′ G′′ G′

sm

hg

hg ∼
Φ

∃?

Figure 4: Proof idea

A〈2〉, which was generated by splitting a vertex A,
are arguably not in the image of hg!

However, one can show that the structure of a
split-and-merged hypergraph still corresponds to
the image of a PTAG G under hg. We will capture
this structural identity by means of hypergraph
isomorphisms.

A hypergraph isomorphism Φ: G ∼−→ G′

is a tuple (Φ1,Φ2), where Φ1 : V → V ′ and
Φ2 : E → E′ are bijections such that Φ1(g) = g′

and µ′(Φ2(e)) = Φ1(a0) · · ·Φ1(an) if µ(e) =
a0 · · · an. We write G ∼= G′ if there is an isomor-
phism Φ: G ∼−→ G′.

We define the set of all possible hypergraph rep-
resentations of PTAG as

HT = {G ∈ H | ∃G ∈ T .hg(G) ∼= G}.
Obviously, for every PTAG G, hg(G) ∈ HT , i.e.,
it is indeed a hypergraph representation accord-
ing to this definition. As visualized in Fig. 4, the
core of the proof of (2) is then as follows: Given
G ∈ T , G ∈ H, and G′ = sm(G), we have to
construct a PTAG G′ and hypergraph isomorphism
Φ: hg(G′) ∼−→ G′.

We construct G′ so that the trees of G′ are relabel-
ings of those in G, generated by incorporating the
annotations to the hyperedges in G to substitution
and adjoining sites:

S ′ = {t〈b〉 | s(t)〈b〉 ∈ E′},
A′ = {t〈b〉 | a(t)〈b〉 ∈ E′},

where t〈a b1 · · · brk1(t) c1 · · · crk2(t)〉 is the result of
replacing the root symbol A of t by A〈a〉, every
substitution site Axi in t by A〈bi〉xi , and every ad-
joining site Ayj by A〈cj〉yj , for i ∈ [rk1(t)] and
j ∈ [rk2(t)]. The probabilities P (t) of elemen-
tary trees t, as well as the activation probabilities
Qt(yi) are just read off from p(s(t)), p(a(t)), resp.
p(y(t, yi)).

The hypergraph isomorphism Φ then just re-
verses this relabeling. Given nodes or hyperedges
from hg(G′) with annotations in them, it removes
them from the contained symbols resp. elementary
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trees and moves them “to the back”, i.e.,

Φ1(A〈b〉) = A〈b〉, Φ1

(
(A〈b〉)?

)
= A?〈b〉,

Φ1

(
S(t〈b〉, yi)

)
= S(t, yi)〈b(i)〉

and

Φ2

(
s(t〈b〉)

)
= s(t)〈b〉,

Φ2

(
s(t〈b〉)

)
= s(t)〈b〉,

Φ2

(
y(t〈b〉, yi)

)
= y(t, yi)〈b(i)b(i)〉,

Φ2

(
n(t〈b〉, yi)

)
= n(t, yi)〈b(i)〉,

where, in all three cases, b(i) = b(rk1(t) + i).
Now, Φ can indeed be proven to be a hypergraph

isomorphism between G′ and sm(G), but for rea-
sons of space, we will omit these details from this
work. Note that the construction of G′ and Φ can
alternatively be interpreted as the definition of a
read-off procedure, which allows our system Vanda
to convert back its internal state-split hypergraph
representation into a probabilistic tree-adjoining
grammar, e.g. to display the resulting grammars for
means of debugging. Thus, it also has a hands-on
relevance for implementation.
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Matthias Büchse, Toni Dietze, Johannes Osterholzer,
Anja Fischer, and Linda Leuschner. 2012. Vanda –
A Statistical Machine Translation Toolkit. In Pro-
ceedings of the 6th International Workshop Weighted
Automata: Theory and Applications, pages 36–37.

John Chen, Srinivas Bangalore, and K Vijay-Shanker.
2006. Automated Extraction of Tree-Adjoining
Grammars from Treebanks. Natural Language Engi-
neering, 12(3):251.

Arthur P Dempster, Nan McKenzie Laird, and Donald B
Rubin. 1977. Maximum Likelihood from Incom-
plete Data via the EM Algorithm. Journal of the
Royal Statistical Society, B(39):1–38.

Maya R Gupta and Yihua Chen. 2011. Theory and Use
of the EM Algorithm. Foundations and Trends in
Signal Processing, 4(3):223–296.

Aravind K Joshi and Yves Schabes. 1991. Tree-
Adjoining Grammars and Lexicalized Grammars. In
Maurice Nivat and Andreas Podelski, editors, Defin-
ability and Recognizability of Sets of Trees, pages
409–431. Elsevier.

Dan Klein and Christopher D Manning. 2004. Parsing
and Hypergraphs. In Harry Bunt, John Carroll, and
Giorgio Satta, editors, New Developments in Parsing
Technology, volume 23 of Text, Speech and Language
Technology, pages 351–372. Springer Netherlands.

Bernard Lang. 1994. Recognition can be Harder than
Parsing. Computational Intelligence, 10(4):486–494.

Andreas Maletti and Giorgio Satta. 2009. Parsing Algo-
rithms based on Tree Automata. In Harry Bunt, edi-
tor, Proceedings of the 11th International Conference
on Parsing Technologies, pages 1–12. Association
for Computational Linguistics.

Andreas Maletti. 2010. A Tree Transducer Model for
Synchronous Tree-Adjoining Grammars. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1067–1076. As-
sociation for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and Inter-
pretable Tree Annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440, Sydney,
Australia. Association for Computational Linguistics.

Detlef Prescher. 2005. A Tutorial on the Expectation-
Maximization Algorithm Including Maximum-
Likelihood Estimation and EM Training of Prob-
abilistic Context-Free Grammars. Technical report,
15th European Summer School in Logic, Language,
and Information.

Philip Resnik. 1992. Probabilistic Tree-Adjoining
Grammar As A Framework For Statistical Natural
Language Processing. In Proceedings of the 14th
Conference on Computational Linguistics, pages 418–
424.

James Rogers. 2003. wMSO theories as grammar for-
malisms. Theoretical Computer Science, 293(2):291–
320, February.

Yves Schabes. 1992. Stochastic Tree-Adjoining Gram-
mars. In Proceedings of the Workshop on Speech
and Natural Language, HLT ’91, pages 140–145,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian Symbol-Refined
Tree Substitution Grammars for Syntactic Parsing. In
Proceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 440–448.

188



Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), pages 189–197,
Paris, September 2012.

Is Syntactic Binding Rational?

Thomas Graf
Department of Linguistics

University of California, Los Angeles
3125 Campbell Hall

Los Angeles, CA 90095-1543, USA
tgraf@ucla.edu

Natasha Abner
Department of Linguistics

University of California, Los Angeles
3125 Campbell Hall

Los Angeles, CA 90095-1543, USA
nabner@ucla.edu

Abstract

Recent results show that both TAG and
Minimalist grammars can be enriched with
rational constraints without increasing their
strong generative capacity, where a con-
straint is rational iff it can be computed by
a bottom-up tree automaton. This raises the
question which aspects of syntax can be ad-
equately formalized using only such con-
straints. One of hardest phenomena com-
monly studied by syntacticians is binding
theory. In this paper, we give a high-level
implementation of (the syntactic parts of)
binding theory in terms of rational con-
straints, and we argue that this implemen-
tation is sufficiently powerful for natural
language. This conclusion is backed up
by data drawn from English, German, and
American Sign Language.

1 Introduction

Finite-state methods and tools are ubiquitous in
computational linguistics due to their ease of use,
attractive closure properties, and efficient runtime
behavior. At the level of trees, they are repre-
sented by rational constraints. A constraint is
called rational iff it defines a regular tree lan-
guage iff it can be computed by a bottom-up tree
automaton iff it is definable in monadic second-
order logic with predicates for immediate domi-
nance and linear precedence (Gécseg and Steinby,
1997).

Recently it was demonstrated that rational con-
straints can be added to TAG as well as Minimal-
ist grammars (MGs; Stabler, 2011) without in-
creasing their strong generative capacity (Rogers,
2003; Mönnich, 2006; Graf, 2011; Kobele, 2011).
At least in the case of MGs it is also known that

rational constraints are the most powerful class of
constraints for which this result holds. Therefore
any aspect of syntax that cannot be expressed in
terms of rational constraints requires a proper ex-
tension of the framework. Quick surveys in Graf
(2011) and Kobele (2011) suggest that rational
constraints are powerful enough for a rich vari-
ety of modifications and embellishment put for-
ward in the syntactic literature. One problematic
area, however, is binding theory, which is some-
times claimed to be NP-complete (Ristad, 1993)
and thus firmly outside the realm of finite-state
computability. In this paper we give a high-level
implementation of (syntactic) binding theory in
terms of rational constraints; we also argue that
this implementation is sufficiently powerful for
natural language and discuss potential counterex-
amples from several languages, foremost English
and American Sign Language (ASL).
Organization. The paper is laid out as follows. In
Sec. 2 we discuss the limitations of rational theo-
ries of binding and what they nonetheless need to
be capable of accounting for. The major stum-
bling block turns out to be the disjoint reference
requirement on pronouns. We give a finite-state
implementation in Sec. 3 that successfully cap-
tures this condition as long as there is an upper
bound on the number of antecedents needed for all
the pronouns in a specific domain. Sec. 4 demon-
strates that this assumption is empirically feasible.

2 Object Domain

Binding theory is a very active research area, with
proposals ranging from the purely syntactic to the
purely discourse-driven and covering almost ev-
ery shade in between. Thus it isn’t particularly
surprising that there is no consensus as to what
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exactly a theory of binding needs to account for.
In this section we delineate the scope of a rational
theory of binding and highlight the main empir-
ical issue such an approach faces. We will see
that there are parts of binding theory that prov-
ably cannot be recast as rational constraints, but
also that those aren’t the aspects formal grammar
formalisms like TAG or MGs should be concerned
with.

A distinction is often made in the linguistic lit-
erature between syntactic binding and discourse
binding (Reinhart, 1983; Kiparsky, 2002; Reu-
land, 2011). Syntactic binding regulates the dis-
tribution of pronominals on a structural level and
thus is sensitive to c-command and locality ef-
fects.1 Discourse binding, on the other hand, is
agnostic about structure and cares mostly about
the compatibility of certain readings with an es-
tablished common ground and various pragmatic
considerations. For example, John cannot syntac-
tically bind him in John likes him due to a locality
constraint, but discourse binding might be possi-
ble nonetheless if the sentence is a facetious reply
to the statement that nobody likes John. The con-
ditions on discourse binding are rather ephemeral
(see Heim,1̇998 for further examples) and must be
evaluated with respect to highly detailed models
of the context of utterance. Thus it should come
as no surprise that we consider discourse binding
beyond the reach of rational constraints and focus
only on syntactic binding.

The decision to ignore any kind of non-
syntactic binding is also motivated by the formal
results of Ristad (1993). Ristad gives a proof that
canonical binding theory is NP-complete, which
entails that it cannot be captured by finite-state
devices. But his proof relies on configurations
where arguably no syntactic binding is involved,
such as weak crossover, ellipsis and Principle C
effects, all of which are assumed to be (at least
partially) regulated by semantics nowadays.

Syntactic binding is still a fuzzy concept,
though: does it regulate the availability of spe-
cific readings modulo discourse considerations,
or merely determine the syntactic distribution of
pronominals? The former implies the latter, but
not the other way round — verifying that a par-
ticular reading is available is not the same thing
as ensuring that a given sentence is grammatical

1We use pronominal as a catch-all term to refer to
anaphors and reflexives as well as pronouns.

under some interpretation. Seeing how both TAG
and MGs are primarily formal models of syntax,
we opt for the latter interpretation. A rational the-
ory of binding determines for any given sentence
whether it has some grammatical reading, while
the computation of available readings is relegated
to a dedicated semantic apparatus (Bonato, 2005;
Kobele, 2006).

This decision is further corroborated by an ob-
servation by Rogers (1998). Rogers implements
Principles A and B of the canonical binding the-
ory (Chomsky, 1981) in terms of rational con-
straints and proves that any rational binding the-
ory must be index-free. In the absence of indices
one can only guarantee that a suitable antecedent
exists for any given pronominal, but not which
specific constituent in the tree serves this role (un-
less there is exactly one).

Index-Free A rational binding theory does not
evaluate specific indexations. It only ensures
that some grammatical assignment of indices
exists.

This condition is at odds with common practice
among linguists, where sentences are analyzed
with respect to specific readings.

At least for English, though, the distinction is
irrelevant if one is interested only in regulating
the distribution of pronominals rather than their
interpretation. First of all, Index-Free is inconse-
quential for anaphora such as himself, whose dis-
tribution is regulated by Principle A. Principle
A requires for every anaphor to be syntactically
bound within its binding domain, but crucially,
two anaphors contained in the same binding do-
main may share an antecedent. Therefore we do
not need to know whether two anaphors have the
same referent, and indices — whose sole purpose
is to denote referents — are redundant.

This leaves us with the case of pronouns. Ac-
cording to the standard binding theory, a pronoun
must not be coreferent with any material in the
same binding domain. Hence a sentence like John
told Mary that he likes him is ungrammatical if
both pronouns are supposed to be bound by John.
However, pronouns can always get an interpreta-
tion from discourse; the pronouns in the example
sentence might refer to male individuals distinct
from John. Pronouns do not need a syntactic an-
tecedent at all, and hence they have the same dis-
tribution as normal DPs. This means that Princi-
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ple B can be ignored and Index-Free is once again
irrelevant.

One might be tempted to conclude, then, that
Rogers’s rational binding theory is empirically
adequate despite the mandatory absence of in-
dices and consider the issue solved. But the
arguments above do not hold in full generality.
English has a rather impoverished inventory of
pronominals, and the bifurcation into anaphors
and pronouns is too simple from a cross-linguistic
perspective. Kiparsky (2002; 2012) proposes to
stratify pronominals depending on the maximum
size of their binding domain and whether there are
configurations in which they must be disjoint in
reference from other DPs. Pronominals with such
a disjointness requirement are obviative or, equiv-
alently, show obviation. Kiparsky’s system gives
rise to ten distinct types, eight of which are at-
tested empirically (see Tab. 1).

Our previous argument that Index-Free is un-
problematic for anaphors because they need not
be disjoint in reference carries over to all pronom-
inals that lack obviation effects. Likewise, indices
aren’t required for any pronominals that do not
need a syntactic antecedent, for the reasons we
just discussed. This still leaves us with two at-
tested subclasses, though: I) long-distance reflex-
ives such as Swedish sig that need an antecedent
which belongs to the same finite clause but is not a
coargument, and II) pronouns like Marathi aapan.
that cannot receive a referent from context or dis-
course. In neither case can the problem of deter-
mining the correct distribution be separated from
obviation, so that Rogers’s implementation is in-
sufficient in its current form.

What is needed, then, is a strategy for dealing
with obviation effects that can be implemented
with rational constraints. In combination with
suitable modifications of the definition of binding
domain in Rogers (1998), this would be enough to
cover all instances of syntactic binding identified
by Kiparsky (the first three columns in Tab. 1).

Note that this is relevant even if one is only in-
terested in English. While unrestricted him can
appear in the same positions as standard DPs
(i.e. R-expressions), the distributions of discourse
bound him and syntactically bound him are in-
comparable (more on that in Sec. 4). At the same
time, unrestricted him is mostly restricted to deic-
tic uses, which are comparatively rare. Since him
is actually bound in most instances and the type

of binding gives rise to different distributions, an
efficient mechanism for syntactic binding is es-
sential under more realistic conditions where not
every pronoun can be assumed to introduce a new
referent.

In sum, the basic duty of binding theory from
the perspective of formal grammars is to regu-
late the distribution of various pronominal forms
(where, depending on the ultimate goals, one
might want to distinguish between homophonous
pronouns that belong to distinct classes). More
ambitious goals, such as computing specific
meanings or incorporating conditions imposed by
discourse, are beyond the reach of rational con-
straints and best left to additional machinery. This
does not mean that the task at hand is trivial,
though. Since rational constraints cannot keep
track of indexations, it is unclear how the require-
ments of obviative pronouns are to be handled.
The next section offers a simple solution to this
issue.

3 Computing Obviation

As just discussed, the only challenge to a rational
binding theory is posed by pronominals that both
need a syntactic antecedent and show obviation
effects. Other pronominals either do not involve
syntactic binding or are easily reigned in by ex-
tending the size of the binding domain in Rogers’s
(1998) definition of Principle A. For the problem-
atic subclass of pronominals — be it Swedish sig,
Marathi aapan. , or syntactically bound pronouns
in English — there are two constraints to be taken
care of: I) every pronoun has an antecedent, and
II) no two pronouns that must be disjoint in refer-
ence have the same antecedent.

Suppose that we have some well-defined notion
of obviation domain such that every pronominal
belongs to at least one obviation domain and only
pronominals belonging to the same one can (but
need not) be required to be disjoint in reference.
In addition, there is some procedure A such that
for each pronominal p in tree t,A(p, t) is the set of
viable antecedents of p in t. In the case of canon-
ical binding theory, the two would be supplied by
the definition of binding domains on the one hand
and c-command on the other. Then I) and II) can
be verified as follows.

Given a tree t and sequence P :=
〈p1, . . . , pi−1 � pi, . . . , pn〉 of pronominals
in t, n ≥ 0, the debt of P is
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Size of Binding Domain
Subject Domain Finite Clause Sentence Discourse Unrestricted

No Obviation English himself Russian sebja Icelandic sig Turkish kendisi —
Obviation — Swedish sig Marathi aapan. Greek o idhios English him

Table 1: Cross-linguistic classification of pronominals according to Kiparsky (2002; 2012)

• 0 if i− 1 = n,

• 0+debt(〈p1, . . . , pi � pi+1, . . . , pn〉) if there
is some pj , j < i, such that pj and pi need
not be disjoint in reference in t,

• 1 + debt(〈p1, . . . , pi � pi+1, . . . , pn〉) other-
wise.

Assume t contains obviation domains
O1, . . . , On, n ≥ 1, and let pro(Oi) be the
set of pronominals contained by Oi, 1 ≤ i ≤ n.
Furthermore, let φ be some arbitrary pro-
cedure for totally ordering any given set
P ⊆ pro(Oi), debt(P ) := debt(〈�〉 · φ(P )),
and A(P, t) := |⋃p∈P A(p, t)|. Then con-
ditions I) and II) above are satisfied in t iff
for every 1 ≤ i ≤ n and P ⊆ pro(Oi),
A(P, t) ≥ debt(P ).

Proof. Suppose A(P, t) ≥ debt(P ) for every
P ⊆ pro(Oi). Then in particular A({p} , t) ≥
debt({p}) for every p ∈ pro(Oi), implying I). As
for II), let Ω be the smallest set containing all ob-
viative p ∈ pro(Oi). By assumption A(P, t) ≥
debt(P ) for all P ⊆ Ω, too, which entails that
for any arbitrary choice of p1, . . . pn ∈ Ω, n ≥ 2,
there are at least n available antecedents. It fol-
lows immediately that no two pi, pj ∈ Ω need to
share an antecedent.

In the other direction, we prove the contrapos-
itive: violation of I) or II) implies that A(P, t) <
debt(P ) for some P ⊆ pro(Oi). If I) does not
hold, then there is some p such that A({p} , t) =
0 < 1 = debt({p}). Now let Ω be defined as
before. It is easy to see that if II) is necessar-
ily violated, then for some P ⊆ Ω, A(P, t) <
debt(P ).

