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Abstract 

A precondition for extracting information 
from large text corpora is discovering the in-
formation structures underlying the text.  Pro-
gress in this direction is being made in the 
form of unsupervised information extraction 
(IE).  We describe recent work in unsuper-
vised relation extraction and compare its goals 
to those of grammar discovery for science 
sublanguages.  We consider what this work on 
grammar discovery suggests for future direc-
tions in unsupervised IE. 

1 Introduction 

Vast amounts of information are available in un-
structured text form.  To make use of this informa-
tion we need to identify the underlying information 
structures – the classes of entities and the predi-
cates connecting these entities – and then auto-
matically map the text into these information 
structures. 

Over the past decade there has been a quicken-
ing pace of research aimed at automating the proc-
ess of discovering these structures, both for broad 
domains (news stories) and for more limited tech-
nical domains.  This has taken the form of unsu-
pervised methods for entity set creation and 
relation extraction. 

This research has sometimes been presented as 
an entirely new exploration into discovery proce-
dures for information structures.  But in fact there 
are relevant precedents for such exploration, albeit 

completely manual, going back at least half a cen-
tury.  An examination of these precedents can give 
us some insight into the challenges that face us in 
unsupervised information extraction. 

This brief paper will first review some of the 
relevant work in unsupervised IE; then turn to 
some of the earlier work on discovery procedures 
within linguistics; and finally consider what these 
discovery procedures may suggest for the next 
steps in automation. 

2 Unsupervised IE 

The task of unsupervised information extraction 
involves characterizing the types of arguments that 
can occur with particular linguistic predicates, and 
identifying the predicate-argument combinations 
which convey the same meaning.   

Most of the recent work on unsupervised IE has 
focused on the more tractable problem of unsuper-
vised binary relation extraction (URE).  A potential 
binary relation instance (a ‘triple’) consists of two 
arguments (typically names or nouns) connected 
by a relation phrase. A text corpus will yield a 
large number of such triples.  The challenge is to 
group the triples (or a subset of them) into a set of 
semantically coherent relations – clusters of triples 
representing approximately the same semantic re-
lationship. 

One of the first such efforts was (Hasegawa et 
al. 2003), which used a corpus of news stories and 
identified the most common relations between 
people and companies.  They relied on standard 
predefined named entity tags and a clustering strat-
egy based on a simple similarity metric between 
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relation instances (treating relation phrases as bags 
of words). Subsequent research has expanded this 
research along several dimensions.  

(Zhang et al. 2005) introduced a more elaborate 
similarity metric based on similarity of relation 
phrase constituent structure.  However, this direc-
tion was not generally pursued; (Yao et al. 2011) 
used the dependency path between arguments as a 
feature in their generative model, but most URE 
systems have treated relation phrases as unana-
lyzed entities or bags of words.  

Several researchers have extended the scope 
from news reports to the Web, using in particular 
robust triples extractors such as TextRunner 
(Banko et al. 2007) and ReVerb (Fader et al. 
2011), which capture relation phrases involving 
verbal predicates.  Moving to a nearly unrestricted 
domain has meant that predefined argument classes 
would no longer suffice, leading to systems which 
constructed both entity classes and relation classes.  
SNE (Kok and Domingos 2008) used entity simi-
larities computed from the set of triples to con-
struct such entity classes concurrently with the 
construction of relation sets.  (Yao et al. 2011) 
learned fine-grained argument classes based on a 
predefined set of coarse-grained argument types.  
Resolver (Yates and Etzioni 2007) identified co-
referential names while building relation classes. 

Moving to Web-scale discovery also magnified 
the problem of relation-phrase polysemy, where a 
phrase has different senses which should be clus-
tered with different sets of triples.  This was ad-
dressed in WEBRE (Min et al. 2012), which 
clusters generalized triples (consisting of a relation 
phrase and two argument classes).  WEBRE also 
uses a larger range of semantic resources to form 
the argument classes, including hyponymy rela-
tions, coordination patterns, and HTML structures. 

Most of this work has been applied in the news 
domain or on Web documents, but there has also 
been some work on technical domains such as 
medical records (Rink and Harabagiu 2011). 

