
Proceedings of the ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries, pages 98–103,
Jeju, Republic of Korea, 10 July 2012. c©2012 Association for Computational Linguistics

Towards High-Quality Text Stream Extraction from PDF
Technical Background to the ACL 2012 Contributed Task

Øyvind Raddum Berg, Stephan Oepen, and Jonathon Read
Department of Informatics, Universitetet i Oslo
{oyvinrb |oe |jread}@ifi.uio.no

Abstract

Extracting textual content and document
structure from PDF presents a surprisingly
(depressingly, to some, in fact) difficult chal-
lenge, owing to the purely display-oriented de-
sign of the PDF document standard. While a
variety of lower-level PDF extraction toolk-
its exist, none fully support the recovery of
original text (in reading order) and relevant
structural elements, even for so-called born-
digital PDFs, i.e. those prepared electronically
using typesetting systems like LATEX, OpenOf-
fice, and the like. This short paper summarizes
a new tool for high-quality extraction of text
and structure from PDFs, combining state-of-
the-art PDF parsing, font interpretation, layout
analysis, and TEI-compliant output of text and
logical document markup.†

1 Introduction—Motivation

To view a collection of scholarly articles like the
ACL Anthology as a structured knowledge base sub-
stantially transcends a naïve notion of acorpus as
a mere collection of running text. Research litera-
ture is the result of careful editing and typesetting
and, thus, is organized around its complex internal
structure. Relevant structural elements can comprise
both geometric (e.g. pages, columns, blocks, or ta-
bles) andlogical units (e.g. titles, abstracts, head-
ings, paragraphs, or citations)—where (ideally) ge-
ometric and logical document structure play hand
in hand to a degree that can make it hard to draw
clear dividing lines in some cases (e.g. in itemized
or numbered lists).

To date, the dominant standard for electronic doc-
ument archival isPortable Document Format (PDF),

†We are indebted to Rebecca Dridan, Ulrich Schäfer, and the
ACL workshop reviewers for helpful feedback on this work.

originally created as a proprietary format by Adobe
Systems Incorporated in the early 1990s and sub-
sequently made an open ISO standard (which was
officially adopted in 2008 and embraced by Adobe
through a public license that grants royalty-free us-
age). PDF is something of a composite standard,
unifying at least three basic technologies:

1. A subset of the PostScript page ‘programming’
language, dropping constructs like loops and
branches, but including all graphical operations
to draw layout elements, text, and images.

2. A font embedding system which allows a doc-
ument to ‘carry along’ a broad variety of fonts
(in various formats), as may be needed to en-
sure display just as the document was designed.

3. A structured storage system, which organizes
various data objects—for example images and
fonts—inside a PDF document.

All data objects in a PDF file are represented in
a visually-oriented way, as a sequence of operators
which—when interpreted by a PDF renderer—will
draw the document on a page canvas. This is a nat-
ural approach considering the design roots of PDF
as a PostScript successor and its original central role
in desktop publishing applications; but the implica-
tions of such visually-centered design are unfortu-
nate for the task of recovering textual content and
logical document structure.

Interpretation of PDF operators will provide one
with all the individual characters, as well as their
formatting and position on the page. However, they
generally do not convey information about higher
level text units such as tokens, lines, or columns—
information about boundaries between such units is
only available implicitly through whitespace, i.e. the

98

mere absence of textual or graphical objects. Fur-
thermore, data fragments comprising content text on
a page may consist of individual characters, parts of
a word, whole lines, or any combination thereof—
as dictated by font properties and kerning require-
ments. Complicating text extraction from PDF fur-
ther, there are no rules governing the order in which
content is encoded in the document. For example, to
produce a page with a two-column layout, the page
could be drawn by first drawing the first lines of the
left and right columns, then the second lines, etc.
Obtaining text in logical reading order, however, ob-
viously requires that the text in the left column be
processed before the one on the right, so a naïve ap-
proach to text extraction based on the sequencing of
objects in the PDF file might produce undesirable
results.

