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Abstract

Adding syntactic labels to synchronous
context-free translation rules can improve
performance, but labeling with phrase struc-
ture constituents, as in GHKM (Galley et al.,
2004), excludes potentially useful translation
rules. SAMT (Zollmann and Venugopal,
2006) introduces heuristics to create new
non-constituent labels, but these heuristics
introduce many complex labels and tend to
add rarely-applicable rules to the translation
grammar. We introduce a labeling scheme
based on categorial grammar, which allows
syntactic labeling of many rules with a mini-
mal, well-motivated label set. We show that
our labeling scheme performs comparably to
SAMT on an Urdu–English translation task,
yet the label set is an order of magnitude
smaller, and translation is twice as fast.

1 Introduction

The Hiero model of Chiang (2007) popularized
the usage of synchronous context-free grammars
(SCFGs) for machine translation. SCFGs model
translation as a process of isomorphic syntactic
derivation in the source and target language. But the
Hiero model is formally, not linguistically syntactic.
Its derivation trees use only a single non-terminal la-
bel X , carrying no linguistic information. Consider
Rule 1.

X → 〈 maison ; house 〉 (1)

We can add syntactic information to the SCFG
rules by parsing the parallel training data and pro-
jecting parse tree labels onto the spans they yield and

their translations. For example, if house was parsed
as a noun, we could rewrite Rule 1 as

N → 〈 maison ; house 〉

But we quickly run into trouble: how should we
label a rule that translates pour l’établissement de
into for the establishment of? There is no phrase
structure constituent that corresponds to this English
fragment. This raises a model design question: what
label do we assign to spans that are natural trans-
lations of each other, but have no natural labeling
under a syntactic parse? One possibility would be
to discard such translations from our model as im-
plausible. However, such non-compositional trans-
lations are important in translation (Fox, 2002), and
they have been repeatedly shown to improve trans-
lation performance (Koehn et al., 2003; DeNeefe et
al., 2007).

Syntax-Augmented Machine Translation (SAMT;
Zollmann and Venugopal, 2006) solves this prob-
lem with heuristics that create new labels from the
phrase structure parse: it labels for the establish-
ment of as IN+NP+IN to show that it is the con-
catenation of a noun phrase with a preposition on
either side. While descriptive, this label is unsatis-
fying as a concise description of linguistic function,
fitting uneasily alongside more natural labels in the
phrase structure formalism. SAMT introduces many
thousands of such labels, most of which are seen
very few times. While these heuristics are effective
(Zollmann et al., 2008), they inflate grammar size,
hamper effective parameter estimation due to feature
sparsity, and slow translation speed.

Our objective is to find a syntactic formalism that
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enables us to label most translation rules without re-
lying on heuristics. Ideally, the label should be small
in order to improve feature estimation and reduce
translation time. Furthering an insight that informs
SAMT, we show that combinatory categorial gram-
mar (CCG) satisfies these requirements.

Under CCG, for the establishment of is labeled
with ((S\NP)\(S\NP))/NP. This seems complex, but
it describes exactly how the fragment should com-
bine with other English words to create a complete
sentence in a linguistically meaningful way. We
show that CCG is a viable formalism to add syntax
to SCFG-based translation.

• We introduce two models for labeling SCFG
rules. One uses labels from a 1-best CCG parse
tree of training data; the second uses the top la-
bels in each cell of a CCG parse chart.

• We show that using 1-best parses performs as
well as a syntactic model using phrase structure
derivations.

• We show that using chart cell labels per-
forms almost as well than SAMT, but the non-
terminal label set is an order of magnitude
smaller and translation is twice as fast.

2 Categorial grammar

Categorial grammar (CG) (Adjukiewicz, 1935; Bar-
Hillel et al., 1964) is a grammar formalism in
which words are assigned grammatical types, or cat-
egories. Once categories are assigned to each word
of a sentence, a small set of universal combinatory
rules uses them to derive a sentence-spanning syn-
tactic structure.

