
Proceedings of the 7th Workshop on Statistical Machine Translation, pages 283–291,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Joshua 4.0: Packing, PRO, and Paraphrases

Juri Ganitkevitch1, Yuan Cao1, Jonathan Weese1, Matt Post2, and Chris Callison-Burch1

1Center for Language and Speech Processing
2Human Language Technology Center of Excellence

Johns Hopkins University

Abstract

We present Joshua 4.0, the newest version
of our open-source decoder for parsing-based
statistical machine translation. The main con-
tributions in this release are the introduction
of a compact grammar representation based
on packed tries, and the integration of our
implementation of pairwise ranking optimiza-
tion, J-PRO. We further present the exten-
sion of the Thrax SCFG grammar extractor
to pivot-based extraction of syntactically in-
formed sentential paraphrases.

1 Introduction

Joshua is an open-source toolkit1 for parsing-based
statistical machine translation of human languages.
The original version of Joshua (Li et al., 2009) was
a reimplementation of the Python-based Hiero ma-
chine translation system (Chiang, 2007). It was later
extended to support grammars with rich syntactic
labels (Li et al., 2010a). More recent efforts in-
troduced the Thrax module, an extensible Hadoop-
based extraction toolkit for synchronous context-
free grammars (Weese et al., 2011).

In this paper we describe a set of recent exten-
sions to the Joshua system. We present a new com-
pact grammar representation format that leverages
sparse features, quantization, and data redundancies
to store grammars in a dense binary format. This al-
lows for both near-instantaneous start-up times and
decoding with extremely large grammars. In Sec-
tion 2 we outline our packed grammar format and

1joshua-decoder.org

present experimental results regarding its impact on
decoding speed, memory use and translation quality.

Additionally, we present Joshua’s implementation
of the pairwise ranking optimization (Hopkins and
May, 2011) approach to translation model tuning.
J-PRO, like Z-MERT, makes it easy to implement
new metrics and comes with both a built-in percep-
tron classifier and out-of-the-box support for widely
used binary classifiers such as MegaM and Max-
Ent (Daumé III and Marcu, 2006; Manning and
Klein, 2003). We describe our implementation in
Section 3, presenting experimental results on perfor-
mance, classifier convergence, and tuning speed.

Finally, we introduce the inclusion of bilingual
pivoting-based paraphrase extraction into Thrax,
Joshua’s grammar extractor. Thrax’s paraphrase ex-
traction mode is simple to use, and yields state-of-
the-art syntactically informed sentential paraphrases
(Ganitkevitch et al., 2011). The full feature set of
Thrax (Weese et al., 2011) is supported for para-
phrase grammars. An easily configured feature-level
pruning mechanism allows to keep the paraphrase
grammar size manageable. Section 4 presents de-
tails on our paraphrase extraction module.

2 Compact Grammar Representation

Statistical machine translation systems tend to per-
form better when trained on larger amounts of bilin-
gual parallel data. Using tools such as Thrax, trans-
lation models and their parameters are extracted
and estimated from the data. In Joshua, translation
models are represented as synchronous context-free
grammars (SCFGs). An SCFG is a collection of

283

rules {ri} that take the form:

ri = Ci → 〈αi, γi,∼i, ~ϕi〉, (1)

where left-hand side Ci is a nonterminal symbol, the
source side αi and the target side γi are sequences
of both nonterminal and terminal symbols. Further,
∼i is a one-to-one correspondence between the non-
terminal symbols of αi and γi, and ~ϕi is a vector of
features quantifying the probability of αi translat-
ing to γi, as well as other characteristics of the rule
(Weese et al., 2011). At decoding time, Joshua loads
the grammar rules into memory in their entirety, and
stores them in a trie data structure indexed by the
rules’ source side. This allows the decoder to effi-
ciently look up rules that are applicable to a particu-
lar span of the (partially translated) input.

As the size of the training corpus grows, so does
the resulting translation grammar. Using more di-
verse sets of nonterminal labels – which can signifi-
cantly improve translation performance – further ag-
gravates this problem. As a consequence, the space
requirements for storing the grammar in memory
during decoding quickly grow impractical. In some
cases grammars may become too large to fit into the
memory on a single machine.

