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Abstract

We describe a machine learning system based
on large margin structure perceptron for unre-
stricted coreference resolution that introduces
two key modeling techniques: latent corefer-
ence trees and entropy guided feature induc-
tion. The proposed latent tree modeling turns
the learning problem computationally feasi-
ble. Additionally, using an automatic feature
induction method, we are able to efficiently
build nonlinear models and, hence, achieve
high performances with a linear learning algo-
rithm. Our system is evaluated on the CoNLL-
2012 Shared Task closed track, which com-
prises three languages: Arabic, Chinese and
English. We apply the same system to all lan-
guages, except for minor adaptations on some
language dependent features, like static lists
of pronouns. Our system achieves an offi-
cial score of 58.69, the best one among all the
competitors.

1 Introduction

The CoNLL-2012 Shared Task (Pradhan et al.,
2012) is dedicated to the modeling of coreference
resolution for multiple languages. The participants
are provided with corpora for three languages: Ara-
bic, Chinese and English. These corpora are pro-
vided by the OntoNotes project and, besides accu-
rate anaphoric coreference information, contain var-
ious annotation layers such as part-of-speech (POS)
tagging, syntax parsing, named entities (NE) and se-
mantic role labeling (SRL). The shared task consists
in the automatic identification of coreferring men-

tions of entities and events, given predicted infor-
mation on other OntoNotes layers.

We propose a machine learning system for coref-
erence resolution that is based on the large margin
structure perceptron algorithm (Collins, 2002; Fer-
nandes and Milidiú, 2012). Our system learns a pre-
dictor that takes as input a set of candidate men-
tions in a document and directly outputs the clus-
ters of coreferring mentions. This predictor com-
prises an optimization problem whose objective is a
function of the clustering features. To embed clas-
sic cluster metrics in this objective function is prac-
tically infeasible since most of such metrics lead to
NP-hard optimization problems. Thus, we introduce
coreference trees in order to represent a cluster by
a directed tree over its mentions. In that way, the
prediction problem optimizes over trees instead of
clusters, which makes our approach computationally
feasible. Since coreference trees are not given in the
training data, we assume that these structures are la-
tent and use the latent structure perceptron (Fernan-
des and Brefeld, 2011; Yu and Joachims, 2009) as
the learning algorithm.

To provide high predicting power features to
our model, we use entropy guided feature induc-
tion (Fernandes and Milidiú, 2012). By using this
technique, we automatically generate several fea-
ture templates that capture coreference specific lo-
cal context knowledge. Furthermore, this feature in-
duction technique extends the structure perceptron
framework by providing an efficient general method
to build strong nonlinear classifiers.

Our system is evaluated on the CoNLL-2012
Shared Task closed track and achieves the scores
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54.22, 58.49 and 63.37 on Arabic, Chinese and En-
glish test sets, respectively. The official score – the
mean over the three languages – is 58.69, which is
the best score achieved in the shared task.

The remainder of this paper is organized as fol-
lows. In Section 2, we present our machine learning
modeling for the unrestricted coreference resolution
task. In Section 3, we present the corpus preprocess-
ing steps. The experimental findings are depicted in
Section 4 and, in Section 5, we present our final re-
marks.

2 Task Modeling

Coreference resolution consists in identifying men-
tion clusters in a document. We split this task into
two subtasks: mention detection and mention clus-
tering. For the first subtask, we apply the strategy
proposed in (dos Santos and Carvalho, 2011). The
second subtask requires a complex output. Hence,
we use a structure learning approach that has been
successfully applied to many similar structure find-
ing NLP tasks (Collins, 2002; Tsochantaridis et
al., 2005; McDonald et al., 2006; Fernandes and
Brefeld, 2011; Fernandes and Milidiú, 2012).

2.1 Mention Detection
For each text document, we generate a list of candi-
date mentions using the strategy of (dos Santos and
Carvalho, 2011). The basic idea is to use all noun
phrases, and, additionally, pronouns and named en-
tities, even if they are inside larger noun phrases. We
do not include verbs as mentions.

