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Abstract 

Relational clustering has received much 
attention from researchers in the last decade. In 
this paper we present a parametric method that 
employs a combination of both hard and soft 
clustering. Based on the corresponding Markov 
chain of an affinity matrix, we simulate a 
probability distribution on the states by 
defining a conditional probability for each 
subpopulation of states. This probabilistic 
model would enable us to use expectation 
maximization for parameter estimation. The 
effectiveness of the proposed approach is 
demonstrated on several real datasets against 
spectral clustering methods.  

1 Introduction 

Clustering methods based on pairwise similarity of 
data points have received much attention in 
machine learning circles and have been shown to be 
effective on a variety of tasks (Lin and Cohen, 
2010; Macropol, et al., 2009; Ng, et al., 2001). 
Apart from pure relational data e.g. Biological 
networks (Jeong, et al., 2001), Social Networks 
(Kwak, et al., 2010), these methods can also be 
applied to none relational data them e.g. text (Ding, 
et al., 2001; Ng, et al., 2001), image (Shi and Malik 
2000), where the edges indicate the affinity of the 
data points in the dataset.  

Relational clustering has been addressed from 
different perspectives e.g. spectral learning (Ng, et 
al., 2001; Shi and Malik 2000), random walks 
(Meila and Shi 2000; Macropol, et al., 2009), trace 
maximization (Bui and Jones, 1993) and 
probabilistic models (Long, et al., 2007). Some 
works have proposed frameworks for a unified 

view of different approaches. In (Meila and Shi 
2000) a random walk view of the spectral clustering 
algorithm in (Shi and Malik 2000) was presented. 
By selecting an appropriate kernel, kernel k-means 
and spectral clustering are also proved to be 
equivalent (Dhillon, et al., 2004). As shown in (von 
Luxburg, 2007) the basic idea behind most methods 
are somehow optimizing the normalized cut 
objective function. 

We propose a new perspective on relational 
clustering where we use the corresponding Markov 
chain of a similarity graph to iteratively cluster the 
nodes. Starting from a random distribution of 
nodes in groups and given the transition 
probabilities of the Markov chain, we use 
expectation maximization (EM) to estimate the 
membership of nodes in each group to eventually 
find the best partitioning.  

After a brief review of the literature in section 2, 
we present our clustering algorithm in detail 
(section 3) and report experiments and evaluation 
(section 4). 

2 Background and Related Work 

Due to the wealth of literature on the subject, it’s a 
formidable task to give a thorough review of the 
research on relational clustering. Here we give a 
brief review of the papers that are more well-
known or related to our work and refer the reader 
to (Chen and Ji 2010; Schaeffer 2007; von 
Luxburg, 2007) for more detailed surveys.  

Graph clustering can be defined as finding k 
disjoint clusters 1ܥ, . . ⊃ ݇ܥ ܸ in a graph G = (V, 
E) where the vertices within each clusters are 
similar to each other and dissimilar to vertices in 
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other clusters. Cut based measures, among others 
can be used to identify high quality clusters. 
Minimum cut of a graph is a cut (1) with the 
lowest value. 

ݐݑܥ =  ෍ ෍  ௜௝ݓ
   ௜∈஼೗ ,
  ௝∉஼೗

௖

௟ୀଵ

                            (1) 

Here ܿ is the number of clusters and ܥ௟  is the ݈௧௛ 
cluster. Normalized cut (2) is a better objective 
function that evades minimum cut's bias toward 
smaller clusters by incorporating total connection 
from each cluster to all nodes in the graph. In their 
seminal work Shi and Malik (2000) transformed 
the normalized cut to a constrained Rayleigh 
quotient and solved it by a standard eigenvalue 
system. 