Intuitively, our condition states that for ev-
ery collection of mutually obviative pronominals,
there are enough antecedents such that no two
pronominals need to share a referent. It is crucial
that we consider every subset of a given obviation
domain, for otherwise a pronominal with many
available antecedents could pay off debt induced

by other pronominals. For example, if A(p1, t) =
2 and A(p2, t) = 0, then A({p1, p2} , t) = 2 =
debt({p1, p2}) yet p2 has no viable antecedents
at all and thus cannot be bound.

Let us quickly work through an example. Con-
sider the clause that he wants him to entertain
him. According to standard linguistic assump-
tions, it consists of two overlapping obviation
domains, O1 := that he wants him and O2 :=
him to entertain him. Each obviation domain has
a debt of 2, and each pronoun needs at least one
possible antecedent. Any masculine singular DP
that c-commands the entire clause is a viable an-
tecedent for the pronouns. Hence we correctly
predict (1b) but not (1a) to be grammatical if all
pronouns are meant to be syntactically bound.

(1) a. * John said that he wants him to en-
tertain him.

b. John told Bill that he wants him to
entertain him.

Note that almost all morphological require-
ments on the antecedent (gender, animacy, etc.)
can be encoded as part of the procedure A if one
considers them relevant to syntax. The major ex-
ception is number, which also needs to be taken
into account in the definition of the debt func-
tion. At first sight this seems rather trivial: in-
stead of a single debt value, the function now re-
turns a pair encoding the minimum required num-
ber of singular and plural antecedents. However,
a plural pronominal can be bound by two singu-
lar DPs, so every time one is encountered there
is a choice of either increasing the singular an-
tecedent threshold by 2 or the plural antecedent
threshold by 1. Rather than a pair of values, then,
we actually need to keep track of a set of such
constantly updated pairs, and the cardinality of
said set doubles with every new plural pronom-
inal. Singular and plural antecedents must be
counted separately, too, and for every obviation
domain O and P ⊆ O there must be some pair
d := 〈sg , pl〉 ∈ debt(P ) such that sg and pl do
not exceed the number of singular and plural an-
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tecedents, respectively.
Things might be even more involved, because

at least some sentences seem to marginally allow
for a singular pronoun to partially overlap in ref-
erence with a plural pronominal, even in cases
where the former should be obviative.

(2) Johni and Peterj agreed that theyi+j like
himi.

Unfortunately the binding properties of plural
pronominals (let alone dual) still aren’t particu-
larly well understood, so we have to leave it to
future research for now.

Even when the complications introduced by
plural are taken into account, though, the proce-
dure proposed here can be computed by rational
constraints iff the following holds.

Rational Base Obviation domains, mandatory
disjointness in reference, and possible an-
tecedents can be determined by rational con-
straints.

Limited Obviation There is some finite upper
bound k on the range of debt .

The relevance of Rational Base is obvious in both
directions. The necessity of Limited Obviation
follows immediately from the fact that rational
constraints are computable by bottom-up tree au-
tomata, which by virtue of being finite-state can
only count up to some fixed threshold k. In the
right-to-left direction, it suffices to observe that
both the debt function and the cardinality com-
parison A(P, t) ≥ debt(P ) can easily be stated
in monadic second-order logic — definability in
which is equivalent to being rational — if Lim-
ited Obviation holds together with Rational Base.

To our knowledge, Rational Base is satisfied
for all theories of binding commonly entertained
in the literature (cf. Rogers’s implementation).
Whether Limited Obviation is tenable is an em-
pirical question. Is there an upper bound on the
number of required antecedents per obviation do-
main?

4 Empirical Evaluation

In this section we investigate a range of data
drawn primarily from English in an attempt to
elicit a counterexample to Limited Obviation.
Since Limited Obviation can be falsified only
by instances of syntactic binding, we assume

that pronouns are indeed syntactically bound un-
less there is evidence to the contrary. We also
make heavy use of quantified DPs, which aren’t
as amenable to discourse binding as their non-
quantified counterparts. In particular, DPs quan-
tified by no are viable antecedents for syntactic
binding, but not for discourse binding, as it evi-
denced by the paradigm in (3).

(3) a. Every player was given a card. He
was delighted.

b. * No player was given a card. He
was upset.

c. Every/No player was upset that he
wasn’t given a card.

Discourse binding is the only option in (3a) and
(3b) (besides introducing an entirely new refer-
ent), whereas (3c) also allows for syntactic bind-
ing. A no-quantified DP is a licit antecedent in the
latter example, but not the former.

Besides the restriction to syntactic binding, it
is also clear from our definitions that Limited
Obviation is trivially satisfied for every obvia-
tion domain that may only contain a bounded
number of pronouns. So if there exists a coun-
terexample to Limited Obviation in natural lan-
guage, it must involve an obviation domain with-
out such a bound. The literature on binding con-
tains not a single mention of a language where
obviation domains are larger than a single CP
(keep in mind that we only consider pronomi-
nals here; there are of course instances of ob-
viation domains extending beyond several CPs,
but those involve R-expressions such as proper
names). There are three ways of accommodating
an unbounded number of pronouns inside a single
CP: adjunction, TP/VP/DP-recursion, and coordi-
nation. Let’s consider one after another.

4.1 Adjuncts
In English, pronouns inside adjuncts usually do
not show obviation effects. Native speakers of En-
glish agree that the sentence below has a reading
in which the pronoun is bound by the quantified
DP.

(4) Every/No/Some woman put the box down
in front of her.

Even speakers that prefer a reflexive instead of the
pronoun still consider this sentence grammatical
under the intended reading.
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In cases where obviation occurs, pronouns con-
tained by distinct adjuncts do not obviate each
other, so debt is increased by at most one point,
irrespective of the number of adjuncts.

(5) a. * Every/No/Some priest sacrificed a
goat for him/in honor of him.

b. Every/No/Some Egyptian goddess
asked of some priest that he sacri-
fice a goat for her in honor of her.

In (5a), the pronoun must introduce a new refer-
ent or be at least discourse-bound. Otherwise it
would be locally bound by the priest-DP, and this
reading is not available. In the perfectly accept-
able (5b), on the other hand, the same adjuncts
are clause mates and each one contains a pronoun
that is bound by the quantified subject of the next
higher clause. Note that in the minimally dif-
ferent (6) below, the pronouns inside the adjunct
must still be disjoint in reference from the embed-
ded subject. Consequently, they can be bound by
priest iff he is bound by god (this reading, albeit
odd, is indeed available).

(6) Every/No/Some Egyptian god asked of
some priest that he sacrifice a goat for him
in honor of him.

Taken together the data corroborates our initial
claim: pronouns inside adjuncts usually aren’t ob-
viative, but when they are the obviation effect
does not extend to adjuncts contained in the same
clause. This guarantees that debt is increased by
only one point no matter how many adjuncts are
present.

A similar pattern emerges in German, where
some speakers treat pronouns inside PP-adjuncts
as obviative yet pronouns contained by distinct
PPs do not obviate each other.

(7) a. * Jeder/Kein/Irgendein
every/no/some

Student
student

hat
has

für
for

ihn/neben
him.ACC/next to

ihm
him.DAT

einen
a

Spickzettel
book

versteckt.
hidden

‘Every/no/some student hid a cheat
sheet for himself/next to himself.’

b. Jeder/Kein/Irgendein
every/no/some

Student
student

hat
has

seine
his

Schwester
sister

gebeten,
asked

dass
that

sie
she

für
for

ihn
him

neben
next to

ihm
him

einen
a

Spickzettel
cheat

versteckt.
sheet hides

‘Every/no/some student asked his
sister to hide a cheat sheet next to
him for him.’

4.2 TP-Recursion

Nested TPs do not endanger the empirical ade-
quacy of Limited Obviation. This is witnessed by
the paradigm in (8).

(8) a. * Every/No/Some patient said [CP
that [TP he wants [TP him to be se-
dated ]]].

b. * Every/No/Some patient said that
he wants him to sedate him.

c. Every/No/Some patient told some
doctor that he wants him to sedate
him.

d. Every/No/Some patient told some
doctor that he incorrectly believes
him to want him to sedate him.

The ungrammaticality (8a) shows that the ECM
subject must be disjoint from the subject of the
embedded clause, so obviation domains span at
least an entire TP and may partially overlap. At
the same time it is clear that the embedded sub-
ject pronoun can be bound by the matrix subject,
indicating that obviation domains do not extend
beyond CPs. Comparing (8b) to (8c), we see that
the overlap in nested TPs is limited to Spec,TP,
since two antecedents are enough for three pro-
nouns, which implies that the embedded subject
and the object of the ECM clause can have the
same referent. This conclusion is further corrobo-
rated by (8d), in which two antecedents are suffi-
cient to satisfy the binding requirements of four
pronouns. It follows, then, that the debt of n
nested TPs, n ≥ 1, is determined by the maxi-
mum of the debts of the individual TPs. As long
as the debt of individual TPs is finitely bounded,
so is the debt of nested TPs.

4.3 VP-Recursion

It is commonly assumed that English does not al-
low for VPs to be nested without an intervening
TP. To the degree that one is willing to entertain
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VP-recursion as a possible analysis for some con-
structions in English, it seems to behave exactly
like TP-recursion.

(9) a. * Every/No/Some patient said that
he made him operate on him.

b. Every/No/Some doctor told some
patient that he made him watch
him operate on him.

4.4 DP-Recursion
The absence of obviation effects with pronouns
inside DPs in English is a well-established fact.

(10) Every/No/Some politician liked the (pho-
tographer’s) picture of him.

(11) Every/No/Some politician enjoyed the
(consultant’s) presentation to him.

It is a contentious issue whether the observed be-
havior is due to DPs establishing new obviation
domains or pronouns losing their obviative prop-
erties in these configurations. For our purposes,
though, the underlying cause of this pattern is ir-
relevant as long as it carries over to nested DPs,
which is indeed the case.

(12) Every/No/Some post-modern artist must
paint at least one [picture of [him and a
picture of him]].

(13) Every/No/Some facetious client wanted
to see a [presentation of [a presentation to
him] to him].

The first sentence has a grammatical reading in
which every post-modern artist amust paint a pic-
ture that depicts both a and some other picture
of a. In order for this reading to be licensed the
two pronouns inside the DP need to be coreferent,
wherefore they do not obviate each other. One
could wonder whether this might be due to the
presence of a conjunction, but this objection does
not apply to (13), which has an analogous read-
ing. Some speakers dislike both sentences, but
their judgment is independent of a specific inter-
pretation and thus has no bearing on determining
obviation requirements. We conclude that nested
DPs do not give rise to unbounded debt.

4.5 Coordination
Coordination exhibits a very peculiar pattern that
to our knowledge has gone unnoticed in the em-
pirical literature so far: coordination of syntacti-

cally bound pronouns is grammatical iff the coor-
dinated pronouns are distinct.

(14) a. Every/No/Some football player
told every/no/some cheerleader
that the coach wants to see him
and her in the office.

b. * Every/No/some football player
told every/no/some masseur that
the coach wants to see him and
him in the office.

It is unclear what exactly the relevant notion
of distinctness is. Several languages have dis-
tinct pronouns with identical morphological fea-
ture specifications that differ with respect to de-
grees of discourse salience, e.g. Latin is, iste, ille,
and dieser and jener in German. Marcel den
Dikken (p.c.) points out that a similar contrast ex-
ists in Dutch and that the Dutch analogue of (14b)
seems well-formed if one coordinated pronoun is
replaced by one of these alternate pronouns.

We are unsure whether the same holds true of
German, but fascinating as this question might be,
it is ultimately orthogonal to the issue at hand, viz.
whether coordination can lead to unbounded debt.
Latin, German, and Dutch still have only a fi-
nite inventory of distinct pronoun types, so unless
arbitrarily many identical tokens of one of these
types can be coordinated, we are still guaranteed
a finite bound on debt even if the pronouns would
all obviate each other.

4.6 American Sign Language
Curiously, the analogue of (14b) is well-formed in
ASL, so identical pronouns may indeed be coor-
dinated.

(15) [all wrestler]i inform [someone
swimmer]j that proi and proj will
ride-in-vehicle limo go-to dance
‘Every wrestler told some swimmer that
the two of them would ride in a limo to
the dance.’

It is important to keep in mind, however, that
ASL’s binding mechanism differs in essential re-
spects from that of English. Foremost, it has
distinctively deictic flavor to it. Referential ex-
pressions are assigned distinct loci in front of the
speaker, and a pronoun is realized by pointing at
a previously established locus. So in (15), the
signer would first map every wrestler and some
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swimmer to specific loci, which we indicate by the
subscripts i and j, respectively. In order to refer
back to them in the coordination, the signer sim-
ply points at the intended loci. That is to say, proi
and proj in the sentence above represent only the
act of retrieving referents from their loci via point-
ing, no discrete morphological forms beyond that
are involved. Pronouns are pointers.

Considering the deictic nature of all pronouns
in ASL, one might suspect that (15) involves dis-
course binding rather than syntactic binding. Af-
ter all, (14b) is perfectly grammatical in English
if the pronouns are used deictically by simultane-
ously pointing at two specific individuals. More-
over, binding in ASL lacks several properties of
syntactic binding. Foremost, the denotational do-
main of a pronoun must be non-empty, meaning
that a DP quantified by no is not a suitable an-
tecedent.

(16) a. [each politics person]i tell-story
proi want win

b. * [no politics person]i tell-story proi
want win

‘Every/No politiciani said hei wants
to win.’

As we saw at the beginning of this chapter, dis-
course binding across sentences in English is sub-
ject to a similar restriction, making it rather un-
likely that these instances of binding in ASL are
truly syntactic. Further evidence along these lines
is presented by Schlenker (2011; 2012). Recent
work of Rudnev and Kimmelman (2011) on Rus-
sian Sign Language also suggests that it is the
norm for binding conditions in signed languages
to differ from those of spoken languages, rather
than the exception.

When these observations are added to our own,
it seems that neither English nor ASL furnish
a decisive counterexample to Limited Obviation.
Consequently, a rational theory of binding seems
empirically feasible.

5 Conclusion

We have shown that if one is content with a theory
that can only verify the existence of some gram-
matical reading for a given phrase structure tree
— rather than evaluating specific readings — the
major challenge to a rational theory of binding
is posed by pronouns that need a syntactic an-
tecedent yet must not be coreferent with any other

material within the bounds of some locality do-
main. This problem can be tackled by a system
that builds on obviation domains, antecedents,
and the notion of debt, which represents the num-
ber of antecedents that must be present in order
to satisfy all binding requirements. As long as
the debt of obviation domains is finitely bounded,
the proposed system is finite-state computable.
No convincing counterexample to this assumption
could be found in English or ASL. While it is dif-
ficult to estimate from the existing binding liter-
ature whether this result will carry over to other
languages due to the scarcity of pertinent data, we
are confident that potential counterexamples will
also turn out not to be truly syntactic in nature.
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Abstract

This paper presents a research note on the
degree to which strictly incremental deriva-
tions (that is derivations which are fully
connected at each point in time) are pos-
sible in Combinatory Categorial Grammar
(CCG). There has been a recent surge of
interest in incremental parsing both from
the psycholinguistic community in a bid to
build psycholinguistically plausible mod-
els of language comprehension, and from
the NLP community for building systems
that process language greedily in order to
achieve shorter response times in spoken
dialogue systems, for speech recognition
and machine translation. CCG allows for
a variety of different derivations, including
derivations that are almost fully incremen-
tal. This paper explores the syntactic con-
structions for which full incrementality is
not possible in standard CCG, a point that
recent work on incremental CCG parsing
has glossed over.

1 Introduction

In recent years, there has been an increasing in-
terest in (strictly) incremental and connected pro-
cessing, both from a cognitive modelling perspec-
tive (Mazzei et al., 2007; Demberg and Keller,
2008; Schuler et al., 2008; Reitter et al., 2006)
and from a perspective of NLP applications like
spoken dialogue system (e.g., Purver and Kemp-
son, 2004; Schlangen and Skantze, 2009; Atterer
and Schlangen, 2009), machine translation (Has-
san et al., 2008; Hefny et al., 2011) and speech
recognition (Roark, 2001) that set out to process
linguistic input in real time and therefore require
the greedy generation of hypotheses about the in-
put without delaying decisions about how words
are connected.

CCG (Steedman, 1996, 2000) as a grammar
formalism seems particularly well-suited for in-
cremental connected processing due to its flex-
ible constituency structure and direct syntax-
semantic interface, which allows to simultane-
ously construct an incremental syntactic and se-
mantic derivation. Indeed, Steedman (2000,
p. 226) claims that “combinatory grammars are
particularly well suited to the incremental, essen-
tially word-by-word assembly of semantic inter-
pretations”.

However, existing work on using CCG incre-
mentally (Reitter et al., 2006; Hefny et al., 2011)
either did not use fully connected incremental
derivations, or introduced additional operations
which are not part of the standard CCG rule set.
From the existing literature, it remains largely un-
clear in what kinds of cases a fully connected
incremental analysis is impossible (with the ex-
ception of coordination, see Sturt and Lombardo,
2005). Milward (1995) notes in a footnote that
“CCG doesn’t provide a type for all initial frag-
ments of sentences. For example, it gives a type
to John thinks Mary but not to John thinks each”.
While Demberg and Keller (2008) briefly men-
tions that object relative clauses (like The woman
that the man saw laughed.) are problematic to
process strictly incrementally with CCG, they do
not provide a detailed explanation. The goal of
this paper is to provide an overview of the differ-
ent cases and explain in detail when and why fully
connected word-by-word derivations are not pos-
sible with standard CCG.

This paper will first discuss the concept of full
connectedness (Sec. 2) and provide an overview
of CCG (Sec. 3), and then discuss in which cases
CCG fails to derive a sentence prefix incremen-
tally (Sec. 4). A discussion and comparison to
other grammar formalisms is provided in Sec. 5.
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2 Incrementality and Connectedness

There are different interpretations of what “in-
cremental processing” on the syntax level means.
The most general interpretation is that it involves
left-to-right processing on a word by word ba-
sis. But then the question arises, how “complete”
that left-to-right processing should be. In the
less strict interpretation of incremental process-
ing, words can be partially connected and these
partial structures stored on a stack until further
evidence for how to connect them is encountered.
The strongest form of incrementality, which we
will refer to as strict incrementality or full con-
nectedness entails that all words which have been
perceived so far are connected under a single syn-
tactic node, which means that the relations be-
tween all words that have so far been processed
have been specified.

In this section, we will review arguments for
full connectedness first from a psycholinguistic
perspective and then from a practical perspective
of eager processing for real-time dialogue sys-
tems.

2.1 Psycholinguistic Evidence for
Connectedness

What does it mean from a CCG perspective to de-
rive a sentence strictly incrementally? Because
CCG implements the strict competence hypothe-
sis (Steedman, 2000), any string of words that is
connected under a single node must be semanti-
cally interpretable. So in order to show that full
connectedness is necessary at a specific point in
the sentence, we would need to show that humans
have built the syntactic and semantic interpreta-
tion up to exactly that point.

