Latent Semantic Transliteration using Dirichlet Mixture

Masato Hagiwara

Satoshi Sekine

Rakuten Institute of Technology, New York
215 Park Avenue South, New York, NY
{masato.hagiwara, satoshi.b.sekine}@mail.rakuten.com

Abstract

Transliteration has been usually recog-
nized by spelling-based supervised models.
However, a single model cannot deal with
mixture of words with different origins,
such as “get” in “piaget” and “target”.
Li et al. (2007) propose a class translit-
eration method, which explicitly models
the source language origins and switches
them to address this issue. In contrast
to their model which requires an explic-
itly tagged training corpus with language
origins, Hagiwara and Sekine (2011) have
proposed the latent class transliteration
model, which models language origins as
latent classes and train the transliteration
table via the EM algorithm. However, this
model, which can be formulated as uni-
gram mixture, is prone to overfitting since
it is based on maximum likelihood estima-
tion. We propose a novel latent seman-
tic transliteration model based on Dirichlet
mixture, where a Dirichlet mixture prior
is introduced to mitigate the overfitting
problem. We have shown that the pro-
posed method considerably outperform the
conventional transliteration models.

1 Introduction

Transliteration (e.g., /X7 7 4 /S~ baraku
obama “Barak Obama”) is phonetic transla-
tion between languages with different writing
systems, which is a major way of importing
foreign words into different languages. Su-
pervised, spelling-based grapheme-to-grapheme
models such as (Brill and Moore, 2000; Li et

30

al., 2004), which directly align characters in the
training corpus without depending on phonetic
information, and statistically computing their
correspondence, have been a popular method to
detect and/or generate transliterations, in con-
trast to phonetic-based methods such as (Knight
and Jonathan, 1998). However, single, mono-
lithic models fail to deal with sets of foreign
words with multiple language origins mixed to-
gether. For example, the “get” part of “pi-
aget /| ©©7 Tz piaje” and “target /| X — 7
~ tagetto” differ in pronunciation and spelling
correspondence depending on their source lan-
guages, which are French and English in this
case.

To address this issue, Li et al. (2007) have
proposed class transliteration model, which ex-
plicitly models and classifies classes of languages
(such as Chinese Hanzi, Japanese Katakana,
and so on) and genders, and switches corre-
sponding transliteration models based on the
input. This model requires training sets of
transliterated word pairs tagged with language
origin, which is difficult to obtain. Hagiwara
and Sekine proposed the latent class translitera-
tion (LCT) model (Hagiwara and Sekine, 2011),
which models source language origins as directly
unobservable latent classes and applies appro-
priate transliteration models to given transliter-
ation pairs. The model parameters are learned
from corpora without language origins in an un-
supervised manner. This enables us to correctly
assign latent classes for English and French to
“piaget / 7 Yz piaje” and “target | ¥ —7v

Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 30-37,
Jeju, Republic of Korea, 8-14 July 2012. (©2012 Association for Computational Linguistics

I tagetto” and to identify their transliteration
correspondence correctly. However, this model
is based on maximum likelihood estimation on
multinomials and thus sensitive to noise in the
training data such as transliteration pairs with
irregular pronunciation, and tends to overfit the
data.

Considering the re-writing unit
(transliteration unit, or TU, e.g., “get / 7
I getto”) as a word, and a transliteration pair
as a document consisting of a word sequence,
class-based transliteration can be modeled by
the perfect analogy to document topic models
proposed in tha past. In fact, the LCT model,
where the transliteration probability is defined
by a mixture of multinomials, can be regarded
as a variant of a topic model, namely Unigram
Mixuture (UM) (Nigam et al., 2000). There
has been an extension of unigram mixture pro-
posed (Sj6lander et al., 1996; Yamamoto and
Sadamitsu, 2005) which introduces a Dirichlet
mixture distribution as a prior and alleviates the
overfitting problem. We can expect to improve
the transliteration accuracy by formulating the
transliteration problem using a similar frame-
work to these topic models.

In this paper, we formalize -class-based
transliteration based on language origins in the
framework of topic models. We then propose the
latent semantic transliteration model based on
Dirichlet mixture (DM-LST'). We show through
experiments that it can significantly improve the
transliteration performance by alleviating the
overfitting issue.

Note that we tackle the task of transliteration
generation in this paper, in contrast to translit-
eration recognition. A transliteration generation
task is, given an input word s (such as “piaget”),
the system is asked to generate from scratch
the most probable transliterated word t (e.g.,
“B"T U=z piaje”). The transliteration recogni-
tion task, on the other hand, is to induce the
most probable transliteration t* € T such that
t* = argmaxger P((s,t)) given the input word
s and a pool of transliteration candidates T'. We
call P((s,t)) transliteration model in this paper.