ݐݑܥ_݀݁ݖ݈݅ܽ݉ݎ݋ܰ     =  ෍ ෍
 ௜௝ݓ

, ௜௨    ௜∈஼೗ݓ
 ௝∉஼೗ ,
௨∈௏

௖

௟ୀଵ

                     (2) 

Spectral clustering makes use of the spectrum of a 
graph:  either the eigenvalues of its affinity matrix 
or its Laplacian matrix (Schaeffer 2007). For 
example in (Ng, et al., 2001) the k largest 
eigenvectors of normalized graph Laplacian matrix 
is selected, the rows of the inverse of the resultant 
matrix are unit normalized and are finally clustered 
into k clusters using k-means. Roughly speaking, 
spectral clustering embeds data points in a low-
dimensional subspace extracted from the similarity 
matrix, however this dimension reduction may 
ensue poor results when the approximation is not 
good (Lin and Cohen 2010).  

Meila and Shi (2000) showed that the 
corresponding stochastic matrix of an affinity 
matrix has the same eigenvectors as the normalized 
Laplacian matrix of the graph, thus spectral 
clustering can be interpreted as trying to find a 
partition of the graph such that the random walk 
stays long within the same cluster and seldom 
jumps between clusters (von Luxburg, 2007). The 
Markov clustering algorithm (MCL) (van Dongen 
2000) is another algorithm that addresses graph 
clustering from a random walk point of view. MCL 
calculates powers of associated stochastic matrix 
of the network and strengthens the degree of 
connectivity of densely linked nodes while the 
sparse connections are weakened. Repeated 

random walk (RRW) (Macropol, et al., 2009) 
addresses MCL’s sensitivity to large diameter 
clusters and uses random walk with restart method 
to calculate relevant score of connectivity between 
nodes in the network. Then, it repeatedly expands 
based on relevant scores to find clusters in which 
nodes are of high proximity. We should bear in 
mind that most random walk based algorithms 
have been designed primarily for biological 
networks where the number of clusters is unknown 
and some parameters e.g. desired granularity, 
minimum or maximum size of clusters might be 
needed for a meaningful interpretation of 
biological data. On the other hand, spectral 
clustering methods need to know the number of 
clusters beforehand but don’t need tuning 
parameters and are more practical.  

In this paper, we adopt an approach similar to 
probabilistic and partitional clustering in Euclidean 
space, where the algorithm starts from random 
guesses for some parameters and iteratively 
clusters the data and improves the guesses. In other 
words instead of embedding data points in the 
Eigen space or powering of the stochastic matrix, 
we’re looking for a probabilistic model that solely 
employs the relation between data points. 

3 Clustering Algorithm 

3.1 Notation 

Given a dataset D = ൛݀(ଵ), ݀(ଶ), … ݀௡ൟ,   a 
similarity function s(݀(௜), ݀(௝)) is a function where 
s(݀(௜), ݀(௝))  = s(݀(௝) , ݀(௜))   ,  s ≥ 0 and  s = 0  
if    i = j . An affinity matrix ܣ ∈  ℛ௡×௡  is an 
undirected weighted graph defined by  ܣ௜௝  = 
s(݀(௜), ݀(௝)) .  after row-normalizing the affinity 
matrix, we find the stochastic matrix ܲ ∈  ℛ௡×௡ of 
the corresponding Markov chain (MC) with states 
൛ܺ(ଵ), ܺ(ଶ), … ܺ௡ൟ where ∑ ௜ܲ௝ = 1 ௡

௝ୀଵ . 