2.2 Mention Clustering
In the mention clustering subtask, a training in-
stance (x, y) consists of a set of mentions x from
a document and the correct coreferring clusters y.
The structure perceptron algorithm learns a predic-
tor from a given training set D = {(x, y)} of cor-
rect input-output pairs. More specifically, it learns
the weight vector w of the parameterized predictor
given by

F (x) = arg max
y′∈Y(x)

s(y′; w),

where Y(x) is the set of clusterings over mentions
x and s is a w-parameterized scoring function over
clusterings.

We use the large margin structure perceptron
(Fernandes and Milidiú, 2012) that, during training,
embeds a loss function in the prediction problem.
Hence, it uses a loss-augmented predictor given by

F `(x) = arg max
y′∈Y(x)

s(y′; w) + `(y, y′),

where ` is a non-negative loss function that mea-
sures how a candidate clustering y′ differs from the
ground truth y. The training algorithm makes in-
tense use of the predictor, hence the prediction prob-
lem must be efficiently solved. Letting s be a classic
clustering metric is infeasible, since most of such
metrics lead to NP-hard optimization problems.

2.2.1 Coreference Trees
In order to reduce the complexity of the prediction

problem, we introduce coreference trees to represent
clusters of coreferring mentions. A coreference tree
is a directed tree whose nodes are the coreferring
mentions and arcs represent some coreference rela-
tion between mentions. In Figure 1, we present a
document with seven highlighted mentions compris-
ing two clusters. One plausible coreference tree for
the cluster {a1,a2,a3,a4} is presented in Figure 2.

North Koreaa1 opened itsa2 doors to the U.S. today,
welcoming Secretary of State Madeleine Albrightb1 .
Sheb2 says herb3 visit is a good start. The U.S. remains
concerned about North Korea’sa3 missile development
program and itsa4 exports of missiles to Iran.

Figure 1: Exemplary document with seven highlighted
mentions comprising two clusters: {a1,a2,a3,a4} and
{b1,b2,b3}. The letter in the mention subscript indicates
its cluster and the number uniquely identifies the mention
within the cluster.

[North Korea]a

[its]a [North Korea's]a

[its]a

1

2 3

4

Figure 2: Coreference tree for the cluster a in Figure 1.

We are not concerned about the semantics under-
lying coreference trees, since they are just auxiliary
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structures for the clustering task. However, we ar-
gue that this concept is linguistically plausible, since
there is a dependency relation between coreferring
mentions. Observing the aforementioned example,
one may agree that mention a3 (North Korea’s) is
indeed more likely to be associated with mention a1

(North Korea) than with mention a2 (its), even con-
sidering that a2 is closer than a1 in the text.

For a given document, we have a forest of coref-
erence trees, one tree for each coreferring cluster.
However, for the sake of simplicity, we link the root
node of every coreference tree to an artificial root
node, obtaining the document tree. In Figure 3, we
depict a document tree for the text in Figure 1.

Figure 3: Document tree with two coreference trees for
the text in Figure 1. Dashed lines indicate artificial arcs.

2.2.2 Latent Structure Learning
Coreference trees are not given in the training

data. Thus, we assume that these structures are la-
tent and make use of the latent structure perceptron
(Fernandes and Brefeld, 2011; Yu and Joachims,
2009) to train our models. We decompose the origi-
nal predictor into two predictors, that is

F (x) ≡ Fy(Fh(x)),

where the latent predictor Fh(x) is defined as
arg maxh∈H(x)〈w, Φ(x, h)〉,H(x) is the set of fea-
sible document trees for x and Φ(x, h) is the joint
feature vector representation of mentions x and doc-
ument tree h. Hence, the latent predictor finds a
maximum scoring rooted tree over the given men-
tions x, where a tree score is given by a linear func-
tion over its features. Fy(h) is a straightforward

procedure that creates a cluster for each subtree con-
nected to the artificial root node in the document tree
h.

