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Abstract

We explore training an automatic modality
tagger. Modality is the attitude that a speaker
might have toward an event or state. One of
the main hurdles for training a linguistic tag-
ger is gathering training data. This is par-
ticularly problematic for training a tagger for
modality because modality triggers are sparse
for the overwhelming majority of sentences.
We investigate an approach to automatically
training a modality tagger where we first gath-
ered sentences based on a high-recall simple
rule-based modality tagger and then provided
these sentences to Mechanical Turk annotators
for further annotation. We used the resulting
set of training data to train a precise modality
tagger using a multi-class SVM that delivers
good performance.

1 Introduction

Modality is an extra-propositional component of
meaning. In John may go to NY, the basic propo-
sition is John go to NY and the word may indi-
cates modality. Van Der Auwera and Ammann

(2005) define core cases of modality: John must
go to NY (epistemic necessity), John might go to
NY (epistemic possibility), John has to leave now
(deontic necessity) and John may leave now (de-
ontic possibility). Many semanticists (e.g. Kratzer
(1981), Kratzer (1991), Kaufmann et al. (2006)) de-
fine modality as quantification over possible worlds.
John might go means that there exist some possi-
ble worlds in which John goes. Another view of
modality relates more to a speakers attitude toward
a proposition (e.g. McShane et al. (2004)).

Modality might be construed broadly to include
several types of attitudes that a speaker wants to ex-
press towards an event, state or proposition. Modal-
ity might indicate factivity, evidentiality, or senti-
ment (McShane et al., 2004). Factivity is related to
whether the speaker wishes to convey his or her be-
lief that the propositional content is true or not, i.e.,
whether it actually obtains in this world or not. It
distinguishes things that (the speaker believes) hap-
pened from things that he or she desires, plans, or
considers merely probable. Evidentiality deals with
the source of information and may provide clues to
the reliability of the information. Did the speaker
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have firsthand knowledge of what he or she is re-
porting, or was it hearsay or inferred from indirect
evidence? Sentiment deals with a speaker’s positive
or negative feelings toward an event, state, or propo-
sition.

In this paper, we focus on the following five
modalities; we have investigated the belief/factivity
modality previously (Diab et al., 2009b; Prab-
hakaran et al., 2010), and we leave other modalities
to future work.

• Ability: can H do P?

• Effort: does H try to do P?

• Intention: does H intend P?

• Success: does H succeed in P?

• Want: does H want P?

We investigate automatically training a modality
tagger by using multi-class Support Vector Ma-
chines (SVMs). One of the main hurdles for training
a linguistic tagger is gathering training data. This is
particularly problematic for training a modality tag-
ger because modality triggers are sparse for the over-
whelming majority of the sentences. Baker et al.
(2010) created a modality tagger by using a semi-
automatic approach for creating rules for a rule-
based tagger. A pilot study revealed that it can boost
recall well above the naturally occurring proportion
of modality without annotated data but with only
60% precision. We investigated an approach where
we first gathered sentences based on a simple modal-
ity tagger and then provided these sentences to an-
notators for further annotation, The resulting anno-
tated data also preserved the level of inter-annotator
agreement for each example so that learning algo-
rithms could take that into account during training.
Finally, the resulting set of annotations was used for
training a modality tagger using SVMs, which gave
a high precision indicating the success of this ap-
proach.

Section 2 discusses related work. Section 3 dis-
cusses our procedure for gathering training data.
Section 4 discusses the machine learning setup
and features used to train our modality tagger and
presents experiments and results. Section 5 con-
cludes and discusses future work.

2 Related Work

Previous related work includes TimeML (Sauri et
al., 2006), which involves modality annotation on
events, and Factbank (Sauri and Pustejovsky, 2009),
where event mentions are marked with degree of fac-
tuality. Modality is also important in the detection of
uncertainty and hedging. The CoNLL shared task in
2010 (Farkas et al., 2010) deals with automatic de-
tection of uncertainty and hedging in Wikipedia and
biomedical sentences.