Categories may be either atomic, like N, VP, S,
and other familiar types, or they may be complex
function types. A function type looks like A/B and
takes an argument of type B and returns a type A.
The categories A and B may themselves be either
primitives or functions. A lexical item is assigned a
function category when it takes an argument — for
example, a verb may be function that needs to be
combined with its subject and object, or an a adjec-
tive may be a function that takes the noun it modifies
as an argument.

Lexical item Category
and conj

cities NP
in (NP\NP)/NP

own (S\NP)/NP
properties NP

they NP
various NP/NP
villages NP

Table 1: An example lexicon, mapping words to cat-
egories.

We can combine two categories with function ap-
plication. Formally, we write

X/Y Y ⇒ X (2)

to show that a function type may be combined with
its argument type to produce the result type. Back-
ward function application also exists, where the ar-
gument occurs to the left of the function.

Combinatory categorial grammar (CCG) is an ex-
tension of CG that includes more combinators (op-
erations that can combine categories). Steedman
and Baldridge (2011) give an excellent overview of
CCG.

As an example, suppose we want to analyze the
sentence “They own properties in various cities and
villages” using the lexicon shown in Table 1. We as-
sign categories according to the lexicon, then com-
bine the categories using function application and
other combinators to get an analysis of S for the
complete sentence. Figure 1 shows the derivation.

As a practical matter, very efficient CCG parsers
are available (Clark and Curran, 2007). As shown
by Fowler and Penn (2010), in many cases CCG is
context-free, making it an ideal fit for our problem.

2.1 Labels for phrases
Consider the German–English phrase pair der große
Mann – the tall man. It is easily labeled as an NP
and included in the translation table. By contrast,
der große– the tall, doesn’t typically correspond to
a complete subtree in a phrase structure parse. Yet
translating the tall is likely to be more useful than
translating the tall man, since it is more general—it
can be combined with any other noun translation.
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They own properties in various cities and villages

NP (S\NP )/NP NP (NP\NP )/NP NP/NP NP conj NP
> <Φ>

NP NP\NP
<

NP
>

NP\NP
<

NP
>

S\NP
<

S

Figure 1: An example CCG derivation for the sentence “They own properties in various cities and villages”
using the lexicon from Table 1. Φ indicates a conjunction operation; > and < are forward and backward
function application, respectively.

Using CG-style labels with function types, we can
assign the type (for example) NP/N to the tall to
show that it can be combined with a noun on its right
to create a complete noun phrase.1 In general, CG
can produce linguistically meaningful labels of most
spans in a sentence simply as a matter of course.

2.2 Minimal, well-motivated label set

By allowing slashed categories with CG, we in-
crease the number of labels allowed. Despite the in-
crease in the number of labels, CG is advantageous
for two reasons:

1. Our labels are derived from CCG derivations,
so phrases with slashed labels represent well-
motivated, linguistically-informed derivations,
and the categories can be naturally combined.

2. The set of labels is small, relative to SAMT —
it’s restricted to the labels seen in CCG parses
of the training data.

In short, using CG labels allows us to keep more
linguistically-informed syntactic rules without mak-
ing the set of syntactic labels too big.

3 Translation models

3.1 Extraction from parallel text

To extract SCFG rules, we start with a heuristic to
extract phrases from a word-aligned sentence pair

1We could assign NP/N to the determiner the and N/N to the
adjective tall, then combine those two categories using function
composition to get a category NP/N for the two words together.

For
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Figure 2: A word-aligned sentence pair fragment,
with a box indicating a consistent phrase pair.

(Tillmann, 2003). Figure 2 shows a such a pair, with
a consistent phrase pair inside the box. A phrase
pair (f, e) is said to be consistent with the alignment
if none of the words of f are aligned outside the
phrase e, and vice versa – that is, there are no align-
ment points directly above, below, or to the sides of
the box defined by f and e.

