Linguistic Features for Quality Estimation

Mariano Felice

Research Group in Computational Linguistics

University of Wolverhampton
Stafford Street

Wolverhampton, WV1 1SB, UK
Mariano.Felice@wlv.ac.uk

Abstract

This paper describes a study on the contribu-
tion of linguistically-informed features to the
task of quality estimation for machine trans-
lation at sentence level. A standard regression
algorithm is used to build models using a com-
bination of linguistic and non-linguistic fea-
tures extracted from the input text and its ma-
chine translation. Experiments with English-
Spanish translations show that linguistic fea-
tures, although informative on their own, are
not yet able to outperform shallower features
based on statistics from the input text, its
translation and additional corpora. However,
further analysis suggests that linguistic infor-
mation is actually useful but needs to be care-
fully combined with other features in order to
produce better results.

1 Introduction

Estimating the quality of automatic translations is
becoming a subject of increasing interest within the
Machine Translation (MT) community for a num-
ber of reasons, such as helping human translators
post-editing MT, warning users about non-reliable
translations or combining output from multiple MT
systems. Different from most classic approaches for
measuring the progress of an MT system or compar-
ing MT systems, which assess quality by contrast-
ing system output to reference translations such as
BLEU (Papineni et al., 2002), Quality Estimation
(QE) is a more challenging task, aimed at MT sys-
tems in use, and therefore without access to refer-
ence translations.
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From the findings of previous work on reference-
dependent MT evaluation, it is clear that metrics
exploiting linguistic information can achieve sig-
nificantly better correlation with human judgments
on quality, particularly at the level of sentences
(Giménez and Marquez, 2010). Intuitively, this
should also apply for quality estimation metrics:
while evaluation metrics compare linguistic repre-
sentations of the system output and reference trans-
lations (e.g. matching of n-grams of part-of-speech
tags or predicate-argument structures), quality esti-
mation metrics would perform the (more complex)
comparison og linguistic representations of the input
and translation texts. The hypothesis put forward in
this paper is therefore that using linguistic informa-
tion to somehow contrast the input and translation
texts can be beneficial for quality estimation.

We test this hypothesis as part of the WMT-12
shared task on quality estimation. The system sub-
mitted to this task (WLV-SHEF) integrates linguis-
tic information to a strong baseline system using
only shallow statistics from the input and transla-
tion texts, with no explicit information from the MT
system that produced the translations. A variant
also tests the addition of linguistic information to
a larger set of shallow features. The quality esti-
mation problem is modelled as a supervised regres-
sion task using Support Vector Machines (SVM),
which has been shown to achieve good performance
in previous work (Specia, 2011). Linguistic features
are computed using a number of auxiliary resources
such as parsers and monolingual corpora.

The remainder of this paper is organised as fol-
lows. Section 2 gives an overview of previous work
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on quality estimation, Section 3 describes the set of
linguistic features proposed in this paper, along with
general experimental settings, Section 4 presents our
evaluation and Section 5 provides conclusions and a
brief discussion of future work.

2 Related Work

Reference-free MT quality assessment was ini-
tially approached as a Confidence Estimation task,
strongly biased towards exploiting data from a Sta-
tistical MT (SMT) system and the translation pro-
cess to model the confidence of the system in the
produced translation. Blatz et al. (2004) attempted
sentence-level assessment using a set of 91 features
(from the SMT system input and translation texts)
and automatic annotations such as NIST and WER.
Experiments on classification and regression using
different machine learning techniques produced not
very encouraging results. More successful experi-
ments were later run by Quirk (2004) in a similar
setting but using a smaller dataset with human qual-
ity judgments.

Specia et al. (2009a) used Partial Least Squares
regression to jointly address feature selection and
model learning using a similar set of features and
datasets annotated with both automatic and human
scores. Black-box features (i.e. those extracted from
the input and translation texts only) were as discrim-
inative as glass-box features (i.e. those from the MT
system). Later work using black-box features only
focused on finding an appropriate threshold for dis-
criminating ‘good’ from ‘bad’ translations for post-
editing purposes (Specia et al., 2009b) and investi-
gating more objective ways of obtaining human an-
notation, such as post-editing time (Specia, 2011).

