
Proceedings of the 7th Workshop on Statistical Machine Translation, pages 109–113,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Tree Kernels for Machine Translation Quality Estimation

Christian Hardmeier and Joakim Nivre and Jörg Tiedemann
Uppsala University

Department of Linguistics and Philology
Box 635, 751 26 Uppsala, Sweden

firstname.lastname@lingfil.uu.se

Abstract

This paper describes Uppsala University’s
submissions to the Quality Estimation (QE)
shared task at WMT 2012. We present a QE
system based on Support Vector Machine re-
gression, using a number of explicitly defined
features extracted from the Machine Transla-
tion input, output and models in combination
with tree kernels over constituency and de-
pendency parse trees for the input and output
sentences. We confirm earlier results suggest-
ing that tree kernels can be a useful tool for
QE system construction especially in the early
stages of system design.

1 Introduction

The goal of the WMT 2012 Quality Estimation
(QE) shared task (Callison-Burch et al., 2012) was
to create automatic systems to judge the quality
of the translations produced by a Statistical Ma-
chine Translation (SMT) system given the input
text, the proposed translations and information about
the models used by the SMT system. The shared
task organisers provided a training set of 1832 sen-
tences drawn from earlier WMT Machine Transla-
tion test sets, translated from English to Spanish
with a phrase-based SMT system, along with the
models used and diagnostic output produced by the
SMT system as well as manual translation quality
annotations on a 1–5 scale for each sentence. Ad-
ditionally, a set of 17 baseline features was made
available to the participants. Systems were evalu-
ated on a test set of 422 sentences annotated in the
same way.

Uppsala University submitted two systems to this
shared task. Our systems were fairly successful and
achieved results that were outperformed by only one
competing group. They improve over the baseline
performance in two ways, building on and extend-
ing earlier work by Hardmeier (2011), on which
the system description in the following sections is
partly based: On the one hand, we enhance the set
of 17 baseline features provided by the organisers
with another 82 explicitly defined features. On the
other hand, we use syntactic tree kernels to extract
implicit features from constituency and dependency
parse trees over the input sentences and the Machine
Translation (MT) output. The experimental results
confirm the findings of our earlier work, showing
tree kernels to be a valuable tool for rapid prototyp-
ing of QE systems.

2 Features

Our QE systems used two types of features: On
the one hand, we used a set of explicit features that
were extracted from the data before running the Ma-
chine Learning (ML) component. On the other hand,
syntactic parse trees of the MT input and output
sentences provided implicit features that were com-
puted directly by the ML component using tree ker-
nels.

2.1 Explicit features

Both of the QE systems we submitted to the shared
task used the complete set of 17 baseline features
provided by the workshop organisers. Additionally,
the UU best system also contained all the features
presented by Hardmeier (2011) with the exception

109

of a few features specific to the film subtitle genre
and inapplicable to the text type of the shared task,
as well as a small number of features not included
in that work. Many of these features were modelled
on QE features described by Specia et al. (2009). In
particular, the following features were included in
addition to the baseline feature set:

• number of words, length ratio (4 features)

• source and target type-token ratios (2 features)

• number of tokens matching particular patterns
(3 features each):

– numbers
– opening and closing parentheses
– strong punctuation signs
– weak punctuation signs
– ellipsis signs
– hyphens
– single and double quotes
– apostrophe-s tokens
– short alphabetic tokens (≤ 3 letters)
– long alphabetic tokens (≥ 4 letters)

• source and target language model (LM) and
log-LM scores (4 features)

• LM and log-LM scores normalised by sentence
length (4 features)

• number and percentage of out-of-vocabulary
words (2 features)

• percentage of source 1-, 2-, 3- and 4-grams oc-
curring in the source part of the training corpus
(4 features)

• percentage of source 1-, 2-, 3- and 4-grams in
each frequency quartile of the training corpus
(16 features)

• a binary feature indicating that the output con-
tains more than three times as many alphabetic
tokens as the input (1 feature)

• percentage of unaligned words and words with
1 : 1, 1 : n, n : 1 and m : n alignments (10 fea-
tures)

• average number of translations per word, un-
weighted and weighted by word frequency and
reciprocal word frequency (3 features)

• translation model entropy for the input words,
cumulatively per sentence and averaged per
word, computed based on the SMT lexical
weight model (2 features).