Since the standard is now open and free for any-
one to use, we are fortunate to have several ma-
ture, open-source libraries to handle low-level pars-
ing and manipulation of objects in PDF documents.
For this project, we build on Apache PDFBox1, for
its maturity, relatively active support, and interface
flexibility. Originally as an MSc project in Com-
puter Science (Berg, 2011), we have developed a pa-
rameterizable toolkit for high-quality text and struc-
ture extraction from born-digital PDFs, which we
dubPDFExtract.2 In this application, we seek to ap-
proximate this structure by using all the visual clues
and information we have available.

The data presented in a PDF file consists of
streams of objects; by placing hardly any signifi-
cance on the order of elements within these streams,
and more on the visual result obtained by (virtu-
ally) ‘rendering’ PDF operations, the task of text and
structure extraction is shifted slightly—from what
traditionally amounts to stream-processing, and to-
wards a point of view related tocomputer vision.

This view, in fact, essentially corresponds to the
same problem tackled by OCR software, though
without the need to perform actual character recog-
nition. Some of the key elements ofPDFExtract,
thus, build on related OCR techniques and adapt
and extend these to the PDF processing task. The
process of ‘understanding’ a PDF document in this

1Seehttp://pdfbox.apache.org/ for details.
2Seehttp://github.com/elacin/PDFExtract/.

context is called document layout analysis, a task
which is commonly treated as two sequential sub-
processes. First, a page image is subjected togeo-
metric layout analysis; the result of this first stage
then serves as input for a subsequent step oflogi-
cal layout analysis and content extraction. The fol-
lowing sections briefly review core aspects of the
design and implementation ofPDFExtract, ranging
from low-level whitespace detection (§2), over ge-
ometric and logical layout analysis (§3 and §5, re-
spectively), to aspects of font handling (§4).

2 Whitespace Detection

As a prerequisite to all subsequent analysis, seg-
ment boundaries between tokens, lines, columns,
and other blocks of content need to be made ex-
plicit. Such boundaries are predominantly repre-
sented through whitespace, which is not overtly rep-
resented among the data objects in PDF files. The
approach to whitespace detection and page segmen-
tation in PDFExtract is an extension of the frame-
work proposed by Breuel (2002) (originally in the
context of OCR).

The first step here is to find a cover of the back-
ground whitespace of a document in terms of maxi-
mal empty rectangles. This is accomplished in a top-
down procedure, using a whole page as its starting
point, and working in a way abstractly analogous to
quicksort or branch and bound algorithms. Whites-
pace rectangles are identified in order of decreasing
‘quality’ (as determined by size, shape, position, and
relations to actual page content), which means that
the result will in general be globally optimal—in the
sense that no other (equal-sized) sequence of cover-
ing rectangles would yield a larger total quality sum.

Figure 1 illustrates the main idea of the algorithm,
which starts from a bound (initially the page at large)
and a set of non-empty rectangles, calledobstacles.
If the set is empty, it means that the bound is a max-
imal rectangle with respect to other obstacles (sur-
rounding the bound). If, as in Figure 1, there are
obstacles, the bound needs to be further subdivided.
To this end, we choose one obstacle as apivot, which
ideally is centered somewhere around the middle of
the bound. As no maximal rectangle can contain ob-
stacles, in particular not the pivot, there are four pos-
sibilities for the solution of the maximal whitespace

99

(a) (b) (c) (d)

Figure 1: Schematic example ofone iteration of the whitespace covering algorithm. In (a) we see some obstacles (in
blue) contained within a bounding rectangle; in (b) one of them is chosen as as pivot (in red); and (c) and (d) show
how the original bound is divided into four smaller rectangles (in grey) around the pivot.

rectangle problem—one for each side of the pivot.
The areas of these four sub-bounds are computed, a
list of intersecting obstacles is computed for each of
them, and they are processed in turn.