Recent approaches have started exploiting lin-
guistic information with promising results. Specia
etal. (2011), for instance, used part-of-speech (PoS)
tagging, chunking, dependency relations and named
entities for English-Arabic quality estimation. Hard-
meier (2011) explored the use of constituency
and dependency trees for English-Swedish/Spanish
quality estimation. Focusing on word-error detec-
tion through the estimation of WER, Xiong et al.
(2010) used PoS tags of neighbouring words and a
link grammar parser to detect words that are not con-
nected to the rest of the sentence. Work by Bach et
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al. (2011) focused on learning patterns of linguis-
tic information (such as sequences of part-of-speech
tags) to predict sub-sentence errors. Finally, Pighin
and Marquez (2011) modelled the expected projec-
tions of semantic roles from the input text into the
translations.

3 Method

Our work focuses on the use of a wide range of
linguistic information for representing different as-
pects of translation quality to complement shallow,
system-independent features that have been proved
to perform well in previous work.

3.1 Linguistic features

Non-linguistic features, such as sentence length or
n-gram statistics, are limited in their scope since
they can only account for very shallow aspects of
a translation. They convey no notion of meaning,
grammar or content and as a result they could be
very biased towards describing only superficial as-
pects. For this reason, we introduce linguistic fea-
tures that account for richer aspects of translations
and are in closer relation to the way humans make
their judgments. All of the proposed features, lin-
guistic or not, are MT-system independent.

The proposal of linguistic features was guided by
three main aspects of translation: fidelity, fluency
and coherence. The number of features that were
eventually extracted was inevitably limited by the
availability of suitable tools for the language pair
at hand, mainly for Spanish. As a result, many of
the features that were initially devised could not be
implemented (e.g. grammar checking). A total of
70 linguistic features were extracted, as summarised
below, where S and T indicate whether they refer to
the source/input or translation texts respectively:

e Sentence 3-gram log-probability and perplexity
using a language model (LM) of PoS tags [T]

e Number, percentage and ratio of content words
(N, V, ADJ) and function words (DET, PRON,
PREP, ADV) [S & T]

e Width and depth of constituency and depen-
dency trees for the input and translation texts
and their differences [S & T]



e Percentage of nouns, verbs and pronouns in the
sentence and their ratios between [S & T]

e Number and difference in deictic elements in
[S & T]

e Number and difference in specific types of
named entities (person, organisation, location,
other) and the total of named entities [S & T]

e Number and difference in noun, verb and
prepositional phrases [S & T]

e Number of “dangling” (i.e.
miners [T]

unlinked) deter-

e Number of explicit (pronominal, non-
pronominal) and implicit (zero pronoun)
subjects [T]

e Number of split contractions in Spanish (i.e.
al=a el, del=de el) [T]

e Number and percentage of subject-verb dis-
agreement cases [T]

e Number of unknown words estimated using a
spell checker [T]

While many of these features attempt to check
for general errors (e.g. subject verb disagreement),
others are targeted at usual MT errors (e.g. “dan-
gling” determiners, which are commonly introduced
by SMT systems and are not linked to any words) or
target language peculiarities (e.g. Spanish contrac-
tions, zero subjects). In particular, studying deeper
aspects such as different types of subjects can pro-
vide a good indication of how natural a translation
is in Spanish, which is a pro-drop language. Such a
distinction is expected to spot unnatural expressions,
such as those caused by unnecessary pronoun repe-
tition. !

For subject classification, we identified all VPs
and categorised them according to their preceding

'E.g. (1) The girl beside me was smiling rather brightly.
She thought it was an honor that the exchange student should
be seated next to her. — *La nifia a mi lado estaba sonriente
bastante bien. Ella pensé que era un honor que el intercambio
de estudiantes se encuentra proximo a ella. (superfluous)

(2) She is thought to have killed herself through suffocation us-
ing a plastic bag. — *Ella se cree que han matado a ella medi-
ante asfixia utilizando una bolsa de pldstico. (confusing)
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NPs. Thus, explicit subjects were classified as
pronominal (PRON+VP) or non-pronominal (NON-
PRON-NP+VP) while implicit subjects only in-
cluded elided (zero) subjects (i.e. a VP not preceded
by an NP).