Closely related to the work on unsupervised IE 
is the work on collecting paraphrase and inference 
rules from corpora (e.g., DIRT (Lin and Pantel 
2001)) and some of the work on unsupervised se-
mantic parsing (USP), which maps text or syntacti-
cally-analyzed text into logical forms.  The 
predicate clusters of USP (Poon and Domingos 
2009) capture both syntactic and semantic para-
phrases of predicates.  However, the work on para-

phrase and USP is generally not aimed at creating 
an inventory of argument classes associated with 
particular predicates. 

All of this work has been done on binary rela-
tions.1  Discovering more general (n-ary) structures 
is more difficult because in most cases arguments 
will be optional, complicating the alignment proc-
ess. (Shinyama and Sekine 2006), who built a sys-
tem for unsupervised event template construction, 
addressed this problem in part through two levels 
of clustering – one level capturing stories about the 
same event, the second level capturing stories 
about the same type of event. (Chambers and Ju-
rafsky 2011) clustered events to create templates 
for terrorist events which involve up to four dis-
tinct roles.  

3 Discovery of Linguistic Structure 

Current researchers on unsupervised IE share some 
goals with the structural linguists of the early and 
mid 20th century, such as Bloomfield, Saussure, 
and especially Zellig Harris.  “The goal of struc-
tural linguistics was to discover a grammar by per-
forming a set of operations on a corpus of data” 
(Newmeyer 1980, p. 6).  Harris in particular 
pushed this effort in two directions:  to discover 
the relations between sentences and capture them 
in transformations; and to study the grammars of 
science sublanguages (Harris 1968). 

A sublanguage is the restricted form of a natural 
language used within a particular domain, such as 
medicine or a field of science or engineering.  Just 
as the language as a whole is characterized by 
word classes (noun, transitive verb) and patterns of 
combination (noun + transitive verb + noun), the 
sublanguage is characterized by domain-specific 
word classes (Nion, Vtransport, Ncell) and patterns (Nion 
+ Vtransport + Ncell).  Just as a speaker of the lan-
guage will reject a sequence not matching one of 
the patterns (Cats eat fish. but not Cats fish eat.) so 
will a speaker of the sublanguage reject a sequence 
not matching a sublanguage pattern (Potassium 
enters the cell. but not The cell enters potassium.)  
Intuitively these classes and patterns have semantic 
content, but Harris asserted they could be charac-
terized on a purely structural basis. 
                                                             
1 Unsupervised semantic parsing (Poon and Domingos 2009) 
could in principle handle n-ary relations, although all the ex-
amples presented involved binary predicates.  USP is also able 
to handle limited nested structures. 
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Harris described procedures for discovering the 
sublanguage grammar from a text corpus.  In sim-
plest terms, the word classes would be identified 
based on shared syntactic contexts, following the 
distributional hypothesis (Harris 1985; Hirschman 
et al. 1975).  This approach is now a standard one 
for creating entity classes from a corpus. This will 
reduce the corpus to a set of word class sequences.  
The sublanguage grammar can then be created by 
aligning these sequences, mediated by the trans-
formations of the general language (in other words, 
one may need to decompose and reorder the se-
quences using the transformations in order to get 
the sequences to align). 

Fundamental to the sublanguage grammar are 
the set of elementary or kernel sentences, such as 
Nion Vtransport Ncell (“Potassium enters the cell.”).  
More complex sentences are built by applying a set 
of operators, some of which alter an individual 
sentence (e.g., passive), some of which combine 
sentences (e.g., conjunction, substitution).  The 
derivation of a sentence is represented as a tree 
structure in which the leaves are kernel sentences 
and the internal nodes are operators.  Within the 
sublanguage, repeating patterns (subtrees) of ker-
nel sentences and operators can be identified.  One 
can distill from these repeating derivational pat-
terns a set of information formats, representing the 
informational constituents being combined (Sager 
et al. 1987).   

Harris applied these methods, by hand but in 
great detail, to the language of immunology (Harris 
et al. 1989).  Sager and her associates applied them 
to clinical (medical) narratives as well as some 
articles from the biomedical literature (Sager et al. 
1987). 