Whenever applicable, features were computed for
both the source and the target language, and addi-
tional features were added to represent the squared
difference of the source and target language feature
values. All feature values were scaled so that their
values ranged between 0 and 1 over the training set.

The total number of features of the UU best sys-
tem amounted to 99. It should be noted, however,
that there is considerable redundancy in the feature
set and that the 82 features of Hardmeier (2011)
overlap with the 17 baseline features to some extent.
We did not make any attempt to reduce feature over-
lap and relied on the learning algorithm for feature
selection.

2.2 Parse trees

Both the English input text and the Spanish Machine
Translations were annotated with syntactic parse
trees from which to derive implicit features. In En-
glish, we were able to produce both constituency and
dependency parses. In Spanish, we were limited to
dependency parses because of the better availability
of parsing models. English constituency parses were
produced with the Stanford parser (Klein and Man-
ning, 2003) using the model bundled with the parser.
For dependency parsing, we used MaltParser (Nivre
et al., 2006). POS tagging was done with HunPOS
(Halácsy et al., 2007) for English and SVMTool
(Giménez and Márquez, 2004) for Spanish, with the
models provided by the OPUS project (Tiedemann,
2009). As in previous work (Hardmeier, 2011), we
treated the parser as a black box and made no at-
tempt to handle the fact that parsing accuracy may
be decreased over malformed SMT output.

To be used with tree kernels, the output of the de-
pendency parser had to be transformed into a sin-
gle tree structure with a unique label per node and
unlabelled edges, similar to a constituency parse
tree. We followed Johansson and Moschitti (2010)
in using a tree representation which encodes part-
of-speech tags, dependency relations and words as
sequences of child nodes (see fig. 1).

110

Figure 1: Representation of the dependency tree fragment
for the words Nicole ’s dad

A tree and some of its Subset Tree Fragments

S

N

NP

D N

VP

V Mary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

Fig. 1. A syntactic parse tree with its sub-
trees (STs).

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N
NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

Fig. 2. A tree with some of its subset trees
(SSTs).

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N D

NP

…

VP

Fig. 3. A tree with some of its partial trees
(PTs).

is

What offer

an plan

direct stock purchase

Fig. 4. A dependency tree of a question.

constraint over the SSTs, we obtain a more general form of substructures that we
call partial trees (PTs). These can be generated by the application of partial
production rules of the grammar, consequently [VP [V]] and [VP [NP]] are
valid PTs. Figure 3 shows that the number of PTs derived from the same tree as
before is still higher (i.e. 30 PTs). These different substructure numbers provide
an intuitive quantification of the different information levels among the tree-
based representations.

3 Fast Tree Kernel Functions

The main idea of tree kernels is to compute the number of common substructures
between two trees T1 and T2 without explicitly considering the whole fragment
space. We have designed a general function to compute the ST, SST and PT
kernels. Our fast evaluation of the PT kernel is inspired by the efficient evaluation
of non-continuous subsequences (described in [13]). To increase the computation
speed of the above tree kernels, we also apply the pre-selection of node pairs
which have non-null kernel.

3.1 The Partial Tree Kernel

The evaluation of the common PTs rooted in nodes n1 and n2 requires the
selection of the shared child subsets of the two nodes, e.g. [S [DT JJ N]] and
[S [DT N N]] have [S [N]] (2 times) and [S [DT N]] in common. As the order
of the children is important, we can use subsequence kernels for their generation.
More in detail, let F = {f1, f2, .., f|F|} be a tree fragment space of type PTs and
let the indicator function Ii(n) be equal to 1 if the target fi is rooted at node n
and 0 otherwise, we define the PT kernel as:

A tree and some of its Partial Tree Fragments

Figure 2: Tree fragments extracted by the Subset Tree
Kernel and by the Partial Tree Kernel. Illustrations by
Moschitti (2006a).

3 Machine Learning component

3.1 Overview

The QE shared task asked both for an estimate of
a 1–5 quality score for each segment in the test set
and for a ranking of the sentences according to qual-
ity. We decided to treat score estimation as primary
and address the task as a regression problem. For
the ranking task, we simply submitted the ranking
induced by the regression output, breaking ties ran-
domly.