Baker et al. (2010) and Baker et al. (2012) ana-
lyze a set of eight modalities which include belief,
require and permit, in addition to the five modalities
we focus on in this paper. They built a rule-based
modality tagger using a semi-automatic approach to
create rules. This earlier work differs from the work
described in this paper in that the our emphasis is on
the creation of an automatic modality tagger using
machine learning techniques. Note that the anno-
tation and automatic tagging of the belief modality
(i.e., factivity) is described in more detail in (Diab et
al., 2009b; Prabhakaran et al., 2010).

There has been a considerable amount of inter-
est in modality in the biomedical domain. Negation,
uncertainty, and hedging are annotated in the Bio-
scope corpus (Vincze et al., 2008), along with infor-
mation about which words are in the scope of nega-
tion/uncertainty. The i2b2 NLP Shared Task in 2010
included a track for detecting assertion status (e.g.
present, absent, possible, conditional, hypothetical
etc.) of medical problems in clinical records.1 Apos-
tolova et al. (2011) presents a rule-based system for
the detection of negation and speculation scopes us-
ing the Bioscope corpus. Other studies emphasize
the importance of detecting uncertainty in medical
text summarization (Morante and Daelemans, 2009;
Aramaki et al., 2009).

Modality has also received some attention in the
context of certain applications. Earlier work de-
scribing the difficulty of correctly translating modal-
ity using machine translation includes (Sigurd and
Gawrónska, 1994) and (Murata et al., 2005). Sig-
urd et al. (1994) write about rule based frameworks
and how using alternate grammatical constructions
such as the passive can improve the rendering of the
modal in the target language. Murata et al. (2005)

1https://www.i2b2.org/NLP/Relations/
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analyze the translation of Japanese into English
by several systems, showing they often render the
present incorrectly as the progressive. The authors
trained a support vector machine to specifically han-
dle modal constructions, while our modal annotation
approach is a part of a full translation system.

The textual entailment literature includes modal-
ity annotation schemes. Identifying modalities is
important to determine whether a text entails a hy-
pothesis. Bar-Haim et al. (2007) include polarity
based rules and negation and modality annotation
rules. The polarity rules are based on an indepen-
dent polarity lexicon (Nairn et al., 2006). The an-
notation rules for negation and modality of predi-
cates are based on identifying modal verbs, as well
as conditional sentences and modal adverbials. The
authors read the modality off parse trees directly us-
ing simple structural rules for modifiers.

3 Constructing Modality Training Data

In this section, we will discuss the procedure we
followed to construct the training data for build-
ing the automatic modality tagger. In a pilot study,
we obtained and ran the modality tagger described
in (Baker et al., 2010) on the English side of the
Urdu-English LDC language pack.2 We randomly
selected 1997 sentences that the tagger had labeled
as not having the Want modality and posted them on
Amazon Mechanical Turk (MTurk). Three differ-
ent Turkers (MTurk annotators) marked, for each of
the sentences, whether it contained the Want modal-
ity. Using majority rules as the Turker judgment,
95 (i.e., 4.76%) of these sentences were marked as
having a Want modality. We also posted 1993 sen-
tences that the tagger had labeled as having a Want
modality and only 1238 of them were marked by the
Turkers as having a Want modality. Therefore, the
estimated precision of this type of approach is only
around 60%.

Hence, we will not be able to use the (Baker et
al., 2010) tagger to gather training data. Instead,
our approach was to apply a simple tagger as a first
pass, with positive examples subsequently hand-
annotated using MTurk. We made use of sentence
data from the Enron email corpus,3 derived from the

2LDC Catalog No.: LDC2006E110.
3http://www-2.cs.cmu.edu/∼enron/

version owing to Fiore and Heer,4 further processed
as described by (Roark, 2009).5

To construct the simple tagger (the first pass), we
used a lexicon of modality trigger words (e.g., try,
plan, aim, wish, want) constructed by Baker et al.
(2010). The tagger essentially tags each sentence
that has a word in the lexicon with the corresponding
modality. We wrote a few simple obvious filters for a
handful of exceptional cases that arise due to the fact
that our sentences are from e-mail. For example, we
filtered out best wishes expressions, which otherwise
would have been tagged as Want because of the word
wishes.