Evidence that human sentence processing is in-
cremental and at least to some degree connected
comes from visual world studies. One example
is a study by Kamide et al. (2003), where partici-
pants listened to sentences like the ones shown in
Example (1) while looking at a visual scene that
included four objects, three of which were men-
tioned in the sentence (e.g. a cabbage, a hare and
a fox with respect to the ”eat” relation), and a
distractor object. They found that people would
gaze at the cabbage upon hearing a sentence like
(1-a) just before actually hearing the second noun
phrase, and would respectively gaze at the fox in
sentences like (1-b). This means that people were

anticipating the correct relationship between the
hare and the eating event. One can therefore con-
clude that role assignment has been achieved at
the point when the verb (frisst in example sen-
tences (1)) is processed. If we assume that the
syntactic relations have to be established before
role assignment can be performed, the evidence
from these experiments suggests full connected-
ness at the verb.

(1) a. Der Hase frisst gleich den Kohl.
The Hare-nom will eat soon the
cabbage-acc.

b. Den Hasen frisst gleich der Fuchs.
The Hare-acc will eat soon the fox-nom.

Evidence from experiments on Japanese further-
more indicates that humans build compositional
structures by connecting NPs in a grammati-
cally constrained fashion in advance of encoun-
tering the verb, which is the head of the sentence
and establishes the connection between the NPs
(Aoshima et al., 2007).

Evidence for full connectedness furthermore
comes from findings such as the one presented by
Sturt and Lombardo (2005), see Example (2).

(2) a. The pilot embarrassed John and put him-
self in an awkward situation.

b. The pilot embarrassed Mary and put her-
self in an awkward situation.

c. The pilot embarrassed John and put him
in an awkward situation.

d. The pilot embarrassed Mary and put her
in an awkward situation.

The experimental items are constructed in order to
test for a gender default mismatch effect in condi-
tion (2-b), where the pronoun herself refers back
to the pilot. If people have connected all parts
of the syntactic structure completely at this point,
the c-command relation between the pilot and the
pronoun should be established. In the experiment,
the gender mismatch effect occurs directly when
the reflexive pronoun is encountered (and not just
at the end of the sentence), suggesting that the
syntactic c-command relation link must have been
created at the point of processing herself. Condi-
tions (2-c) and (2-d) were included to rule out a
structurally-blind strategy for connecting the pro-
noun, in which the pronoun would be connected
to the first noun in the sequence.

Further evidence comes also from an English
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eye-tracking experiment by Sturt and Yoshida
(2008). In (3-c) the negative element c-commands
and thus licenses the use of the word ever later
on in the sentence. This is not the case for sen-
tences like (3-a), where processing difficulty can
thus be expected at the point where the mismatch
is detected. Reading times are indeed found to be
longer for the word ever in condition (3-a). This
indicates that the structural relations necessary for
computing the scope of negation in sentences like
(3) were available early during the processing of
the relative clause, in particular before its verbal
head had been processed. Thus, the modifiers
ever or never must have been immediately incor-
porated into the structure.

(3) a. Tony doesn’t believe it, but Vanity Fair
is a film which I ever really want to see.

b. Tony doesn’t believe it, but Vanity Fair is
a film which I never really want to see.

c. Tony doesn’t believe that Vanity Fair is
a film which I ever really want to see.

d. Tony doesn’t believe that Vanity Fair is
a film which I never really want to see.

While the above phenomena provide evidence
for a strong degree of connectedness, there are
also findings from other studies that suggest that
sentence processing is not fully incremental, or at
least that the valid prefix property, meaning that
only analyses that are compatible with the inter-
pretation so far are followed, is not always ob-
served by humans. Local coherence effects (see
e.g. Tabor et al., 2004) are often interpreted as
evidence that humans adopt a locally coherent
interpretation of a parse, or experience interfer-
ence effects by locally coherent structures which
are however not compatible with the incremen-
tal interpretation of the sentence. Local coher-
ence effects have been successfully modelled us-
ing a bottom-up CCG parser (Morgan et al., 2010)
which does however not implement full connect-
edness. Some people have also suggested (e.g.,
Gibson, 2006) that the difficulty in local coher-
ences arises because of a conflict between the
incremental analysis and the bottom-up part-of-
speech tag, an explanation which is still compati-
ble with fully incremental processing.

While there is a considerable amount of sup-
porting evidence for connectedness in human sen-
tence processing, these studies can only make
claims about connectedness at a specific point in

a particular construction, but cannot answer the
question whether human processing is fully con-
nected at every point in every sentence.

2.2 Connectedness for fast Interpretation in
Dialogue Systems

Dialogue systems which interact with the user in
real time have been shown to exhibit more natu-
ral behaviour when they process the language in-
put incrementally (Schlangen and Skantze, 2009;
Skantze and Schlangen, 2009; Skantze and Hjal-
marsson, 2010). They can then start constructing
hypotheses of what is being said, and react to the
language input (e.g. by searching a database, for-
mulating a response, a backchannel or a clarifi-
cation question) much more quickly than if they
wait for the whole utterance to be completed. If
the partial derivation of a sentence is fully con-
nected at each point in time, a semantic interpre-
tation will be available more quickly, and the sys-
tem can thus react more quickly than in a non-
connected system. Similarly, speech recognition
and machine translation systems can profit from
interpretations (and their probabilities) that are
available early on.

In order for such real-time applications to re-
ally profit from the fast interpretation, it is how-
ever necessary to make sure that the quality and
reliability of the analysis is high – feeding into
the other processing layers interpretations which
later turn out to be incorrect causes frequent re-
visions and corrections in all processing layers,
which can be very costly. Because connecting
all words generally means to spell out the differ-
ent ways in which the words might be connected
while still lacking some of the evidence, a signif-
icant amount of uncertainty concerning which in-
terpretation is correct can be expected. In praxis,
one therefore has to consider the trade-off be-
tween the degree of incrementality or connect-
edness and accuracy (see for example Baumann
et al., 2009; Kato et al., 2004).

3 CCG

Combinatory Categorial Grammar (CCG, Steed-
man, 1996, 2000) consists of a lexicalized gram-
mar and a small set of rules that allow the lexical
entries to be combined into parse trees. Each word
in the lexicon is assigned one or more categories
that define its behaviour in the sentence. Cate-
gories for a word can either be atomic e.g., NP,
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Forward Application: X/Y Y ⇒> X
Backward Application: Y X\Y ⇒< X
Forward Composition: X/Y Y/Z ⇒>B X/Z
Backward Composition: Y\Z X\Y ⇒<B X\Z
Forward Generalized Composition: X/Y (Y/Z)/$1 ⇒>Bn (X/Z)/$1
Backward Crossed Composition: Y\Z X\Y ⇒<Bx X/Z
Forward Type-raising: X ⇒T T/(T\X)
Coordination: X conj X ⇒φ X

Figure 1: Standard CCG Rules for English.

S, PP, or complex like the category (S\NP)/NP.
Complex categories X/Y and X\Y designate a
functor-argument relationship between X and Y ,
where the directionality of the relation is indicated
by the forward slash / and the backward slash \.
For example, category X/Y takes category Y as
an argument to its right and yields category X ,
while category X\Y takes category Y as an ar-
gument to its left to result in category X . These
two rules are referred to as forward and backward
functional application (marked as > and < in our
derivations). In addition to these two most basic
operators, the canonical CCG inventory as defined
in (Steedman, 2000) contains further operations
for English, which are shown in Figure 1.

In our derivations, we furthermore use the
Geach Rule, which in standard CCG only
occurs wrapped together with functional appli-
cation in the composition rules. It is denoted as B:

Geach rule: Y/Z ⇒B (Y/G)/(Z/G) (1)

The Geach rule will allow us to achieve full
connectedness of a partial derivation for some
configurations for which we cannot achieve fully
incremental derivations otherwise, see Section 4
and Figure 3.

CCG assumes the Strict Competence Hypothe-
sis, which suggests (a) that there is a direct corre-
spondence between the rules of the grammar and
the operations performed by the human language
processor, and (b) that each syntactic rule corre-
sponds to a rule of semantic interpretation. This
means that all constituents that can be derived by
the grammar have a semantic interpretation, and
conversely that only left prefixes of a sentence that
can be assigned a semantic interpretation should
be derivable as a constituent in CCG.

4 Incremental Derivations in CCG

CCG rules create so-called spurious ambiguity.
This means that there are alternative ways and or-
ders of applying these rules, which lead to syntac-
tically distinct but semantically equivalent deriva-
tions of a sequence of words. The combination
of type-raising and composition can be used to
construct almost any syntactic tree for a sequence
of words. We can thus construct a normal form
derivation, which uses the simplest combination
of operators, or a more incremental derivation.

For example, the normal form derivation for the
sentence “The boy will eat the cake” would not be
incremental enough to model the incremental in-
terpretation effect shown in Altmann and Kamide
(1999), an English version of the Kamide et al.
(2003) experiment, which was discussed in Sec-
tion 2, Example (1). We could however type-raise
the subject NP to type S/(S\NP) to obtain a fully
incremental derivation of the sentence, see Fig. 2.

It is however not generally possible to derive
grammatical sentences completely incrementally
with the standard set of rules and functional cate-
gories, and this sets a limit on how incremental a
bottom-up CCG parser with these standard rules
can actually be.

T he boy will eat the cake

NP/N N (S\NP)/(S\NP) (S\NP)/NP NP/N N
>

NP
>T

S/(S\NP)
>B

S/(S\NP)
>B

S/NP
>B

S/N
>

S

Figure 2: Incremental derivation of the sentence “The
boy will eat the cake”.
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Post-modification in CCG Even for very sim-
ple cases such as incrementally processing post-
modification X/Y Y Y\Y , it is necessary
to type-raise the Y category to Y/(Y\Y ). Note
that this type-raising would have to happen before
having seen any evidence for the post-modifier,
thus increasing the amount of ambiguity a parser
would have to deal with: When processing Y , the
parser would essentially hypothesise that a post-
modifier would be coming up and type-raise, as
well as maintaining the original category in case
no post-modification will happen.

Coordination Coordination is another case
which is problematic in terms of strictly incre-
mental processing with CCG. The coordination
rule combines two identical categories, which
means that the second conjunct must have been
combined into a single constituent before the con-
junction rule can be applied. As shown by Sturt
and Lombardo (2005) (cf. Example (2)), human
sentence processing can be shown to be more in-
cremental than the most incremental CCG deriva-
tion.

Object Relative Clauses An example where
standard CCG rules are insufficient for perform-
ing a fully connected derivation are simple ob-
ject relative clauses like The woman that Peter
saw laughed. The most incremental parse with
the standard rules would involve type-raising Pe-
ter (from NP to S/(S\NP), and combine that cate-
gory with saw (category (S\NP)/NP) using func-
tional composition to yield the category S/NP.
This category for Peter saw can subsequently
combine with the category of the object relative
pronoun (N\N)/(S/NP) (using functional appli-
cation). This derivation is however not strictly
incremental. In order to integrate Peter directly
with the object relative pronoun and only then
combine the resulting category with saw, we have
to use the non-standard Geach rule, see Equa-
tion 1. Using the Geach rule, type-raised Pe-
ter can be geached with category NP, yielding
(S/NP)/((S\NP)/NP) as a category for Peter.
This category can then be combined via forward
composition with the relative clause pronoun, and
the resulting category can be combined with the
category of saw using forward application. If we
wanted to model with CCG the psycholinguistic
results on the experiment by Sturt and Yoshida
(2008), see Example (3), we would hence have

to allow the Geach operator, because otherwise,
I ever (category S/(S\NP)) cannot be combined
with the previous words before the relative clause
verb has been seen.

In object relative clauses where the subject NP
contains more than one word (as in The woman
that every man saw laughed), it is however not
possible to achieve full connectedness even with
the Geach rule, see Figure 3(c).

In order to make it possible to incremen-
tally derive ORCs without adding more rules,
we could change the category of the ob-
ject relative pronoun from (N\N)/(S/NP) to
((N\N)/((S\NPi)/NP))/NPi, see Figure 4. We
here use an encoding for the subject NP which
is similar to the one used for the direct object NP
in the category of the indirect object relative pro-
noun: ((N\N)/NPi)/((S/NPi)/NP)1.

However, there are theoretically motivated rea-
sons for the original object relative pronoun cat-
egory (N\N)/(S/NP), and for the impossibility
of full connectedness within the ORC embedded
subject: as any string of words that is connected
under a single category is a CCG constituent,
deriving a single category for “The woman that
every” will mean that coordination of this con-
stituent will be accepted as well by the gram-
mar, i.e. the grammar would accept a sentence
like [the man that every] and [the woman that
no] kid saw slept, which violates an island con-
straint. The way in which the standard object rel-
ative pronoun category prevents such an island vi-
olation is by burying the subject NP in the verb
category instead of including it in the category of
the object relative pronoun: the NP argument in
(N\N)/(S/NP) is for the object NP. The subject
NP is thus not accessible from outside the rela-
tive clause, hence implementing the island con-
straint. This is a rather fine distinction and one
might want to note that similar cases of over-
generation can happen in standard CCG, notably
in non-subject relative clauses where the relative
pronoun is the indirect object of the verb. For ex-
ample, standard CCG would accept the sentence
“[girls whom I gave every] and [boys whom you
stole no], ball danced”. See Figure 5 for the com-
plete derivation of this sentence.

1See Steedman (2000; page 47) for categories of relative
pronouns in English.
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T he woman that every man saw laughed

NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP S\NP
>

NP
>T

S/(S\NP)
>B

S/NP
>

N\N
<

N
>

NP
<

S
(a) Normal form derivation for an object relative clause.

T he woman that every man saw laughed

NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP S\NP
>T >

N/(N\N) NP
>B >T

NP/(N\N) S/(S\NP)
>B >B

NP/(S/NP) S/NP
>

NP
<

S
(b) Most incremental derivation of an ORC without Geach rule.

woman that every man saw

N (N\N)/(S/NP) NP/N N (S\NP)/NP
>T >

N/(N\N) NP
>B >T

N/(S/NP) S/(S\NP)
B

(S/NP)/((S\NP)/NP)
>B

N/((S\NP)/NP)
>

N
(c) Most incremental derivation of an ORC with Geach rule.

Figure 3: Normal form derivation and most incremental derivation for an object relative clause.

woman that every man saw

N ((N\N)/((S\NP)/NP))/NP NP/N N (S\NP)/NP
>T

N/(N\N)
B

(N/X)/((N\N)/X)
>B

(N/((S\NP)/NP))/NP
>B

(N/((S\NP)/NP))/N
>

N/((S\NP)/NP)
>

N

Figure 4: Incremental derivation of object relative clause with new object relative pronoun category.
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1. a/b b/c c
2. (a/c)/b b c
3. a/b b c\a
4. a (b/c)\a c
5. a b\a c\b
6. a/c b c\b ⇒T a/c c/(c\b) c\b
7. a b (c\a)\b ⇒T c/(c\a) (c\a)/((c\a)\b) (c\a)\b
8. a b/c c\a ⇒T,B b/(b\a) (b\a)/(c\a) c\a

Table 1: Possible category constellations in a sequence of three adjacent constituents that are functors and argu-
ments of one another.

Complement Clauses Similar to object relative
clauses, complement clauses like Ann thinks the
man slept can also not be derived fully incremen-
tally, because the determiner of the subject NP of
the complement clause cannot be combined with
the sentence prefix Ann thinks. The most incre-
mental standard derivation is shown below.

Ann thinks the man slept

NP (S\NP)/S NP/N N S\NP
>T >

S/(S\NP) NP
>B >T

S/S S/(S\NP)
>B

S/(S\NP)
>

S

General patterns of Category Constellations
After giving these intuitive examples of construc-
tions which are problematic from the point of
view of full connectedness, I want to review more
generally for which constellations of CCG cate-
gories we can construct fully incremental deriva-
tions. Table 1 lists all possible functor-argument
relationships between three categories, a, b and
c. The first five constellations only use the
most standard CCG operations of composition
and functional application in order to combine
strictly incrementally.

The other tree constellations (6., 7. and 8. in Ta-
ble 1) require type-raising. The example of post-
modifiers in CCG which was discussed at the be-
ginning of this section is an instance of case 6.
One important point to note with respect to type-
raising is that type-raising is not always allowed
in standard CCG, but only when the type-raising
rule is parametrically licensed by the specific lan-
guage (Steedman, 2000). That is, there might be
some category constellations where the necessary
type-raising for cases 6. – 8. is not allowed (ar-
bitrary type-raising would be very unconstrained
and would lead to over-generation). Therefore,

whether a sequence of categories is parsable in-
crementally depends on the specific instance of
cases of the form in 6. or 7. In the eighth case, the
functor c\a is not directly adjacent to its argument
a. Instead, there is another word in the middle
which takes c as its argument. These categories
can still be combined incrementally using type-
raising and geaching, but, again, the type-raising
required for this kind of operation might not be
licensed by the language (such a category would
subcategorize for its grand-child). Note that the
object relative clause case with a subject NP con-
sisting of at least two words, which we discussed
above, is not contained in Table 1, as it requires a
constellation of four categories.

5 Comparison to other Grammar
Formalisms and Discussion

Full connectedness has been implemented with
other grammar formalisms: for fully connected
PCFG parsing, a top-down (Roark, 2001) or left-
corner strategy can be used. Furthermore, there
are two variants of tree-adjoining grammar that
support full connectedness: the Dynamic Version
of TAG (DVTAG, Mazzei, 2005) and Psycholin-
guistically Motivated TAG (PLTAG Demberg-
Winterfors, 2010). A broad-coverage parser ex-
ists for PLTAG (Demberg et al., 2012), but not for
DVTAG.

All of these approaches incur a larger amount
of ambiguity than a non-connected parser would.
Regarding the problem of over-generation in CCG
given an object relative pronoun which allows
for a fully connected derivation of ORCs, current
TAG approaches do (to the best of my knowledge)
not handle this island constraint case correctly ei-
ther (regardless of whether they are incremental
or not).

Whether CCG “should” be able to strictly in-
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crementally derive object relative clauses and
complement clauses is open to discussion from
a linguistic / psycholinguistic point of view, as it
depends on whether a sentence such as “[[books
that every] and [journals that no]] accordionist
liked” is judged for example as less grammati-
cal than “[[boys whom I gave every], and [girls
whom you gave no]] book”, which is derivable in
CCG; and whether it can be shown that human
processing is strictly incremental at the point of
the subject NP in an ORC.

6 Conclusions

To summarise, strictly incremental and fully con-
nected derivations are not possible in CCG at
points where the left prefix of a sentence is not
a constituent in the CCG sense2. By changing the
category of the involved words to reflect more of
the internal structure of a category (in our exam-
ple, changing the object relative pronoun category
such that the subject NP is encoded explicitly in
it), we can achieve to derive sentence prefixes in
a fully connected way, at the cost of making the
grammar overgenerate a bit (here, not observing
the island constraint which makes sentences like
The apple that no and the banana that one kid ate
were delicious. bad). For applications which are
interested in strict incrementality for psycholin-
guistical modelling purposes or real-time process-
ing, the options are to either live without full con-
nectedness, accept an overgenerating grammar, or
use a top-down or left-corner parsing strategy for
CCG instead of the standard bottom-up parsing.
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Abstract

Adding cosubstitution to the classical TAG
operations of substitution and adjunction,
coTAGs have been proposed as an “alterna-
tive conceptualization” to resolve the ten-
sion between the TAG mantra of locality
of syntactic dependencies and the seeming
non-locality of quantifier scope. CoTAGs
follow the tradition of synchronous TAGs
(STAGs) in that they derive syntactic and
semantic representations simultaneously as
pairs. We demonstrate that the mappings
definable by coTAGs go beyond those of
“simple” STAGs. While with regard to the
first component, coTAGs are weakly and
strongly equivalent to classical TAGs, the
second projection of the synchronously de-
rived representations, can in particular be—
up to a homomorphism—the non-tree ad-
joining language MIX(k), for any k ≥ 3.