Subject-verb agreement cases were estimated by
rules analysing person, number and gender matches
in explicit subject cases, considering also inter-
nal NP agreement between determiners, nouns, ad-
jectives and pronouns.” Deictics, common coher-
ence indicators (Halliday and Hasan, 1976), were
checked against manually compiled lists.> Unknown
words were estimated using the JMySpell* spell
checker with the publicly available Spanish (es_ES)
OpenOffice’ dictionary. In order to avoid incorrect
estimates, all named entities were filtered out before
spell-checking.

TreeTagger (Schmid, 1995) was used for PoS tag-
ging of English texts, while Freeling (Padr¢ et al.,
2010) was used for PoS tagging in Spanish and
for constituency parsing, dependency parsing and
named entity recognition in both languages.

In order to compute n-gram statistics over PoS
tags, two language models of general and more
detailed morphosyntactic PoS were built using the
SRILM toolkit (Stolcke, 2002) on the PoS-tagged
AnCora corpus (Taulé et al., 2008).

3.2 Shallow features

In a variant of our system, the linguistic features
were complemented by a set of 77 non-linguistic
features:

e Number and proportion of unique tokens and
numbers in the sentence [S & T]

e Sentence length ratios [S & T]

e Number of non-alphabetical tokens and their
ratios [S & T]

e Sentence 3-gram perplexity [S & T]

E.g. *Algunas de estas personas se convertird en héroes.
(number mismatch), *Barricadas fueron creados en la calle
Cortlandt. (gender mismatch), *Buena mentirosos estdn cuali-
ficados en lectura. (internal NP gender and number mismatch).

3These included common deictic terms compiled from vari-
ous sources, such as hoy, alli, tii (Spanish) or that, now or there
(English).

*http://kenai.com/projects/jmyspell

Shttp://www.openoffice.org/



e Type/Token Ratio variations: corrected TTR
(Carroll, 1964), Log TTR (Herdan, 1960),
Guiraud Index (Guiraud, 1954), Uber Index
(Dugast, 1980) and Jarvis TTR (Jarvis, 2002)
[S & T]

e Average token frequency from a monolingual
corpus [S]

e Mismatches in opening and closing brackets
and quotation marks [S & T]

e Differences in brackets, quotation marks, punc-
tuation marks and numbers [S & T]

e Average number of occurrences of all words
within the sentence [T]

e Alignment score (IBM-4) and percentage of
different types of word alignments by GIZA++
(from the SMT training alignment model pro-
vided)

Our basis for comparison is the set of 17 baseline
features, which are shallow MT system-independent
features provided by the WMT-12 QE shared task
organizers.

3.3 Building QE models

We created two main feature sets from the features
listed above for the WMT-12 QE shared task:

WLV-SHEF _FS: all features, that is, baseline fea-
tures, shallow features (Section 3.2) and lin-
guistic features (Section 3.1).

WLV-SHEF BL: baseline features and linguistic
features (Section 3.1).

Additionally, we experimented with other variants
of these feature sets using 3-fold cross validation on
the training set, such as only linguistic features and
only non-linguistic features, but these yielded poorer
results and are not reported in this paper.

We address the QE problem as a regression task
by building SVM models with an epsilon regressor
and a radial basis function kernel using the LibSVM
toolkit (Chang and Lin, 2011). Values for the cost,
epsilon and gamma parameters were optimized us-
ing 5-fold cross validation on the training set.
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MAE | | RMSE | | Pearson |
Baseline 0.69 0.82 0.562
WLV-SHEF_FS 0.69 0.85 0.514
WLV-SHEF_BL 0.72 0.86 0.490

Table 1: Scoring performance

The training sets distributed for the shared task
comprised 1, 832 English sentences taken from news
texts and their Spanish translations produced by an
SMT system, Moses (Koehn et al., 2007), which
had been trained on a concatenation of Europarl and
news-commentaries data (from WMT-10). Transla-
tions were accompanied by a quality score derived
from an average of three human judgments of post-
editing effort using a 1-5 scale.

The models built for each of these two feature
sets were evaluated using the official test set of 422
sentences produced in the same fashion as the train-
ing set. Two sub-tasks were considered: (i) scor-
ing translations using the 1-5 quality scores, and
(ii) ranking translations from best to worse. While
quality scores were directly predicted by our mod-
els, sentence rankings were defined by ordering the
translations according to their predicted scores in de-
scending order, with no additional criteria to resolve
ties other than the natural ordering given by the sort-
ing algorithm.