As an alternative to the commonly used trie struc-
tures based on hash maps, we propose a packed trie
representation for SCFGs. The approach we take is
similar to work on efficiently storing large phrase
tables by Zens and Ney (2007) and language mod-
els by Heafield (2011) and Pauls and Klein (2011) –
both language model implementations are now inte-
grated with Joshua.

2.1 Packed Synchronous Tries

For our grammar representation, we break the SCFG
up into three distinct structures. As Figure 1 in-
dicates, we store the grammar rules’ source sides
{αi}, target sides {γi}, and feature data {~ϕi} in sep-
arate formats of their own. Each of the structures
is packed into a flat array, and can thus be quickly
read into memory. All terminal and nonterminal
symbols in the grammar are mapped to integer sym-
bol id’s using a globally accessible vocabulary map.
We will now describe the implementation details for
each representation and their interactions in turn.

2.1.1 Source-Side Trie
The source-side trie (or source trie) is designed

to facilitate efficient lookup of grammar rules by
source side, and to allow us to completely specify a
matching set of rule with a single integer index into
the trie. We store the source sides {αi} of a grammar
in a downward-linking trie, i.e. each trie node main-
tains a record of its children. The trie is packed into
an array of 32-bit integers. Figure 1 illustrates the
composition of a node in the source-side trie. All
information regarding the node is stored in a con-
tiguous block of integers, and decomposes into two
parts: a linking block and a rule block.

The linking block stores the links to the child trie
nodes. It consists of an integer n, the number of chil-
dren, and n blocks of two integers each, containing
the symbol id aj leading to the child and the child
node’s address sj (as an index into the source-side
array). The children in the link block are sorted by
symbol id, allowing for a lookup via binary or inter-
polation search.

The rule block stores all information necessary to
reconstruct the rules that share the source side that
led to the current source trie node. It stores the num-
ber of rules, m, and then a tuple of three integers
for each of the m rules: we store the symbol id of
the left-hand side, an index into the target-side trie
and a data block id. The rules in the data block are
initially in an arbitrary order, but are sorted by ap-
plication cost upon loading.

2.1.2 Target-Side Trie
The target-side trie (or target trie) is designed to

enable us to uniquely identify a target side γi with a
single pointer into the trie, as well as to exploit re-
dundancies in the target side string. Like the source
trie, it is stored as an array of integers. However,
the target trie is a reversed, or upward-linking trie:
a trie node retains a link to its parent, as well as the
symbol id labeling said link.

As illustrated in Figure 1, the target trie is ac-
cessed by reading an array index from the source
trie, pointing to a trie node at depth d. We then fol-
low the parent links to the trie root, accumulating
target side symbols gj into a target side string gd

1 as
we go along. In order to match this traversal, the tar-
get strings are entered into the trie in reverse order,
i.e. last word first. In order to determine d from a

284

children

rules

child symbol

child address

rule left-hand side

target address

data block id

n ×

m ×

aj

sj+1

Cj

tj
bj

...
...

n

m

..
..

..

parent symbol

parent address

gj

tj-1

...
...

features

feature id

feature value
n ×

fj

vj
...

n

..
...

Feature block
index

Feature byte
buffer

Target trie
array

Source trie
array

fj

...
...

Quantization
bj

...
...

fj
qj

Figure 1: An illustration of our packed grammar data structures. The source sides of the grammar rules are
stored in a packed trie. Each node may contain n children and the symbols linking to them, and m entries
for rules that share the same source side. Each rule entry links to a node in the target-side trie, where the full
target string can be retrieved by walking up the trie until the root is reached. The rule entries also contain
a data block id, which identifies feature data attached to the rule. The features are encoded according to a
type/quantization specification and stored as variable-length blocks of data in a byte buffer.

pointer into the target trie, we maintain an offset ta-
ble in which we keep track of where each new trie
level begins in the array. By first searching the offset
table, we can determine d, and thus know how much
space to allocate for the complete target side string.

To further benefit from the overlap there may be
among the target sides in the grammar, we drop the
nonterminal labels from the target string prior to in-
serting them into the trie. For richly labeled gram-
mars, this collapses all lexically identical target sides
that share the same nonterminal reordering behavior,
but vary in nonterminal labels into a single path in
the trie. Since the nonterminal labels are retained in
the rules’ source sides, we do not lose any informa-
tion by doing this.