3.2 Hard-Soft Clustering 

The basic idea behind Hard-Soft clustering (HSC) 
is to put nodes in clusters where within cluster 
transitions are more probable and between cluster 
transitions are minimal. HSC makes use of both 
hard and soft guesses for cluster membership. The 
method is parametric such that it estimates the hard 
guesses and uses the hard partition for soft 
(probabilistic) clustering of data. The mixture used 
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to model hard guesses could be described by a 
mixture of multinomial model where the 
parameters (probabilities), are discretized {0, 1}. 
We start from random hard guesses and iteratively 
improve them by maximizing the likelihood using 
EM. Let ൛ܺ(ଵ), ܺ(ଶ), … ܺ(௡)ൟ  denote the states of 
the MC and given the number of clusters, what is 
the maximum likelihood of hard partitioning  ܪ of 
nodes?  Having ܿ as the number of clusters and ݊ 
as number of nodes ܪ is a ܿ × ݊   matrix that 
shows which node belongs to which cluster i.e. one 
in the corresponding element and zero otherwise. 
The likelihood function is as follows: 
 
ℓ(ߠ) = ∑ ݃݋݈ ∑ ;൫ܺ(௜)หܼ(௜)ݎܲ ;൫ܼ(௜)ݎܲ(ߠ ߶൯  ௖

௭(೔)ୀଵ
௡
௜ୀଵ (4) 

In (4),  ܼ(௜)~ ݈ܽ݅݉݋݊݅ݐ݈ݑܯ(߶) is our latent random 
variable where the mixing coefficient 
߶௝  gives ܲݎ(ܼ(௜) = ݆). For the soft clustering part of 
HSC, we define the prior distribution ܲݎ൫ܺ(௜)หܼ(௜) =
݆;  as the probability of transitioning from  ܺ(௜) to (ߠ
states marked by row vector ܪ௝ (∑ ௞ܲ௜ܪ௝௞

௡
௞ୀଵ ) . This 

conditional prior distribution simulates a 
probability distribution on the states in the MC 
because Pr (ܺ(௜))  along with the joint distribution 
∏ Pr (ܺ(௜)) ௡

௜ୀଵ  barely have any real world 
interpretation. 

The E-step is computed using the Bayes rule: 

௝ܹ
(௜) ∶= ൫ܼ(௜)ݎܲ = ݆หܺ(௜);   = (ߠ

          
൫ܺ(௜)หܼ(௜)ݎܲ = ݆; (௜)ܼ) ݎܲ (ߠ = ݆; ߶)

∑ (௜)ܼ|(௜)ܺ)ݎܲ = ݈; (௜)ܼ) ݎܲ (ߠ = ݈; ߶)௖
௟ୀଵ

          (5)  

The M-step (6) is intractable because of the 
logarithm of the weighted sum of parameters. 

max
ு

(ܪ)ܮ = ෍ ෍ ௝ܹ
(௜)log

(∑ ௞ܲ௜ܪ௝௞
௡
௞ୀଵ )߶௝

௝ܹ
(௜)

௖

௝ୀଵ

௡

௜ୀଵ

          (6)  

 s.t ∑ ௝௟ܪ = 1௞
௝ୀଵ  

However since the weights are transition 
probabilities and  ∑ ௞ܲ௜ = 1 ௡

௞ୀଵ , we can use 
weighted Jensen’s inequality to find a lower bound 
for  (ܪ)ܮ, get rid of logarithm of sums and convert 
it to sum of logarithms. 

(ܪ)ܮ ≥  

(ܪ)෠ܮ  =   ෍ ෍  
௖

௝ୀଵ
௝ܹ

(௜) ൭෍ log ௜ܲ௟ܪ௝௟

௡

௟ୀଵ

+ log ߶௝ − log ௝ܹ
(௜)൱

௡

௜ୀଵ

 

The weighted Jensen’s inequality (ܪ)ܮ ≥  (ܪ)෠ܮ
holds with equality if and only if for all the  ܪ௝௟  
with  ௜ܲ௟ ≠ 0  are equal (Poonen 1999), which is 
not applicable to our case since taking the 
constraint into account, all nodes would have 
membership degrees to all clusters ( ௝௟ܪ  =  ଵ

௖
) , 

therefore the inequality changes to a strict 
inequality ( note that we have relaxed the problem 
so that ܪ௝௟  can take fractional values that will 
eventually be discretized {0, 1}, for example 
setting one for the maximum and zero for the rest), 
Nevertheless maximizing the lower bound still 
improves previous estimates and is 
computationally more efficient than maximizing 
(ܪ)ܮ  itself which would require none linear 
optimization. Taking the constraint into account 
we use Lagrange multipliers to derive the 
parameters. 