4 Results and Evaluation

Table 1 shows the official results of our systems in
the scoring task in terms of Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), the
metrics used in the shared task, as well as in terms
of Pearson correlation.

Results reveal that our models fall slightly be-
low the baseline, although this drop is not statisti-
cally significant in any of the cases (paired t-tests for
Baseline vs WLV-SHEF_FS and Baseline vs WLV-
SHEF_BL yield p > 0.05). This may suggest that
for this particular dataset the baseline features al-
ready cover all relevant aspects of quality on their
own, or simply that the representation of the lin-
guistic features is not appropriate for the task. The
quality of the resources used to extract the linguistic
features may also have been an issue. However, a
feature selection method may find a different com-



Predicted score

Sentences

= True scores WLV-SHEF FS = WLV-SHEF BL

Figure 1: Comparison of true versus predicted scores

bination of features that outperforms the baseline, as
is later described in this section.

A correlation analysis between our predicted
scores and the gold standard (Figure 1) shows some
dispersion, especially for the WLV-SHEF_FS set,
with lower Pearson coefficients when compared to
the baseline. The fluctuation of predicted values for
a single score is also very noticeable, spanning more
than one score band in some cases. However, if we
consider the RMSE achieved by our models, we find
that, on average, predictions deviate less than 0.9 ab-
solute points.

A closer look at the score distribution (Figure 2)
reveals our models had some difficulty predicting
scores in the 1-2 range, possibly affected by the
lower proportion of these cases in the training data.
In addition, it is interesting to see that the only sen-
tence with a true score of 1 is predicted as a very
good translation (with a score greater than 3.5). The
reason for this is that the translation has isolated
grammatical segments that our features might regard
as good but it is actually not faithful to the original.®
Although the cause for this behaviour can be traced
to inaccurate tokenisation, this reveals that our fea-
tures assess fidelity only superficially and deeper
semantically-aware indicators should be explored.

Results for the ranking task also fall below the
baseline as shown in Table 2, according to the two
official metrics: DeltaAvg and Spearman rank cor-
relation coefficient.

4.1 Further analysis

At first glance, the performance of our models seems
to indicate that the integration of linguistic infor-

87 won’t give it away. — *He ganado ’ t darle.

100

Predicted score

True score

WLV-SHEF FS o WLV-SHEF BL

Figure 2: Scatter plot of true versus predicted scores

DeltaAvg T | Spearman 7
Baseline 0.55 0.58
WLV-SHEF _FS 0.51 0.52
WLV-SHEF _BL 0.50 0.49

Table 2: Ranking performance

mation is not beneficial, since both linguistically-
informed feature sets lead to poorer performance as
compared to the baseline feature set, which contains
only shallow, language-independent features. How-
ever, there could be many factors affecting perfor-
mance so further analysis was necessary to assess
their contribution.

Our first analysis focuses on the performance of
individual features. To this end, we built and tested
models using only one feature at a time and repeated
the process afterwards using the full WLV-SHEF_FS
set without one feature at a time. In Table 3 we re-
port the 5-best and 5-worst performing features. Al-
though purely statistical features lead the rank, lin-
guistic features also appear among the top five (as
indicated by (L)), showing that they can be as good
as other shallow features. It is interesting to note that
a few features appear as the top performing in both
columns (e.g. source bigrams in 4th frequency quar-
tile and target LM probability). These constitute the
truly top performing features.

Our second analysis studies the optimal subset of
features that would yield the best performance on the
test set, from which we could draw further conclu-
sions. Since this analysis requires training and test-
ing models using all the possible partitions of the



Rank | One feature All but one feature
1 | Source bigrams in 4th freq. quartile Source average token length
2 | Source LM probability Source bigrams in 4th freq. quartile
3 | Target LM probability Unknown words in target (©
4 | Number of source bigrams Target LM probability
5 | Target PoS LM probability © Difference in constituency tree width ©
143 | Percentage of target S-V agreement © Difference in number of periods
144 | Source trigrams in 2nd freq. quartile Number of source bigrams
145 | Target location entities (© Target person entities ©
146 | Source trigrams in 3rd freq. quartile Target Corrected TTR
147 | Source average translations by inv. freq. | Source trigrams in 3rd freq. quartile

Table 3: List of best and worst performing features

full feature set,” it is infeasible in practice so we
adopted the Sequential Forward Selection method
instead (Alpaydin, 2010). Using this method, we
start from an empty set and add one feature at a time,
keeping in the set only the features that decrease the
error until no further improvement is possible. This
strategy decreases the number of iterations substan-
tially® but it does not guarantee finding a global op-
timum. Still, a local optimum was acceptable for
our purpose. The optimal feature set found by our
selection algorithm is shown in Table 4.