1 Introduction

Given a classical TAG as, e.g., defined in the
handbook article by Joshi and Schabes (1997), the
set of derivation trees constitutes a regular set of
unordered labeled trees with an additional label-
ing of the tree edges. The nodes of a derivation
tree are labeled with elementary trees, and each
edge is labeled with a Gorn address. Such an
address indicates the node of the elementary tree
(labeling the outgoing node of the corresponding
edge in the derivation tree) at which another el-
ementary tree (labeling the incoming node of the
corresponding edge in the derivation tree) was ad-
joined or substituted during the derivation repre-
sented by the derivation tree. The representation
of a TAG derivation in this way is independent of
the derivational order. This is the reason why the
set of derivation trees of a classical TAG consti-
tutes a regular tree set.

Work on semantics in the TAG framework of-
ten considers the derivation tree as a compact, or-
der independent representation of all derivations
yielding the same syntactic tree, but at the same
time as a compact representation of different se-
mantics associated with the same syntactic repre-
sentation. Work in this line, in particular includes
the extensive work of Kallmeyer and colleagues
as well as Nesson and Shieber.1

Suggesting an “alternative conceptualization”
to resolve the tension between the TAG mantra
of locality of syntactic dependencies and the
seeming non-locality of quantifier scope, Barker
(2010) proposes to add to the classical TAG op-
erations of substitution and adjunction as a third
operation a modified version of substitution. He
calls the resulting operation cosubstitution and the
version of TAGs incorporating this operation co-
TAGs.

CoTAGs are defined in the spirit of syn-
chronous TAGs (STAGs) as introduced by Shieber
and Schabes (1990), deriving syntactic and se-
mantic representations simultaneously as pairs.
Syntactically, cosubstitution can essentially be
understood as substitution, but with reversed roles
of functor and argument. Barker notes that for
this reason, from a purely syntactic perspective,
in the context of simple (i.e. not multicomponent)
TAGs, adding cosubstitution affects neither weak
nor strong generative capacity (in the sense of de-
rived string and tree languages).

Clearly, however, something is different: af-
ter adding the operation of cosubstitution, deriva-
tional order matters in the sense that one derived
syntactic representation can potentially be associ-
ated with more than one simultaneously derived
semantic representation. As Barker points out,

1See, e.g., Kallmeyer and Romero (2004) and Nesson
and Shieber (2007), and references cited therein.
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the introduction of the cosubstitution operator al-
lows for a straightforward adaption of the notion
of derivation tree such that two derivation trees
can be different depending on when a cosubstitu-
tion step takes place.

We demonstrate that the form-meaning map-
pings definable by coTAGs go beyond those of
“simple” STAGs (Shieber, 1994; Shieber, 2006).2

In particular, the set of meanings, the second pro-
jection of the synchronously derived syntactic and
semantic representations, can be—up to a homo-
morphism abstracting away from instances of λ
and variables—the non-tree adjoining language
MIX(k), for any k ≥ 3. The complexity of the
corresponding set of meanings is a reflex of the
complexity of the connected derivation tree set,
whose path language—up to a homomorphism—
also provides the non-tree adjoining language
MIX(k). The result can already be established
when restricting the attention to coTSGs, under-
stood as coTAGs without classical adjunction.
From this perspective it could be argued that the
additional expressive power is really due to the
cosubstitution operation alone.

2 CoTAGs

From the perspective of lexical entries, each
coTAG consists of a finite set of pairs of la-
beled trees. The first component of such a pair
〈αsyn, αsem〉 provides a syntactic representation,
the second component a semantic representation
of the corresponding lexical entry. Nodes in αsyn
are uniquely linked to nodes in αsem. The label of
a node νsem from αsem linked to a node νsyn from
αsyn displays the semantic type of the correspond-
ing syntactic subconstituent dominated by νsyn.
An operation applying to νsyn must be accompa-
nied by a parallel operation applying to νsem.

Regarding the syntactic component of the
coTAG-relation, coTAGs are identical to classi-
cal TAGs except for the following difference:
whereas the roots of TAG-initial trees and sub-
stitution nodes of arbitrary TAG-elementary trees
are labeled with elements from Cat and Cat↓,
respectively,3 the roots of syntactic coTAG-initial

2While we focus here on coTAGs, the results herein
straightforwardly apply as well to limited delay vector TAGs
(LDV-TAGs) (Nesson, 2009) which would allow for a differ-
ent implementation of essentially the same mechanism.

3Cat denotes the set of categories, i.e. the nonterminals,
of the grammar.

〈
i ↓δ↓ i

,
i δ i

〉 function

+

〈
j δ j

B

,
j δ j

Z
〉 argument

〈 i δ i

B

, i δ i

B

〉

 

Figure 1: Substitution schematically. Syntactically,
tree with root-label δ is substituted at leaf labeled δ↓;
while semantically, the corresponding tree with root-
label δ is substituted at the linked node labeled δ.

trees and substitution nodes of arbitrary syn-
tactic coTAG-elementary trees have labels from
the sets Cat(↑Cat)∗ and Cat(↑Cat)∗↓, respec-
tively. Expressions of the syntactic component
are constructed in very much the same manner as
in TAGs, with one important addition: a derived
structure βsyn with syntactic root-label δ↑B for
some B ∈ Cat and δ ∈ Cat(↑Cat)∗ can be co-
substituted into a derived syntactic structure αsyn
with syntactic root-label B and a leaf labeled δ↓
derived structure. The result of applying cosubsti-
tution in this situation is the same as substituting
β′syn into αsyn at the corresponding leaf labeled δ↓,
where β′syn results from βsyn by replacing the root-
label δ↑B of βsyn with δ. From this perspective,
cosubstitution can be understood as substitution
reversing the roles of argument and functor, i.e.,
αsyn is rather cosubstituted onto the root of βsyn.
As will become immediately clear, the “reversed
perspective” of argument and functor chimes in
with the operational semantic counterpart of ap-
plying cosubstitution.

Regarding the semantic component of the
coTAG-relation, the trees derived represent well-
typed lambda terms, which can be read off from
the yield.4 The matching semantic operation to
applying substitution and adjunction syntactically
is also substitution and adjunction, providing us
with “functional application” in terms of lambda
calculus, cf. Figure 1 for the case of substitution.5

4Arriving at a concrete lambda term is achieved by re-
placing each leaf-label which is a semantic type by a vari-
able of corresponding type, when reading off the leaf-labels
“from left to right.”

5For δ ∈ Cat(↑Cat)∗ and B ∈ Cat, the boldface ver-
sions δ and δ↑B denote the corresponding semantic types of
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〈
B

i ↓δ ↓ i

,
B

i δ i
〉 argument

+

〈
δ ↑B

B

,
δ ↑B

Z
〉 function

〈
B

i δ i

B

,

B

( δ B )

B

δ

x

δ

x

λ

i δ ↑B i

B 〉

 

Figure 2: Cosubstitution schematically. Syntactically,
tree with root-label with root-label δ↑B is cosubsti-
tuted into tree with root-label B at leaf labeled δ↓;
while semantically, the corresponding tree with root-
label δ ↑B is “quantified in” at the root of the corre-
sponding tree with root-label B.

The matching semantic operation to applying
cosubstitution syntactically consists of a “quanti-
fying in” step as outlined in Figure 2. Note that
within the resulting semantic representation, new
terminal leaves are introduced labeled by λ and a
variable x. The operation is set up such that x is
chosen to be “fresh.”

As a concrete example, consider the grammar
Gscope presented in Figure 3.6 One can start de-
riving the sentence “every boy loves some girl”
either by substituting boy into every, and then co-
substituting every boy into the subject position of
loves as shown in Figure 4, or by substituting girl
into some, and then cosubstituting some girl into
the object position of loves as shown in Figure
5. Both complete derivations of the sentence are
given in Figure 6. The derived syntactic trees are
identical, while the semantic trees are different,
because of the different order of the derivation
steps. Accordingly, we require a novel notion of
derivation to represent this “timing” information,
which we leave at an intuitive level in this paper

δ↓? and δ↑B, respectively. δ↑B is the lifted type (( δ B)B ).
6Links will usually be marked with diacritics of the form

n for some n ≥ 1. We may occasionally avoid explicitly
mentioning the links between nodes of the syntactic and the
semantic representation, when we think the canonical linking
is obvious.

(αevery ) , (αsome )

〈
1 DP↑S 1

3 ↓NP↓ 32 D 2

every | some

,

1 ((e t) t) 1

3 (e t) 32 ((e t)((e t) t)) 2

every | some

〉

(αboy ) , (αgirl )

〈
1 NP 1

boy | girl

,
1 (e t) 1

boy | girl
〉

(αloves )

〈

1 S 1

3 VP 3

5 ↓DP↓ 54 V 4

lovesy

2 ↓DP↓ 2
,

1 t 1

2(e 23 (e t) 3

5(e 54 (e (e t)) 4

lovesy

〉

Figure 3: The example coTAG Gscope

for reasons of space.
Displaying a derivation tree, we use a solid line

for drawing an edge in order to indicate an in-
stance of substitution, and the edge label marks
the address of the substitution site of the elemen-
tary tree into which substitution takes place. We
use a dashed line in order to indicate an instance
of cosubstitution, and the edge label marks the ad-
dress of the substitution site of the elementary tree
into which cosubstitution takes place. But in con-
trast to the case of substitution, this elementary
tree labels the incoming node of the edge.

3 Expressivity

For k ≥ 1, we now provide a coTAG Gk gener-
ating as its string language the regular language
{(a1 · · · ak)m : m ≥ 1}, while the path language
of the set of derivation trees and the set of mean-
ings, up to a homomorphism, provide the lan-
guage MIX(k), i.e. the set {w ∈ {a1, . . . , ak}∗ :
|w|ai = |w|aj , 1 ≤ i, j ≤ k}.
Gk consists of k+4 lexical entries, namely, the

entries α1, . . . , αk, βk, γk, τk and σk, and for each
entry, we use the (additional) subscripts syn and

sem in order to refer to the entry’s syntactic and
semantic component, respectively, cf. Figure 7. S
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αevery , syn

αboy , syn

2
αloves , syn

1

〈

1 S 1

3 VP 3

5 ↓DP↓ 54 V 4

loves

2 DP 2

7 NP 7

boy

6 D 6

every

,

1 S 1

(DP S)

S

()DP

x

3 VP 3

5()DP 54 V 4

lovesy

DP

x

λ

2 DP↑S 2

7 NP 7

boy

6 D 6

every
〉

Figure 4: Cosubstituting every boy into the subject position before filling the object position of loves, derived
syntactic tree and semantic tree, and derivation tree.

αsome , syn

αgirl , syn

2
αloves , syn

22

〈

1 S 1

3 VP 3

5 DP 5

7 NP 7

girl

6 D 6

some

4 V 4

loves

2 ↓DP↓ 2

,

1 S 1

(DP S)

S

2()DP 23 VP 3

3()DP 3

y

4 V 4

lovesy

DP

y

λ

5 DP↑S 5

7 NP 7

girl

6 D 6

some
〉

Figure 5: Cosubstituting some girl into the object position before filling the subject position of loves, derived
syntactic and semantic tree, and derivation tree.
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〈
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8 D 8

some

4 V 4
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2 DP 2

7 NP 7

boy

6 D 6
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,

1 S 1

(DP S)

S

(DP S)

S

()DP

x

3 VP 3

3()DP 3

y

4 V 4

lovesy

DP

x

λ

2 DP↑S 2

7 NP 7

boy

6 D 6

every

DP

y

λ

5 DP↑S 5

9 NP 9

girl

8 D 8

some 〉

αevery , syn

αboy , syn

2
αsome , syn

αgirl , syn

2
αloves , syn

22

1

〈

1 S 1

3 VP 3

5 DP 5

7 NP 7

girl

6 D 6

some

4 V 4

loves

2 DP 2

9 NP 9

boy

8 D 8

every

,

1 S 1

(DP S)

S

(DP S)

S

()DP

x

3 VP 3

3()DP 3

y

4 V 4

lovesy
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y

λ

5 DP↑S 5

7 NP 7
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6 D 6
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x

λ

2 DP↑S 2

9 NP 9

boy

8 D 8

every 〉

Figure 6: The two complete derived pairs of structures of every boy loves some girl, and derivation trees.
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T1

A1↓ 1 T2

A2↓ 2 Tk

Ak↓ k Uk↓ k+1

βk, syn:

S

A1↓ 1 T2

A2↓ 2 Tk

Ak↓ k Uk↓ k+1

σk, syn:

Uk

V k

ε

T 1↓

γk, syn:

Uk

ε

τk, syn:

Ai↑S

ai

αi, syn:

t

e 1 ( e t )

e 2 ( ek−1 t )

e k ( ek t ) k+1

βk, sem:

t

e 1 ( e t )

e 2 ( ek−1 t )

e k ( ek t ) k+1

σk, sem:

( ek t )

( t ( ek t ))

ε

t

γk, sem:

( ek t )

ε

τk, sem:

(( e t ) t )

ai

αi, sem:

Figure 7: The syntactic and the semantic components of Gk.

is the start symbol of Gk.
For m ≥ 1, consider wk,m = (a1 . . . ak)m.

Each derivation tree for wk,m is a single path. All
derivation trees for wk,m share a unique subtree,
cf. Figure 8. From a bottom-up perspective, the
derivation starts by substituting τk directly into σk
in case m = 1, or into βk otherwise. If m > 1,
the resulting tree is substituted into γk, and the re-
sult in its turn is substituted into βk again. This
procedure is repeated m− 1 times, before the re-

σk, syn

γk, syn

βk, syn

γk, syn

βk, syn

τk, syn

2k

2

2k

2

2k

Dk, sub:

σk, syn ( γk, syn (βk, syn (. . . ( γk, syn (βk, syn︸ ︷︷ ︸
m− 1 times

( τk, syn ))) . . . )))

Figure 8: The unique subtree Dk, sub of any derivation
tree for wk,m = am1 . . . amk .

sulting tree is substituted into σk. Note that the
substitution site in each of these derivation steps
is uniquely determined. Note also that we can-
not cosubstitute any instance of αi before we have
substituted into σk, because cosubstitution of an
αi demands the presence of a root labeled S.

The derived tree described by the derivation
tree Dk, sub contains exactly m substitution sites
for every Ai. We can now cosubstitute into any
of these sites in any order. Thus, for each per-
mutation of (a1 . . . ak)m there is a derivation of
(a1 . . . ak)m such that the permutation is reflected
in the corresponding derivation tree in terms of the
node labels αi,syn. More precisely, starting at the
root following down the unique path, the node la-
bels provide a permutation of (α1,syn . . . αk,syn)m

before we hit the node label σk,syn.

4 Remarks on ACGs

The formalism of an abstract categorial gram-
mar (ACG) (de Groote, 2001) has been intro-
duced with the idea to provide a general frame-
work in terms of linear logic allowing the encod-
ing of existing grammatical models. An ACG dis-
tinguishes between an abstract language and an
object language each of which is a set of linear
lambda terms over some signature. Following the
presentation by, e.g., Pogodalla (2004b), an ACG
G defines 1) two sets of typed linear lambda terms,
namely, a set Λ1 based on the typed constant set
C1, and a set Λ2 based on the typed constant set
C2; 2) a morphismL : Λ1 → Λ2; and 3) and a dis-

211



tinguished type S. The abstract and the object lan-
guage of G are defined asA(G) = {t ∈ Λ1 | t : S}
and O(G) = {L(t) ∈ Λ2 | t ∈ A(G)}, respec-
tively.

In this way the ACG-framework, in particular,
provides a logical setting in which an abstract lan-
guage can be used as a specification of the deriva-
tion set of a grammar instantiation of some gram-
mar formalism, and by applying two different
morphisms to the abstract language, we can “si-
multaneously” obtain a syntactic object language
and a semantic object language.

The order of an ACG is the maximal order of
the types assigned to the abstract constants from
C1.7 As demonstrated by de Groote (2002), each
classical TAG can be encoded as second-order
ACGs realizing the object language as the set of
derived trees, and the set of derived strings can be
extracted from that object language by compos-
ing the first second-order ACG with a second one.
Salvati (2007) has shown more generally, that
second-order ACGs, where the object language
is realized over a string signature, derive exactly
the string languages generated by, e.g., set-local
multicomponent TAGs. Kanazawa (2010) has
shown, that second-order ACGs, where the ob-
ject language is realized over a tree signature,
derive exactly the string languages generated by,
e.g., context-free graph grammars (Bauderon and
Courcelle, 1987).

Of course, the notion of derivation (trees) and
derived trees we have informally presented in the
previous sections is essentially one making use of
binding and abstraction. Recasting the above no-
tation into the ACG-framework provides one way
of analyzing the properties of coTAGs, in partic-
ular, from the perspective of an comparison to
other formalisms and approaches which fit into
the ACG-shape.

Closer inspection reveals Barker’s accompany-
ing notion of derivation tree to be in line with the
abstract language of the TAG-guided, ACG-based
semantic analysis of Pogodalla (2004a; 2007),
where the abstract language is a set of lambda
terms containing third-order constants.

It is easy to see that, although as far as the
syntactic component is concerned, coTAGs are
strongly equivalent to TAGs, this is only be-

7The order an atomic type is 1. For two types ζ and η,
the order of (ζη) is defined as the maximum of the order of
ζ increased by 1 and the order of η.

cause the syntactic interpretation of the higher-
order derivations “goes through” the second-order
derivation trees of TAGs. Once we turn to the do-
main of meanings, where the higher-order deriva-
tion terms are used essentially, we obtain a greater
generative capacity. We have exemplified this
above with regard to the language MIX(k), for
k ≥ 3. Note that MIX(3) is not a tree adjoining
language (Kanazawa and Salvati, 2012), and that
for k ≥ 4, MIX(k) is conjectured to be beyond
the scope of set-local multicomponent TAGs.

5 Conclusion

As already mentioned in the introduction, Barker
intends to provide an “alternative conceptualiza-
tion” of TAG semantic computation. An ear-
lier approach to TAG semantics in explicit terms
of STAGs has been worked out by Nesson and
Shieber (2007, and follow-up work). But in con-
trast to Barker’s presentation, their initial version
does not exceed the expressivity of simple STAGs
(Shieber, 1994; Shieber, 2006), where also the
second component does not exceed the (weak)
generative capacity of TAGs.

The difference from coTAGs results from the
fact that the semantic component may constitute
a tree-local multicomponent TAG, which allows
Nesson and Shieber to lexically represent, e.g., a
scope-taking quantifier as a pair of an elementary
auxiliary tree and an elementary substitution tree.
Sticking to the realm of simple STAGs implies
that in the context of nested quantifiers and in-
verse linking, when there are more than two quan-
tifiers involved, not all logically possible readings
are derivable. Nesson and Shieber discuss this
point in the context of the example two politi-
cians spy on someone from every city. Their ap-
proach delivers four possible readings. A particu-
lar fifth reading, namely, the case of scope order-
ing every > two > some is not available, which
some authors, among them Barker, think is a pos-
sible reading, albeit hard to process.