ℒ(ܪ) =  ෍ ෍  
௖

௝ୀଵ
௝ܹ

(௜) ൭෍ log ௜ܲ௟ܪ௝௟

௡

௟ୀଵ

+ log ߶௝ − log ௝ܹ
(௜)൱

௡

௜ୀଵ

− ෍)ߣ ௝௟ܪ − 1
௖

௝ୀଵ

)  

  
߲

௝௞ܪ߲
ℒ(ܪ) = ෍ ௝ܹ

(௜)
௡

௜ୀଵ

௜ܲ௟

௝௟ܪ
 − ߣ  = 0 

௝௟ܪ                            =
∑ ௝ܹ

(௜)௡
௜ୀଵ ௜ܲ௟

∑ ∑ ௝ܹ
(௜)௡

௜ୀଵ ௜ܲ௟
௖
௝ୀଵ

                        (7) 

To avoid bias toward larger clusters ܪ  is further 
row-normalized. Similarly ߶௝  can be calculated:
      

                                     ߶௝ =  
1
݊

෍ ௝ܹ
(௜)

௡

௜ୀଵ

                            (8) 

Algorithm: HSC 
Input: The stochastic matrix P and the 
number of clusters c 
Pick an initial ߶ and ܪ. 
repeat  

E-step:  ௝ܹ
(௜) =  

௉௥൫௑(೔)ห௓(೔)ୀ௝;ு) ߶݆
∑ ௉௥൫௑(೔)ห௓(೔)ୀ௟;ு) ߶݈

೎
೗సభ

 

M-Step:  ܪ௝௟ =
∑ ௐೕ

(೔)೙
೔సభ ௉೔೗

∑ ∑ ௐೕ
(೔)೙

೔సభ ௉೔೗
೎
ೕసభ

 ;   ߶௝ =  ଵ
௡

∑ ௝ܹ
(௜)௡

௜ୀଵ  

Row-normalize and then discretize H. 
until ܪ does not change 
Output: the set of hard assignments H 
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4 Experiments 

4.1 Datasets 
We use datasets provided in (Lin and Cohen 2010). 
UbmcBlog (Kale, et.al, 2007) is a connected 
network dataset of 404 liberal and conservative 
political blogs mined from blog posts. AgBlog 
(Adamic and Glance 2005) is a connected network 
dataset of 1222 liberal and conservative political 
blogs mined from blog home pages. 20ng* are 
subsets of the 20 newsgroups text dataset. 20ngA 
contains 100 documents from misc.forsale and 
soc.religion.christian. 20ngB adds 100 documents 
to each category in 20ngA. 20ngC adds 200 from 
talk.politics.guns to 20ngB. 20ngD adds 200 from 
rec.sport.baseball to 20ngC. For the social 
network datasets (UbmcBlog, AgBlog), the 
affinity matrix is simply  ݓ௜௝ = 1  if blog i has a 
link to j or vice versa, otherwise  ݓ௜௝ = 0 . For 
text data, the affinity matrix is simply the cosine 
similarity between feature vectors. 

4.2 Evaluation 

Since the ground truth for the datasets we have 
used is available, we evaluate the clustering results 
against the labels using three measures: cluster 
purity (Purity), normalized mutual information 
(NMI), and Rand index (RI). All three metrics are 
used to guarantee a more comprehensive 
evaluation of clustering results (for example, NMI 
takes into account cluster size distribution, which 
is disregarded by Purity). We refer the reader to 
(Manning, et. al 2008) for details regarding all 
these measures. In order to find the most likely 
result, each algorithm is run 100 times and the 
average in each criterion is reported. 