2.1.3 Features and Other Data

We designed the data format for the grammar
rules’ feature values to be easily extended to include
other information that we may want to attach to a
rule, such as word alignments, or locations of occur-
rences in the training data. In order to that, each rule
ri has a unique block id bi associated with it. This
block id identifies the information associated with

the rule in every attached data store. All data stores
are implemented as memory-mapped byte buffers
that are only loaded into memory when actually re-
quested by the decoder. The format for the feature
data is detailed in the following.

The rules’ feature values are stored as sparse fea-
tures in contiguous blocks of variable length in a
byte buffer. As shown in Figure 1, a lookup table
is used to map the bi to the index of the block in the
buffer. Each block is structured as follows: a sin-
gle integer, n, for the number of features, followed
by n feature entries. Each feature entry is led by an
integer for the feature id fj , and followed by a field
of variable length for the feature value vj . The size
of the value is determined by the type of the feature.
Joshua maintains a quantization configuration which
maps each feature id to a type handler or quantizer.
After reading a feature id from the byte buffer, we
retrieve the responsible quantizer and use it to read
the value from the byte buffer.

Joshua’s packed grammar format supports Java’s
standard primitive types, as well as an 8-bit quan-
tizer. We chose 8 bit as a compromise between
compression, value decoding speed and transla-

285

Grammar Format Memory

Hiero (43M rules)
Baseline 13.6G
Packed 1.8G

Syntax (200M rules)
Baseline 99.5G
Packed 9.8G

Packed 8-bit 5.8G

Table 1: Decoding-time memory use for the packed
grammar versus the standard grammar format. Even
without lossy quantization the packed grammar rep-
resentation yields significant savings in memory
consumption. Adding 8-bit quantization for the real-
valued features in the grammar reduces even large
syntactic grammars to a manageable size.

tion performance (Federico and Bertoldi, 2006).
Our quantization approach follows Federico and
Bertoldi (2006) and Heafield (2011) in partitioning
the value histogram into 256 equal-sized buckets.
We quantize by mapping each feature value onto the
weighted average of its bucket. Joshua allows for an
easily per-feature specification of type. Quantizers
can be share statistics across multiple features with
similar value distributions.

2.2 Experiments

We assess the packed grammar representation’s
memory efficiency and impact on the decoding
speed on the WMT12 French-English task. Ta-
ble 1 shows a comparison of the memory needed
to store our WMT12 French-English grammars at
runtime. We can observe a substantial decrease in
memory consumption for both Hiero-style gram-
mars and the much larger syntactically annotated
grammars. Even without any feature value quantiza-
tion, the packed format achieves an 80% reduction
in space requirements. Adding 8-bit quantization
for the log-probability features yields even smaller
grammar sizes, in this case a reduction of over 94%.

In order to avoid costly repeated retrievals of indi-
vidual feature values of rules, we compute and cache
the stateless application cost for each grammar rule
at grammar loading time. This, alongside with a lazy
approach to rule lookup allows us to largely avoid
losses in decoding speed.

Figure shows a translation progress graph for the
WMT12 French-English development set. Both sys-

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

Se
nt

en
ce

s
Tr

an
sl

at
ed

Seconds Passed

Standard
Packed

Figure 2: A visualization of the loading and decod-
ing speed on the WMT12 French-English develop-
ment set contrasting the packed grammar represen-
tation with the standard format. Grammar loading
for the packed grammar representation is substan-
tially faster than that for the baseline setup. Even
with a slightly slower decoding speed (note the dif-
ference in the slopes) the packed grammar finishes
in less than half the time, compared to the standard
format.

tems load a Hiero-style grammar with 43 million
rules, and use 16 threads for parallel decoding. The
initial loading time for the packed grammar repre-
sentation is dramatically shorter than that for the
baseline setup (a total of 176 seconds for loading and
sorting the grammar, versus 1897 for the standard
format). Even though decoding speed is slightly
slower with the packed grammars (an average of 5.3
seconds per sentence versus 4.2 for the baseline), the
effective translation speed is more than twice that of
the baseline (1004 seconds to complete decoding the
2489 sentences, versus 2551 seconds with the stan-
dard setup).