Our system was based on SVM regression as
implemented by the SVMlight software (Joachims,
1999) with tree kernel extensions (Moschitti,

2006b). Predicted scores less than 1 were set to 1
and predicted scores greater than 5 were set to 5
as this was known to be the range of valid scores.
Our learning algorithm had some free hyperparam-
eters. Three of them were optimised by joint grid
search with 5-fold cross-validation over the training
set: the SVM training error/margin trade-off (C pa-
rameter), one free parameter of the explicit feature
kernel and the ratio between explicit feature and tree
kernels (see below). All other parameters were left
at their default values. Before running it over the
test set, the system was retrained on the complete
training set using the parameters found with cross-
validation.

3.2 Kernels for explicit features

To select a good kernel for our explicit features,
we initially followed the advice given by Hsu et al.
(2010), using a Gaussian RBF kernel and optimis-
ing the SVM C parameter and the γ parameter of the
RBF with grid search. While this gave reasonable
results, it turned out that slightly better prediction
could be achieved by using a polynomial kernel, so
we chose to use this kernel for our final submission
and used grid search to tune the degree of the poly-
nomial instead. The improvement over the Gaussian
kernel was, however, marginal.

3.3 Tree kernels

To exploit parse tree information in our Machine
Learning (ML) component, we used tree kernel
functions. Tree kernels (Collins and Duffy, 2001)
are kernel functions defined over pairs of tree struc-
tures. They measure the similarity between two trees
by counting the number of common substructures.
Implicitly, they define an infinite-dimensional fea-
ture space whose dimensions correspond to all pos-
sible tree fragments. Features are thus available to
cover different kinds of abstract node configurations
that can occur in a tree. The important feature di-
mensions are effectively selected by the SVM train-
ing algorithm through the selection and weighting
of the support vectors. The intuition behind our
use of tree kernels is that they may help us iden-
tify constructions that are difficult to translate in the
source language, and doubtful syntactic structures in
the output language. Note that we do not currently
compare parse trees across languages; tree kernels

111

Cross-validation Test set
Features T C d ∆ ρ MAE RMS ∆ ρ MAE RMS

UU best 99 explicit + TK 0.05 4 2 0.506 0.566 0.550 0.692 0.56 0.62 0.64 0.79
(a) 99 explicit + TK 0.03 8 3 0.502 0.564 0.552 0.700 0.56 0.61 0.63 0.78
(b) 17 explicit + TK 0.05 4 2 0.462 0.530 0.568 0.714 0.57 0.61 0.65 0.79
UU bltk 17 explicit + TK 0.03 8 3 0.466 0.534 0.566 0.712 0.58 0.61 0.64 0.79
(c) 99 explicit 0 8 2 0.492 0.560 0.554 0.700 0.56 0.59 0.65 0.80
(d) 17 explicit 0 8 2 0.422 0.466 0.598 0.748 0.52 0.55 0.70 0.83
(e) TK only – 4 – 0.364 0.392 0.632 0.782 0.51 0.51 0.70 0.85

T : Tree kernel weight C: Training error/margin trade-off d: Degree of polynomial kernel
∆: DeltaAvg score ρ: Spearman rank correlation MAE: Mean Average Error

RMS: Root Mean Square Error TK: Tree kernels

Table 1: Experimental results

are applied to trees of the same type in the same lan-
guage only.

We used two different types of tree kernels for the
different types of parse trees (see fig. 2). The Sub-
set Tree Kernel (Collins and Duffy, 2001) consid-
ers tree fragments consisting of more than one node
with the restriction that if one child of a node is in-
cluded, then all its siblings must be included as well
so that the underlying production rule is completely
represented. This kind of kernel is well suited for
constituency parse trees and was used for the source
language constituency parses. For the dependency
trees, we used the Partial Tree Kernel (Moschitti,
2006a) instead. It extends the Subset Tree Kernel by
permitting also the extraction of tree fragments com-
prising only part of the children of any given node.
Lifting this restriction makes sense for dependency
trees since a node and its children do not correspond
to a grammatical production in a dependency tree in
the same way as they do in a constituency tree (Mos-
chitti, 2006a). It was used for the dependency trees
in the source and in the target language.

The explicit feature kernel and the three tree ker-
nels were combined additively, with a single weight
parameter to balance the sum of the tree kernels
against the explicit feature kernel. This coefficient
was optimised together with the other two hyperpa-
rameters mentioned above. It turned out that best re-
sults could be obtained with a fairly low weight for
the tree kernels, but in the cross-validation experi-
ments adding tree kernels did give an improvement
over not having them at all.

