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Abstract

Ensembles combine knowledge from distinct
machine learning approaches into a general
flexible system. While supervised ensembles
frequently show great benefit, unsupervised
ensembles prove to be more challenging. We
propose evaluating various unsupervised en-
sembles when applied to the unsupervised task
of Word Sense Induction with a framework for
combining diverse feature spaces and cluster-
ing algorithms. We evaluate our system us-
ing standard shared tasks and also introduce
new automated semantic evaluations and su-
pervised baselines, both of which highlight the
current limitations of existing Word Sense In-
duction evaluations.

Introduction

particular combinations provide a benefit but select-
ing these combinations is non-trivial.

We propose applying a new and more gen-
eral framework for combining unsupervised systems
known as Ensemble Clustering to unsupervised NLP
systems and focus on the fully unsupervised task
of Word Sense Induction. Ensemble Clustering can
combine together multiple and diverse clustering al-
gorithms or feature spaces and has been shown to
noticeably improve clustering accuracy for both text
based datasets and other datasets (Monti et al., 2003;
Strehl et al., 2002). Since Word Sense Induction is
fundamentally a clustering problem, with many vari-
ations, it serves well as a NLP case study for Ensem-
ble Clustering.

The task of Word Sense Induction extends the
problem of Word Sense Disambiguation by simply

Machine learning problems often benefit from manﬁ‘ssum'_ng that a model m.ust f|r§t Iea_rn and d_eflne a
differing solutions using ensembles (DietterichSENS€ inventory before disambiguating multi-sense
2000) and supervised Natural Language Processi%)rds' This mductlgn step free§ the dlsamblguatlgn
tasks have been no exception. However, use of uRLOCess from any fixed sense inventory and can in-

supervised ensembles in NLP tasks has not yet be@rr?ad flexibly define senses based on observed pat-

rigorously evaluated. Brody et al. (2006) first con€MS Within a dataset (Pedersen, 2006). However,

sidered unsupervised ensembles by combining foﬂ?is .induption step has proven to be greqtly chgl—
state of the art Word Sense Disambiguation systerh%ngmg' |n_ the most recent shared tasks, mdugtlon
using a simple voting scheme with much succesSYStems either appear to perform poorly or fail t_o
Later, Brody and Lapata (2009) combined differenPUtPerform the simple Most Frequent Sense baseline
feature sets using a probabilistic Word Sense Indu¢?9iTe and Soroa, 2007a; Manandhar et al., 2010).
tion model and found that only some combinations " this work, we propose applying Ensemble
produced an improved system. These early and linfz/UStering as a general framework for combining

ited evaluations show both the promise and draV\p_otonly different feature spaces but also a variety of

back of combining different unsupervised models(_jifferent clustering algorithms. Within this frame-

work we will explore which types of models should
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D proaches to both steps.
- ] Formally, we define Ensemble Clustering to
operate over a dataset a¥ elements: D =

>-D2 . m,— . {di,...,dn}. Ensemble Clustering then creatds
D— - r m ensembles that each partition a perturbafipyof D

—» | — to createH partitions Il = {my,--- , 7 }. The con-
b _— sensus gl_gorithm then.approximates the best consen-
-h h sus partitiont™ that satisfies:
Figure 1: The Ensemble Clustering model: individ- argmin Z d(mp, 7) 1)
ual clustering algorithms partition perturbations of =
the dataset and all partitions are combined \ia-
sensus functioto create a final solutiong*. according to some distance metiier;, ;) between

two partitions. We use theymmetric difference dis-

tic quality and uniqueness of induced word sensagnceasd(mi, ;). Let F; be the set of co-cluster
N y g ata points inr;. The distance metric is then defined

without referring to an external sense inventory (2
and a new set of baseline systems based on super-
vised learning algorithms. With the new evaluations
and a framework for combining general induction
models, we intend to find not only improved models
but a better understanding of how to improve late2.1 Forming Ensembles
induction models.