The words that trigger modality occur with very
different frequencies. If one is not careful, the
training data may be dominated by only the com-
monly occurring trigger words and the learned tag-
ger would then be biased towards these words. In
order to ensure that our training data had a diverse
set of examples containing many lexical triggers and
not just a lot of examples with the same lexical trig-
ger, for each modality we capped the number of sen-
tences from a single trigger to be at most 50. After
we had the set of sentences selected by the simple
tagger, we posted them on MTurk for annotation.

The Turkers were asked to check a box indicat-
ing that the modality was not present in the sentence
if the given modality was not expressed. If they did
not check that box, then they were asked to highlight
the target of the modality. Table 1 shows the number
of sentences we posted on MTurk for each modal-
ity.6 Three Turkers annotated each sentence. We
restricted the task to Turkers who were adults, had
greater than a 95% approval rating, and had com-
pleted at least 50 HITs (Human Intelligence Tasks)
on MTurk. We paid US$0.10 for each set of ten sen-
tences.

Since our data was annotated by three Turkers,
for training data we used only those examples for
which at least two Turkers agreed on the modality
and the target of the modality. This resulted in 1,008
examples. 674 examples had two Turkers agreeing
and 334 had unanimous agreement. We kept track
of the level of agreement for each example so that

4http://bailando.sims.berkeley.edu/enron/enron.sql.gz
5Data received through personal communication
6More detailed statistics on MTurk annotations are available

at http://hltcoe.jhu.edu/datasets/.
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Modality Count

Ability 190

Effort 1350

Intention 1320

Success 1160

Want 1390

Table 1: For each modality, the number of sentences re-
turned by the simple tagger that we posted on MTurk.

our learner could weight the examples differently
depending on the level of inter-annotator agreement.

4 Multiclass SVM for Modality

In this section, we describe the automatic modal-
ity tagger we built using the MTurk annotations de-
scribed in Section 3 as the training data. Section 4.1
describes the training and evaluation data. In Sec-
tion 4.2, we present the machinery and Section 4.3
describes the features we used to train the tagger.
In Section 4.4, we present various experiments and
discuss results. Section 4.5, presents additional ex-
periments using annotator confidence.

4.1 Data

For training, we used the data presented in Section 3.
We refer to it as MTurk data in the rest of this paper.
For evaluation, we selected a part of the LU Corpus
(Diab et al., 2009a) (1228 sentences) and our expert
annotated it with modality tags. We first used the
high-recall simple modality tagger described in Sec-
tion 3 to select the sentences with modalities. Out
of the 235 sentences returned by the simple modal-
ity tagger, our expert removed the ones which did
not in fact have a modality. In the remaining sen-
tences (94 sentences), our expert annotated the tar-
get predicate. We refer to this as the Gold dataset
in this paper. The MTurk and Gold datasets differ in
terms of genres as well as annotators (Turker vs. Ex-
pert). The distribution of modalities in both MTurk
and Gold annotations are given in Table 2.

4.2 Approach

We applied a supervised learning framework us-
ing multi-class SVMs to automatically learn to tag

Modality MTurk Gold

Ability 6% 48%

Effort 25% 10%

Intention 30% 11%

Success 24% 9%

Want 15% 23%

Table 2: Frequency of Modalities

modalities in context. For tagging, we used the Yam-
cha (Kudo and Matsumoto, 2003) sequence labeling
system which uses the SVMlight (Joachims, 1999)
package for classification. We used One versus All
method for multi-class classification on a quadratic
kernel with a C value of 1. We report recall and pre-
cision on word tokens in our corpus for each modal-
ity. We also report Fβ=1 (F)-measure as the har-
monic mean between (P)recision and (R)ecall.