Introducing limited delay vector TAGs (LDV-
TAGs), Nesson (2009) suggests a modification of
the earlier STAG approach which also allows the
derivation of the “fifth reading.” If for any given
LDV-TAG there is no hard upper bound on the
degree of delay and on the number of multiple ad-
junctions that can take place at a single node, our
argument for coTAG expressivity can be straight-
forwardly adapted to LDV-TAGs. That is to say,
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we can write an LDV-TAG whose set of deriva-
tion trees and set of derived meanings is, up to a
homomorphism, MIX(k) for arbitrary, but fixed
k ≥ 1.

Arbitrary delay allows for a qualitative in-
crease in the relation-generating power of syn-
chronous TAGs, demonstrated above in terms of
coTAGs and the operation of cosubstitution. Re-
casting this in terms of ACGs allows for a fur-
ther characterization, which makes clear the in-
crease in derivational generative capacity by mov-
ing from second-order abstract constants to third-
order ones.
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Abstract

We propose a new model for transform-
ing dependency trees into target graphs, re-
lying on two distinct stages. During the
first stage, standard local tree transforma-
tion rules based on patterns are applied to
collect a first set of constrained edges to be
added to the target graph. In the second
stage, motivated by linguistic considera-
tions, the constraints on edges may be used
to displace them or their neighbour edges
upwards, or to build new mirror edges. The
main advantages of this model is to sim-
plify the design of a transformation scheme,
with a smaller set of simpler local rules for
the first stage, and good properties of termi-
nation and confluence for the second level.

1 Introduction

Tree transformation is emerging as an important
and recurring operation in Natural Language Pro-
cessing, for instance to transform shallow syntac-
tic trees into deeper ones or into semantic graphs
(Bonfante et al., 2011a), or to transform syntactic
trees from a source language to a target one (in
Machine Translation). Another frequent case that
initially motivated this work is the transformation
from a source dependency scheme to a target one,
in order to conduct parsing evaluations or to be
used in some post-parsing component based on
the target schema.

Two main problems arise when transforming
linguistic structures. The first one is related to the
diversity of syntactic configurations that have to
be identified, knowing that many of these config-
urations are rare. A large number of rules may
have to be provided to cover this diversity. A sec-
ond problem arises from the non locality of some
linguistic constructions, for instance for retriev-
ing the true subject of some controlled verbs at

semantic level or in case of coordination. Even
when bounding these phenomena, trying to com-
bine them with more canonical cases may lead
to an explosion of the number of transformation
rules, difficult to create and maintain. And, when
not bounding these non local phenomena, it be-
comes necessary to introduce recursive transfor-
mation rules that raise delicate problems of order-
ing when applying them, as presented in the Grew
system (Bonfante et al., 2011b) based on graph
rewriting rules.

Many approaches have been proposed for tree
or graph transformations, such as Top-Down or
Bottom-Up Tree Transducers (Courcelle and En-
gelfriet, 2012), Tree-Walking Transducers (Bo-
jańczyk, 2008), Synchronous Grammars (Shieber
and Schabes, 1990) and (Matsuzaki and Tsujii,
2008) for an application on annotation scheme
conversion, or Graph Rewriting Systems based,
for instance, on the Single PushOut model (SPO)
(Löwe et al., 1993; Geiss et al., 2006). But either
they are complex to implement or they suffer from
the above mentioned problems (coverage, mainte-
nance, ordering). Moreover, they are not always
suited for natural language processing, especially
in case of complex phenomena.

Based on a preliminary experiment of scheme
to scheme transformation, but motivated by more
generic linguistic considerations, we propose a
simple new two stage model. The first stage es-
sentially addresses the local syntactic phenomena
through local tree transformation rules whose ac-
tion is to add a set of edges to the target graph be-
ing built. By focusing on local phenomena, fewer
and simpler rules are needed. Furthermore, it is
relatively easy to learn these local rules from a
set of example sentences with their syntactic trees,
and some partial annotation provided by the trans-
formation designer. These local rules may easily
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be expressed using the SPO model.
The main novelty is the possibility for the first

stage rules to decorate the target edges with con-
straints. During the second stage, the constraints
are essentially used to displace edges in the tar-
get graph, either the edge carrying a constraint
or neighbour edges, in the direction of “heads”
(upward direction). This formulation is clearly in
phase with the propagation of information to han-
dle non-local phenomena. It has also the advan-
tage of offering good properties of termination,
with no new edge created and the fact that edges
can not climb up forever. However, we add a more
problematic class of constraints, used to duplicate
some edges, for instance to handle sharing phe-
nomena at the semantic level (control, coordina-
tion).

The first stage being a rather standard case
of SPO-based (Single Push-Out) transformation
(Löwe et al., 1993), we will focus, in Section 2,
on a preliminary formalization of the second stage
constraint-based transformation (Ribeyre, 2012).
The expressive power of the approach will be il-
lustrated with a few complex syntactic construc-
tions in Section 3. The conversion experiment
that have initially triggered the use of constraint
is presented in Section 4.

2 Constraint-based graph
transformation

We assume as given a graph domain G where the
transformations take place. A component of G is
a set of edge labels L, partitioned in L1 ∪ · · · Ln,
the intuition being that each Li corresponds to a
subset of labels for a specific dimension (for in-
stance, a dimension for the set of labels used as
thematic roles and another one for quantifiers or
for anaphora as illustrated in Figure 7).

Let e denote an edge x l−→ y, with source node
x, target node y and label l ∈ L.

A node y for a graph G ∈ G can have several
incoming edges e = x

l−→ y but only one per
dimension (i.e., ∀e1 = x1

l1−→ y, e2 = x2
l2−→

y,∃k, l1 ∈ Lk ∧ l2 ∈ Lk =⇒ e1 = e2). This
condition can be a bit restrictive, so we relax it by
allowing several incoming edges for the same di-
mension, but tagging all but one as derived edges
of the main one. In other words, the derived edges
will be seen as clones of the main one. For a given
edge e, we note dim(e) = k the dimension of e

such that l ∈ Lk.
Let an extended edge be e = (x

l−→ y, C,H),
which carries a (possibly) empty set of constraints
C to be detailed below and a (possibly empty) his-
tory list H formed of node pairs (x′, y′) retracing
the changes of head x′ and tail y′.

A configuration (G,Agenda) for the
constraint-based transformation includes a
graph G ∈ G and an agenda of edges to be
progressively added to G. The initial config-
uration has an empty graph, while a terminal
configuration has an empty agenda. The initial
agenda provides a list of edges to add returned by
the first stage based on local transformation rules.

At each step i, an edge e is selected and re-
moved from the agenda Agendai and added toGi

to get G′i = Gi ∪ {e}. Because of constraints
on e or on edges e′ in direct contact with e, e or
e′ may be removed from G′i to get Gi+1 and new
derived edges with updated history added to the
agenda to get Agendai+1. The process stops with
success when reaching a terminal configuration,
or with failure when getting a conflict in a graph
G′i, for instance when a node gets two main in-
coming edges for a same dimension k, or when a
cycle is detected in an edge history (i.e., an edge
is moved back to a previous place).

We consider four kinds of constraints that may
be carried by the edges:

• A move up m↑ constraint on edge e may
be used to move e upwards, as illustrated by
Figure 11. The displacement is controlled by
an argument pair (A, q) where A is a deter-
ministic finite-state automaton (DFA) and q
a state for A. The DFA represents all pos-
sible transitions for the constraint to move
up.2 We further impose that all transition
labels of A are edge labels in the same Lk
for some dimension k. For an automaton
example, see the Figure 8.3 Intuitively, the
constrained edge e can only move upwards
along k-paths, and when several k-edges are
possible from a node, the main one is chosen.

• A redirect up r↑ constraint on edge e =

1where the green edges are removed from the graph while
the red ones are added to the agenda.

2This is reminiscent of LFG’s functional uncertainty
equations (Kaplan and Zaenen, 1995).

3Actually, weaker constraints on the automata labels
seem to be possible.
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x y z

l m↑(A, q), H

⇓

x y z

l

m↑(A, q′), H.(y, x)

Figure 1: move up constraint

x
le−→ y may be used to move upwards the

edges governed by y (the outgoing edges of
y), as illustrated by Figure 2. The constraint
accepts an argument L ⊂ Lk for k = dim(e)
that restricts the redirection to edges e′ =

y
l−→ z with some label l ∈ L.

x y z

l,Hr↑(L)

⇓

x y z

l,H.(y,z)

r↑(L)

Figure 2: redirect up constraint

• A share up s↑ constraint on edge e = y
le−→

z may be used to duplicate all incoming
edges e′ = x

l−→ y on y as incoming edges on
z, as illustrated by Figure 3. Like the r↑ con-
straint, the s↑ constraint accepts an argument
L ⊂ Ldim(e) that restricts the duplication to
edges e′ with label l ∈ L.

x y z

l,H s↑(L)

⇓

x y z

l,H s↑(L)

l+,H.(x,y)

Figure 3: share up constraint

• A share down s↓ constraint on edge e =

y
le−→ z may be used to duplicate all out-

going edges of y as outgoing edges of z, as
illustrated by Figure 4. The s↓ constraint ac-
cepts an argument L ⊂ Ldim(e) that restricts
the duplication to edges e′ with label l ∈ L.
Note that the resulting edges have tagged la-
bels l+, indicating they are secondary edges.

x y z

l,H s↓(L)

⇓

x y z

l,H s↓(L)

l+,H.(y,x)

Figure 4: share down constraint

We impose further restrictions to handle the in-
teractions between constraints. For instance, the
edges with share constraints can not be redirected
and the edges with move up constraints can not
be duplicated through the application of a share
down constraint. The definition of the graph do-
main and the control provided by the constraint
arguments ensure the confluence of the rewriting
process. The number of edges can not grow, but
through the application of the share constraints.
By controlling that we do not add an edge twice to
the same place (thanks to the history information)
and because all movements are oriented upwards,
termination may be ensured. Some conflicts may
be solved through the use of meta-rules as illus-
trated in Section 4.

After termination, a cleaning phase may be ap-
plied to delete some edges that were added as
temporary helping edges, for instance some edges
with share constraints.

Intuitively, the choice of constraint types is mo-
tivated by the idea that movement is driven by
heads, with a component moving upward until
it finds its place as an head (move up) or with
components redirected upwards until they attach
to the right head (redirect up). The share con-
straints are used to deal with coordination (with
for instance a subject shared by several verbs), but
also but other elliptic constructions as illustrated
by control verbs.

In practice, this set of constraints seems to be
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sufficient for most interesting situations. How-
ever, new kinds of constraints, such as the obvious
move down and redirect down, and the blocking
constraints freeze up and freeze down, should be
investigated, in terms of interest and in terms of
coherence with the other kinds of constraints (in
particular to preserve the confluence).

More interestingly, we are also considering a
transfer constraint, a generalization of the share
down constraint that could be used to handle com-
plex cases of edge transfer in repeated elliptic co-
ordination, as illustrated in Paul wants to eat an
apple, Mary a pear, and John an orange., where
we need some form of copy for eat and want, and
of transfer for the subject and object grammatical
functions.

3 A linguistically motivated model

We believe that our approach has a great poten-
tial and can be applied to solve in elegant ways
various transformations problems. The next sec-
tion will show how it can be used to handle con-
version between dependency schemes, but the
current section focuses on its use for transform-
ing shallow syntactic trees into deeper ones or
even into shallow semantic graphs as explored in
(Ribeyre, 2012). Our motivation is to reach a se-
mantic level with a small set of rules and reduced
human cost. A first step in this direction is to in-
duce the triggering patterns of the local transfor-
mation rules (based on the SPO approach (Löwe
et al., 1993)) by partially annotating some nodes
and/or edges in the parse trees of a set of carefully
selected sample sentences grouped in sets illus-
trating the various syntactic phenomena and their
configuration.

Given the annotations and the parse trees, the
algorithm basically tries to generalize over the
selected nodes and edges, through the following
steps:

1. Extract a graph from the annotations of the
first annotated parse tree

2. Extract a graph from the annotations of the
second one

3. Find the maximum common subgraph(s) be-
tween these graphs

4. If there is more than one common subgraph,
find the most general subgraph by comparing

the features structures attached to the nodes
and edges

The algorithm is actually pretty simple, but
seems to be powerful enough in most cases.4 In
fact, it provides the possibility of quickly develop-
ing a set of rules for a particular application, be-
cause most users prefer to select something rather
than writing code from scratch. That is the reason
why we developed a GUI as part of our Graph
Rewriting System. Figure 3 provides a screenshot
of the interface, which is divided in three parts:

1. A hierarchical view (left hand panel) where
one can manage the set of sentence exam-
ples, grouping them by syntactic phenom-
ena;

2. The tree view (right hand panel) where one
can select nodes and edges (the red dotted
lines);

3. The triggering part (bottom panel) of the in-
duced transformation rule, to be then edited
and completed by the transformation part.

The examples described below are annotated
with the CoNLL scheme used for the dependency
version of the French Treebank (FTB) (Candito et
al., 2010a; Abeillé et al., 2003). Our goal is to
construct a new version of the FTB with deeper
syntactic annotations, as a first step towards a
shallow semantic representation for FTB. Hence,
in the figures 6, 7 and 9, we illustrate some com-
plex syntactic constructions and try to exhibit sim-
ple transformations, using the constraints. In the
examples, we use the following color code:

• Red edges for the final edges after all con-
straint applications,

• Green edges for the initial constrained edges,

• Blue edges for non constrained edges used
by constrained ones

• Dotted orange edges for intermediary tempo-
rary edges

For instance, in Figure 6, we would like to in-
sert the missing link between a deep subject and

4but we are aware of its limits: for instance, unless adding
negative examples, it is not possible to induce tests on the
non existence of an edge.
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Figure 5: GUI of the Graph Rewriting System

Jean pense partir aujourd’hui et rentrer demain
John thinks to leave today and return tomorrow
NC V VINF ADV CC VINF ADV

suj obj,s↓(suj) mod

coord

dep_coord mod

suj
s↓(suj)

suj

Figure 6: Subject ellipsis + control verb

its verb in the case of subject ellipsis in the sen-
tence: Jean1 pense ε1 partir aujourd’hui et ε1 ren-
trer demain (John1 thinks about ε1 leaving today
and ε1 coming back tomorrow). This example is
interesting because of the subject ellipsis and the
control verb penser. We need to add the follow-
ing subject dependencies, derived from the sub-
ject dependency between Jean and pense :

1. between Jean and partir, because Jean is
also subject of partir

2. between Jean and rentrer, because Jean is
the elliptical subject of rentrer

To solve our problem, we simply need to put
two share down constraints as illustrated in Fig-
ure 6. The first constrained edge between pense
and partir results from a rule dealing with subject-
controlled verbs. The second constrained edge
between partir et renter results from a rule deal-
ing with coordination between clauses with no
subject in the last clause. After applying the con-
straints, we get the 2 extra subject dependencies
(in red). Of course, we can solve these two prob-
lems with the two following local rules:

1. One for solving the control verb issue.
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2. One for solving the subject ellipsis case.

But, in that case, we may observe that the first
rule has to be applied before the second rule, im-
posing some ordering between the rules. So, the
confluence will not be guaranteed by the system.

The system of constraints has been designed to
be easy to use but nevertheless expressive enough
for powerful transformations. Our second exam-
ple, in Figure 7, illustrates the use of a move
up constraint. In this example, we want to re-
trieve the antecedent “Jean” of the relative pro-
noun “dont”. We have to follow a potentially
unbounded chain of dependencies starting from
“dont” until we reach a mod_rel dependency. In
order to do that, the original de_obj dependency
between dont and mère (mother) triggers the ad-
dition of an initial ant dependency between the
same words (in green) but with a move up con-
straint built on the automaton A of Figure 8. The
constrained edge will then move up following the
obj (green) edges staying in state q0 ofA (orange
ant edges). Finally, the edge moves up through
the mod_rel edge, switching to the final state q1
(red ant edge). One can note that dont has sev-
eral heads, namely the syntactic head mère and an
head for the ant relation. Typically, the ant re-
lation will be present in some new dimension for
anaphora.

q0start q1

obj

mod_rel

Figure 8: Automaton A for the move up constraint in
Figure 7

la_plupart des gens dorment
most of the people sleep
PRO P+D NC V

dep obj

suj

r↑(?) suj

Figure 9: Linguistic application of constraint redirect

Finally, Figure 9 illustrates the redirect up con-
straint. In the sentence, “la plupart” (most) is the

shallow syntactic subject of “dorment” (sleep).
However the semantic subject of “dorment” is ac-
tually “gens” (people). So we add a redirect edge
from la plupart to gens that can redirect all edges
entering la plupart towards gens, including the
subject dependency. The same mechanism would
work as well in sentences such as il parle à la
plupart des enfants. (he talks to most of the kids),
with a redirection of an a_obj dependency.

4 A use case: a scheme to scheme
conversion

The formalization sketched in this paper is a
derivative of a preliminary experiment of conver-
sion between two syntactic dependency schemes.
The source schema depFRMG is a rich and deep
dependency schema produced from the output of
FRMG, a French wide coverage hybrid TAG/TIG
parser resulting from the compilation of a meta-
grammar (Villemonte de La Clergerie, 2005). The
target schema depFTB is the dependency version
of the French TreeBank (Candito et al., 2010a;
Abeillé et al., 2003), and the choice was initially
motivated by evaluation purposes for FRMG.

The depFRMG schema, represented using the
DepXML format5, is produced by converting the
TAG derivations returned by FRMG, using the
elementary tree anchors as heads for lexicalized
trees and introducing pseudo anchors for non lex-
icalized trees (using their root category as label)
(Villemonte de la Clergerie, 2010). The resulting
dependencies are non necessarily projective, for
instance in the case of superlative constructions.
The depFRMG schema may actually be used to
represent a shared forest of dependency trees rep-
resenting the whole set of analysis returned by
FRMG for a sentence. In practice, a phase of
disambiguation is applied to return the best de-
pendency tree as illustrated by the above edges6

in Figure 10 for the following sentence:

5There are often some confusions, but one should clearly
distinguish the notions of format such as DepXML or
CONLL, model to specify the structures and their properties
(such as projectivity or shared forests), and, finally, schema
as an instantiation of a model for a specific resource, asso-
ciated with a tagset and annotation guidelines. Here, we are
really interested by a conversion between two schema.

6The edge color indicates the kind of the underlying TAG
operation, with blue for substitution, red for adjoining, and
purple for co-anchoring and lexical nodes in a tree. The
S node corresponds to a case of pseudo-anchor for a non-
lexicalized elementary tree.
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Jean dont on dit qu’ elle connaît la mère
John whom it is said that she knows the mother

obj

obj

de_obj

obj

mod_rel

suj suj det

ant,m↑(A, q0)

ant, m↑(A, q1)

ant, m↑(A, q0)
ant, m↑(A, q0)

ant, m↑(A, q0)

Figure 7: Linguistic application of constraint move

par
by

qui
whom

a-t-elle
did-she

voulu
want

que
that

ces
these

deux
two

livres
books

et
and

ce
this

DVD
DVD

lui
to-her

soient
be

rendus
returned

?
?

The depFTB schema used for the dependency
version of the FTB is expressed in CONLL for-
mat, a format largely used for training statistical
parsers and evaluating them (Nivre et al., 2007).
The schema corresponds to projective shallow de-
pendencies using a relatively small numbers of
dependency labels. Figure 10 shows a depFTB
version of our illustrative sentence, as produced
by the conversion, with the converted edges be-
low the sentence.

