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Abstract

The system entered into this year’s shared
transliteration evaluation is implemented
within a phrase-based statistical machine
transliteration (SMT) framework. The system
is based on a joint source-channel model in
combination with a target language model and
models to control the length of the sequences
generated. The joint source-channel model
was trained using a many-to-many Bayesian
bilingual alignment. The focus of this year’s
system is on input representation. In order at-
tempt to mitigate data sparseness issues in the
joint source-channel model, we augmented the
system with recurrent neural network (RNN)
models that can learn to project the grapheme
set onto a smaller hidden representation. We
performed experiments on development data
to evaluate the effectiveness of our approach.
Our results show that using an RNN language
model can improve performance for language
pairs with large grapheme sets on the target
side.

1 Introduction

Our system for the NEWS shared evaluation on
transliteration generation is based on the system en-
tered into last years evaluation (Finch et al., 2011).
Some minor improvements have been made to some
of the components, but the major difference is the
addition of a re-scoring step with three rescoring
models: an RNN target language model; an RNN
joint source-channel model; and a maximum entropy
model (this model was part of last year’s system
but has been moved from the decoding step into the
re-scoring step for efficiency). In all our experi-
ments we have taken a strictly language indepen-
dent approach. Each of the language pairs were pro-
cessed automatically from the graphemic representa-
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tion supplied for the shared tasks, with no language
specific treatment for any of the language pairs.

Recent research results on the application of re-
current neural network models to language model-
ing have shown that very promising reductions in
text data perplexity relative to traditional n-gram lan-
guage model approaches are possible (Mikolov et al.,
2010; Mikolov et al., 2011). The RNN approach
differs from the standard n-gram approach in that
RNN s are able to smooth by projecting the grapheme
set onto a set of hidden units, a process that ef-
fectively clusters similar graphemes. Furthermore,
RNNSs have been reported to be effective where data
resources are limited (Kombrink et al., 2011).

These characteristics motivate us to investigate
the effect of applying this approach in modeling at
the grapheme (or grapheme sequence pair) level,
particularly as two of the most important models in
our system are both language models. The main
drawback of RNN based models, their exceptionally
high training computational complexity (Mikolov et
al., 2010) is not an obstacle for training models for
this shared task, though it may be an issue if large
amounts of monolingual data are used to build the
language models. We run experiments using this
technique to investigate its effect on both corpus per-
plexity and end-to-end system performance (since
it is not necessarily the case that gains in language
model perplexity result in better systems (Chen et al.,
1998)).

Throughout this paper we will refer to graphemes,
grapheme sequences and grapheme sequence pairs.
By grapheme, we mean a single unicode character,
for example ‘a’ in English, ‘7 in Japanese or ‘HH’
in Chinese. Grapheme sequences are arbitrary se-
quences of these graphemes, and grapheme sequence
pairs are 2-tuples of grapheme sequences, each ele-
ment in the tuple being a grapheme sequence in a
given language; for example: (‘hello’,*/M2—"),
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2 System Description

2.1 Bilingual Bayesian Grapheme Alignment

To train the joint-source-channel model(s) in our
system, we perform a many-to-many grapheme-to-
grapheme alignment. To discover this alignment
we use the Bayesian non-parametric technique de-
scribed in (Finch and Sumita, 2010) which is a rel-
ative of the technique proposed by (Huang et al.,
2011). Bayesian techniques typically build compact
models with few parameters that do not overfit the
data and have been shown to be effective for translit-
eration (Finch and Sumita, 2010; Finch et al., 2011).

2.2 Phrase-based SMT Models

The decoding was performed using a specially modi-
fied version of the OCTAVIAN decoder (Finch et al.,
2007), an in-house multi-stack phrase-based decoder
that operates on the same principles as the MOSES
decoder (Koehn et al., 2007). This component of
the system is implemented as a log-linear combina-
tion of 4 different models: a joint source-channel
model; a target language model; a grapheme inser-
tion penalty mode; and a grapheme sequence pair in-
sertion penalty model. The following sections de-
scribe each of these models in detail. Due to the
small size of many of the data sets in the shared tasks,
we used all of the data to build models for the final
systems.

2.2.1 N-gram joint source-channel model

The n-gram joint source-channel model used dur-
ing decoding by the SMT decoder was trained from
the Viterbi alignment arising from the final iteration
of the Bayesian segmentation process on the train-
ing data (for the model used in parameter tuning),
and the training data added to the development data
(for the model used to decode the test data). We
used the MIT language modeling toolkit (Bo-june et
al., 2008) with modified Knesser-Ney smoothing to
build this model. In all experiments we used a lan-
guage model of order 5.