This model can be regarded as the hy-
brid of an unsupervised alignment technique

atomic

31

for transliteration and class-based translitera-
tion. Related researches for the former in-
clude (Ahmad and Kondrak, 2005), who esti-
mate character-based error probabilities from
query logs via the EM algorithm. For the lat-
ter, Llitjos and Black (2001) showed that source
language origins may improve the pronunciation
of proper nouns in text-to-speech systems.

The structure of this paper is as follows:
we introduce the alpha-beta model(Brill and
Moore, 2000) in Section 2, which is the most ba-
sic spelling-based transliteration model on which
other models are based. In the following Section
3, we introduce and relate the joint source chan-
nel (JSC) model (Li et al., 2004) to the alpha-
beta model. We describe the LCT model as an
extension to the JSC model in Section 4. In
Section 5, we propose the DM-LST model, and
show the experimental results on transliteration
generation in Section 6.

2 Alpha-Beta Model

In this section, we describe the alpha-beta
model, which is one of the simplest spelling-
based transliteration models. Though simple,
the model has been shown to achieve better
performance in tasks such as spelling correction
(Brill and Moore, 2000), transliteration (Brill et
al., 2001), and query alteration (Hagiwara and
Suzuki, 2009).

The method directly models spelling-based
re-writing probabilities of transliteration pairs.
It is an extension to the normal edit distance,
where the cost of operations (substitution, in-
sertion, and deletion) is fixed to 1, and assigns a
probability to a string edit operation of the form
si — t; (s; and t; are any substrings of length 0
to w). We call the unit operation of string re-
writing u; = (s;,t;) as transliteration unit (TU)
as in (Li et al., 2004). The total transliteration
probability of re-writing a word s to t is given
by

f

Pap((s.8) = max [[P, (1)
i=1

where f is the number of TUs and u;...uy is any
sequence of TUs (e.g., “pi /& a /7 get /

¥x”) created by splitting up the input/output
transliteration pair (s,t). The above equa-
tion can be interpreted as a problem of find-
ing a TU sequence u1...uy which maximizes the
probability defined by the product of individ-
ual probabilities of independent TUs. After tak-
ing the logarithm of the both sides, and regard-
ing — log P(u;) as the cost of string substitution
s; — t;, the problem is equivalent to minimizing
the sum of re-writing costs, and therefore can
be efficiently solved by dynamic programming
as done in the normal edit distance.

TU probabilities P(u;) are calculated from a
training set of transliteration pairs. However,
training sets usually lack alignment information
specifying which characters in s corresponding
which characters in ¢. Brill and Moore (2000)
resorted to heuristics to align same characters
and to induce the alignment of string chunks.
Hagiwara and Sekine (2011) converted Japanese
Katakana sequences into Roman alphabets be-
cause their model also assumed that the strings
s; and t; are expressed in the same alphabet sys-
tem. Our method on the contrary, does not pose
such assumption so that strings in different writ-
ing systems (such as Japanese Katakana and
English alphabets, and Chinese characters and
English alphabets, etc.) can be aligned without
being converted to phonetic representation. For
this reason, we cannot adopt algorithms (such
as the one described in (Brill and Moore, 2000))
which heuristically infer alignment based on the
correspondence of the same characters.

When applying this alpha-beta model, we
computed TU probabilities by counting relative
frequencies of all the alignment possibilities for a
transliteration pair. For example, all the align-
ment possibilities for a pair of strings “abc” and
“xy” are (a-x b-y c-¢), (a-x b-¢ ¢-y), and (a-& b-x
c-y). By considering merging up to two adjacent
aligned characters in the first alignment, one ob-
tains the following five aligned string pairs: a-x,
b-y, c-¢, ab-xy bc-y. Note that all the translit-
eration models described in this paper implic-
itly depend on the parameter w indicating the
maximum length of character n-grams. We fixed
w = 3 throughout this paper.

32

3 Joint Source Channel Model

The alpha-beta model described above has
shortcomings that the character alignment is
fixed based on heuristics, and it cannot cap-
ture the dependencies between TUs. One ex-
ample of such dependencies is the phenomenon
that the suffix “-ed” in English verbs following
a voiced consonant is pronounced /d/, whereas
the one followed by an unvoiced consonant is
/t/. This section describes the JSC model(Li
et al., 2004), which was independently proposed
from the alpha-beta model. The JSC model is
essentially equivalent to the alpha-beta model
except: 1) it can also incorporate higher order
of n-grams of TUs and 2) the TU statistics is
taken not by fixing the heuristic initial align-
ment but by iteratively updating via an EM-like
algorithm.