In Figure 4, we depict the proposed latent struc-
ture perceptron algorithm for the mention cluster-
ing task. Like its univariate counterpart (Rosenblatt,

w0 ← 0
t← 0
while no convergence

for each (x, y) ∈ D
h̃← arg maxh∈H(x,y)〈wt, Φ(x, h)〉
ĥ← arg maxh∈H(x)〈wt, Φ(x, h)〉+ `r(h, h̃)

wt+1 ← wt + Φ(x, h̃)−Φ(x, ĥ)

t← t + 1

w ← 1
t

∑t
i=1 wi

Figure 4: Latent structure perceptron algorithm.

1957), the structure perceptron is an online algo-
rithm that iterates through the training set. For each
training instance, it performs two major steps: (i)
a prediction for the given input using the current
model; and (ii) a model update based on the dif-
ference between the predicted and the ground truth
outputs. The latent structure perceptron performs an
additional step to predict the latent ground truth h̃
using a specialization of the latent predictor and the
current model. This algorithm learns to predict doc-
ument trees that help to solve the clustering task.
Thereafter, for an unseen document x, the predic-
tor Fh(x) and the learned model w are employed to
produce a predicted document tree h which, in turn,
is fed to Fy(h) to give the predicted clusters.

Golden coreference trees are not available. How-
ever, during training, for a given input x, we have
the golden clustering y. Thus, we predict the con-
strained document tree h̃ for the training instance
(x, y) using a specialization of the latent predictor
– the constrained latent predictor – that makes use
of y. The constrained predictor finds the maximum
scoring document tree among all rooted trees of x
that follow the correct clustering y, that is, rooted
trees that only include arcs between mentions that
are coreferent according to y, plus one arc from the
artificial node to each cluster. In that way, the con-
strained predictor optimizes over a subset H(x, y)
contained in H(x) and, moreover, it guarantees that
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Fy(h̃) = y, for any w. The constrained tree is
used as the ground truth on each iteration. There-
fore, the model update is determined by the differ-
ence between the constrained document tree and the
document tree predicted by the ordinary predictor.

The loss function measures the impurity in the
predicted document tree. In our modeling, we use a
simple loss function that just counts how many pre-
dicted edges are not present in the constrained docu-
ment tree. For the arcs from the artificial root node,
we use a different loss value. We set that through the
parameter r, which we call the root loss value.

We decompose the joint feature vector Φ(x, h)
along tree edges, that is, pairs of candidate corefer-
ring mentions. This approach is similar to previous
structure learning modelings for dependency pars-
ing (McDonald et al., 2005; Fernandes and Milidiú,
2012). Thus, the prediction problem reduces to a
maximum branching problem, which is efficiently
solved by the Chu-Liu-Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967). We also use the aver-
aged structure perceptron as suggested by (Collins,
2002), since it provides a more robust model.

3 Data Preparation

It is necessary to perform some corpus processing
steps in order to prepare training and test data. In
this section, we detail the methodology we use to
generate coreference arcs and the features that de-
scribe them.

3.1 Coreference Arcs Generation

The input for the prediction problem is a graph
whose nodes are the mentions in a document. Ide-
ally, we could consider the complete graph for each
document, thus every mention pair would be an op-
tion for building the document tree. However, since
the total number of mentions is huge and a big por-
tion of arcs can be easily identified as incorrect, we
filter the arcs and, thus, include only candidate men-
tion pairs that are more likely to be coreferent.

We filter arcs by simply adapting the sieves
method proposed in (Lee et al., 2011). However, in
our filtering strategy, precision is not a concern and
the application order of filters is not important. The
objective here is to build a small set of candidate arcs
that shows good recall.

Given a mention pair (mi, mj), where mi appears
before mj in the text, we create a directed arc from
mi to mj if at least one of the following conditions
holds: (1) the number of mentions between mi and
mj is not greater than a given parameter; (2) mj is
an alias of mi; (3) there is a match of both mentions
strings up to their head words; (4) the head word
of mi matches the head word of mj ; (5) test shallow
discourse attributes match for both mentions; (6) mj

is a pronoun and mi has the same gender, number,
speaker and animacy of mj ; (7) mj is a pronoun and
mi is a compatible pronoun or proper name.

Sieves 2 to 7 are obtained from (Lee et al., 2011).
We only introduce sieve 1 to lift recall without using
other strongly language-dependent sieves.