d(my,m2) = |PL\ Po| + |P2 \ Py

Ensemble clustering can combine together overlap-
2 Consensus Clustering ping deci_sions fr_on_1 many different clustering algo-
rithms or it can similarly boost the performance of a
Ensemble Clustering presents a new method fejingle algorithm by using different parameters. We
combining together arbitrary clustering algorithmsonsider two simple formulations of ensemble cre-
without any supervision (Monti et al., 2003; Strehlation: Homogeneous EnsemblasdHeterogeneous
et al.,, 2002). The method adapts simple boostingnsembles We secondly consider approaches for
and voting approaches from supervised ensemblesmbining the two creation methods.
to merge together diverse clustering partitions into
a single consensus solution. Ensemble Clusteringomogeneous Ensemblespartition randomly
forms a single consensus partition by processingsampled subsets of the data points fréhwithout
data set in two steps: (1) create a diverse set of ereplacement. By sampling without replacement,
sembles that each partition some perturbation of theach ensemble will likely see different representa-
full dataset and (2) find the median partition that bestons of each cluster and can specialize its partition
agrees with each ensemble’s partition. Figure 1 vihe around observed subset. Furthermore, each
sually displays these two steps. ensemble will observe less noise and can better
Variation in these two steps accounts for the wideefine each true cluster (Monti et al., 2003). We
variety of Ensemble Clustering approaches. Eaahote that since each ensemble only observes an
ensemble can be created from either a large cdhcomplete subset ab, some clusters may not be
lection of distinct clustering algorithms or throughrepresented at all in some partitions.
a boosting approach where the same algorithm is
trained on variations of the dataset. Finding the madeterogeneous Ensemblescreate diverse parti-
dian partition turns out to be an NP-Complete probtions by simply using complete partitions over
lem under most settings (Goder and Filkov, 2008yom different clustering algorithms, either due to
and thus must be approximated with one of sewdifferent parameters or due to completely different
eral heuristics. We consider several well tested agiustering models (Strehl et al., 2002).
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Combined Heterogeneous and Homogeneous En- Word Sense Induction Word Sense Disambiguation
sembles can be created by creating many homo-
geneous variations of each distinct clustering algo- ~ Tinng Contexts - induction Model ey, contexts

rithm within a heterogeneous ensemble. In this @
Feature [ EX
Extraction * —

framework, each single method can be boosted by
subsampling the data in order to observe the true @_’ — [ .
SEE
[:]SEHSE3

clusters and then combined with other algorithms @
Figure 2: The general Word Sense Induction Model:

using differing cluttering criteria.

Given the set of partitiond] = {m;,---,m,}, the models extract distributional data from contexts and
consensus algorithm must find a final partitiarf, induce senses by clustering the extracted informa-
that best minimizes Equation 1. We find an approxtion. Models then use representations of each sense
imation tow* using the following algorithms. to disambiguate new contexts.

Sense 1

2.2 Combining data partitions

Agglomerative Clustering first creates @onsen-

sus matrix M that records the aggregate decision§ \Word Sense Induction Models

made by each partition. Formally1 records the

fraction of partitions that observed two data pointVord Sense Induction models define word senses in

and assigned them to the same cluster: terms of the distributional hypothesis, whereby the
meaning of a word can be defined by the surround-
M5 2221 1{d;, d; € 75} ing context _(Haris, 1985). thherthan form a single
(i,J) = Zh d;, d; € m4) representation for any word, induction models repre-
k=1 ()

sent the distinct contexts surrounding a multi-sense
Whered; refers to element, ¢ refers to clustet in word and find commonalities between the observed
partitions,, and1{x} is the indicator function. The contexts by clustering. These similar contexts then
consensus partition;* is then the result of creat- d€fine a particulaword senseand can be used to
ing C partitions with Agglomerative Clustering us- later recognize later instances of the sense, Figure 2.
ing the Average Link criterion and as the simi- ~ Models can be roughly categorized based on their

larity between each data point (Monti et al., 2003). context model and their clustering algorithm into
two categories: feature vector methods and graph
Best of K simply setst* as the partitiont, € II  methods. Feature vector methods simply transform
that minimizes Equation 1 (Goder and Filkov, 2008)each context into a feature vector that records con-

i i ... . textual information and then cluster with any algo-

Best One Element Move begins with an initial rithm that can partition individual data points. Graph

consensus partition™ and repeatedly changes the, s pild a large distributional graph that mod-