In the JSC model, the transliteration proba-
bility is defined by the n-gram probabilities of
TUs u; = (s;,t;) as follows:

f

Prso((s.t) = [[P(wilttini1, - uic1). (2)
=1

Again, f is the number of TUs. The TU n-gram
probabilities P(u;|t;—pn41, ..., ui—1) can be calcu-
lated by the following iterative updates similar
to the EM algorithm:

1. Set the initial alignment randomly.

2. E-step: Take the TU n-gram statistics fix-
ing the current alignment, and update the
transliteration model.

3. M-step: Compute the alignment based on
the current transliteration model. The
alignment is inferred by dynamic program-
ming similar to the alpha-beta model.

4. Tterate the E- and M- step until conver-
gence.

Notice the alpha-beta model and the JSC
model are both transliteration recognition mod-
els. In order to output a transliterated word ¢
for a given input s, we generated transliteration
candidates with high probability using a stack

D |i||]ap

append
)S&d][] =

[e
) ‘[l

e [2l il
— =
sX 669 ap. luce D
ms 6.14
m: Y 847 shift

th: X 6.72

Figure 1: Overview of the stack decoder (generation
of “AIA sumisu” from the input “smith”)

decoder, whose overview is shown in Figure 1.
One character in the input string s (which is
“smith” in the figure) is given at a time, which
is appended at the end of the last TUs for each
candidate. (the append operation in the fig-
ure). Next, the last TU of each candidate is
either reduced or shifted. When it is reduced,
top R TUs with highest probabilities are gener-
ated and fixed referring to the TU table (shown

in the bottom-left of the figure). In Figure 1,
two candidates, namely (“s”, “A su”) and (“s”,
“X zu”) are generated after the character “s” is

given. When the last TU is shifted, it remains
unchanged and unfixed for further updates. Ev-
ery time a single character is given, the translit-
eration probability is computed using Eq. 2 for
each candidate, and all but the top-B candidates
with highest probabilities are discarded. The re-
duce width R and the beam width B were deter-
mined using the determined using development
sets, as mentioned in Section 6.

4 Latent Class Transliteration Model

As mentioned in Section 1, the alpha-beta
model and the JSC model build a single translit-
eration model which is simply the monolithic
average of training set statistics, failing to cap-
ture the difference in the source language ori-
gins. Li et al. (2004) address this issue by defin-
ing classes ¢, i.e., the factors such as source lan-
guage origins, gender, and first/last names, etc.
which affect the transliteration probability. The
authors then propose the class transliteration
model which gives the probability of s — t as

33

follows:

PL[t‘

ZP (t,c|s) ZPC|

However, this model requires a training set
explicitly tagged with the classes. Instead of
assigning an explicit class ¢ to each transliter-
ated pair, Hagiwara and Sekine (2011) introduce
a random variable z which indicates implicit
classes and conditional TU probability P(u;|z).
The latent class transliteration (LCT) model is
then defined as':

P(t|e,s) (3)

K f

> P[] Puil) (4)
=1

z=1

PLCT(<3a t>) =

where K is the number of the latent classes.
The latent classes z correspond to classes such
as the language origins and genders mentioned
above, shared by sets of transliterated pairs with
similar re-writing characteristics. The classes z
are not directly observable from the training set,
but can be induced by maximizing the training
set likelihood via the EM algorithm as follows.

Parameters: P(z =k)=m, P(u?) (5)
T P((sp,th)|z =k
B-Step: . = i lemtlE=H g
> okr—1 T P((8n, tn)|2 = K')
f’VL
P((sn,tn)|2) = max] P(ui]2) (7)
Uy.-uf i1
N
M-Step: 7" Z’Ynk, (8)
n=1
N
_ new __ 1 fﬂ(ul)
Plule = k)" = > Yk i (9)

n=1

where N = > ynk. Here, (s,,t,) is the n-
th transliterated pair in the training set, and f,
and fy,(u;) indicate how many TUs there are in
total in the n-th transliterated pair, and how
many times the TU wu; appeared in it, respec-
tively. As done in the JSC model, we update the
alignment in the training set before the E-Step
for each iteration. Thus f,, takes different values

Note that this LCT model is formalized by intro-
ducing a latent variable to the transliteration generative
probability P((s,t)) as in the JSC model, not to P(t|s).

from iteration to iteration in general. Further-
more, since the alignment is updated based on
P(u;|z) for each z = k, M different alignment
candidates are retained for each transliterated
pairs, which makes the value of f,, dependent
on k, i.e., f¥. We initialize P(z = k) = 1/M
to and P(u;|z) = Pap(u) + €, that is, the TU
probability induced by the alpha-beta algorithm
plus some random noise €.