3.2 Basic Features
We use a set of 70 basic features to describe each
pair of mentions (mi, mj). The feature set includes
lexical, syntactic, semantic, and positional informa-
tion. Our feature set is very similar to the one used
by (dos Santos and Carvalho, 2011). However, here
we do not use the semantic features derived from
WordNet. In the following, we briefly describe some
of these basic features.

Lexical: head word of mi/j ; String matching of
(head word of) mi and mj (y/n); Both are pro-
nouns and their strings match (y/n); Previous/Next
two words of mi/j ; Length of mi/j ; Edit distance of
head words; mi/j is a definitive NP (y/n); mi/j is a
demonstrative NP (y/n); Both are proper names and
their strings match (y/n).

Syntactic: POS tag of the mi/j head word; Previ-
ous/Next two POS tags of mi/j ; mi and mj are both
pronouns / proper names (y/n); Previous/Next pred-
icate of mi/j ; Compatible pronouns, which checks
whether two pronouns agree in number, gender and
person (y/n); NP embedding level; Number of em-
bedded NPs in mi/j .

Semantic: the result of a baseline system; sense
of the mi/j head word; Named entity type of mi/j ;
mi and mj have the same named entity; Semantic
role of mi/j for the prev/next predicate; Concatena-
tion of semantic roles of mi and mj for the same
predicate (if they are in the same sentence); Same
speaker (y/n); mj is an alias of mi (y/n).

Distance and Position: Distance between mi and
mj in sentences; Distance in number of mentions;
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Distance in number of person names (applies only
for the cases where mi and mj are both pronouns or
one of them is a person name); One mention is in
apposition to the other (y/n).

3.3 Language Specifics
Our system can be easily adapted to different lan-
guages. In our experiments, only small changes are
needed in order to train and apply the system to three
different languages. The adaptations are due to: lack
of input features for some languages; different POS
tagsets are used in the corpora; and creation of static
list of language specific pronouns.

Some input features, that are available for the En-
glish corpus, are not available in Arabic and Chinese
corpora. Namely, the Arabic corpus does not contain
NE, SRL and speaker features. Therefore, for this
language we do not derive basic features that make
use of these input features. For Chinese, we do not
use features derived from NE data, since this data is
not provided. Additionally, the Chinese corpus uses
a different POS tagset. Hence, some few mappings
are needed during the basic feature derivation stage.

The lack of input features for Arabic and Chinese
also impact the sieve-based arcs generation. For
Chinese, we do not use sieve 6, and, for Arabic, we
only use sieves 1, 3, 4 and 7. Sieve 7 is not used
for the English corpus, since it is a specialization of
sieve 6. The first sieve parameter is 4 for Arabic and
Chinese, and 8 for English.

In the arcs generation and basic feature derivation
steps, our system makes use of static lists of lan-
guage specific pronouns. In our experiments, we use
the POS tagging information and the golden coref-
erence chains to automatically extract these pronoun
lists from training corpora.

3.4 Entropy Guided Feature Induction
In order to improve the predictive power of our sys-
tem, we add complex features that are combinations
of the basic features described in the previous sec-
tion. We use feature templates to generate such com-
plex features. However, we automatically generate
templates using the entropy guided feature induction
approach (Fernandes and Milidiú, 2012; Milidiú et
al., 2008). These automatically generated templates
capture complex contextual information and are dif-
ficult to be handcrafted by humans. Furthermore,

this feature induction mechanism extends the struc-
ture perceptron framework by providing an efficient
general method to build strong nonlinear predictors.

We experiment with different template sets for
each language. The main difference between these
sets is basically the training data used to induce
them. We obtain better results when merging dif-
ferent template sets. For the English language, it is
better to use a template set of 196 templates, which
merges two different sets: (a) a set induced using
training data that contains mention pairs produced
by filters 2 to 6; and (b) another set induced using
training data that contains mention pairs produced
by all filters. For Chinese and Arabic, it is better to
use template sets induced specifically for these lan-
guages merged with the template set (a) generated
for the English language. The final set for the Chi-
nese language has 197 templates, while the final set
for Arabic has 223.