3 J-PRO: Pairwise Ranking Optimization
in Joshua

Pairwise ranking optimization (PRO) proposed by
(Hopkins and May, 2011) is a new method for dis-
criminative parameter tuning in statistical machine
translation. It is reported to be more stable than the
popular MERT algorithm (Och, 2003) and is more
scalable with regard to the number of features. PRO
treats parameter tuning as an n-best list reranking
problem, and the idea is similar to other pairwise
ranking techniques like ranking SVM and IR SVMs

286

(Li, 2011). The algorithm can be described thusly:
Let h(c) = 〈w,Φ(c)〉 be the linear model score

of a candidate translation c, in which Φ(c) is the
feature vector of c and w is the parameter vector.
Also let g(c) be the metric score of c (without loss
of generality, we assume a higher score indicates a
better translation). We aim to find a parameter vector
w such that for a pair of candidates {ci, cj} in an n-
best list,

(h(ci)− h(cj))(g(ci)− g(cj)) =

〈w,Φ(ci)−Φ(cj)〉(g(ci)− g(cj)) > 0,

namely the order of the model score is consistent
with that of the metric score. This can be turned into
a binary classification problem, by adding instance

∆Φij = Φ(ci)−Φ(cj)

with class label sign(g(ci) − g(cj)) to the training
data (and symmetrically add instance

∆Φji = Φ(cj)−Φ(ci)

with class label sign(g(cj) − g(ci)) at the same
time), then using any binary classifier to find the w
which determines a hyperplane separating the two
classes (therefore the performance of PRO depends
on the choice of classifier to a large extent). Given
a training set with T sentences, there are O(Tn2)
pairs of candidates that can be added to the training
set, this number is usually much too large for effi-
cient training. To make the task more tractable, PRO
samples a subset of the candidate pairs so that only
those pairs whose metric score difference is large
enough are qualified as training instances. This fol-
lows the intuition that high score differential makes
it easier to separate good translations from bad ones.

3.1 Implementation
PRO is implemented in Joshua 4.0 named J-PRO.
In order to ensure compatibility with the decoder
and the parameter tuning module Z-MERT (Zaidan,
2009) included in all versions of Joshua, J-PRO is
built upon the architecture of Z-MERT with sim-
ilar usage and configuration files(with a few extra
lines specifying PRO-related parameters). J-PRO in-
herits Z-MERT’s ability to easily plug in new met-
rics. Since PRO allows using any off-the-shelf bi-
nary classifiers, J-PRO provides a Java interface that

enables easy plug-in of any classifier. Currently, J-
PRO supports three classifiers:

• Perceptron (Rosenblatt, 1958): the percep-
tron is self-contained in J-PRO, no external re-
sources required.

• MegaM (Daumé III and Marcu, 2006): the clas-
sifier used by Hopkins and May (2011).2

• Maximum entropy classifier (Manning and
Klein, 2003): the Stanford toolkit for maxi-
mum entropy classification.3

The user may specify which classifier he wants to
use and the classifier-specific parameters in the J-
PRO configuration file.

The PRO approach is capable of handling a large
number of features, allowing the use of sparse dis-
criminative features for machine translation. How-
ever, Hollingshead and Roark (2008) demonstrated
that naively tuning weights for a heterogeneous fea-
ture set composed of both dense and sparse features
can yield subpar results. Thus, to better handle the
relation between dense and sparse features and pro-
vide a flexible selection of training schemes, J-PRO
supports the following four training modes. We as-
sume M dense features and N sparse features are
used:

1. Tune the dense feature parameters only, just
like Z-MERT (M parameters to tune).

2. Tune the dense + sparse feature parameters to-
gether (M +N parameters to tune).

3. Tune the sparse feature parameters only with
the dense feature parameters fixed, and sparse
feature parameters scaled by a manually speci-
fied constant (N parameters to tune).

4. Tune the dense feature parameters and the scal-
ing factor for sparse features, with the sparse
feature parameters fixed (M+1 parameters to
tune).

J-PRO supports n-best list input with a sparse fea-
ture format which enumerates only the firing fea-
tures together with their values. This enables a more
compact feature representation when numerous fea-
tures are involved in training.