Most cases of conversion are straightforward
and may be handled by local rules (for instance
for attaching determiners to nouns with det, ad-
jective on nouns with mod, or “object” introduced
by prepositions with obj). However, we also al-
ready observe non obvious modifications in Fig-
ure 10, for instance, the root of the dependency
tree is rendu for depFRMG (because of the ar-
gument extraction) while it is voulu for depFTB.
The subject -t-elle is attached to the auxiliary a in
depFRMG (because of subject inversion), but to
the main verb voulu in depFTB. These more com-
plex cases may involve potentially non-bounded
propagations and changes of heads (with redirec-
tion for the dependants). It is also worth noting
that our resulting conversion is non projective (be-
cause of the attachment of par on rendu), break-
ing the expected depFTB guidelines that would
propose an attachment on voulu, but only for pro-
jectivization reasons that are considered as more

and more questionable in such situations (so we
decided not to do the projectivization).

In practice, we designed 86 local transforma-
tion rules, a few of them carrying constraints such
as move_up, redirect, frozen (to block
displacement), and mirror (a variant of the
share constraints). Furthermore, a few meta-
rules were added to handle conflicts, for instance
when a word gets two distinct governors or when
a dependency gets two distinct labels. An exam-
ple of such mediating rule is given by the follow-
ing: if two dependencies d1 and d2 share the
same target w and if h(d1) < h(d2) < w, then
d1 is rerooted to have h(d2) as target (in other
word, the closest preceding potential head wins).
A mechanism of log was used to track, on corpus,
the most frequent conflicts and check the effec-
tiveness of the mediating rules.

The resulting conversion scheme (coupled with
disambiguation tuning learned from the 9881 sen-
tences of the train part ftb6_1 of FTB) allows
us to reach (with no prior tagging) a Labelled At-
tachment Score (LAS) of 85.8% on the test part
ftb6_3 of FTB (1235 sentences), not counting
the punctuation dependencies (as usually done).
This figure may be honorably compared to the
88.2% obtained by the best statistical parser di-
rectly trained on the FTB (Candito et al., 2010b).
Even if it difficult to measure the impact of the
conversion, it seems that the conversion is rela-
tively good. Still, we are aware of some loss com-
ing from the conversion, essentially due to phe-
nomena that can not be directly handled by tree
transformation and constraints. More precisely,

220



par qui a -t-elle voulu que ces deux livres et ce DVD lui soient rendus _ ?
prep pri aux cln v que det adj nc coo det nc cld aux v S _

P PRO V CL V C D A N C D N CL V V PONCT

preparg

N2
Infl

subject

S

csu
det

N

subject

N2 det
coord3 preparg

Infl S2 void

root

p_obj

obj

aux_tps

suj

root

obj

det

mod

suj

coord det

dep_coord a_obj

aux_pass

obj

ponct

Figure 10: Disambiguated FRMG output, with depFRMG edges above and converted depFTB edges below

FRMG and FTB do not use the same set of com-
pound words (for instance for complex preposi-
tions, complex adverbs, or named entities) and
it is therefore necessary to retrieve the missing
depFTB dependencies for the FRMG compound
words that are not compound in FTB.

If we look more closely at the importance of
the constraints in the conversion process, we can
observe that their impact is limited but associated
with a potentially large number of occasionally
rare configurations that would have been difficult
to identify.

Only 5 rules out of the 86 rules carry con-
straints:7

• One rule (R_ponct) with a constraint move
up, used to attach the final punctuation to the
FTB head of the sentence.

• Two rules with a redirect up constraint.
Rule R_aux_caus is used to handle the
(rare) cases of causative constructions while
Rule R_Monsieur is used to handle hon-
orific construction such as M. Teulade (Mr
Teulade) where Teulade would be the head
for FRMG and M. the head for FTB.

• Two rules with a mirror constraint, used to
handle enumerations.

7The small number of constrained rules may be partially
explained by the fact that the need for constraints became
progressively apparent after some rules were already written.
It is possible that the set of 86 rules could be slightly reduced
by adding constraints to more of them.

On the 278,083 dependencies present in
ftb6_1, we get 5,352 move up resolutions
(2%), 1,167 redirect resolutions (0.4%), and
638 mirror resolutions. However, these cases
correspond to configurations involving 46 distinct
pairs of rules for move up, 27 for redirect,
and 24 for mirror. Intuitively, these figures
provide a rough estimate of the number of rules
(around 97) that should have been found and
added to avoid the use of the constraints (uniquely
on ftb6_1). It may be noted that this set of po-
tential rules is already greater than the 86 current
rules, with no guarantee of being complete.

We also have some indications about the res-
olution of the conflicts with 5,665 potential head
conflicts (2%), 5,320 of them (94%) being han-
dled by the mediating rules.

5 Conclusion

We have sketched a constraint-based graph trans-
formation, motivated by linguistic considerations
on the displacement or the sharing of dependen-
cies. This constraint-based transformation may be
used as the second stage of a transformation pro-
cess based on more standard local transformation
rules.

We have shown that a very small set of con-
straint types is sufficient to handle relatively com-
plex syntactic phenomena in elegant ways. A few
more types (to be investigated) could prove them-
selves very valuable to handle complex cases of
elliptic coordination.

We believe that the two-stage approach is a
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promising one, because of a better division of
work and an economy both in terms of number of
rules and of development time. The local transfor-
mation rules may be relatively easily learned from
partially annotated simple examples, the second
stage results from a few rules constrained with
only a small set of constraint types. The con-
straints avoid many rule ordering issues related
to recursive transformations, providing more sta-
ble systems (wrt the addition or modification of
rules). Proof of the confluence is also easier.

A preliminary implementation was tried for
a conversion process between two dependency
schemes, but a cleaner implementation based on
the formalization presented in this paper is un-
derway. It will be tested on a larger spectrum
of transformations, for instance to build semantic
graphs from dependency trees.
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Abstract

This paper gives an analysis explaining var-
ious cases where the scope of two logical
operators is non-permutable in a sentence.
The explanation depends on a theory of
derivational economy couched in the syn-
chronous tree adjoining grammar frame-
work. Locality restrictions made using the
STAG formalism allow us to limit the com-
putational complexity of using transderiva-
tional constraints and allows us to make in-
teresting empirical predictions.

1 Introduction

Although the relative scope of quantifiers is gen-
erally free within a single clause in English, there
are a number of cases where the relative scope of
quantifiers/operators is non-permutable. We pro-
vide here an account for the data below that de-
pends on a theory of derivational economy. It
assumes a syntax-semantics interface couched in
the synchronous tree adjoining grammar frame-
work (STAG) (Shieber and Schabes, 1990; Han,
2006; Nesson and Shieber, 2007). The intuition
underlying the current analysis is a familiar one:
that interpretations of a given syntactic derivation
are blocked when there is a simpler, competing
derivation that can produce the same meaning.
However, by couching the intuition in the con-
text of STAG, we derive a number of important
limitations on such competition by restricting the
comparison class (using the TAG formalism), and
maintain a system that is limited in the complex-
ity of the computations it assumes. This allows us
to make empirical predictions that other accounts
of scope economy couched in other frameworks
are unable to make because either they view com-
petition to be global (Grice, 1989; Horn, 1989) or
too local (Fox, 1995, 2000).

2 Universals-Negation

Universal quantifiers like every and negation are
unable to scope freely with respect to one another.
When a universal quantifier is in object position,
as in (1), it is unable to take scope over negation.

(1) a. Peter didn’t catch every crook. (*∀>¬,
¬>∀)

b. Nobody caught every crook. (*∀>¬∃,
¬∃>∀)

Similarly, when a universal is in subject posi-
tion, it is unable to take scope over negation, as
in (2). The pattern breaks down in a number of
cases: in (3a), the presence of a raising predicate
makes the wide scope universal reading possible;
also, in (3b), the presence of an intervening oper-
ator allows the universal to scope over negation.

(2) Everyone didn’t meet Peter. (*∀>¬, ¬>∀)

(3) a. Everyone didn’t seem to meet Peter.
(∀>¬, ¬>∀)

b. Everyone didn’t meet someone.
(∀>∃>¬)

The goal of the analysis is to explain lack of
scope permutability in (1) and (2) while allowing
scope permutability in (3).

3 Preliminary assumptions

We assume following Schabes and Shieber (1994)
the declarative conception of STAG where quan-
tifier scope is determined in the derivation tree:
Here scope can be resolved on the left-to-right or-
der of nodes on a derivations tree; by convention
rightmost nodes in the derivation tree correspond
with higher scope in the derived tree. In Schabes
and Shieber (1994) scope ambiguity is achieved
by allowing either ordering in the derivation tree.
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In contrast, we follow the restriction on derivation
proposed in Freedman and Frank (2010) which is
defined as follows:

PROMINENCE RESTRICTION ON

DERIVATION (PROD): The children
of a node γ (representing elementary
tree τ ) in a derivation tree must be
in an order consistent with both the
domination and c-command relations
of their corresponding elementary
tree’s attachment sites on τ .

Figure 1 shows how PRoD works: trees adjoin-
ing into δ or ε must be ordered before those that
adjoin into β or γ which must be ordered before
those that adjoin into α.

α

γ

εδ

βT =

acceptable orderings:

T

αγδ

T

βδε

unacceptable orderings:

T

βγα

T

δβε

Figure 1: Sample elementary tree T (left) and sample
derivation trees that show possible and impossible or-
derings of attachment following PRoD on derivation
tree rooted with a node representing T .

By PRoD, one could not have the subject-tree
ordered before the object-tree because the attach-
ment site for the former c-commands the latter. To
handle cases of inverse scope, multi-component
tree-sets can combine through split combination
(SC):

SPLIT COMBINATION: The node rep-
resenting a scope-tree within a tree-set
may be ordered later than specified by
PRoD.

SC allows the scope portion of a quantifier
tree set to take scope over a dominating or c-
commanding quantifier. The use of split combi-
nation adds an extra step in the derivation by sep-
arating the scope-tree from the variable tree in the
derivation tree. An example is provided in fig-
ure 2 for the sentence a student read every book;
this compares to figure 3 where the tree-set for the
quantifier is not split and surface scope is gener-
ated. Additionally, SC can be lexically restricted
such that only certain quantifiers are able to split.

read

every bookScopea studentevery bookVar

⇒

t

t

t1 ,2

〈e, t〉

e1

y

〈e, 〈e, t〉〉

read

e2

x

t

xstudent

∃x

t

ybook

∀y

Figure 2: Derived and derivation tree for “A student
read every book” with split combination of “every
book”.

read

every booka student

⇒

t

t

t1 ,2

〈e, t〉

e1

y

〈e, 〈e, t〉〉

read

e2

x

t

ybook

∀y

t

xstudent

∃x

Figure 3: Derived and derivation tree for “A student
read every book” without split combination of “every
book”.

The size of elementary trees follows the Con-
dition on Elementary Tree Minimality (Frank,
2002). For our purposes this dictates that quan-
tificational determiners are in the same elemen-
tary tree as the noun that is in their restriction (as
depicted in figure 4). In the syntax, clausal nega-
tion resides in extended projection of a verb. In
the semantics, we assume that negation adjoins in
separately from the verb-tree, adding another step
in the derivation (as depicted in figure 5).

t

t∗t

xprofessor

∀x

DP

NP

N

professor

D

every

Syntax tree Scope tree

e

x

Argument tree

Figure 4: Elementary trees for the Quantifier Phrase
“every professor” including the syntax tree and the
multi-component semantic tree set consisting of the
scope-tree and the argument tree.

4 Analysis

With this general picture in mind, let us proceed
to analyse the data in §2: Observe that the unavail-
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TP

T′

VP

V′

DP1V

read

DP2

T

didn’t

DP2

syntax tree

t

〈e, t〉

e〈e, 〈e, t〉〉

read

e

semantic tree

t

t∗¬

negation tree

Figure 5: Elementary trees for the verb “read” with
negation “didn’t” in its extended projection. The se-
mantic tree does not contain the negation; it is a sepa-
rate tree.

able ∀¬ reading for (1) is available for the exam-
ple in (4), as ∀¬ and ¬∃ are logically equivalent.

(4) John didn’t read a/any book(s). (¬>∃)
While the derivation producing this interpreta-

tion would require split combination for (1), it
does not for (4). Because SC creates an addi-
tional step, the derivation for (4) is shorter than
the one for (1). An intuitive way of understanding
this pattern is to think that (4) blocks (1) on the
∀¬/¬∃ reading. A similar line of analysis can ex-
plain (2)’s inability to have a ∀¬ reading; it has a
competitor (5) that can produce the same meaning
(¬∃) with a shorter derivation.

(5) No one met Peter. (¬>∃)
(5) on the relevant reading has a shorter deriva-

tion because both quantifiers (¬ and ∃) are lexi-
calized in a single tree; the negative and existen-
tial force in (2) must be combined in separately,
creating an extra step. This blocking intuition can
be formalized in the following manner:

DERIVATIONAL COMPLEXITY CON-
STRAINT ON SEMANTIC INTERPRE-
TATION (DCCSI)
A derivation d producing meaning m is
ruled out if another shorter derivation d′

also produces m.

This constraint explains the data in (1) and (2);
both have more economical alternatives that block
them. Derivation trees for (1) and (4) are provided
in figure 6 showing the difference in derivation
length. The DCCSI also explains the ability for
the universal to take wide scope in (3); because an

operator intervenes, there is no more economical
competitor, and no blocking can take place.

read

every bookScopenotJohnevery bookVar

read

a booknotJohn

Figure 6: Derivation trees for “John didn’t read every
book” and “John didn’t read a book” on the ∀>¬ read-
ing.

But, as the DCCSI stands, it is unrestricted with
respect to comparison class. This causes empiri-
cal and computational problems. Computational
issues are discussed in §6. Empirically, the unre-
stricted constraint leads to the puzzle posed by the
data in (3a) (repeated as (6a)): why isn’t the wide
scope universal reading blocked by (6b). Given
the definition of the DCCSI, blocking should take
place as the relevant derivation for it is shorter
than the relevant derivation for (3a).

(6) a. Everyone didn’t seem to meet Peter.
(¬>∀, ∀>¬)

b. No one seemed to meet Peter. (¬>∃)

To restrict the comparison class we impose
a constraint that closely follows TAG intuitions
about locality. The TAG-like intuition behind this
constraint is that comparison is localized to ele-
ments combining into a single elementary tree.
The derivation can informally be defined in the
following way: A derivation tree D is compara-
ble to derivation tree D′ iff D and D′ are identical
except for the daughters of a single node α. The
possible differences between D and D′ include D
excising or replacing one or more of α’s daugh-
ters. A more formal definition follows:

LOCALITY CONSTRAINT ON COMPE-
TITION (LCC) (formal version)
Derivation tree D′ can be compared to
derivation tree D (where D and D′ are
defined as triples consisting of a set of
nodes N , a set of labels L and the im-
mediate dominance relation P ) iff:

1. N ′ ⊆ N
2. P ′ ⊆ P
3. ∃!n ∈ Ns.t.

(a) P ′ ⊇ P − {(n, x)|x ∈ N}
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(b) ∀x ∈ N, (n, x) /∈ P →
L(x) = L′(x)

The first two clauses ensure that the derivation
trees in the comparison class have no structure
that is not present in the original derivation tree
D. The third clause ensures that the only change
is under a single node of the derivation tree and
that daughters can be deleted or labels changed.

The LCC has the benefit of limiting the com-
parison class in a way that not only makes trans-
derivational constraints feasible but also explains
the puzzle of the wide scope reading for (3a). The
availability of the wide scope universal reading
for the example in (3a) can be understood in con-
junction with the LCC; while there is a sentence
that has a shorter derivation, (6b), it is not able to
be compared to (3a) because there are differences
under more than one node of the derivation trees
(as depicted in (7)): The didn’t-node is deleted
under the seem-node and the everyone label is
changed to the no one-label. This finding is possi-
ble because of the TAG analysis of raising where
raising predicates adjoin into a VP (as shown in
figure 8). Since the clausal negation combines
into the raising predicate and the nominal quan-
tifier negation combines into the main verb-tree
the comparison is non-local, as depicted in figure
7.

meet

seem

didn’t

everyone

meet

seemno one

Figure 7: Derivation trees for “John didn’t seem to
meet everyone” and “No one seemed to meet every-
one” on the ∀>¬ reading.
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T′

VP

T′

VP

DPV
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T

to

V

seemed

T

DP

Figure 8: Derivation for a raising construction: the
seem-tree (the raising predicate) adjoins into the meet-
tree
.

Computationally, the DCCSI in conjunction
with the LCC can be proven to not exceed the ex-
pressive power of TAG. This can be done with
a proof by construction where a TAG with the
DCCSI can be compiled into a TAG without the
DCCSI. In addition, with proper linguistically
motivated constraints, it can shown that the size
of the grammar does not become unsuitably large
with the compilation. This is shown in §7.

5 Double Object Constructions

It has been observed that the relative scope of the
internal arguments of double object sentences are
only able to have a surface scope reading (Lar-
son, 1988; Bruening, 2001). That is, the sentence
in (7a) can have the reading where every photo-
graph was given to one individual but not a read-
ing where the photographs differed in who they
were given to. The prepositional dative sentences
in (9) differ from those the double object in (7) in
that they are scopally ambiguous; both the surface
and inverse scopes for the internal arguments are
available.

In the double object case, as in (7) and assum-
ing the elementary tree for the double object in
figure 9a, inverse scope interpretation can be ob-
tained through the use of split combination which
would place the scope of the second object in a
higher position than the first object.

(7) a. Peter gave someone every/each photo-
graph. (*∀>∃, ∃>∀)

b. Harry told someone every/each plot.
(*∀>∃, ∃>∀)

Note however that the prepositional dative al-
ternative in (8) (and assuming the elementary tree
in figure 9b) does not need SC in order to obtain
the same reading, making its derivation shorter.

(8) Peter gave every photograph to someone.
(∀>∃)

(9) a. Peter gave every photograph to some-
one. (∀>∃, ∃>∀)

b. Peter put a bagel on every shelf. (∀>∃,
∃>∀)

Thus, blocking removes the inverse scope
structure from the grammar. Why then are the
ditransitive sentences in (9) ambiguous? For the
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prepositional dative cases in (9a,b) the PP argu-
ment is able to optionally attach to a higher po-
sition than the direct object argument thereby al-
lowing “inverse scope” without SC (the PP can
also be under the direct object in a VP-shell), as
depicted in figure 9c. Evidence for this struc-
tural explanation come from examples like that in
(10) where complex existential quantifiers (which
have been observed not to take scope over other
higher quantifiers (Beghelli and Stowell (1997);
Heim (2001))) take scope over a higher quantifier.

(10) John gave an apple to more than three stu-
dents.

The examples in 11 provide additional evi-
dence for the blocking analysis: In (11a), no
blocking occurs if there is an intervening opera-
tor that would force the prepositional dative con-
struction to utilize SC to obtain the same scope
reading (making the derivation length the same).
Likewise, as in (11b), no blocking occurs in con-
structions that have no prepositional dative con-
struction to compete with.