?ssuin_men.t 9f a sc:nglz data R[O'nt tS,IUCh that Equ%’ls lexical features from all contexts and then parti-

k;or} |sdm\;\r/1|nj|;¢ I.an hrepgarl]sBun : fnz MOVE Callions the graph using a graph-based clustering algo-
e found. We Initialize this with Best of K. rithm. In both cases, models disambiguate new uses

Filtered Stochastic Best One Element Move ©f@aword by finding the sense with the most features

also begins with an initial consensus partitionand !N common with the new context.
repeatedly finds the best one element move, but dogs1
not compare against every partitionlinfor each it- =
eration. It instead maintains a history of move cost€ontext models follow the distributional hypothesis
and updates that history with a stochastically sdsy encoding various lexical and syntactic features
lected patrtition fromlI for each move iteration and that frequently occur with a multi-sense word. Each
ends after some fixed number of iterations (Zheng ebntext model records different levels of informa-
al., 2011). tion, and in different formats, but are limited to fea-

Context Models
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tures available from syntactic parsing. Below weé/alue Decomposition (SVD) (Scitze, 1998), Non-

summarize our context models which are based aregative Matrix Factorization (NMF) (Van de Cruys
previous induction systems: and Apidianaki, 2011), and Latent Dirichlet Alloca-
tion (Brody and Lapata, 2009). We note that SVD

Word Co-occurence (WoC) acts as the core fea-
nd NMF operate as a second step over any feature
ture vector method and has been at the core of near .
ctor model whereas LDA is a standalone model.

all systems that model distributional semantics (Ped-
ersen, 2006). The WoC model represents each cog- Clustering Algorithms

text simply as the words withia=1W words from

the multi-sense word. Each co-occurring word iDistributional clustering serves as the main tool
weighted by the number of times it occurs withinfor detecting distinct word senses. Each algorithm
the window. makes unique assumptions about the distribution of

the dataset and should thus serve well as diverse
Parts of Speech (PoS) extends the WoC modelmodels, as needed by supervised ensembles (Diet-
by appending each lexical feature with its part oferich, 2000). While many WSI models automat-
speech. This provides a simple disambiguatioally estimate the number of clusters for a word,
of each feature so that words with multiple partsye initially simplify our evaluation by assuming the
of speech are not conflated into the same featurgumber of clusters is known a priori and instead fo-
(Brody et al., 2006). cus on the distinct underlying clustering algorithms.

Dependency Relations (DR) restrains word co- Below we briefly summarize each base algorithm:

OC(:Iqrrence to ";‘”‘E‘S that are reachable from thIg-Means operates over feature vectors and iter-
rr:cudtl-senje wor IV'_a ahs.ynt?ct.lc dpgrse Con}poseé{ively refines clusters by associating each context
of dependency relationships limited by some e'ngtvectorwith its most representative centroid and then

(Pacb and Lapata, 200_7)' We treat each realChab}%formulating the centroid (Pedersen and Kulkarni,
word and the last relation in the path as a featurEOOG)

(Van de Cruys and Apidianaki, 2011).

Second Order Co-occurrence (SndOrd) provides Hierarchical Agglomerative Clustering can be

arough compositional approach to representing seﬂpp“ﬁd Itobb?r:h feature \;]ectorts and collol(lzatlotp
tences that utilizes word co-occurrence and partiallg'ralo s. In both cases, each sentences or coflocation

solves the data sparsity problem observed with thigriexis p!aged in their own clusters and thep the
Wwo most similar clusters are merged together into a

WoC model. The SndOrd model first builds a Iargé | dhire. 1
distributional vector for each word in a corpus and'€W cluster (Sciize, 1998).

then forms context vectors by adding the diStribUSpectraI Clustering separates an associativity

tional vector for each co-occurring context Wor%atrix by finding the cut with the lowest conduc-
(Pedersen, 2006). tance. We consider two forms of spectral clustering:

Graph models encode rich amounts of linguisticEigenCluster (Cheng et al., 2006), a method origi-
information for all contexts as a large distributionanally designed to cluster snippets for search results
graph. Each co-occurring context word is assigneifito semantically related categories, and GSpec (Ng
a node in the graph and edges are formed betwe8hal., 2001), a method that directly clusters a collo-
any words that co-occur in the same context. Theation graph.

graph is refined b.y comparing nodes arld edges tol'«aandom Graph Walks performs a series of ran-
large representative corpus and dropping some o