2hal3.name/megam
3nlp.stanford.edu/software

287

0 10 20 30
0

10

20

30

40

Iteration

B
L

E
U

Dev set MT03 (10 features)

Percep

MegaM

Max−Ent

0 10 20 30
0

10

20

30

40

Iteration

B
L

E
U

Test set MT04(10 features)

Percep

MegaM

Max−Ent

0 10 20 30
0

10

20

30

40

Iteration

B
L

E
U

Test set MT05(10 features)

Percep

MegaM

Max−Ent

0 10 20 30
0

10

20

30

40

Iteration

B
L

E
U

Dev set MT03 (1026 features)

Percep

MegaM

Max−Ent

0 10 20 30
0

10

20

30

40

Iteration

B
L

E
U

Test set MT04(1026 features)

Percep

MegaM

Max−Ent

0 10 20 30
0

10

20

30

40

Iteration

B
L

E
U

Test set MT05(1026 features)

Percep

MegaM

Max−Ent

Figure 3: Experimental results on the development and test sets. The x-axis is the number of iterations (up to
30) and the y-axis is the BLEU score. The three curves in each figure correspond to three classifiers. Upper
row: results trained using only dense features (10 features); Lower row: results trained using dense+sparse
features (1026 features). Left column: development set (MT03); Middle column: test set (MT04); Right
column: test set (MT05).

Datasets Z-MERT
J-PRO

Percep MegaM Max-Ent
Dev (MT03) 32.2 31.9 32.0 32.0
Test (MT04) 32.6 32.7 32.7 32.6
Test (MT05) 30.7 30.9 31.0 30.9

Table 2: Comparison between the results given by Z-MERT and J-PRO (trained with 10 features).

3.2 Experiments

We did our experiments using J-PRO on the NIST
Chinese-English data, and BLEU score was used as
the quality metric for experiments reported in this
section.4 The experimental settings are as the fol-
lowing:

Datasets: MT03 dataset (998 sentences) as devel-
opment set for parameter tuning, MT04 (1788 sen-
tences) and MT05 (1082 sentences) as test sets.

Features: Dense feature set include the 10 regular
features used in the Hiero system; Sparse feature set

4We also experimented with other metrics including TER,
METEOR and TER-BLEU. Similar trends as reported in this
section were observed. These results are omitted here due to
limited space.

includes 1016 target-side rule POS bi-gram features
as used in (Li et al., 2010b).

Classifiers: Perceptron, MegaM and Maximum
entropy.

PRO parameters: Γ = 8000 (number of candidate
pairs sampled uniformly from the n-best list), α = 1
(sample acceptance probability), Ξ = 50 (number of
top candidates to be added to the training set).

Figure 3 shows the BLEU score curves on the
development and test sets as a function of itera-
tions. The upper and lower rows correspond to
the results trained with 10 dense features and 1026
dense+sparse features respectively. We intentionally
selected very bad initial parameter vectors to verify
the robustness of the algorithm. It can be seen that

288

with each iteration, the BLEU score increases mono-
tonically on both development and test sets, and be-
gins to converge after a few iterations. When only 10
features are involved, all classifiers give almost the
same performance. However, when scaled to over a
thousand features, the maximum entropy classifier
becomes unstable and the curve fluctuates signifi-
cantly. In this situation MegaM behaves well, but
the J-PRO built-in perceptron gives the most robust
performance.

Table 2 compares the results of running Z-MERT
and J-PRO. Since MERT is not able to handle nu-
merous sparse features, we only report results for
the 10-feature setup. The scores for both setups
are quite close to each other, with Z-MERT doing
slightly better on the development set but J-PRO
yielding slightly better performance on the test set.

4 Thrax: Grammar Extraction at Scale

4.1 Translation Grammars

In previous years, our grammar extraction methods
were limited by either memory-bounded extractors.
Moving towards a parallelized grammar extraction
process, we switched from Joshua’s formerly built-
in extraction module to Thrax for WMT11. How-
ever, we were limited to a simple pseudo-distributed
Hadoop setup. In a pseudo-distributed cluster, all
tasks run on separate cores on the same machine
and access the local file system simultaneously, in-
stead of being distributed over different physical ma-
chines and harddrives. This setup proved unreliable
for larger extractions, and we were forced to reduce
the amount of data that we used to train our transla-
tion models.