As originally proposed by Breuel (2002), the
basic procedure proved applicable to born-digital
PDFs, though leaving room for improvements both
in terms of the quality of results and run-time perfor-
mance. Some deficiencies that were observed in pro-
cessing documents from the ACL Anthology (and
other samples of scholarly literature) are exempli-
fied in Figure 2, relating to smallish, ‘stray’ whites-
pace rectangles in the middle of otherwise contigu-
ous segments (top row in Figure 2), challenges re-
lated to relative differences in line spacing (middle),
and spurious vertical boundaries introduced by so-
called rivers, i.e. accidental alignment of horizon-
tal spacing across lines (bottom). Besides adjust-
ments to the rectangle ‘quality’ function, the prob-
lems were addressed by (a) allowing a small degree

Figure 2: Select challenges to whitespace covering ap-
proach: stray whitespace inbetween groups of text (top);
inter- vs. intra-paragraph spacing (middle); and ‘rivers’
leading to spurious vertical boundaries (bottom).

of overlap between whitespace rectangles and obsta-
cles, (b) a strong preference for contiguous areas of
whitespace (thus making the procedure work from
the page borders inwards), (c) variable lower bounds
on the height and width of whitespace rectangles,
computed dynamically from font properties of sur-
rounding text, and (d) a small number of special-
ized heuristic rules, to block unwanted whitespace
rectangles in select configurations. Berg (2011) pro-
vides full details for these adaptations, as well as for
algorithmic optimizations and parameterization that
enable run-time throughputs of tens of pages per cpu
second.

3 Determining Page Layout

The high-level goal in analyzing page layout is to
produce a hierarchical representation of a page in
terms ofblocks of homogenous content, thus mak-
ing explicit relevant spatial relationship between
them. In the realm of OCR, this task is often re-
ferred to asgeometric layout analysis (see, for ex-
ample, (Cattoni et al., 1998)), whereas the term
(de)boxing has at times been used in the context of
text stream extraction from PDFs. In the following
paragraphs, we will focus on column boundary de-
tection, butPDFExtract essentially applies the same
general techniques to the identification of other rel-
evant inter-segment boundaries.

While whitespace rectangles are essential to col-
umn boundary identification, there is of course no
guarantee for the existence ofone rectangle which
were equivalent to a whole column boundary. First,
as a natural consequence of the whitespace detection
procedure, horizontal rectangles can ‘interrupt’ can-
didate colum boundaries. Second, there may well be
typographic imperfections causing gaps in the iden-
tified whitespace (as exemplified in the top of Fig-

100

Figure 3: Select challenges to column identification: text
elements protruding into the margin (top) and gaps in
whitespace rectangle coverage (often owed to processing
bounds imposed for premium performance).

ure 3), or it can be the case that geometric constraints
or computational limits imposed on the whitespace
cover algorithm result in ‘missing’ whitespace rect-
angles (in the bottom of Figure 3). Whereas the orig-
inal design of Breuel (2002) makes no provisions for
these cases,PDFExtract adapts a revised, three-step
approach to column detection, viz. (a) extracting an
initial set of candidate boundaries; (b) heuristically
expanding column boundary candidates vertically;
and (c) combining logically equivalent boundaries
and filtering unwarranted ones. Here, both steps (a)
and (b) assume geometric constraints on the aspect
ratio of candidate column boundaries, as well as on
the existence and relative proportions of surround-
ing non-whitespace content. Again, please see Berg
(2011) for further background on these steps.

With column boundaries in place,PDFExtract
proceeds to the identification ofblocks of content
(which may correspond to, for example, logical
paragraphs, headings, displayed equations, tables, or
graphical elements). This step, essentially, is real-
ized through a recursive ‘flooding’ function, form-
ing connected blocks from adjacent, non-whitespace
PDF data objects where there are no intervening
whitespace rectangles. Regions that (by content
or font properties) can be identified as (parts of)

mathematical equations receive special attention at
this stage, allowing limited amounts of horizon-
tally separating whitespace to be ignored for block
formation. In a similar spirit, line segmentation
(i.e. grouping of vertically aligned data objects) is
performed block-wise—sorting content within each
block by Y-coordinates and determining baselines
and inter-line spacing in a single downwards pass.

The final key component in geometric layout
analysis is the recovery of reading order (recalling
that PDFs do not provide reliable sequencing infor-
mation for data objects).PDFExtract adapts one
of the two techniques suggested by Breuel (2003),
viz. topological sorting of lines (which can include
single-line blocks, where no block-internal line seg-
mentation was detected) based on (a) relations of hi-
erarchical nesting and (b) relative geometric posi-
tions. PDFExtract was tested against a set of some
100 diverse PDF documents (from different sources
of scholarly literature, a range of distinct PDF gener-
ators, quite variable layout, and multiple languages),
and its topological content sorting (detailed further
in Berg, 2011) was found to give very satisfactory
results in terms of reading order recovery.