. dom walks through a collocation graph in order to
currences (Klapaftis and Manandhar, 2010). ) L
(Klap ’ ) discover nodes that serve as central discriminative

Latent Factor Models projects co-occurrence in- points in the graph and tightly connected compo-
formation into a latent feature space that ties toaents in the graph. We consider Chinese Whispers
gether relationships between otherwise distinct fegKlapaftis and Manandhar, 2010) and a hub selec-
tures. We consider three latent models: the Singuléon algorithm (Agirre and Soroa, 2007b).
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4 Proposed Evaluation Supervised Baselines should set an upper limit

on the performance we can expect from most unsu-
We first propose evaluating ensemble configurationseryvised algorithms, as has been observed in other
of Word Sense Induction models using the standaig|_p tasks. We train these baselines by using feature
shared tasks from SemEval-1 (Agirre and Sorogector models in combination with the SemEval-1
2007a) and SemEval-2 (Manandhar et al., 2010}ataset. We propose several standard supervised
We then propose comparing these results, and paghchine learning algorithms as different baselines:
SemEval results, to supervised baselines as a gauggive Bayes, Logistic Regression, Decision Trees,
of how well the algorithms do compared to more in-sypport Vector Machines, and various ensembles of
formed models. We then finally propose an intringach such as simple Bagged Ensembles.
sic evaluation that rates the semantic interpretability
and uniqueness of each induced sense. Semantic Coherence evaluations balance the

shared task evaluations by functioning without a
Evaluating Ensemble Configurations must be sense inventory. Any evaluation against an existing
done to determine which variation of Ensemblénventory cannot accurately measure newly detected
Clustering best applies to the Word Sense Inductiosenses, overlapping senses, or different sense gran-
tasks. Preliminary research has shown that Homogelarities. Therefore, our propossgnse coherence
neous ensemble combined with the HAC consensuseasures focus on the semantic quality of a sense,
function typically improve base models while com-adapted from topic coherence measures (Newman
bining heterogeneous induction modegieatly re- et al.,, 2010; Mimno et al., 2011). These evaluate
duces performance. We thus propose various setstbe degree to which features in an induced sense de-
ensembles to evaluate whether or not certain contestribe the meaning of the word sense, where highly
models or clustering algorithms can be effectivelyelated features constitute a more coherent sense and
combined: unrelated features indicate an incoherent sense. Fur-

thermore, we adapt the coherence metric to evaluate

1. mixing different feature vector models with the samethe amount of semantic overlap between any two in-

clustering algorithm, duced senses
2. mixing different clustering algorithms using the same '

context model, .
3. mixing feature vector context models and graph contex5 ConCIUdmg Remarks
models using matching clustering algorithms,

4. mixing all possible models, This research will better establish the benefit of
5. and improving each heterogeneous algorithm by firsEnsemble Clustering when applied to unsuper-
boosting them with homogeneous ensembles. vised Natural Language Processing tasks that cen-

ter around clustering by examining which feature
SemEval Shared Tasks provide a shared corpus spaces and algorithms can be effectively combined
and evaluations for comparing different WSI Mod-along with different different ensemble configura-
els. Both shared tasks from SemEval provide a cotions. Furthermore, this work will create new base-
pus of training data for 100 multi-sense words anfines that evaluate the inherent challenge of Word
then compare the induced sense labels generated 8¥nse Induction and new automated and knowledge
a set of test contexts with human annotated senfgan measurements that better evaluate new or over-
using a fixed sense inventory. The task provides tWapping senses learned by induction systems. All of
evaluations: arunsupervisecevaluation that treats the work will be provided as part of a flexible open
each set of induced senses as a clustering solutiggurce framework that can later be applied to new
and measures accuracy with simple metrics such ggntext models and clustering algorithms.
the Paired F-Score, V-Measure, and Adjusted Mu-
tual Information; and asupervisedevaluation that —Y

We cannot use graph context models as they do not model

builds a S|mple SuPeersed word sense dlsamblgug‘éntexts individually, nor can we use the SemEval-2 dataset be-

tion system using the sense labels (Agirre and Sorogyse the training set lacks sense labels needed for training su-
2007a; Manandhar et al., 2010). pervised systems
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