4.3 Features

We used lexical features at the token level which can
be extracted without any parsing with relatively high
accuracy. We use the term context width to denote
the window of tokens whose features are considered
for predicting the tag for a given token. For example,
a context width of 2 means that the feature vector
of any given token includes, in addition to its own
features, those of 2 tokens before and after it as well
as the tag prediction for 2 tokens before it. We did
experiments varying the context width from 1 to 5
and found that a context width of 2 gives the optimal
performance. All results reported in this paper are
obtained with a context width of 2. For each token,
we performed experiments using following lexical
features:

• wordStem - Word stem.

• wordLemma - Word lemma.

• POS - Word’s POS tag.

• isNumeric - Word is Numeric?

• verbType - Modal/Auxiliary/Regular/Nil

• whichModal - If the word is a modal verb,
which modal?
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We used the Porter stemmer (Porter, 1997) to ob-
tain the stem of a word token. To determine the
word lemma, we used an in-house lemmatizer using
dictionary and morphological analysis to obtain the
dictionary form of a word. We obtained POS tags
from Stanford POS tagger and used those tags to
determine verbType and whichModal features. The
verbType feature is assigned a value ‘Nil’ if the word
is not a verb and whichModal feature is assigned a
value ‘Nil’ if the word is not a modal verb. The fea-
ture isNumeric is a binary feature denoting whether
the token contains only digits or not.

4.4 Experiments and Results

In this section, we present experiments performed
considering all the MTurk annotations where two
annotators agreed and all the MTurk annotations
where all three annotators agreed to be equally cor-
rect annotations. We present experiments applying
differential weights for these annotations in Section
4.5. We performed 4-fold cross validation (4FCV)
on MTurk data in order to select the best feature
set configuration φ. The best feature set obtained
waswordStem,POS,whichModal with a context
width of 2. For finding the best performing fea-
ture set - context width configuration, we did an ex-
haustive search on the feature space, pruning away
features which were proven not useful by results at
stages. Table 3 presents results obtained for each
modality on 4-fold cross validation.

Modality Precision Recall F Measure

Ability 82.4 55.5 65.5

Effort 95.1 82.8 88.5

Intention 84.3 61.3 70.7

Success 93.2 76.6 83.8

Want 88.4 64.3 74.3

Overall 90.1 70.6 79.1

Table 3: Per modality results for best feature set φ on
4-fold cross validation on MTurk data

We also trained a model on the entire MTurk data
using the best feature set φ and evaluated it against
the Gold data. The results obtained for each modal-
ity on gold evaluation are given in Table 4. We at-
tribute the lower performance on the Gold dataset to

its difference from MTurk data. MTurk data is en-
tirely from email threads, whereas Gold data con-
tained sentences from newswire, letters and blogs
in addition to emails. Furthermore, the annotation
is different (Turkers vs expert). Finally, the distri-
bution of modalities in both datasets is very differ-
ent. For example, Ability modality was merely 6%
of MTurk data compared to 48% in Gold data (see
Table 2).

Modality Precision Recall F Measure

Ability 78.6 22.0 34.4

Effort 85.7 60.0 70.6

Intention 66.7 16.7 26.7

Success NA 0.0 NA

Want 92.3 50.0 64.9

Overall 72.1 29.5 41.9

Table 4: Per modality results for best feature set φ evalu-
ated on Gold dataset

We obtained reasonable performances for Effort
and Want modalities while the performance for other
modalities was rather low. Also, the Gold dataset
contained only 8 instances of Success, none of which
was recognized by the tagger resulting in a recall
of 0%. Precision (and, accordingly, F Measure) for
Success was considered “not applicable” (NA), as no
such tag was assigned.