4 Experimental Results

Results for some of our experiments are shown in
table 1. The two systems we submitted to the shared
task are marked with their system identifiers. A few
other systems are included for comparison and are
numbered (a) to (e) for easier reference.

Our system using only the baseline features (d)
performs a bit worse than the reference system of
the shared task organisers. We use the same learn-
ing algorithm, so this seems to indicate that the ker-
nel and the hyperparameters they selected worked
slightly better than our choices. Using only tree
kernels with no explicit features at all (e) creates a
system that works considerably worse under cross-
validation, however we note that its performance on
the test set is very close to that of system (d).

Adding the 82 additional features of Hardmeier
(2011) to the system without tree kernels slightly im-
proves the performance both under cross-validation
and on the test set (c). Adding tree kernels has a
similar effect, which is a bit less pronounced for
the cross-validation setting, but quite comparable on
the test set (UU bltk, b). Finally, combining the
full feature set with tree kernels results in an addi-
tional gain under cross-validation, but unfortunately
the improvement does not carry over to the test set
(UU best, a).

5 Conclusions

In sum, the results confirm the findings made in our
earlier work (Hardmeier, 2011). They show that tree
kernels can be a valuable tool to boost the initial

112

performance of a Quality Estimation system without
spending much effort on feature engineering. Unfor-
tunately, it seems that the gains achieved by tree ker-
nels over simple parse trees and by the additional ex-
plicit features used in our systems do not necessarily
add up. Nevertheless, comparison with other partici-
pating systems shows that either of them is sufficient
for state-of-the-art performance.

References
Chris Callison-Burch, Philipp Koehn, Christof Monz,

Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Machine
Translation. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, Montreal, Canada,
June. Association for Computational Linguistics.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Proceedings of NIPS
2001, pages 625–632.

Jesús Giménez and Lluı́s Márquez. 2004. SVMTool: A
general POS tagger generator based on Support Vec-
tor Machines. In Proceedings of the 4th Conference
on International Language Resources and Evaluation
(LREC-2004), Lisbon.

Péter Halácsy, András Kornai, and Csaba Oravecz. 2007.
HunPos – an open source trigram tagger. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics. Companion Volume: Pro-
ceedings of the Demo and Poster Sessions, pages 209–
212, Prague, Czech Republic, June. Association for
Computational Linguistics.

Christian Hardmeier. 2011. Improving machine transla-
tion quality prediction with syntactic tree kernels. In
Mikel L. Forcada, Heidi Depraetere, and Vincent Van-
deghinste, editors, Proceedings of the 15th conference
of the European Association for Machine Translation
(EAMT 2011), pages 233–240, Leuven, Belgium.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin.
2010. A practical guide to support vector classifica-
tion. Technical report, Department of Computer Sci-
ence, National Taiwan University.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods – Sup-
port Vector Learning. MIT Press.

Richard Johansson and Alessandro Moschitti. 2010.
Syntactic and semantic structure for opinion expres-
sion detection. In Proceedings of the Fourteenth Con-
ference on Computational Natural Language Learn-
ing, pages 67–76, Uppsala, Sweden, July. Association
for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, pages 423–430, Sapporo, Japan, July. As-
sociation for Computational Linguistics.

Alessandro Moschitti. 2006a. Efficient convolution ker-
nels for dependency and constituent syntactic trees. In
Proceedings of the 17th European Conference on Ma-
chine Learning, Berlin.

Alessandro Moschitti. 2006b. Making tree kernels prac-
tical for natural language learning. In Proceedings of
the Eleventh International Conference of the European
Association for Computational Linguistics, Trento.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
MaltParser: A language-independent system for data-
driven dependency parsing. In Proceedings of the 5th
Conference on International Language Resources and
Evaluation (LREC-2006), pages 2216–2219, Genoa.

Lucia Specia, Craig Saunders, Marco Turchi, Zhuoran
Wang, and John Shawe-Taylor. 2009. Improving the
confidence of Machine Translation quality estimates.
In Proceedings of MT Summit XII, Ottawa.

Jörg Tiedemann. 2009. News from OPUS – a collection
of multilingual parallel corpora with tools and inter-
face. In N. Nicolov, K. Bontcheva, G. Angelova, and
R. Mitkov, editors, Recent Advances in Natural Lan-
guage Processing, pages 237–248. John Benjamins,
Amsterdam.

113