For this year, however, we had a permanent clus-
ter at our disposal, which made it easy to extract
grammars from all of the available WMT12 data.
We found that on a properly distributed Hadoop
setup Thrax was able to extract both Hiero gram-
mars and the much larger SAMT grammars on the
complete WMT12 training data for all tested lan-
guage pairs. The runtimes and resulting (unfiltered)
grammar sizes for each language pair are shown in
Table 3 (for Hiero) and Table 4 (for SAMT).

Language Pair Time Rules
Cs – En 4h41m 133M
De – En 5h20m 219M
Fr – En 16h47m 374M
Es – En 16h22m 413M

Table 3: Extraction times and grammar sizes for Hi-
ero grammars using the Europarl and News Com-
mentary training data for each listed language pair.

Language Pair Time Rules
Cs – En 7h59m 223M
De – En 9h18m 328M
Fr – En 25h46m 654M
Es – En 28h10m 716M

Table 4: Extraction times and grammar sizes for
the SAMT grammars using the Europarl and News
Commentary training data for each listed language
pair.

4.2 Paraphrase Extraction

Recently English-to-English text generation tasks
have seen renewed interest in the NLP commu-
nity. Paraphrases are a key component in large-
scale state-of-the-art text-to-text generation systems.
We present an extended version of Thrax that im-
plements distributed, Hadoop-based paraphrase ex-
traction via the pivoting approach (Bannard and
Callison-Burch, 2005). Our toolkit is capable of
extracting syntactically informed paraphrase gram-
mars at scale. The paraphrase grammars obtained
with Thrax have been shown to achieve state-of-the-
art results on text-to-text generation tasks (Ganitke-
vitch et al., 2011).

For every supported translation feature, Thrax im-
plements a corresponding pivoted feature for para-
phrases. The pivoted features are set up to be aware
of the prerequisite translation features they are de-
rived from. This allows Thrax to automatically de-
tect the needed translation features and spawn the
corresponding map-reduce passes before the pivot-
ing stage takes place. In addition to features use-
ful for translation, Thrax also offers a number of
features geared towards text-to-text generation tasks
such as sentence compression or text simplification.

Due to the long tail of translations in unpruned

289

Source Bitext Sentences Words Pruning Rules
Fr – En 1.6M 45M p(e1|e2), p(e2|e1) > 0.001 49M

{Da + Sv + Cs + De + Es + Fr} – En 9.5M 100M
p(e1|e2), p(e2|e1) > 0.02 31M
p(e1|e2), p(e2|e1) > 0.001 91M

Table 5: Large paraphrase grammars extracted from EuroParl data using Thrax. The sentence and word
counts refer to the English side of the bitexts used.

translation grammars and the combinatorial effect
of pivoting, paraphrase grammars can easily grow
very large. We implement a simple feature-level
pruning approach that allows the user to specify up-
per or lower bounds for any pivoted feature. If a
paraphrase rule is not within these bounds, it is dis-
carded. Additionally, pivoted features are aware of
the bounding relationship between their value and
the value of their prerequisite translation features
(i.e. whether the pivoted feature’s value can be guar-
anteed to never be larger than the value of the trans-
lation feature). Thrax uses this knowledge to dis-
card overly weak translation rules before the pivot-
ing stage, leading to a substantial speedup in the ex-
traction process.

Table 5 gives a few examples of large paraphrase
grammars extracted from WMT training data. With
appropriate pruning settings, we are able to obtain
paraphrase grammars estimated over bitexts with
more than 100 million words.

5 Additional New Features

• With the help of the respective original au-
thors, the language model implementations by
Heafield (2011) and Pauls and Klein (2011)
have been integrated with Joshua, dropping
support for the slower and more difficult to
compile SRILM toolkit (Stolcke, 2002).

• We modified Joshua so that it can be used as
a parser to analyze pairs of sentences using a
synchronous context-free grammar. We imple-
mented the two-pass parsing algorithm of Dyer
(2010).