Given a consistent phrase pair, we can immedi-
ately extract the rule

X → 〈f, e〉 (3)

as we would in a phrase-based MT system. How-
ever, whenever we find a consistent phrase pair that
is a sub-phrase of another, we may extract a hierar-
chical rule by treating the inner phrase as a gap in
the larger phrase. For example, we may extract the
rule

X → 〈 Pour X ; For X 〉 (4)

from Figure 3.
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Figure 3: A consistent phrase pair with a sub-phrase
that is also consistent. We may extract a hierarchical
SCFG rule from this training example.

The focus of this paper is how to assign labels
to the left-hand non-terminal X and to the non-
terminal gaps on the right-hand side. We discuss five
models below, of which two are novel CG-based la-
beling schemes.

3.2 Baseline: Hiero

Hiero (Chiang, 2007) uses the simplest labeling pos-
sible: there is only one non-terminal symbol, X , for
all rules. Its advantage over phrase-based translation
in its ability to model phrases with gaps in them,
enabling phrases to reorder subphrases. However,
since there’s only one label, there’s no way to in-
clude syntactic information in its translation rules.

3.3 Phrase structure parse tree labeling

One first step for adding syntactic information is to
get syntactic labels from a phrase structure parse
tree. For each word-aligned sentence pair in our
training data, we also include a parse tree of the tar-
get side.

Then we can assign syntactic labels like this: for
each consistent phrase pair (representing either the
left-hand non-terminal or a gap in the right hand
side) we see if the target-language phrase is the exact
span of some subtree of the parse tree.

If a subtree exactly spans the phrase pair, we can
use the root label of that subtree to label the non-
terminal symbol. If there is no such subtree, we
throw away any rules derived from the phrase pair.

As an example, suppose the English side of the
phrase pair in Figure 3 is analyzed as

PP

IN

For

NP

JJ

most

NN

people

Then we can assign syntactic labels to Rule 4 to pro-
duce

PP → 〈 Pour NP ; For NP 〉 (5)

The rules extracted by this scheme are very sim-
ilar to those produced by GHKM (Galley et al.,
2004), in particular resulting in the “composed
rules” of Galley et al. (2006), though we use sim-
pler heuristics for handling of unaligned words and
scoring in order to bring the model in line with both
Hiero and SAMT baselines. Under this scheme we
throw away a lot of useful translation rules that don’t
translate exact syntactic constituents. For example,
we can’t label

X → 〈 Pour la majorité des ; For most 〉 (6)

because no single node exactly spans For most: the
PP node includes people, and the NP node doesn’t
include For.

We can alleviate this problem by changing the
way we get syntactic labels from parse trees.

3.4 SAMT

The Syntax-Augmented Machine Translation
(SAMT) model (Zollmann and Venugopal, 2006)
extracts more rules than the other syntactic model
by allowing different labels for the rules. In SAMT,
we try several different ways to get a label for a
span, stopping the first time we can assign a label:

• As in simple phrase structure labeling, if a sub-
tree of the parse tree exactly spans a phrase, we
assign that phrase the subtree’s root label.

• If a phrase can be covered by two adjacent sub-
trees with labels A and B, we assign their con-
catenation A+B.

• If a phrase spans part of a subtree labeled A that
could be completed with a subtree B to its right,
we assign A/B.
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• If a phrase spans part of a subtree A but is miss-
ing a B to its left, we assign A\B.

• Finally, if a phrase spans three adjacent sub-
trees with labels A, B, and C, we assign
A+B+C.

Only if all of these assignments fail do we throw
away the potential translation rule.

Under SAMT, we can now label Rule 6. For is
spanned by an IN node, and most is spanned by a JJ
node, so we concatenate the two and label the rule
as

IN+JJ→ 〈 Pour la majorité des ; For most 〉 (7)

3.5 CCG 1-best derivation labeling
Our first CG model is similar to the first phrase struc-
ture parse tree model. We start with a word-aligned
sentence pair, but we parse the target sentence using
a CCG parser instead of a phrase structure parser.