Error rates are lower when using this optimal fea-
ture set (MAE=0.62 and RMSE=0.76) but the differ-
ence is only statistically significant when compared
to the baseline with 93% confidence level (paired t-
test with p <= 0.07). However, this analysis allows
us to see how many linguistic features get selected
for the optimal feature set.

Out of the total 37 features in the optimal set,
15 are linguistic (40.5%), showing that they are in
fact informative when strategically combined with
other shallow indicators. This also reveals that fea-
ture selection is a key issue for building a quality
estimation system that combines linguistic and shal-
low information. Using a sequential forward selec-
tion method, the optimal set is composed of both lin-
guistic and shallow features, reinforcing the idea that
they account for different aspects of quality and are
not interchangeable but actually complementary.

"For 147 features: 247
8For 147 features, worst case is 147 x (147 4+ 1)/2 =
10, 878.

101

5 Conclusions and Future Work

We have explored the use of linguistic informa-
tion for quality estimation of machine translations.
Our approach was not able to outperform a baseline
with only shallow features. However, further feature
analysis revealed that linguistic features are comple-
mentary to shallow features and must be strategi-
cally combined in order to be exploited efficiently.

The availability of linguistic tools for processing
Spanish is limited, and thus the linguistic features
used here only account for a few of the many aspects
involved in translation quality. In addition, comput-
ing linguistic information is a challenging process
for a number of reasons, mainly the fact that trans-
lations are often ungrammatical, and thus linguistic
processors may return inaccurate results, leading to
further errors.

In future work we plan to integrate more global
linguistic features such as grammar checkers, along
with deeper features such as semantic roles, hybrid
n-grams, etc. In addition, we have noticed that rep-
resenting information for input and translation texts
independently seems more appropriate than con-
trasting input and translation information within the
same feature. This representation issue is somehow
counter-intuitive and is yet to be investigated.
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Iter. | Feature
1 | Source bigrams in 4th frequency quartile
2 | Target PoS LM probability ©
3 | Source average token length
4 | Guiraud Index of T
5 | Unknown words in T ©
6 | Difference in number of VPs between S and T ©
7 | Diff. in constituency trees width of S and T ©
8 | Non-alphabetical tokens in T
9 | Ratio of length between S and T
10 | Source trigrams in 4th frequency quartile
11 | Number of content words in S ©
12 | Source 3-gram perplexity
13 | Ratio of PRON percentages in S and T ©
14 | Number of NPs in T ©
15 | Average number of source token translations with

p > 0.05 weighted by frequency

16 | Source 3-gram LM probability

17 | Target simple PoS LM probability (O

18 | Difference in dependency trees depth of S and T ©
19 | Number of NPsin S ©

20 | Number of tokens in S

21 | Number of content words in T ©

22 | Source unigrams in 3rd frequency quartile

23 | Source unigrams in 1st frequency quartile

24 | Source unigrams in 2nd frequency quartile

25 | Average number of source token translations with
p > 0.01 weighted by frequency

26 | Ratio of non-alpha tokens in S and T

27 | Difference of question marks between S and T nor-
malised by T length

28 | Percentage of pron subjects in T ©

29 | Percentage of verbs in T ©

30 | Constituency trees width for S ©

31 | Absolute diff. of question marks between S and T
32 | Average num. of source token trans. with p > 0.2
33 | Diff. of person entities between S and T ©

34 | Diff. of periods between S and T norm. by T length
35 | Diff. of semicolons between S and T normalised by
T length

36 | Source 3-gram perplexity without end-of-sentence
markers

37 | Absolute difference of periods between S and T

Table 4: An optimal set of features for the test set. The
number of iteration indicates the order in which features
were selected, giving a rough ranking of features by their
performance.
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