4.3 Discussion 
We compared the results of HSC against those of 
two state of the art spectral clustering methods 
Ncut (Shi and Malik 2000) and NJW (Ng, et al., 
2001) and one recent method Pic (Lin and Cohen 
2010) that uses truncated power iteration on a 
normalized affinity matrix, see Table 1. HSC 
scores highest on all text datasets, on all three 
evaluation metrics and just well on social network 
data. The main reason for the effectiveness of HSC 
is in its use of both local and global structure of the 
graph. While the conditional probability 
൫ܺ(௜)หܼ(௜)ݎܲ = ݆; (ߠ   looks at the immediate 

transitions of state  ܺ(௜) , it uses ܪ௝  for the target 
states which denotes a group of nodes that are 
being refined throughout the process. Using the 
stochastic matrix instead of embedding data points 
in the Eigen space or powering of the stochastic 
matrix may also be a contributing factor that 
demands future research. 
As for convergence analysis of the algorithm, we 
resort to EM’s convergence (Bormann 2004). The 
running complexity of spectral clustering methods 
is known to be of  ܱ(|ܸ||ܧ|) (Chen and Ji 2010), 
HSC is in  ܱ( |ܸ|ଶܥଶܫ ) where |ܸ| the number of 
nodes, ܥ  is the number of clusters and ܫ  is the 
number of iterations to converge. Figure 1 shows 
the average number of iterations that HSC took to 
converge. 
 

 
Table : Clustering performance of HSC and three 
clustering algorithms on several datasets, for each 
dataset bold numbers are the highest in a column. 

   Evaluation 
Method 

DataSet 
(clusters) 

Algorithm Purity NMI RI 

 Ncut 0.9530 0.7488 0.9104 
UbmcBlog NJW 0.9530 0.7375 0.9104 
     (2) Pic 0.9480 0.7193 0.9014 
 HSC 0.9532 0.7393 0.9108 
 Ncut 0.5205 0.0060 0.5006 
AgBlog NJW 0.5205 0.0006 0.5007 
     (2) Pic 0.9574 0.7465 0.9185 
 HSC 0.9520 0.7243 0.9085 
 Ncut 0.9600 0.7594 0.9232 
20ngA NJW 0.9600 0.7594 0.9232 
     (2) Pic 0.9600 0.7594 0.9232 
 HSC 0.9640 0.7772 0.9306 
 Ncut 0.5050 0.0096 0.5001 
20ngB NJW 0.5525 0.0842 0.5055 
     (2) Pic 0.8700 0.5230 0.7738 
 HSC 0.9475 0.7097 0.9005 
 Ncut 0.6183 0.3295 0.6750 
20ngC NJW 0.6317 0.3488 0.6860 
     (3) Pic 0.6933 0.4450 0.7363 
 HSC 0.7082 0.4471 0.7448 
 Ncut 0.4750 0.2385 0.6312 
20ngD NJW 0.5150 0.2959 0.6820 
     (4) Pic 0.5825 0.3133 0.7149 
 HSC 0.6181 0.3795 0.7482 
 Ncut 0.6719 0.3486 0.6900 
Average NJW 0.6887 0.3710 0.7013 
 Pic 0.8352 0.5844 0.8280 
 HSC 0.8571 0.6295 0.8572 

4



 
 
Figure 1: Average number of iterations to converge 

5 Conclusion and Future Work 

We propose a novel and simple clustering method, 
HSC, based on approximate estimation of the hard 
assignments of nodes to clusters. The hard 
grouping of the data is used to simulate a 
probability distribution on the corresponding 
Markov chain. It is easy to understand, implement 
and is parallelizable. Experiments on a number of 
different types of labeled datasets show that with a 
reasonable cost of time HSC is able to obtain high 
quality clusters, compared to three spectral 
clustering methods. One advantage of our method 
is its applicability to directed graphs that will be 
addressed in future works. 
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