2.2.2 N-gram target Language model

The target model was trained from target side of
the training data (for model used in parameter tun-
ing), and the training data added to the development
data (for the model used to decode the test data).
We used the MIT language modeling toolkit with
Knesser-Ney smoothing to build this model. In all
experiments we used a language model of order 5.
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2.2.3 Insertion penalty models

Both grapheme based and grapheme-sequence-
pair-based insertion penalty models are simple mod-
els that add a constant value to their score each time
a grapheme (or grapheme sequence pair) is added to
the target hypotheses. These models control the ten-
dency both of the joint source-channel model and the
target language model to generate derivations that
are too short.

2.3 Re-scoring Step
2.3.1 Overview

The system has a separate re-scoring stage that
like the SMT models described in the previous sec-
tion is implemented as a log-linear model. The log-
linear weights are trained using the same MERT
(Och, 2003) procedure. In principle, the weights for
the models in this stage could be trained in a sin-
gle step together with the SMT weights, and in last
year’s system this was the case for the ME model.
However the models in this stage are more compu-
tationally expensive, and to reduce training time we
train their weights in a second step. The three mod-
els used for re-scoring (20-best) are described in the
following sections.

2.3.2 Maximum-entropy model

The maximum entropy model used for re-scoring
embodies a set of features designed to take the
local context of source and target graphemes and
grapheme sequences into account. The features can
be partitioned into two classes: grapheme-based fea-
tures and grapheme sequence-based features. In both
cases we use a context of 2 to the left and right for the
source, and 2 to the left for the target. Sequence be-
gin and end markers are added to both source and tar-
get and are used in the context. The features used in
the ME model consist of all possible bigrams of con-
tiguous elements in the context. We do not mix fea-
tures at the grapheme level and grapheme sequence
level, so for example, a grapheme sequence bigram
can only consist of grapheme sequences (including
sequences of length 1).

2.3.3 RNN Language models

We introduce two RNN language models
(Mikolov et al., 2011) into the re-scoring step of
our system. The first model is a language model
over grapheme sequences in the target language;
the second model is a joint source-channel model
over bilingual grapheme sequence pairs. These
models were trained on the same data as their



Language Pair Accuracy in top-1 | Mean F-score | MRR MAPref
Arabic to English (ArEn) 0.588 0.930 0.709 | 0.507
Chinese to English (ChEn) 0.203 0.736 0.309 | 0.200
English to Bengali (Bangla) (EnBa) 0.460 0.891 0.583 | 0.458
English to Chinese (EnCh) 0.311 0.666 0.447 | 0.308
English to Hebrew (EnHe) 0.154 0.787 0.229 | 0.153
English to Hindi (EnHi) 0.668 0.923 0.738 | 0.661
English to Japanese Katakana (EnJa) 0.401 0.810 0.523 | 0.397
English to Kannada (EnKa) 0.546 0.901 0.641 0.545
English to Korean Hangul (EnKo) 0.384 0.721 0.465 | 0.383
English to Persian (EnPe) 0.655 0.941 0.774 | 0.643
English to Tamil (EnTa) 0.592 0.908 0.679 | 0.592
English to Thai (EnTh) 0.122 0.747 0.183 | 0.122
English to Japanese Kanji (JnJk) 0.513 0.693 0.598 | 0.419
Thai to English (ThEn) 0.140 0.766 0.216 | 0.140

Table 1: The evaluation results on the 2012 shared task for our system in terms of the official metrics.

n-gram counterparts described in Sections 2.2.1 and
2.2.2. The models were trained using the training
procedure described in Section 3.1.

2.4 Parameter Tuning

The exponential log-linear model weights of both the
SMT and re-scoring stages of our system were set
by tuning the system on development data using the
MERT procedure (Och, 2003) by means of the pub-
licly available ZMERT toolkit ! (Zaidan, 2009). The
systems reported in this paper used a metric based on
the word-level F-score, an official evaluation metric
for the shared tasks (Zhang et al., 2012), which mea-
sures the relationship of the longest common sub-
sequence of the transliteration pair to the lengths of
both source and target sequences.

2.5 Official Results

The official scores for our system are given in Ta-
ble 1. Some of the data tracks will benefit from
a language-dependent treatment for example in Ko-
rean it is advantageous to decompose the characters,
and other languages benefit from romanization as
this can reduce data sparseness issue and allow the
translation of unknown graphemes in test data.