Considering a TU as a word, and a translit-
eration pair as a document consisting of a word
sequence, this LCT model defines the transliter-
ation probability as the mixture of multinomi-
als defined over TUs. This can be formulated
by unigram mixture (Nigam et al., 2000), which
is a topic model over documents. This follows a
generation story where documents (i.e., translit-
erated pairs) are generated firstly by choosing a
class z by P(z) and then by generating a word
(i.e., TU) by P(u;|z). Nevertheless, as men-
tioned in Section 1, since this model trains the
parameters based on the maximum likelihood
estimation over multinomials, it is vulnerable to
noise in the training set, thus prone to overfit
the data.

5 Latent Semantic Transliteration
Model based on Dirichlet Mixture

We propose the latent semantic translitera-
tion model based on Dirichlet mixture (DM-
LST), which is an extension to the LCT model
based on unigram mixture. This model enables
to prevent multinomials from being exceedingly
biased towards the given data, still being able to
model the transliteration generation by a mix-
ture of multiple latent classes, by introducing
Dirichlet mixture as a prior to TU multinomi-
als. The compound distribution of multinomi-
als when their parameters are given by Dirichlet
mixtures is given by the Polya mixture distribu-

34

tion(Yamamoto and Sadamitsu, 2005):

Poar((s,1)) (10)
= /PMul(<s,t>;p)PDM(P; A af)dp
K
X Z)\kPPolya“svt);a{{) (11)
k=1

where Ppyqyi(*;p) is multinomial with the pa-
rameter p. Ppjs is Dirichlet mixture, which
is a mixture (with co-efficients A1, ..., A\i) of K
Dirichlet distributions with parameters af =
(Oq, a9, ..., aK).

The model parameters can be induced by the
following EM algorithm. Notice that we adopted
a fast induction algorithm which extends an in-
duction method using leaving-one-out to mix-

ture distributions(Yamamoto et al., 2003).

Parameters: A= (\1,..., \g),
(12)
af = (a1, q, ..., ak) (13)
)\kPPolya(<3n7tn>;ak
E-Step: 7,1 = 14
P ik Zk/)\k’PPOZya(<8natn ;ak/) ()
N
M-Step: Ap°Y Z Nk (15)
n=1
new Zn Unk{fn(u)/(fn(u) - 1 + aku)}

Opyy = Oy

En nnk{fn/(fn -1+ ak)}
(16)

The prediction distribution when a sin-
gle TU w is the input is given Pppy(u) =
Zszl AeQpy /. We therefore updated the
alignment in the training corpus, as done in the
JSC model updates, based on the probability
proportional to o,/ for each k before ev-
ery M-Step. The parameters are initially set to
A = 1/K, agy, = Pap(u) + €, as explained in
the previous section.

Since neither LCT nor DM-LST is a translit-
eration generation model, we firstly generated
transliteration candidates T by using the JSC
model and the stack decoder (Section 3) as a

baseline, then re-ranked the candidates using
the probabilities given by LCT (Eq. 4 or DM-
LST (Eq. 11), generating the re-ranked list
of transliterated outputs. Because the parame-
ters trained by the EM algorithm differ depend-
ing on the initial values, we trained 10 models
PL% Mo Pg}w using the same training data and
random initial values and computed the aver-
age %0 2]1-0:1 Py ((s,t)) to be used as the final
transliteration model.

It is worth mentioning that another topic
model, namely latent Dirichlet allocation (LDA)
(Blei et al., 2003), assumes that words in a doc-
ument can be generated from different topics
from each other. This assumption corresponds
to the notion that TUs in a single transliter-
ated pairs can be generated from different source
languages, which is presumably a wrong as-
sumption for transliteration tasks, probably ex-
cept for compound-like words with mixed ori-
gins such as “naiveness”. In fact, we con-
firmed through a preliminary experiment that
LDA does not improve the transliteration per-
formance over the baseline.