When we extract a rule, we see if the consistent
phrase pair is exactly spanned by a category gener-
ated in the 1-best CCG derivation of the target sen-
tence. If there is such a category, we assign that cat-
egory label to the non-terminal. If not, we throw
away the rule.

To continue our extended example, suppose the
English side of Figure 3 was analyzed by a CCG
parser to produce

For most people

(S/S)/N N/N N
>

N
>

S/S

Then just as in the phrase structure model, we
project the syntactic labels down onto the extractable
rule yielding

S/S → 〈 Pour N ; For N 〉 (8)

This does not take advantage of CCG’s ability to
label almost any fragment of language: the frag-
ments with labels in any particular sentence depend
on the order that categories were combined in the
sentence’s 1-best derivation. We can’t label Rule 6,
because no single category spanned For most in the
derivation. In the next model, we increase the num-
ber of spans we can label.

S/S

S/S N

(S/S)/N N/N N

For peoplemost

Figure 4: A portion of the parse chart for a sentence
starting with “For most people . . . .” Note that the
gray chart cell is not included in the 1-best derivation
of this fragment in Section 3.5.

3.6 CCG parse chart labeling
For this model, we do not use the 1-best CCG deriva-
tion. Instead, when parsing the target sentence, for
each cell in the parse chart, we read the most likely
label according to the parsing model. This lets us as-
sign a label for almost any span of the sentence just
by reading the label from the parse chart.

For example, Figure 4 represents part of a CCG
parse chart for our example fragment of “For most
people.” Each cell in the chart shows the most prob-
able label for its span. The white cells of the chart
are in fact present in the 1-best derivation, which
means we could extract Rule 8 just as in the previous
model.

But the 1-best derivation model cannot label Rule
6, and this model can. The shaded chart cell in Fig-
ure 4 holds the most likely category for the span For
most. So we assign that label to the X:

S/S → 〈 Pour la majorité des ; For most 〉 (9)

By including labels from cells that weren’t used
in the 1-best derivation, we can greatly increase the
number of rules we can label.

4 Comparison of resulting grammars

4.1 Effect of grammar size and label set on
parsing efficiency

There are sound theoretical reasons for reducing the
number of non-terminal labels in a grammar. Trans-
lation with a synchronous context-free grammar re-
quires first parsing with the source-language projec-
tion of the grammar, followed by intersection of the
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target-language projection of the resulting grammar
with a language model. While there are many possi-
ble algorithms for these operations, they all depend
on the size of the grammar.

Consider for example the popular cube pruning
algorithm of Chiang (2007), which is a simple ex-
tension of CKY. It works by first constructing a set
of items of the form 〈A, i, j〉, where each item corre-
sponds to (possibly many) partial analyses by which
nonterminal A generates the sequence of words from
positions i through j of the source sentence. It then
produces an augmented set of items 〈A, i, j, u, v〉, in
which items of the first type are augmented with left
and right language model states u and v. In each
pass, the number of items is linear in the number of
nonterminal symbols of the grammar. This observa-
tion has motivated work in grammar transformations
that reduce the size of the nonterminal set, often re-
sulting in substantial gains in parsing or translation
speed (Song et al., 2008; DeNero et al., 2009; Xiao
et al., 2009).

More formally, the upper bound on parsing com-
plexity is always at least linear in the size of the
grammar constant G, where G is often loosely de-
fined as a grammar constant; Iglesias et al. (2011)
give a nice analysis of the most common translation
algorithms and their dependence on G. Dunlop et
al. (2010) provide a more fine-grained analysis of G,
showing that for a variety of implementation choices
that it depends on either or both the number of rules
in the grammar and the number of nonterminals in
the grammar. Though these are worst-case analyses,
it should be clear that grammars with fewer rules or
nonterminals can generally be processed more effi-
ciently.

4.2 Number of rules and non-terminals
Table 2 shows the number of rules we can extract
under various labeling schemes. The rules were ex-
tracted from an Urdu–English parallel corpus with
202,019 translations, or almost 2 million words in
each language.