(11) a. A teacher gave every student every
book. (∀book>∃>∀stu )

b. Peter bet a friend every nickel (he
had). (∀>∃, ∃>∀)

6 Complexity

6.1 TAG with TDC is not a TAL
I show in this section how a TAG with a TDC
can generate a language that contains exactly the
prime numbers. Since the language that contains
only the prime numbers is not in the class of
mildly context sensitive languages, the language
that is generated by this grammar is not a TAL.
This shows that adding a transderivational “econ-
omy” constraint can increase the generative ca-
pacity of a grammar. We can construct this lan-
guage in the following way:

Construct a TAG G that composes the natural
numbers. Figure 10 shows a TAG G′ that gen-
erates unary strings that can be interpreted as the
natural numbers beginning with 2. The initial tree
has an obligatory adjoining constraint; the gram-
mar only generates unary strings of length > 1.
Each adjoining operation increases the interpreted
value of the string by 1.

An additional tree is added (in figure 11) to the
grammar G′ (let’s call it G) in order to be able to

TP

T′

VP

VP

V′

DPV

ti

DP

V

gavei

T

DP

TP

T′

VP

VP

V′

PP

DPP

to

V

ti

DP

V

gavei

T

DP

TP

T′

VP

PP

P′

DPP

to

VP

V′

DPV

gave

T

DP

(a) (b)

(c)

Figure 9: The three elementary trees for ditransitive
constructions: (a) double object; (b)dative comple-
ment (low attachment); dative complement (high at-
tachment)

POA

P

ε

1

P

P1

Figure 10: This figure shows TAG G′; it consists of
trees that can build up the natural numbers in unary.
The left and right trees construct numbers by succes-
sively “adding” 1.

represent all of the natural numbers greater than
1 as products of other natural numbers. The tree
contains two nodes where adjunction can occur:
there is one OA site where at least one 1-tree must
obligatorily adjoin and one SA site where a tree
may optionally adjoin. Adjoining into this tree
can produce any natural number except 1.

The grammar G consisting of the trees in fig-
ures 10 and 11 generates the language that con-
sists of the natural numbers in unary and the nat-
ural numbers as products of other natural num-
bers (represented in unary). Now, we introduce a
transderivational constraint that will remove from
the grammar any derived tree whose value can be
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P

PSA

1

×POA

1

Figure 11: Additional tree for TAG G; this allows nat-
ural numbers to be represented by the product of other
natural numbers.

more simply derived (fewer derivational steps) by
an alternative derivation. We will call the resul-
tant grammar Gc . This constraint is similar to the
constraint used in the first half of the paper for
grammatical constructions; equivalence in num-
ber and equivalence in meaning are both instances
of logical equivalence where it is necessary for the
truth values to be the same in any possible model
(although meaning as defined requires a bit more
than logical equivalence). A more formal defini-
tion follows:

(12) TDC on Number Generation A deriva-
tion d taking k steps and generating a string
that is interpreted as natural number n is
ruled out if a derivation d′ takes fewer than
k steps and also produces n.

The length of derivation for the purely unary
method of combination is equal to the value of the
number minus one (n− 1). The length of deriva-
tion with the product-tree is the sum of the value
of each product minus two (p+m− 2).

For any prime number no blocking occurs be-
cause the length of derivation for both the unary-
string and the product-string is the same. The
proof by contradiction follows: Suppose that for
any prime n− 1 6= p+m− 2. For any prime we
know that (1) one of the factors will be 1 (m = 1)
and that the other factor will be equal to the num-
ber (n = p). Replacing m with 1 and p with n we
get the equation n − 1 6= n − 1. Thus, n − 1 =
p+m− 2 for any prime number n.

For non-prime numbers there will always be
a product-tree derivation that is shorter than the
unary-tree derivation. To do this we want to prove
that for all n there is a p and an m such that n− 1
> p+m− 2 which reduces to pm > p+m− 1
when replacing n with pm. This can be proven
directly:

First solve for m: pm > p+m− 1⇒ pm−m
> p− 1⇒m(p− 1) > p− 1⇒m > 1.

Then solve for p: pm > p+m− 1⇒ pm− p

> m− 1⇒ p(m− 1) > m− 1⇒ p > 1.
This shows that the inequality holds as long as

m,p > 1. Since the problem is defined on non-
prime factors, the equality holds in all the relevant
cases and the TDC will remove all purely unary
representations of non-prime numbers.

Thus with the transderivational constraint all
unary representations of non-prime numbers will
not be members of Gc .

Next, we will intersect the constructed TAL (U )
(from TAG Gc) with the complement of the lan-
guage that contains the product representation of
the natural numbers in unary (L′). L′ is a regu-
lar language because L is a regular language and
regular languages are closed under complemen-
tation. Since TALs are closed under intersection
with regular languages U ∩ L′ is a TAL if U is.
But, the strings that comprise U ∩ L′ are only
the prime numbers: Since, this language does not
have the constant growth property it cannot be a
TAL. This result shows that the transderivational
constraint takes the grammar out of the class of
TAL because the properties of all of the other ele-
ments of the construction are known.

6.2 TAG with TDC is beyond NP

This section shows that a TAG grammar with the
addition of a TDC is beyond NP. This is shown by
generating the language MINIMAL.

The minimization problem for propositional
formulas seeks to find a minimum equivalent for-
mula for a given boolean formula; the language
MINIMAL consists of all well-formed boolean
expression for which there is no shorter equivalent
formula (Meyer and Stockmeyer, 1972). Mini-
mality (‘shortness’) can be defined in a number of
ways and for the purposes of this proof it will be
defined by the number of connectives in the for-
mula. The complexity class of the minimization
problem is unknown but it is known to be beyond
NP.

The first step of the proof is to make a TAG
that generates the set of propositional formulas.
The syntax for PL can be defined in the following
manner:

(13) Syntax of PL

1. any statement letter α is a well-
formed formula (wff);

2. if α is a wff then _¬α^ is a wff;
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Figure 12: This figure shows how atomic propositions
are constructed. Atomic propositions would be the fol-
lowing: A1, A11, A111, etc.

V2

V2¬

V2

V2∧V2

V2

V2∧V2

Figure 13: This figure shows trees that with the atomic
proposition trees construct (from left to right) nega-
tion, conjunction, and disjunction.

3. if α and β are wff then _(α ∧ β)^ is a
wff;

4. if α and β are wff then _(α ∨ β)^ is a
wff;

5. Nothing else is a wff.

A TAG version of (13) follows (which we will
call G): The first step creates the atomic propo-
sitions in PL. Because of the finite limit to the
number of trees in a TAG, the syntax has to re-
cursively construct the atomic propositions. The
construction includes an initial tree and an aux-
iliary tree where the initial tree encodes a single
proposition. Each instance of adjunction is a new
atomic proposition. The two trees are shown in
figure 12. The trees that encode the logical con-
nectives are in figure 13. These trees can combine
with one another through substitution to make the
full set of possible well-formed formulas for PL.

These trees form G. We can add a transderiva-
tional constraint to the grammar (making gram-
mar Gc):

(14) A derivation d taking k steps and producing
PL formula m is ruled out if a derivation d′

takes fewer than k steps and also produces
m.

The addition of the TDC to the grammar would
define the language of propositional formulas that
do not have alternative semantically equivalent
formulas that can be constructed by the TAG in
the same or fewer derivational steps. This is
equivalent to the minimization problem; if we had
an oracle that could determine for any formula φ if
it was a member of the TAL then we would know
the answer to the membership problem for MINI-
MAL or if we had an oracle that could determine

for any formula φ if it was a member of MINI-
MAL, we would know whether the correspond-
ing tree was in Gc . Since a solution for the mini-
mization problem is beyond NP, the member ship
problem for the language generated by Gc is as
well.

Given the results that the language generated
by a TAG with a TDC is not a TAL and is be-
yond NP for propositional logic, it is clear that
an unrestricted TAG with TDCs is unwanted. I
will present a construction in the next section that
shows that TAG with the DCCSI and with the ad-
dition of the locality constraint (LCC) described
in the previous chapter is a TAL.

7 The Expressive Power of the DCCSI

In this section, I will show that the expressive
power of TAG is not increased by adding TDCs
into the grammar: A TAG with the DCCSI con-
straint does not exceed the expressive power of
a similar TAG variant that does not have the
DCCSI. I do this through a compilation: the for-
malism described in this paper is algorithmically
transformed into a standard STAG that is known
to be in the mildly-context sensitive class of gram-
mar formalisms. The translation takes three steps:
(1) The effects of multiply linked semantic nodes
(MLSNs) will be recreated using the formalism
outlined in this paper but without having any ML-
SNs. This step will also make sure that the rele-
vant links are completely ordered with respect to
one another. This will allow there to be a single
tree for every possible scope configuration. (2)
The effects of PRoD and split combination will
be recreated using the grammar created in step 1
without PRoD and split combination and with the
overt addition of features to recreate their effects.
The addition of features will allow the removal
of trees that violate PRoD. (3) The effects of the
DCCSI with the grammar created in step 2 will be
recreated without the use of the DCCSI. This will
be done by eliminating structures that have un-
wanted scope configurations. Through each step I
will show that the increase in the number of trees
in the grammar is bounded in a non-problematic
way given some restrictions on the properties of
natural language grammars. This will show that
the grammar created in this paper is no more pow-
erful than a STAG.

This type of proof is possible because the LCC
localizes comparison to a single elementary tree.
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Figure 14: This figure shows the conversion from a
multiply linked semantic node to nodes corresponding
to the possible orderings of the links. On the left is a
node with links α and β. The two trees on the right
correspond to the two possible orderings.

It does so by making the compared nodes of the
derivation tree necessarily sisters. The compari-
son can then be represented in a single elementary
tree using a finite number of features. The proof
goes as follows:
Step 1: Construction of a STAG G’ (where there
are no MLSNs ) from a STAG with MLSNs G:
Consider all of the elementary trees in the gram-
mar. In order to convert all trees with MLSNs
into trees without them, the following step can be
taken: For each node with n links (n>1) create a
tree for each possible ordering of the links. The
ordering is represented by the dominance relation
on a single-branching tree. Replace nodes with
multiple links with the representations of these or-
dered trees. This would, for instance take a node
t1 ,2 and convert it into two different structures
where a t-node dominates another t-node. One
tree would have the 1 link dominate the 2 link
and another where the 2 link dominates the 1 link.
Trees with these structures in them replace the
original trees where there are nodes with multiple
links.

For n links the number of additional trees is
n!. For a tree with multiple instances of ML-
SNs (m1 ...mn ) the number of additional trees is
the product m1 !... × ...mn !. This, at first glance,
is problematic because as n grows, the factorial
growth of n! exceeds even the exponential growth
rate. This is not problematic for the compilation
because of the natural bound of links for a given
node. The maximum number of links for a se-
mantic node is the number of nodes in the syntax
and since this is finitely bounded, the increase in
trees is at worst still manageable. In any actual
case, the results will be easier: it is reasonable to
think that the maximum number of links for a t
node is the number of arguments of the verb plus
1 (for sentence level modifiers.) In conclusion,
since there is a finite bound, there is no particular
problem with the factorial growth rate.

Step 2: Another necessary step in the conversion
is to do the following: Take (scopal) nodes (t-
nodes) and make an ordering of their links. If
the order is a partial order take the total order
extensions of the ordering. Replace the partial
ordered trees with their total ordered extensions.
For instance, if we have a series of nodes t1 -t2 -
t1 , we would end up with t1 -t2 and t2 -t1 . This
step is necessary for future steps where trees are
eliminated. Trees where a link is associated with
a node that both dominates and is dominated by
another link underspecifies the scope relation be-
tween different scope taking operators. Since it
is necessary to make the scope unambiguous for
each elementary tree (in order to remove scope
configurations that are unwanted) these trees must
be removed from the grammar. At this point, we
have constructed separate trees that corresponds
to every scope ordering that the linkages allow; in
essence this grammar will allow any quantifier to
use split combination.
Step 3: Now we have to replicate the effects of
the DCCSI. Take the grammar created by step 2
and then remove the tree set types that correspond
to the readings that are made unavailable by the
DCCSI.

First, we add features that constrain what type
of quantifier can adjoin to what DP position of a
verbal tree to relevant nodes of trees. In order to
get the results described in this paper, for instance,
it suffices to only have a +/- quantifier feature, a
distributive quantifier feature, and a +/- negative
feature. But no matter the actual number of fea-
tures needed for a complete analysis, it will be
finitely bounded.

If the number of features were not stipulated
to be finite, the addition of features would ex-
ponentially increase the number of trees in the
grammar. The addition of trees in general (while
also only considering features on arguments) adds
(2n)k trees for each tree in the grammar, where n
is the number of arguments and k is the number
of features.

The nodes of a tree in the worst case would all
have the maximal set of features and there would
be all of the possible combinations. Since the
number of nodes causes exponential growth in the
size of the grammar this would be problematic if
the number of nodes in the grammar weren’t also
bounded. Since all trees in TAG are bounded, they
must also have a finite number of nodes. Thus,

230



TP

T’

VP2 ,+n

V’

DP1+distV

read

spec

T

did

DP3 -q

t1

t2

〈e, t〉

e1〈e, 〈e, t〉〉

read

e↓

Figure 15: Example of a tree set to be removed to repli-
cate the effects of the DCCSI. This tree-pair would al-
low a distributive quantifier in object position to take
wide scope over clausal negation.

the finite number of features and nodes allows the
added number of trees to be manageable.

In figure 15, an example is given; it corresponds
to the not...every sentences that can not have a
wide scope universal reading. Once all of the
appropriate tree sets are removed, the resultant
grammar is G’ which is equivalent to G.

This construction has shown how a grammar
with a TDC can be a TAL when the comparison
class for the transderivational constraint is con-
strained. Additionally, it was suggested that the
growth during the compilation does not increase
the number of trees disastrously if some reason-
able assumptions are made. For these reasons, it
seems that the use of semantic TDCs are not in-
feasible in grammar when properly constrained.
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Abstract

Work on the syntax-semantics interface in
the TAG framework has grappled with the
problem of identifying a system with suf-
ficient power to capture semantic depen-
dencies which also imposes formally and
linguistically interesting constraint on the
kinds of dependencies that can be ex-
pressed. The consensus in recent years ap-
pears to have shifted to the use of a system
that is substantially more expressive than
TAG. In this paper, we revisit some of the
arguments in favor of more formal power,
particularly those from Nesson and Shieber
(2008). We show that these arguments can
be defused once we adopt a different per-
spective on predicate-headed semantic el-
ementary trees, namely that they are di-
vided into scope and variable components
like their quantificational counterparts. We
demonstrate as well that this proposal pro-
vides an new perspective on scope rigidity.

1 TAG Semantics and Formal Power

Much of the interest in using Tree Adjoining
Grammar as the structure-building component of
syntactic theory stems from the combination of its
formal and computational restrictiveness and its
apparent sufficiency to express the kinds of pat-
terns that are found in natural language. Over
the past couple of decades, researchers have at-
tempted to augment TAG models of syntax with
mechanisms for assigning semantic interpreta-
tions. One line of work in this regard is that
of Kallmeyer and Joshi (2003) and Kallmeyer
and Romero (2008). In this approach, elemen-
tary trees are associated with underspecified se-
mantic descriptions, which are combined using

a combinatory mechanism that operates in par-
allel with TAG derivational steps, essentially a
form of feature unification. Though this approach
has had considerable empirical success, it does so
by sacrificing the restrictiveness of the TAG for-
mal system: unification over unbounded feature
structures is Turing complete (Johnson, 1988).1

An alternative line exploits the TAG combinatory
machinery itself to construct semantic interpreta-
tions, through a synchronous derivation of syn-
tactic representations and semantic terms (Shieber
and Schabes, 1990). Though this Synchronous
TAG (STAG) approach is appealing, because it
maintains the constrained approach to grammat-
ical combination embraced in TAG, it remains
an open question whether it is sufficiently pow-
erful to accomplish the task of assigning compo-
sitional interpretations. Indeed, in comparison to
the wealth of work on the grammatical complex-
ity of patterns found in natural language syntax,
there is precious little work studying the com-
plexity of semantic patterns, or of the syntax-
semantics mapping.2

Recently, Nesson and Shieber (2008) have ar-
gued that there are empirical reasons to move

1As far as we are aware, Kallmeyer and colleagues have
not proposed restrictions on their system which constrains
its expressiveness. One interesting avenue to pursue in this
connection could follow the work of Feinstein and Wintner
(2008) who prove that the class of one-reentrant unification
grammars generate exactly the Tree Adjoining Languages.
Of course, it remains an open empirical question whether im-
posing this restriction on this approach would yield a system
that is sufficiently expressive to assign meanings in a compo-
sitional fashion. We briefly return to this issue in Section 5
below.

2See Marsh and Partee (1984) for one notable exceptions,
though questions remain about the empirical relevance of
this result.
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beyond the tree-local multicomponent version of
STAG advocated by Shieber and Schabes (1990)
and in Schabes and Shieber (1994), to a system
which is greater in power than simple TAG. In
this paper, we suggest that Nesson and Shieber
were mistaken: the examples that they use to mo-
tivate greater expressive power can in fact be dealt
with using tree-local MCTAG, but only once we
rethink the semantic representations of elemen-
tary trees for lexical predicates. We then move
beyond English, showing that this new concep-
tion of semantic elementary tree set provides a
natural way to characterize cross-linguistic vari-
ability in scopal flexibility, a variability that is un-
expected under the multiple adjunction approach
to scope ambiguity. Finally, we briefly discuss a
potential analogy between scope and scrambling
and the implications that this analogy has for the
complexity of the syntax-semantics interface.

2 Puzzles for a Restrictive Semantics

Nesson and Shieber (2008) present a number of
sentence types whose semantic derivations they
take to require power beyond that possible under
tree-local MCTAG. One of these involves “inverse
linking”, where a quantifier is syntactically em-
bedded within another quantificational NP. Such
a case is given in (1):

(1) Mitt courted every person at some
fundraiser.
(∃ > ∀, ∀ > ∃)

To derive an interpretation for this sentence, Nes-
son and Shieber make use of what has become
the standard TAG treatment of quantifiers, given
in Figure 1, augmented with dominance links that
are crucial only to the inverse linking case. A
quantifier’s interpretation is assigned two pieces
of structure, a scope tree and a variable tree. To
derive (1), the quantifier,some fundraiser, is com-
bined into theat-headed tree set, of which it is

〈 { DP

D

some

NP 2

N

fundraiser

} { t 2

∃x t 2

〈e,t〉 2

fundraiser

x

t*
e

x

} 〉

Figure 1: Tree Set forsome fundraiser

〈 {
S*

NP

NP* PP

P

at

NP↓ 1

} {
t*

〈e,t〉

and 〈e,t〉* 〈e,t〉

at e↓ 1

} 〉

Figure 2: Tree Set forat proposed in Nesson and
Shieber (2008)

the complement, given in Figure 2: on the seman-
tic side, the variable component of the quantifier
substitutes into the〈e,t〉-recursive auxiliary tree,
following the link in the syntactic tree. However,
there is no place in the〈e,t〉 recursive auxiliary to
host thet-recursive scope component of the quan-
tifier, meaning that tree local combination is im-
possible. It is only because of the presence of the
degeneratet component of this tree set that the
combination of the quantifier and preposition is
even able to occur set locally. The derivation con-
tinues by adjoining the derived tree set into an-
other quantifier tree set, representingevery per-
son, this time tree-locally, within the set’s scope
component.

Nesson and Shieber invoke a second kind of
example to argue for the inadequacy of even set-
local MCTAG. This case involves the interleaving
of scopal elements from multiple clauses, of the
sort seen in (2).