6 Experiments

6.1 Evaluation

In this section, we compare the following
models: alpha-beta (AB), joint source channel
(JSC), latent class transliteration (LCT), and
latent semantic transliteration based on Dirich-
let mixture (DM-LST).

For the performance evaluation, we used three
language pairs, namely, English-Japanese (En-
Ja), English-Chinese (En-Ch), and English-
Korean (En-Ko), from the transliteration shared
task at NEWS 2009 (Li et al., 2009a; Li et al.,
2009b). The size of each training/test set is
shown in the first column of Table 1. In general,
Tn, a set of one or more reference transliterated
words, is associated with the n-th input s,, in the
training/test corpus. Let ¢y, ¢y 2, ... be the out-
put of the transliteration system, i.e., the candi-
dates with highest probabilities assigned by the
transliteration model being evaluated. We used
the following three performance measures:

- ACC (averaged Top-1 accuracy): For ev-

35

ery (Sp,Tn), let a, be a, = 1 if the can-
didate with the highest probability ¢, is
contained in the reference set r,, and a,, =
0 otherwise. ACC is then calculated as

1 —N
ACC+ D it Sn-
- MFS (mean F score): Let the
reference transliterated word clos-
est to the top-1 candidate ¢,,1 be

ry o=

- argmin,, .er, ED(cp1,7n,5), where
ED is the edit distance. The F-score of the
top candidate ¢, ; for the n-th input s, is

then given by:

P, = LSC(cni1,7)/lena| (17)
R, = LCS(cau,ry)/Irnl (18)
F, = QRZ'P,'/(Ri-i-Pz’); (19)

where |z| is the length of string z, and
LCS(z,y) is the length of the longest com-
mon subsequence of and y. Edit distance,
lengths of strings, and LCS are measured
in Unicode characters. Finally, MFS is de-
fined as MFS = + Zfil F,.

- MRR (mean reciprocal rank): Of the
ranked candidates ¢, 1,¢p 2, ..., let the high-
est ranked one which is also included in
the reference set 7, be ¢,;. We then
define reciprocal rank RR, = 1/j. 1If
none of the candidates are in the refer-
ence, RR, = 0. MRR is then defined by
MRR=+YN RR,.

We used Kneser-Nay smoothing to smooth the
TU probabilities for LCT. The number of EM
iterations is fixed to 15 for all the models, based
on the result of preliminary experiments.

The reduce width R and the beam width B
for the stack decoder are fixed to R = 8 and
B = 32, because the transliteration generation
performance increased very little beyond these
widths based on the experiment using the de-
velopment set. We also optimized M, i.e., the
number of latent classes for LCT and DM-LST,
for each language pair and model in the same
way based on the development set.

Table 1: Performance comparison of transliteration
models

Language pair \ Model \ ACC \ MFS \ MRR
En-Ja AB 0.293 | 0.755 | 0.378
Train: 23,225 | JSC 0.326 | 0.770 | 0.428
Test: 1,489 LCT 0.345 | 0.768 | 0.437

DM-LST | 0.349 | 0.776 | 0.444
En-Ch AB 0.358 | 0.741 | 0.471
Train: 31,961 | JSC 0.417 | 0.761 | 0.527
Test: 2,896 LCT 0.430 | 0.764 | 0.532

DM-LST | 0.445 | 0.770 | 0.546
En-Ko AB 0.145 | 0.537 | 0.211
Train: 4,785 JSC 0.151 | 0.543 | 0.221
Test: 989 LCT 0.079 | 0.483 | 0.167

DM-LST | 0.174 | 0.556 | 0.237
6.2 Results

We compared the performance of each
transliteration model in Table 1. For the lan-
guage pairs En-Ja and En-Ch, all the perfor-
mance increase in the order of AB < JSC <
LCT < DM-LST, showing the superiority our
proposed method. For the language pair En-
Ko, the performance for LCT re-ranking con-
siderably decreases compared to JSC. We sus-
pect this is due to the relatively small number
of training set, which caused the excessive fitting
to the data. We also found out that the optimal
value of M which maximizes the performance of
DM-LST is equal to or smaller than that of LCT.
This goes along with the findings (Yamamoto
and Sadamitsu, 2005) that Dirichlet mixture of-
ten achieves better language model perplexity
with smaller dimensionality compared to other
models.