4 Empirical Results

We train our system on the corpora provided in the
CoNLL-2012 Shared Task. There are corpora avail-
able on three languages: Arabic, Chinese and En-
glish. For each language, results are reported using
three metrics: MUC, B3 and CEAFe. We also re-
port the mean of the F-scores on these three met-
rics, which gives a unique score for each language.
Additionally, the official score on the CoNLL-2012
shared task is reported, that is the mean of the scores
obtained on the three languages.

We report our system results on development and
test sets. The development results are obtained with
systems trained only on the training sets. However,
test set results are obtained by training on a larger
dataset – the one obtained by concatenating train-
ing and development sets. During training, we use
the gold standard input features, which produce bet-
ter performing models than using the provided au-
tomatic values. That is usually the case on NLP
tasks, since golden values eliminate the additional
noise introduced by automatic features. On the other
hand, during evaluation, we use the automatic values
provided in the CoNLL shared task corpora.

In Table 1, we present our system performances
on the CoNLL-2012 development sets for the three
languages. Given the size of the Arabic training cor-
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Language MUC B3 CEAFe Mean
R P F1 R P F1 R P F1

Arabic 43.00 47.87 45.30 61.41 70.38 65.59 49.42 44.19 46.66 52.52
Chinese 54.40 68.19 60.52 64.17 78.84 70.76 51.42 38.96 44.33 58.54
English 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35

Official Score 58.14

Table 1: Results on the development sets.

Language MUC B3 CEAFe Mean
R P F1 R P F1 R P F1

Arabic 34.18 58.85 43.25 50.61 82.13 62.63 57.37 33.75 42.49 49.45
Chinese 49.17 76.03 59.72 58.16 86.33 69.50 57.56 34.38 43.05 57.42
English 62.75 77.41 69.31 63.88 81.34 71.56 57.46 41.08 47.91 62.92

Official Score 56.59

Table 2: Results on the development sets without root loss value.

Language MUC B3 CEAFe Mean
R P F1 R P F1 R P F1

Arabic 43.63 49.69 46.46 62.70 72.19 67.11 52.49 46.09 49.08 54.22
Chinese 52.69 70.58 60.34 62.99 80.57 70.70 53.75 37.88 44.44 58.49
English 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37

Official Score 58.69

Table 3: Official results on the test sets.

Language Parse / Mentions MUC B3 CEAFe Mean
R P F1 R P F1 R P F1

Arabic

Auto / GB 45.18 47.39 46.26 64.56 69.44 66.91 49.73 47.39 48.53 53.90
Auto / GM 57.25 76.48 65.48 60.27 79.81 68.68 72.61 46.00 56.32 63.49

Golden / Auto 46.38 51.78 48.93 63.53 72.37 67.66 52.57 46.88 49.56 55.38
Golden / GB 46.38 51.78 48.93 63.53 72.37 67.66 52.57 46.88 49.56 55.38
Golden / GM 56.89 76.27 65.17 60.07 80.02 68.62 72.24 45.58 55.90 63.23

Chinese

Auto / GB 58.76 71.46 64.49 66.62 79.88 72.65 54.09 42.02 47.29 61.48
Auto / GM 61.64 90.81 73.43 63.55 89.43 74.30 72.78 39.68 51.36 66.36

Golden / Auto 59.35 74.49 66.07 66.31 81.43 73.10 55.97 41.50 47.66 62.28
Golden / GB 59.35 74.49 66.07 66.31 81.43 73.10 55.97 41.50 47.66 62.28
Golden / GM 61.70 91.45 73.69 63.57 89.76 74.43 72.84 39.49 51.21 66.44

English

Auto / GB 64.92 77.53 70.67 64.25 78.95 70.85 56.48 41.69 47.97 63.16
Auto / GM 70.69 91.21 79.65 65.46 85.61 74.19 74.71 42.55 54.22 69.35

Golden / Auto 67.73 77.25 72.18 66.42 78.01 71.75 56.16 44.51 49.66 64.53
Golden / GB 65.65 78.26 71.40 64.36 79.09 70.97 57.36 42.23 48.65 63.67
Golden / GM 71.18 91.24 79.97 65.81 85.51 74.38 74.93 43.09 54.72 69.69