(2) Some professor remembered to review
every paper (that he promised to review).
(∃ > ∀ > remembered)

In the relevant reading of (2), the universal quan-
tifier that is the object of the lower clause takes
scope below the existential matrix subject, but
above the matrix verbal predicate. This interpreta-
tion cannot be derived even set-locally under stan-
dard assumptions.3 If the tree set associated with

3In fact, Shieber and Nesson’s assumptions about the se-
mantic elementary tree for the control predicateremember
do not match the ones we are currently making. Instead, they
invoke a three-part tree set for the semantics of control pred-
icates likeremember, including a lambda abstraction over
the subject, the lexical predicate and a variable to be inserted
into the (controlled) embedded subject position. This move
allows them to generate the desired scope for (2), though it
does not generalize to slightly more complex cases such as
the following, involving a matrix adverbials, as they observe:

(i) Every boy always wants to eat some food.
(always> ∃ > ∀ > wants)

The proposal we make in the current paper can be seen as
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Figure 3: Derived matrix auxiliary tree forsome pro-
fessor remembered

the existential quantifiersome professoradjoins
and substitutes into a single-component seman-
tic elementary tree associated withremembered,
as it must under tree-local or set-local MCTAG,
the relative scope of these elements can be fixed
(as∃ >remembered), forming a derived auxiliary
tree that encapsulates these scopal elements, seen
in Figure 3. However, because of the nature of
the adjoining operation, there is no way the these
two elements can be separated when this derived
auxiliary tree into it complementreview, which
will also host the embedded quantifierevery pa-
per. As a result, this embedded quantifier will be
able to take scope above all of the matrix scopal
elements or below all of them, but crucially not
between them, contrary to fact.

Nesson and Shieber also discuss a third type of
example, involving pied-piped relative clauses:

(3) John saw a soccer player whose picture
every boy bought.

On the relevant reading, the universal quantifier
can take scope outside of the (implicit) existen-
tial provided by the pied-piped relative asserting
the existence of a picture (i.e., each boy bough a
distinct picture of the same soccer player). They
argue that neither a tree-local nor a set-local anal-
ysis can generate this interpretation. In this case,
however, the argument rests on what we take to
be an implausible analysis of relative clause syn-
tax and semantics, in which the syntactic head and
core semantics of a pied-piped relative clause is
provided by the possessive morpheme. Below,
we discuss an alternative analysis of such pied-
piped relatives in which the relative clause seman-
tics and existential force is provided by a verbally-

a generalization of Nesson and Shieber’s multicomponent
treatment of control predicates to all lexical predicates.Fur-
thermore, by assuming that temporal arguments license their
own semantic component, the scope in (i) can be derived.

〈 { TP

1 DP↓ T ′

T VP

V

courted

DP↓ 2

}{ t 1 2

1 e↓ 〈e,t〉

λy′ t

2 e↓ 〈e,t〉

λx′ t*

t

〈e,t〉

〈e〈e,t〉〉

λxλy.court(y, x)

e

x′

e

y′

} 〉

Figure 4: Two-Part Predicate Trees forcourted

headed relative clause tree, and which allows this
interpretation to be derived.

3 A Return to Tree-Locality: A New
Proposal for Semantic Elementary
Trees

Nesson and Shieber’s arguments, interesting as
they are, rest on assumptions about the nature of
the elementary trees that contribute to the relevant
derivations. Though the elementary trees they as-
sume are largely in conformity with other propos-
als in the TAG literature, they provide no under-
lying theory of what semantic elementary trees
should look like. As a result, it is simply un-
clear whether their arguments hold up if the con-
stituent elementary trees and assumptions about
their structure are changed. To get around their
arguments and maintain tree-local combination,
our proposal in this paper reconceptualizes the se-
mantic elementary trees for predicates as multi-
component sets. These sets will consist of (at
least) two pieces: a ‘variable part’ and ‘scope
part’. This division is familiar in the TAG seman-
tics literature for quantifiers, and we propose that
it be generalized to argument taking elements of
all sorts.

Let us be specific about how this works. The
semantic elementary tree set for transitive verb,
such ascourted, will contain two pieces. One,
which we call the “variable part”, will include the
lexical predicate with each of its argument po-
sitions saturated by variables. The other, which
we call the “scope part”, contains a lambda op-
erator binding each of the variables in the vari-
able part, with substitution nodes to which each of
the lambda operators applies. The resulting tree
set is depicted in Figure 4. To use this tree set
to derive an example likeMitt courted some De-
troiters, the subject and object DP arguments will
both combine tree-locally in the semantic deriva-
tion with the scope portion of thecourtedtree set,
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Figure 5: Derived semantic tree for derivation ofMitt
courted some Detroiters

Mitt through substitution into the highere node,
andsome Detroitersthrough substitution into the
lowere and adjoining to the roott. When a deriva-
tion results with two trees in a single tree set, we
assume that they may combine together, with the
scope part adjoining to the variable part, result-
ing in the derived semantic structure in Figure 5.
Turn now to the derivation of the putatively prob-
lematic inverse linking case (1), repeated here.

(1) Mitt courted every person at some
fundraiser.
(∃ > ∀, ∀ > ∃)

Note first of all, that our multicomponent ap-
proach to the semantics of predicates can be ap-
plied to prepositions as well, as seen in Figure 6.
Following the derivation tree in Figure 7, the com-
ponents ofsome fundraisercompose tree-locally
into the scope part ofat, one via substitution and
the other via adjoining, just as in the derivation
just sketched. Next, both components ofat’s
semantics combine (tree locally) with the scope
component ofevery person, via adjoining at either
of the 2 -linked t nodes in the quantifier tree set of
the same form as the one in Figure 1. If such ad-

〈{ NP

NP* PP

P

at

DP↓ 1

} {
t 1

1 e↓ 〈e,t〉

λz′ t*

〈e,t〉

〈e,t〉* ∧ 〈e,t〉

〈e〈e,t〉〉

λxλy.at(y, x)

e

z′

} 〉

Figure 6: Two-Part Predicate Trees forat

joining targets the highert node, the inverse link-
ing obtains, while surface scope derives from the
lower attachment. Now, the derived object quanti-
fier every person at some fundraisercan combine
with the verbal predicate as we saw, with scope
ambiguity with respect to the subject determined
by the ordering of the combinations into the ver-
bal scope tree.

Our conception of predicate-headed elemen-
tary trees also yields a tree-local treatment of
cases of scopal interleaving like (2), repeated
here:

(2) Some professor remembered to review
every paper (that he promised to review).
(∃ > ∀ > remembered)

As before, the tree set representing the object
quantifier (tree locally) adjoins and substitutes
into the scope component of the (embedded) verb,
whose representation will be like the verbal tree
in Figure 4. The semantics of the matrix verb
rememberwill also involve both scope and vari-
able components, though this time there be an ad-
ditional variable component corresponding to the
controlled argument in the embedded clause. The
resulting tree set is given in Figure 8. Interest-
ingly, this tree set is in fact identical to the one
adopted by Nesson and Shieber (2008) in their
treatment of control. Although they do not ex-
plain their motivation for adopting this tree, it is
clear that the use of lambda abstraction is driven
by the need to have the subject argument of the
matrix predicate to bind the variables saturating
the external arguments of both the control and
embedded predicates. What is less clear is why
the lambda operator lies in a separate component
from the lexical predicate, and it is this separation
that is necessary to derive the scope interleaving.
Under the current proposal, the separation of the
lambda expression from the lexical predicate into
two components is a general property of seman-
tic elementary tree sets. Returning to the deriva-

courted

every person

at

some fundraiser

two politicians

Figure 7: Derivation Tree for (1)
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〈 { TP

DP↓ T′

T VP

V
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TP*

DP

PRO

} { t

e↓ 〈e,t〉

λw t*

t

〈e,t〉

〈t,〈e,t〉〉
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t*

e

w

e

w

} 〉

Figure 8: Elementary trees for control predicateremembered
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e
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e
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} 〉
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V
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} { t

∀y t
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e
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λu t

e

y
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e
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e
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} 〉

Figure 9: Matrix and embedded derived auxiliary trees for interleaving scope in (2)

tion of (2), the matrix quantifiersome professor
will combine tree-locally into the scope compo-
nent of therememberedtree set. The result of
these derivational steps is the two derived tree sets
in Figure 9. The matrix clause’s tree set will now
combine tree locally into the scope component of
the embedded clause’s tree: because of the control
relation, it must combine with this tree if we are
to be able to substitute thee-type variable (con-
tributed by the control predicate) into the exter-
nal argument slot ofreview. Now, by adjoining
the scope component of the matrix clause at the
root of this scope component, and adjoining the
predicate+variable component of the matrix at the
foot node of this component, we derive the de-
sired relative scopes. As before, we assume that
the remaining components are composed to com-
plete the derivation.

Our approach extends to cases discussed by
Nesson and Shieber, where additional scopal in-
terleaving arises because of matrix adverbials:

(4) Every boy always wants to eat some food.
(always> ∃ > ∀ > wants)

The treatment of such cases depends crucially
on the incorporation of temporal arguments into
semantic elementary trees, about which see
Storoshenko and Frank (this volume). We assume
that such arguments are lambda bound in the same
way as othere-type arguments, in distinct scope
components, and this allows us to treat temporal
dependencies in a manner similar to control. In
the (semantic side of the) derivation of (4),always
combines with the temporal scope component of
want, while every boycombines with thee-type
scope component. The resulting derived tree set
then combines, again tree locally, with the scope
component of theeat elementary tree set. The
interleaving interpretation can now be derived if
we adopt a version of delayed combination intro-
duced by Freedman and Frank (2010), whereby
the different components of a tree set need not
be composed into an elementary tree at a single
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point in the derivation, even if they remain tree lo-
cal. Specifically, we first adjoin the variable and
e-type scope components of the matrix predicate
to the scope component of theeat tree set. Then,
we combine the scope component ofeatstogether
with its variable component, and finally we adjoin
the temporal scope component.

As already noted, Nesson and Shieber argue
that tree local derivations cannot generate inter-
pretations for relative clauses with pied-piping, as
in (3).

(3) John saw a soccer player whose picture
every boy bought.
(∃ soccer player> ∀ boy > ∃ picture)

In fact, we can generate an interpretation for this
example by making use of a relative clause tree
rather different from the one assumed by Nesson
and Shieber. First of all, we apply our split seman-
tics to the verbally-headed relative clause tree set,
shown in Figure 10. This tree includes the famil-
iar structure of at-recursive scope part, and the
predicate component. We assume that the exis-
tential force associated with pied-piped relatives
is in fact associated with this verbally-headed tree
set, and is present in the scope part of this set. In
addition, this tree set includes a component rep-
resenting the relative operator, into which the re-
maining components may substitute. To a degree,
this mirrors those accounts that treat the lambda
operator associated with the relative as a part of
the semantics of the relative pronoun in that the
〈e,t〉-recursive tree carries only that operator, and
takes the remainder of the clause material as an
argument via substitution. Though space prevents
us form justifying this assumption, we take the
semantics of a relativizing DP with a possessive
wh-phrase to be of type〈e,〈e,t〉〉, so that a wh-
phrase likewhose pictureis assigned an interpre-
tation like λxλy.y is a picture ofx. The deriva-
tion of (3) proceeds by substituting such a rela-
tivizing DP and its associated semantics into the
1 -annotated nodes in Figure 10, and combining

the universal quantifier at the 2-annotated nodes.
By adjoining the scope part of the quantifier to the
higher t node, we can derive the scope indicated
in (3), while adjoining at the lower t node will
yield a narrow scope interpretation for the uni-
versal (where the choice of picture does not vary
scope with the boy).

4 Scope Rigidity

In addition to providing a tree-local analysis of
certain problematic cases, our proposal for the
structure of semantic elementary trees also pro-
vides an account of a phenomenon that has re-
ceived relatively little attention in the TAG liter-
ature (but cf. Freedman and Frank (2010), Freed-
man (2012)). In contrast to English, where sub-
ject and object quantifiers often permit both linear
and inverse scope, languages like Japanese exhibit
scope rigidity, where the scopal relation among
quantifiers is fixed by hierarchical order. This is
shown in the following example from Hoji (1985).

(5) Dareka-ga
someone-NOM

daremo-o
everyone-ACC

aisiteiru.
love

‘Someone loves everyone.’
(∃ > ∀, *∀ > ∃)

Such scope facts are challenging for any analy-
sis which relies on multiple adjoining at a sin-
gle t node for all arguments of a given predicate,
as scope permutations are predicted to take place
freely within a clause so long as the two argu-
ments can combine with verb in either order.

Our analysis as presented thus far does not pro-
vide an account of this pattern either: the quanti-
fiers would both combine with the scope part of
the verbal elementary tree, in either order, lead-
ing to an expectation of scope ambiguity. How-
ever, it is straightforward to modify the verbal el-
ementary tree set in Figure 4 to achieve the ef-
fect of scope rigidity. In particular, we propose
that languages may differ in their representation
of scope in predicate elementary trees. In lan-
guages like English, lambda operators binding ar-
gument variables are collected together in a single
scope tree. In contrast, we take canonical clauses
in languages like Japanese to be represented by el-
ementary tree sets like the one in Figure 11. Here,
the lambda abstraction for eache type argument
takes place in its own scope tree. Furthermore,
we assume that these scope trees are constrained
to adjoin in a way that respects their syntactic hi-
erarchical relation, with the result that the subject
lambda abstraction component must be higher in
the derived tree than the object lambda abstraction
component. As before, we assume that the differ-
ent components of this tree set, if they remain sep-
arate, will compose at the end of the derivation, in
a manner that respects the specified hierarchical
constraints. Now, if we continue to assume that all
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Figure 10: Elementary tree set for pied-piped relative clause in 3
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1 e↓ 〈e,t〉

λy′ t*

t 2

2 e↓ 〈e,t〉
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e

x′

e

y′

} 〉

Figure 11: Split scope components for scope rigidity in (5)

combination must take place in a tree-local man-
ner, we derive the unavoidable conclusion that the
quantifiers cannot permute with one another: each
quantifier tree set substitutes and adjoins to its as-
sociated verbal scope tree, with no possibilities
for multiple adjoining.

Scope is however not always rigid in Japanese.
When an object scrambles past the subject, as in
(6), we find the kind of ambiguity familiar from
English.

(6) Daremo-oi
someone-NOM

dareka-ga
everyone-ACC

ti

aisiteiru.
love
‘Everyone, someone loves.’
(∃ > ∀, ∀ > ∃)

Such circumvention of canonical scope could of
course be modeled by allowing clauses involving
scrambling to be derived by an English-like tree
set. However, a more intriguing possibility re-
tains the idea of multiple scope trees in Japanese,
as in in Figure 11, but removes the hierarchy con-
straint that we have imposed on the final positions
of the scope trees. Scope ambiguity then results
because of multiple possibilities for collapsing the

verbal tree set at the end of the derivation. But
why would the verbal tree underlying (6) differ in
this way from the one underlying (5)? We propose
that hierarchy constraints on components of a se-
mantic multicomponent set are the reflection of
syntactic hierarchy. In a canonical sentence, the
syntax determines a unique hierarchical relation
among the arguments, giving rise to a unique pos-
sibility for scope. With scrambling, where the ob-
ject is represented syntactically in both a base and
surface position, the hierarchical relation between
subject and object is underdetermined, yielding
scopal flexibility.

5 A Note on Expressiveness: Scope vs.
Scrambling

Though our novel perspective on elementary trees
yields a treatment of Nesson and Shieber’s prob-
lematic cases, one might object that a wealth of
other cases await us which cannot be so ana-
lyzed. After all, our proposed system for seman-
tic combination remains a tree-local MCTAG, and
as such is very limited in the kinds of dependen-
cies that it can capture. Indeed, an anonymous re-
viewer argues that the kinds of dependencies pos-
sible among quantifiers and their variables resem-
bles those between scrambled elements and their

238



associated verbs. The reviewer cites examples of
the form in 7, claiming that all scopal orderings of
the quantifiers are possible.

(7) Every professor wanted to ask some TA to
tell every student to stay at home.

If this is right, the results in Becker et al.
(1992) concerning the complexity of scrambling
would immediately tell us that scopal dependen-
cies could not be completely captured using tree-
local MCTAG.

We see a number of difficulties with this argu-
ment. The first of these concerns commutativity
of quantifiers. As is well-known, two formulas
of first order logic that are distinguished only by
the relative order of two quantifiers of the same
type (i.e., both universal or both existential) do
not have distinct truth conditions. As a result, it
is not possible on meaning grounds to distinguish
between an ordering of the quantifiers in (7) un-
der which the most embedded universal has scope
above the matrix universal or immediately below
it. Because of the limited number of quantifier
types of natural language, the number of distin-
guishable scopes will be limited in way that does
not parallel the situation with scrambling, where
all word orders are easily distinguished. As a re-
sult, it remains to be determined whether Becker
et al.’s arguments can be adapted to the case of
scope, where the set of (semantically distinct)
scopes is not equivalent to the set of permutations
of the quantifiers.

A second problem for this argument parallels a
similar one that has been pointed out for scram-
bling. As Joshi et al. (2000) note, all word or-
der permutations up to a certain depth of embed-
ding can be generated with tree-local MCTAG
using elementary trees of a linguistically plau-
sible sort. To show that a grammar for scram-
bling requires greater power, we must appeal to
more complex cases, whose empirical status is not
clear. And although it is not unreasonable to as-
sume that the grammar of scrambling does indeed
generalize in way that produces all permutations
of arguments over arbitrary levels of embedding
including the empirically murky cases (as Ram-
bow (1994) does), Joshi et al. (2000) argue that
it is equally sensible to assume that the grammar
generates only a subset of the possible cases, be-
cause of limits on its generative capacity, so long
as this includes all of the cases that are indis-

putably acceptable to speakers. The situation with
scope seems to us completely parallel. Although
many scopings are imaginable in examples like
(7) and more complex cases along the same lines,
the empirical situation is far from clear with re-
spect to which interpretations are actually avail-
able to speakers. Therefore, the prudent course
seems to us to be one which explores the empiri-
cal landscape of these cases, in an attempt to find
cases that demand additional power.

Acknowledgments

We would like to thank the TAG+11 anonymous
reviewers for their helpful comments. This work
has been partially funded by SSHRC Postdoc Fel-
lowship 756-2010-0677 to Storoshenko.

References

Tilman Becker, Owen Rambow, and Michael Niv.
1992. The derivational generative power of scram-
bling is beyond LCFRS. Technical Report IRCS
92-38, Institute for Research in Cognitive Science,
University of Pennsylvania.

Daniel Feinstein and Shuly Wintner. 2008. Highly
constrained unification grammars. Journal of
Logic, Language and Information, 17(3):345–381.

Michael Freedman and Robert Frank. 2010. Re-
stricting inverse scope in STAG. InProceedings of
the 10th International Workshop on Tree Adjoining
Grammars and Related Formalisms. Yale Univer-
sity.

Michael Freedman. 2012. Scope economy and TAG
locality. In Proceedings of the 11th International
Workshop on Tree Adjoining Grammars and Re-
lated Formalisms.

Hajime Hoji. 1985. Logical Form and Configura-
tional Structures in Japanese. Ph.D. thesis, Uni-
versity of Washington.

Mark Johnson. 1988. Attribute Value Logic and
Theory of Grammar. CSLI Lecture Notes Series.
Chicago: University of Chicago Press.

Aravind K. Joshi, Tilman Becker, and Owen Rambow.
2000. Complexity of scrambling: A new twist on
the competence-performance distinction. In Anne
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