6 Conclusion

We present a new iteration of the Joshua machine
translation toolkit. Our system has been extended to-
wards efficiently supporting large-scale experiments

in parsing-based machine translation and text-to-text
generation: Joshua 4.0 supports compactly repre-
sented large grammars with its packed grammars,
as well as large language models via KenLM and
BerkeleyLM.We include an implementation of PRO,
allowing for stable and fast tuning of large feature
sets, and extend our toolkit beyond pure translation
applications by extending Thrax with a large-scale
paraphrase extraction module.

Acknowledgements This research was supported
by in part by the EuroMatrixPlus project funded
by the European Commission (7th Framework Pro-
gramme), and by the NSF under grant IIS-0713448.
Opinions, interpretations, and conclusions are the
authors’ alone.

References
Colin Bannard and Chris Callison-Burch. 2005. Para-

phrasing with bilingual parallel corpora. In Proceed-
ings of ACL.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

Hal Daumé III and Daniel Marcu. 2006. Domain adap-
tation for statistical classifiers. Journal of Artificial
Intelligence Research, 26(1):101–126.

Chris Dyer. 2010. Two monolingual parses are bet-
ter than one (synchronous parse). In Proceedings of
HLT/NAACL, pages 263–266. Association for Compu-
tational Linguistics.

Marcello Federico and Nicola Bertoldi. 2006. How
many bits are needed to store probabilities for phrase-
based translation? In Proceedings of WMT06, pages
94–101. Association for Computational Linguistics.

Juri Ganitkevitch, Chris Callison-Burch, Courtney
Napoles, and Benjamin Van Durme. 2011. Learning
sentential paraphrases from bilingual parallel corpora
for text-to-text generation. In Proceedings of EMNLP.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguistics.

290

Kristy Hollingshead and Brian Roark. 2008. Rerank-
ing with baseline system scores and ranks as features.
Technical report, Center for Spoken Language Under-
standing, Oregon Health & Science University.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of EMNLP.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-
itkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren
Thornton, Jonathan Weese, and Omar Zaidan. 2009.
Joshua: An open source toolkit for parsing-based ma-
chine translation. In Proc. WMT, Athens, Greece,
March.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-
itkevitch, Ann Irvine, Sanjeev Khudanpur, Lane
Schwartz, Wren N.G. Thornton, Ziyuan Wang,
Jonathan Weese, and Omar F. Zaidan. 2010a. Joshua
2.0: a toolkit for parsing-based machine translation
with syntax, semirings, discriminative training and
other goodies. In Proc. WMT.

Zhifei Li, Ziyuan Wang, and Sanjeev Khudanpur. 2010b.
Unsupervised discriminative language model training
for machine translation using simulated confusion sets.
In Proceedings of COLING, Beijing, China, August.

Hang Li. 2011. Learning to Rank for Information Re-
trieval and Natural Language Processing. Morgan &
Claypool Publishers.

Chris Manning and Dan Klein. 2003. Optimization,
maxent models, and conditional estimation without
magic. In Proceedings of HLT/NAACL, pages 8–8. As-
sociation for Computational Linguistics.

Franz Och. 2003. Minimum error rate training in statis-
tical machine translation. In Proceedings of the 41rd
Annual Meeting of the Association for Computational
Linguistics (ACL-2003), Sapporo, Japan.

Adam Pauls and Dan Klein. 2011. Faster and smaller n-
gram language models. In Proceedings of ACL, pages
258–267, Portland, Oregon, USA, June. Association
for Computational Linguistics.

Frank Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65(6):386–408.

Andreas Stolcke. 2002. Srilm - an extensible language
modeling toolkit. In Seventh International Conference
on Spoken Language Processing.

Jonathan Weese, Juri Ganitkevitch, Chris Callison-
Burch, Matt Post, and Adam Lopez. 2011. Joshua
3.0: Syntax-based machine translation with the Thrax
grammar extractor. In Proceedings of WMT11.

Omar F. Zaidan. 2009. Z-MERT: A fully configurable
open source tool for minimum error rate training of
machine translation systems. The Prague Bulletin of
Mathematical Linguistics, 91:79–88.

Richard Zens and Hermann Ney. 2007. Efficient phrase-
table representation for machine translation with appli-
cations to online MT and speech translation. In Pro-
ceedings of HLT/NAACL, pages 492–499, Rochester,
New York, April. Association for Computational Lin-
guistics.

291