As we described before, moving from the phrase-
structure syntactic model to the extended SAMT
model vastly increases the number of translation
rules — from about 7 million to 40 million rules.
But the increased rule coverage comes at a cost: the
non-terminal set has increased in size from 70 (the

Model Rules NTs
Hiero 4,171,473 1

Syntax 7,034,393 70
SAMT 40,744,439 18,368

CG derivations 8,042,683 505
CG parse chart 28,961,161 517

Table 2: Number of translation rules and non-
terminal labels in an Urdu–English grammar under
various models.

size of the set of Penn Treebank tags) to over 18,000.
Comparing the phrase structure syntax model to

the 1-best CCG derivation model, we see that the
number of extracted rules increases slightly, and the
grammar uses a set of about 500 non-terminal labels.
This does not seem like a good trade-off; since we
are extracting from the 1-best CCG derivation there
really aren’t many more rules we can label than with
a 1-best phrase structure derivation.

But when we move to the full CCG parse chart
model, we see a significant difference: when read-
ing labels off of the entire parse chart, instead of
the 1-best derivation, we don’t see a significant in-
crease in the non-terminal label set. That is, most
of the labels we see in parse charts of the train-
ing data already show up in the top derivations: the
complete chart doesn’t contain many new labels that
have never been seen before.

But by using the chart cells, we are able to as-
sign syntactic information to many more translation
rules: over 28 million rules, for a grammar about 3

4
the size of SAMT’s. The parse chart lets us extract
many more rules without significantly increasing the
size of the syntactic label set.

4.3 Sparseness of nonterminals

Examining the histograms in Figure 5 gives us a
different view of the non-terminal label sets in our
models. In each histogram, the horizontal axis mea-
sures label frequency in the corpus. The height of
each bar shows the number of non-terminals with
that frequency.

For the phrase structure syntax model, we see
there are maybe 20 labels out of 70 that show up
on rules less than 1000 times. All the other labels
show up on very many rules.
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Figure 5: Histograms of label frequency for each model, illustrating the sparsity of each model.

Moving to SAMT, with its heuristically-defined
labels, shows a very different story. Not only does
the model have over 18,000 non-terminal labels, but
thousands of them show up on fewer than 10 rules
apiece. If we look at the rare label types, we see that
a lot of them are improbable three way concatena-
tions A+B+C.

The two CCG models have similar sparseness
profiles. We do see some rare labels occurring only
a few times in the grammars, but the number of
singleton labels is an order of magnitude smaller
than SAMT. Most of the CCG labels show up in
the long tail of very common occurrences. Interest-
ingly, when we move to extracting labels from parse
charts rather than derivations, the number of labels
increases only slightly. However, we also obtain a
great deal more evidence for each observed label,
making estimates more reliable.

5 Experiments

5.1 Data

We tested our models on an Urdu–English transla-
tion task, in which syntax-based systems have been
quite effective (Baker et al., 2009; Zollmann et al.,
2008). The training corpus was the National Insti-
tute of Standards and Technology Open Machine
Translation 2009 Evaluation (NIST Open MT09).
According to the MT09 Constrained Training Con-

ditions Resources list2 this data includes NIST Open
MT08 Urdu Resources3 and the NIST Open MT08
Current Test Set Urdu–English4. This gives us
202,019 parallel translations, for approximately 2
million words of training data.

5.2 Experimental design

We used the scripts included with the Moses MT
toolkit (Koehn et al., 2007) to tokenize and nor-
malize the English data. We used a tokenizer and
normalizer developed at the SCALE 2009 workshop
(Baker et al., 2009) to preprocess the Urdu data. We
used GIZA++ (Och and Ney, 2000) to perform word
alignments.

For phrase structure parses of the English data, we
used the Berkeley parser (Petrov and Klein, 2007).
For CCG parses, and for reading labels out of a parse
chart, we used the C&C parser (Clark and Curran,
2007).