4.5 Annotation Confidence Experiments

Our MTurk data contains sentence for which at least
two of the three Turkers agreed on the modality and
the target of the modality. In this section, we investi-
gate the role of annotation confidence in training an
automatic tagger. The annotation confidence is de-
noted by whether an annotation was agreed by only
two annotators or was unanimous. We denote the set
of sentences for which only two annotators agreed as
Agr2 and that for which all three annotators agreed
as Agr3.

We present four training setups. The first setup
is Tr23 where we train a model using both Agr2
and Agr3 with equal weights. This is the setup we
used for results presented in the Section 4.4. Then,
we have Tr2 and Tr3, where we train using only
Agr2 and Agr3 respectively. Then, for Tr23W , we
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TrainingSetup
Tested on Agr2 and Agr3 Tested on Agr3 only

Precision Recall F Measure Precision Recall F Measure

Tr23 90.1 70.6 79.1 95.9 86.8 91.1
Tr2 91.0 66.1 76.5 95.6 81.8 88.2

Tr3 88.1 52.3 65.6 96.8 71.7 82.3

Tr23W 89.9 70.5 79.0 95.8 86.5 90.9

Table 5: Annotator Confidence Experiment Results; the best results per column are boldfaced
(4-fold cross validation on MTurk Data)

train a model giving different cost values for Agr2
and Agr3 examples. The SVMLight package al-
lows users to input cost values ci for each training
instance separately.7 We tuned this cost value for
Agr2 and Agr3 examples and found the best value
at 20 and 30 respectively.

For all four setups, we used feature set φ. We per-
formed 4-fold cross validation on MTurk data in two
ways — we tested against a combination of Agr2
and Agr3, and we tested against only Agr3. Results
of these experiments are presented in Table 5. We
also present the results of evaluating a tagger trained
on the whole MTurk data for each setup against the
Gold annotation in Table 6. The Tr23 tested on both
Agr2 andAgr3 presented in Table 5 and Tr23 tested
on Gold data presented in Table 6 correspond to the
results presented in Table 3 and Table 4 respectively.

TrainingSetup Precision Recall F Measure

Tr23 72.1 29.5 41.9

Tr2 67.4 27.6 39.2

Tr3 74.1 19.1 30.3

Tr23W 73.3 31.4 44.0

Table 6: Annotator Confidence Experiment Results; the
best results per column are boldfaced

(Evaluation against Gold)

One main observation is that including annota-
tions of lower agreement, but still above a threshold
(in our case, 66.7%), is definitely helpful. Tr23 out-
performed both Tr2 and Tr3 in both recall and F-

7This can be done by specifying ‘cost:<value>’ after the
label in each training instance. This feature has not yet been
documented on the SVMlight website.

measure in all evaluations. Also, even when evaluat-
ing against only the high confident Agr3 cases, Tr2
gave a high gain in recall (10 .1 percentage points)
over Tr3, with only a 1.2 percentage point loss on
precision. We conjecture that this is because there
are far more training instances in Tr2 than in Tr3
(674 vs 334), and that quantity beats quality.

Another important observation is the increase in
performance by using varied costs for Agr2 and
Agr3 examples (the Tr23W condition). Although
it dropped the performance by 0.1 to 0.2 points
in cross-validation F measure on the Enron cor-
pora, it gained 2.1 points in Gold evaluation F mea-
sure. These results seem to indicate that differential
weighting based on annotator agreement might have
more beneficial impact when training a model that
will be applied to a wide range of genres than when
training a model with genre-specific data for appli-
cation to data from the same genre. Put differently,
using varied costs prevents genre over-fitting. We
don’t have a full explanation for this difference in
behavior yet. We plan to explore this in future work.

5 Conclusion

We have presented an innovative way of combining
a high-recall simple tagger with Mechanical Turk
annotations to produce training data for a modality
tagger. We show that we obtain good performance
on the same genre as this training corpus (annotated
in the same manner), and reasonable performance
across genres (annotated by an independent expert).
We also present experiments utilizing the number of
agreeing Turkers to choose cost values for training
examples for the SVM. As future work, we plan to
extend this approach to other modalities which are
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not covered in this study.
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