4 Font Handling and Word Segmentation

Many of the steps of geometric layout analysis out-
lined above depend on accurate coordinate informa-
tion for glyphs, which turned out an unforeseen low-
level challenge in our approach of buildingPDFEx-
tract on top of Apache PDFBox. Figure 4 (on the
left) shows a problematic example of ‘raw’ glyph
placement information. Several factors contribute to
incorrect glyph positioning, including the sheer va-
riety of font types supported in PDFs, missing in-
formation about non-standard, embedded fonts, and
design limitations and bugs in PDFBox. To work
around common issues,PDFExtract includes a cou-
ple of patches to PDFBox internals as well as spe-
cialized code for different types of font embedding
in PDF to perform boundary box computation, po-
sition offsetting, and and mapping to Unicode code
points. The (much improved though not quite per-
fect) result of these adjustments, when applied to
our running example, is depicted in the middle of
Figure 4.

With the ultimate goal of creating a high-quality

101

(a) (b) (c)

Figure 4: Examples of font-related challenges (before and after correction) and word segmentation.

(structured) text corpus from ACL Anthology doc-
uments,word segmentation naturally is a mission-
critical component ofPDFExtract. Seeing that inter-
word whitespace is more often than notomitted
from PDF data objects, word segmentation—much
like other sub-tasks in geometric layout analysis—
operates in terms of display positions. Deter-
mining whether the distance between two adjacent
glyphs represents a word-separating whitespace or
not, might sound simple—but in practice it proved
difficult to devise a generic solution that performs
well across differences in fonts and sizes (and corre-
sponding variation in kerning, i.e. intra-word spac-
ing), deals with both high-quality and poor typog-
raphy, and is somewhat robust to remaining inac-
curacies in glyph positions .PDFExtract arrived at
a novel algorithm that approximates character text
spacing (as could be set by the PDFTc operator) by
averaging a selection of the smaller character dis-
tances within a line. The resulting average charac-
ter spacing is subsequently used tonormalize hori-
zontal distances, i.e. subtract line-specific character
spacing from every distance on that line—to ideally
center character distances around zero, while leav-
ing word distances larger (they will also be relatively
much larger than before in comparison). The iden-
tification of word boundaries itself, accordingly, be-
comes straightforward, comparing normalized dis-
tances to a percentage of the local font size. The
results of this process are shown for our example in
the right of Figure 4.

5 (Preliminary) Logical Layout Analysis

In our view, thorough geometric layout analysis is
an important prequisite of logical layout analysis.
Hence, the emphasis of Berg (2011) was with re-
spect to the geometric analysis. However, what fol-
lows is an overview of the preliminary procedure in
PDFExtract to determine logical document structure

from geometric layout and typographic information.
The process begins by collating a set of textstyles

(i.e. unique combinations of font type and size).
Then, various heuristics govern the assignment of
styles to logical roles:

Body text Choose whichever style occurs most fre-
quently (in terms of the number of characters).

Title Choose the header-like block on the first page
that has the largest font size.

Abstract If one of the first pages has a single-line
block with a style which is bigger or bolder
than body text, and contains the word abstract,
it is chosen as an abstract header. All body text
until the next heading is the abstract text.

Footnote Search for blocks on the lower part of
the page that are smaller than body text; check
that they start with a number or other footnote-
indicating symbol.

Sections Identify section header styles by compil-
ing a list of styles that are either larger than or
have some emphasis on the body text style, and
have instances with evidence of section num-
bering (e.g.1.1, (1a)). Infer the nesting level
of each section header style from its order of
occurrence in the document; a section head-
ing will always appear earlier than a subsection
heading, for instance.