Table 4: Supplementary results on the test sets alternating parse quality and mention candidates. Parse quality can be
automatic or golden; and mention candidates can be automatically identified (Auto), golden mention boundaries (GB)
or golden mentions (GM).

pus and the feature limitations for Arabic and Chi-
nese, the performance variations among the three
languages are no more than expected. One impor-
tant parameter that we introduce in this work is the
root loss value, a different loss function value on arcs
from the artificial root node. The effect of this pa-
rameter is to diminish the creation of clusters, thus

stimulating bigger clusters and adjusting the balance
between precision and recall. Using the develop-
ment sets for tuning, we set the value of the root loss
value parameter to 6, 2 and 1.5 for Arabic, Chinese
and English, respectively. In Table 2, we present our
system performances on the development sets when
we set this parameter to 1 for all languages, that is
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equivalent to not use this parameter at all. We can
observe, by comparing these results with the ones
in Table 1, that this parameter really causes a better
balancing between precision and recall, and conse-
quently increases the F1 scores. Its effect is accen-
tuated on Arabic and Chinese, since the unbalancing
issue is worse on these languages.

The official results on the test sets are depicted
in Table 3. For Chinese and English, these perfor-
mances are virtually identical to the performances
on the development sets. On the other hand, the offi-
cial performance for the Arabic language is signifi-
cantly higher than the development set performance.
This difference is likely due to the fact that the Ara-
bic training set is much smaller than the Chinese and
English counterparts. Thus, by including the devel-
opment set in the training of the final Arabic system,
we significantly improve the official performance.

We report in Table 4 the supplementary results
provided by the shared task organizers on the test
sets. These additional experiments investigate two
key aspects of any coreference resolution system:
the parse feature and the mention candidates that
are given to the clustering procedure. We alter-
nate the parse feature between the official automatic
parse and the golden parse from OntoNotes. Re-
garding mention candidates, we use three differ-
ent strategies: automatic mentions (Auto, in Ta-
ble 4), golden mention boundaries (GB) and golden
mentions (GM). Automatic mentions are completely
detected by our system, as described in Section
2.1. Golden mention boundaries comprise all noun
phrases in the golden parse tree, even when the au-
tomatic parse is used as input feature. Golden men-
tions are all non-singleton mentions, i.e., all men-
tions that take part in some entity cluster. It is im-
portant to notice that golden mention information is
much stronger than golden boundaries.

By observing Table 4, it is clear that the most ben-
eficial information is golden mentions (compare the
Auto/GM results in Table 4 with the results in Table
3). The mean F-score over all languages when us-
ing golden mentions is almost 8 points higher than
the official score. These results are not surprising
since to identify non-singleton mentions greatly re-
duces the final task complexity. Golden mention
boundaries (Auto/GB) increase the mean F-score for
Chinese by almost 3 points. Conversely, for the

other two languages, the results are decreased when
this information is given. This is probably due to
parameter tuning, since any additional information
potentially changes the learning problem and, nev-
ertheless, we use exactly the same three models –
one per language – to produce all the results on Ta-
bles 3 and 4. One can observe, for instance, that
the recall/precision balance greatly varies among the
different configurations in these experiments. The
golden parse feature (Golden/Auto) causes big im-
provements on the mean F-scores for all languages,
specially for Chinese.

5 Conclusion

In this paper, we describe a machine learning system
based on large margin latent structure perceptron for
unrestricted coreference resolution. We introduce
two modeling approaches that have direct impact
on the final system performance: latent coreference
trees and entropy guided feature induction.

According to our experiments, latent coreference
trees are powerful enough to model the complex-
ity of coreference structures in a document, while
turning the learning problem computationally feasi-
ble. Our empirical findings also show that entropy
guided feature induction enables learning of effec-
tive nonlinear classifiers.

Our system is evaluated on the CoNLL-2012
Shared Task closed track, which consists on model-
ing coreference resolution for three languages: Ara-
bic, Chinese and English. In order to cope with this
multi-language task, our system needs only minor
adaptations on some language dependent features.

As future work, we plan to include second order
features and cluster sensitive features.
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