After aligning and parsing the training data, we
used the Thrax grammar extractor (Weese et al.,
2011) to extract all of the translation grammars.

We used the same feature set in all the transla-
tion grammars. This includes, for each rule C →
〈f ; e〉, relative-frequency estimates of the probabil-

2http://www.itl.nist.gov/iad/mig/tests/
mt/2009/MT09_ConstrainedResources.pdf

3LDC2009E12
4LDC2009E11
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Model BLEU sec./sent.
Hiero 25.67 (0.9781) 0.05

Syntax 27.06 (0.9703) 3.04
SAMT 28.06 (0.9714) 63.48

CCG derivations 27.3 (0.9770) 5.24
CCG parse chart 27.64 (0.9673) 33.6

Table 3: Results of translation experiments on
Urdu–English. Higher BLEU scores are better.
BLEU’s brevity penalty is reported in parentheses.

ities p(f |A), p(f |e), p(f |e, A), p(e|A), p(e|f), and
p(e|f, A).

The feature set also includes lexical weighting for
rules as defined by Koehn et al. (2003) and various
binary features as well as counters for the number of
unaligned words in each rule.

To train the feature weights we used the Z-MERT
implementation (Zaidan, 2009) of the Minimum
Error-Rate Training algorithm (Och, 2003).

To decode the test sets, we used the Joshua ma-
chine translation decoder (Weese et al., 2011). The
language model is a 5-gram LM trained on English
GigaWord Fourth Edition.5

5.3 Evaluation criteria

We measure machine translation performance using
the BLEU metric (Papineni et al., 2002). We also
report the translation time for the test set in seconds
per sentence. These results are shown in Table 3.

All of the syntactic labeling schemes show an im-
provement over the Hiero model. Indeed, they all
fall in the range of approximately 27–28 BLEU. We
can see that the 1-best derivation CCG model per-
forms slightly better than the phrase structure model,
and the CCG parse chart model performs a little bet-
ter than that. SAMT has the highest BLEU score.
The models with a larger number of rules perform
better; this supports our assertion that we shouldn’t
throw away too many rules.

When it comes to translation time, the three
smaller models (Hiero, phrase structure syntax, and
CCG 1-best derivations) are significantly faster than
the two larger ones. However, even though the CCG
parse chart model is almost 3

4 the size of SAMT in
terms of number of rules, it doesn’t take 3

4 of the

5LDC2009T13

time. In fact, it takes only half the time of the SAMT
model, thanks to the smaller rule label set.

6 Discussion and Future Work

Finding an appropriate mechanism to inform phrase-
based translation models and their hierarchical vari-
ants with linguistic syntax is a difficult problem
that has attracted intense interest, with a variety
of promising approaches including unsupervised
clustering (Zollmann and Vogel, 2011), merging
(Hanneman et al., 2011), and selection (Mylonakis
and Sima’an, 2011) of labels derived from phrase-
structure parse trees very much like those used by
our baseline systems. What we find particularly
attractive about CCG is that it naturally assigns
linguistically-motivated labels to most spans of a
sentence using a reasonably concise label set, possi-
bility obviating the need for further refinement. In-
deed, the analytical flexibility of CCG has motivated
its increasing use in MT, from applications in lan-
guage modeling (Birch et al., 2007; Hassan et al.,
2007) to more recent proposals to incorporate it into
phrase-based (Mehay, 2010) and hierarchical trans-
lation systems (Auli, 2009).

Our new model builds on these past efforts, rep-
resenting a more fully instantiated model of CCG-
based translation. We have shown that the label
scheme allows us to keep many more translation
rules than labels based on phrase structure syntax,
extracting almost as many rules as the SAMT model,
but keeping the label set an order of magnitude
smaller, which leads to more efficient translation.
This simply scratches the surface of possible uses of
CCG in translation. In future work, we plan to move
from a formally context-free to a formally CCG-
based model of translation, implementing combina-
torial rules such as application, composition, and
type-raising.
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