3 Experiments

3.1 Perplexity

In this section we examine the performance of the
RNN language model in terms of its perplexity on
unseen data. For these experiments we divided the

"http://www.cs.jhu.edu/~ozaidan/zmert/
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training into two parts: a training set (90% of the
data) and a validation set (the remaining 10%), and
used the development set as the test data on which
the perplexity calculations were made.

The RNN model was built using the publicly
available RNNLM toolkit 2. A set of pilot experi-
ments was run on subsets of the training data to find
suitable values for the number of hidden units and
number of classes used to train the RNN, and a sim-
ple grid search we used to find the best parameters
for each language pair. All other parameters were
left at their default values. The n-gram language
model was trained using the SRI language modeling
toolkit (Stolcke, 1999). We used a 5-gram model in
these experiments trained with Witten-Bell smooth-
ing.

Table 2 shows the results of this experiment. In 9
out of the 15 experiments the RNN language model
had lower perplexity than the 5-gram backoff lan-
guage model. Furthermore, in all of the experiments
the interpolated model (a model formed by linearly
interpolating the two models together with equal
weights) had considerably lower perplexity than ei-
ther component model. The largest relative gains
were observed in Jn-Jk, En-Ko and En-Ch; these
three languages had by far the largest grapheme set
sizes out of all the language pairs. This result is not
surprising because of the manner in which the RNN
language models are able to smooth by projection of
the grapheme set onto the set of hidden units.

2http://www.fit.vutbr.cz/imikolov/rmnlm/index.html



Language RNN N-gram | Interpolated | Grapheme | Corpus size F-score F-score

Pair perplexity | perplexity | perplexity set size | (graphemes) | with RNN | no RNN
Ar-En 9.96 8.83 8.69 29 1683K 0.873 0.870
Ch-En 13.52 13.87 12.34 26 231K 0.896 0.882
En-Ba 12.30 11.00 10.73 59 78K 0.968 0.951
En-Ch 61.78 77.78 59.95 367 107K 0.883 0.866
En-He 9.78 10.27 9.51 34 49K 0.965 0.967
En-Hi 15.09 14.82 13.48 79 94K 0.980 0.977
En-Ja 19.52 20.16 18.51 81 132K 0.945 0.939
En-Ka 11.97 12.30 11.04 75 87K 0.967 0.969
En-Ko 45.06 50.41 4479 700 19K 0.910 0.898
En-Pe 10.86 11.55 10.58 32 64K 0.933 0.937
En-Ta 9.23 9.49 8.60 63 93K 0.978 0.977
En-Th 8.40 8.23 7.67 64 207K 0.957 0.940
In-Jk 65.63 90.17 66.43 1536 44K 0.703 0.684
Th-En 10.20 9.37 8.98 43 166K 0.954 0.949

Table 2: Language model perplexity scores on the development set with n-gram, RNN and interpolated language
models, together with system performance with and without the RNN models.

3.2 System Performance

In this section we look at whether the gains from
incorporating the RNN language models result in
gains in overall system performance. We ran experi-
ments on the data used in the perplexity experiments.
The only difference in the systems we compare was
whether or not the RNN language models were in-
cluded in the re-scoring process; the RNN model be-
ing effectively interpolated in a log-linear manner
with the other models when it was included. MERT
parameter tuning was performed separately for sys-
tems with and without the RNN models. The results
in terms of F-score are shown in Table 2. The results
show small gains in performance for 11 of the 14 lan-
guage pairs, indicating that the RNN models are ef-
fective. Of the languages with larger grapheme set
sizes that showed higher improvements in perplex-
ity, two (Jn-Jk and En-Ch) showed larger than aver-
age improvement in overall system performance.

4 Conclusion

The system used for this year’s shared evaluation
was implemented within a phrase-based statisti-
cal machine translation framework augmented by
a joint-source channel model trained from a many-
to-many alignment of grapheme sequences using a
Bayesian alignment approach. The system had a re-
scoring step that integrates features from a maximum
entropy model with two RNN language models; one
for the target grapheme sequence, and the other for
the sequence of grapheme sequence pairs used to
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generate the target.

We ran experiments to determine the effectiveness
of the RNN language models on the transliteration
tasks. We found that the approach was generally ef-
fective and particularly effective for tasks with large
grapheme set sizes.

In future work we would like to investigate al-
ternative ways of integrating RNN models into our
system. In particular it may be feasible to insert the
models directly into the SMT component of our sys-
tem so that they can be used directly in the decoding
process. Furthermore, we intend to examine how the
impact of these models in the case where larger cor-
pora of monolingual data are used.
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