Having identified the different components in the
document, these are used to create a logical hierar-
chical representation following the TEI P5 Guide-
lines (TEI Consortium, 2012) as introduced by
Schäfer et al. (2012). Title, abstract, floaters, and
figures are separated from the main text. The body
of the document is then collated into a tree of section
elements, with headers and body text. Body text is
collected by combining consecutive text blocks that

102

have identical styles, before inferring paragraphs on
the basis of indented initial lines. Dehyphenation is
tackled using a combination of a lexicon and a set of
orthographic rules.

6 Discussion—Outlook

PDFExtract provides a fresh and open-source take
on the problem of high-quality content and struc-
ture extraction from born-digital PDFs. Unlike ex-
isting initiatives (e.g. the basicTextExtraction
class of PDFBox or thepdftotext command line util-
ity from the Poppler library3), PDFExtract discards
sequencing information available in the so-called
PDF text stream, but instead applies and adapts tech-
niques from OCR—notably a whitespace covering
algorithm, column, block, and line detection, recov-
ery of reading order based on line-oriented topolog-
ical sort, and improved word segmentation taking
advantage of specialized PDF font interpretation.
While very comprehensive in terms of its geometric
layout analysis,PDFExtract to date only make avail-
able a limited range of logical layout analysis func-
tionality (and output into TEI-compliant markup),
albeit also in this respect more so than pre-existing
PDF text stream extraction approaches.

For the ACL 2012 Contributed Task onRedis-
covering 50 Years of Discoveries (Schäfer et al.,
2012),PDFExtract outputs for the born-digital sub-
set of the ACL Anthology are a component of the
‘starter package’ offered to participants, in the hope
that content and structure derived from OCR tech-
niques (Schäfer & Weitz, 2012) and those extracted
directly from embedded content in the PDFs will
complement each other. As discussed in more detail
by Schäfer et al. (2012), the two approaches have
in part non-overlapping strengths and weaknesses,
such that aligning content elements that correspond
to each other across the two universes could yield a
multi-dimensional, ideally both more complete and
more accurate perspective.PDFExtract is a recent
development and remains subject to refinement and
extension. Beyond a limited quantitative and qual-
itative evaluation review by Berg (2011), the exact
quality levels of text and document structure that it
makes available (as well as relevant factors of varia-
tion, across different types of documents in the ACL

3Seehttp://poppler.freedesktop.org/.

Anthology) remains to be determined empirically.
We make available the full package, accompanied

by some technical documentation (Berg, 2011), as
well as a sample of gold-standard TEI-compliant
target outputs) in the hope that it may serve as the
basis for future work towards the ACL Anthology
Corpus—both at our own sites (i.e. the University
of Oslo and DFKI Saarbrücken) and collaborating
partners. We would enthusiastically welcome addi-
tional collaborators in this enterprise and will seek
to provide any reasonable assistance required for the
deployment and extension ofPDFExtract.

References

Berg, Ø. R. (2011).High precision text extraction
from PDF documents. MSc Thesis, University of
Oslo, Department of Informatics, Oslo, Norway.

Breuel, T. (2002). Two geometric algorithms for
layout analysis. InProceedings of the 5th work-
shop on Document Analysis Systems (pp. 687–
692). Princeton, USA.

Breuel, T. (2003). Layout analysis based on text line
segment hypotheses. InThird international work-
shop on Document Layout Interpretation and its
Applications. Edinburgh, Scotland.

Cattoni, R., Coianiz, T., & Messelodi, S. (1998).Ge-
ometric layout analysis techniques for document
image understanding. A review (ITC-irst Techni-
cal Report TR#9703-09). Trento, Italy.

Schäfer, U., Read, J., & Oepen, S. (2012). Towards
an ACL Anthology corpus with logical document
structure. An overview of the ACL 2012 con-
tributed task. InProceedings of the ACL-2012
main conference workshop on Rediscovering 50
Years of Discoveries. Jeju, Republic of Korea.

Schäfer, U., & Weitz, B. (2012). Combining OCR
outputs for logical document structure markup.
Technical background to the ACL 2012 Con-
tributed Task. InProceedings of the ACL-2012
main conference workshop on Rediscovering 50
Years of Discoveries. Jeju, Republic of Korea.

TEI Consortium. (2012, February).TEI P5: Guide-
lines for electronic text encoding and interchange.
(http://www.tei-c.org/Guidelines/P5)

103