Specific examples in the En-Ja test set whose
transliteration is improved by the proposed
methods include “dijon /7 1= dijon” and
“goldenberg /I — /LT /N\—7" gorudenbagu”.
Conventional methods, including LCT, sug-
gested “T = diyon” and “I—/LT LY
gorudenberugu”, meaning that the translitera-
tion model is affected and biased towards non-
English pronunciation. The proposed method
can retain the major class of transliteration char-
acteristics (which is English in this case) and can

36

deal with multiple language origins depending
on transliteration pairs at the same time.

This trend can be also confirmed in other
language pairs, En-Ch and En-Ko. In En-Ch,
the transliterated words of “covell” and “nether-
wood” are improved “ “F}KIR kefuer —Fh4E
IR keweier” and “WNHFMIIE neitehewude — P
PR neisewude”, respectively. in En-Ko, the
transliterated word of “darling” is improved “T}
=24 dareuling” — “<9 dalling”.

We also observed that “gutheim / %74
gutehaimu in En-Ch and martina / v} 2 E]
W} mareutina in En-Ko are correctly translated
by the proposed method, even though they do
not have the English origin. Generally speak-
ing, however, how these non-English words are
pronounced depend on the context, as “charles”
has different pronunciation in English and in
French, with the soft “sh” sound at the begin-
ning. We need external clues to disambiguate
such transliteration, such as context information
and/or Web statistics.

7 Conclusion

In this paper, we proposed the latent seman-
tic transliteration model based on Dirichlet mix-
ture (DM-LST) as the extension to the latent
class transliteration model. The experimental
results showed the superior transliteration per-
formance over the conventional methods, since
DM-LST can alleviate the overfitting problem
and can capture multiple language origins. One
drawback is that it cannot deal with dependen-
cies of higher order of TU n-grams than bigrams.
How to incorporate these dependencies into the
latent transliteration models is the future work.

References

Farooq Ahmad and Grzegorz Kondrak. 2005. Learn-
ing a spelling error model from search query logs.
In Proc. of EMNLP-2005, pages 955-962.

David M. Blei, Andrew Y. Ng, and Michael 1. Jor-
dan. 2003. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993-1022.

Eric Brill and Robert C. Moore. 2000. An improved

error model for noisy channel spelling. In Proc.
ACL-2000, pages 286-293.

Eric Brill, Gary Kacmarcik, and Chris Brockett.
2001. Automatically harvesting katakana-english
term pairs from search engine query logs. In Proc.
NLPRS-2001, pages 393-399.

Masato Hagiwara and Satoshi Sekine. 2011. Latent
class transliteration based on source language ori-
gin. In Proc. of ACL-HLT 2011, pages 53-57.

Masato Hagiwara and Hisami Suzuki. 2009.
Japanese query alteration based on semantic sim-
ilarity. In Proc. of NAACL-2009, page 191.

Kevin Knight and Graehl Jonathan. 1998. Ma-
chine transliteration. Computational Linguistics,
24:599-612.

Haizhou Li, Zhang Min, and Su Jian. 2004. A joint
source-channel model for machine transliteration.
In Proc. of ACL 2004, pages 159-166.

Haizhou Li, Khe Chai Sum, Jin-Shea Kuo, and
Minghui Dong. 2007. Semantic transliteration
of personal names. In Proc. of ACL 2007, pages
120-127.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009a. Report of news 2009 machine
transliteration shared task. In Proc. of the 2009
Named Entities Workshop, pages 1-18.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir
Pervouchine. 2009b. Whitepaper of news 2009
machine transliteration shared task. In Proc. of
the 2009 Named Entities Workshop, pages 19-26.

Ariadna Font Llitjos and Alan W. Black. 2001.
Knowledge of language origin improves pronun-
ciation accuracy. In Proc. of Eurospeech, pages
1919-1922.

Kamal Nigam, Andrew Kachites McCallum, Sebas-
tian Thrun, and Tom Mitchell. 2000. Text clas-
sification from labeled and unlabeled documents
using em. Machine Learning, 39(2):103-134.

K. Sjolander, K. Karplus, M. Brown, R. Hunghey,
A. Krogh, I.S. Mian, and D. Haussler. 1996.
Dirichlet mixtures:a method for improved detec-
tion of weak but significant protein sequence
homology. Computer Applications in the Bio-
sciences, 12(4):327-345.

Mikio Yamamoto and Kugatsu Sadamitsu. 2005.
Dirichlet mixtures in text modeling. CS Technical
Report, CS-TR-05-1.

Mikio Yamamoto, Kugatsu Sadamitsu, and Takuya
Mishina. 2003. Context modeling using dirichlet
mixtures and its applications to language models
(in japnaese). IPSJ, 2003-SLP-48:29-34.

37