These sublanguage grammatical patterns really 
reflect the information structures of the language in 
this domain – the structures into which we want to 
transform the text in order to capture its informa-
tion content.  In that sense, they represent the ulti-
mate goal of unsupervised IE.   

Typically, they will be much richer structures 
than are created by current unsupervised relation 
extraction. For papers on lipid metabolism, for ex-
ample, 7 levels of structure were identified, includ-
ing kernel sentences, quantifying operators (rates, 
concentrations, etc.), causal relations, modal opera-
tors, and metalanguage relations connecting ex-
perimenters to reported results (Sager et al. 1987, 
p. 226). 

Harris focused on narrow sublanguages because 
the ‘semantic’ constraints are more sharply drawn 
in the sublanguage than are seletional constraints 
in the language as a whole.  (They were presuma-
bly also more amenable to a comprehensive man-
ual analysis.)  If we look at a broader domain, we 
can still expect multiple levels of information, but 
not a single overall structure as was possible in 
analyzing an individual topic. 

4 What we can learn 

What perspective can Harris’s work provide about 
the future of discovery methods for IE? 

First, it can give us some picture of the richer 
structures we will need to discover in order to ade-
quately represent the information in the text.  Cur-
rent URE systems are limited to capturing a set of 
relations between (selected classes of) names or 
nouns.  In terms of the hierarchical information 
structures produced by sublanguage analysis, they 
are currently focused on the predicates whose ar-
guments are the leaves of the tree (roughly speak-
ing, the kernel sentences).2  For example, for 

The Government reported an increase in 
China’s export of coal. 

we would expect a URE to capture 
export(China, coal) 

which might be able to generalize this to 
export(country, commodity) 

but not capture the report(Government, increase) 
or increase(export) relations.  A more comprehen-
sive approach would also capture these and other 
relations that arise from modifiers on entities, in-
cluding quantity and measure phrases and loca-
tives; modifiers on predicates, including negation, 
aspect, quantity, and temporal information; and 
higher-order predicates, including sequence and 
causal relations and verbs of belief and reporting.  
The modifiers would in many cases yield unary 
relations; the higher-order predicates would take 
arguments which are themselves relations and 
would be generalized to relation sets.3 
                                                             
2 This is not quite true of OpenIE triples extractors, which may 
incorporate multiple predicates into the relation, such as ‘ex-
pect a loss’ or ‘plan to offer’. 
3 Decomposing predicates in this way – treating “report an 
increase in export” as three linked predicates rather than one – 
has both advantages and disadvantages in capturing para-
phrase – i.e., in grouping equivalent relations.  Advantages 
because paraphrases at a single level may be learned more 
easily:  one doesn't have to learn the equivalence of “began to 
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A second benefit of studying these precedents 
from linguistics is that they can suggest some of 
the steps we may need to enrich our unsupervised 
IE processing.  Current URE systems suffer from 
cluster recall problems … they fail to group to-
gether many triples which should be considered as 
instances of the same relation. For example, SNE 
(Kok and Domingos 2008) cites a pairwise recall 
for relations of 19%, reporting this as a big im-
provement over earlier systems.  In Harris’s terms, 
this corresponds to not being able to align word 
sequences.  This is a reflection in part of the fact 
that most systems rely primarily or entirely on dis-
tributional information to group triples, and this is 
not sufficient for infrequent relation phrases.4 Ex-
panding to Web-scale discovery will increase the 
frequency of particular phrases, thus providing 
more evidence for clustering, but will also intro-
duce new, complex phrases; the combined ‘tail’ of 
infrequent phrases will remain substantial. The 
relation phrases themselves are for many systems 
treated as unanalyzed word sequences. In some 
cases, inflected forms are reduced to base forms or 
phrases are treated as bags of words to improve 
matching.  A few systems perform dependency 
analysis and represent the relation phrases as paths 
in the dependency tree.  Even in such cases active 
objects and passive subjects are typically labeled 
differently, so the system must learn to align active 
and passive forms separately for each predicate.  
(In effect, the alignment is being learned at the 
wrong level of generality.) 

The problem will be more acute when we move 
to learning hierarchical structures because we will 
have both verbal and nominalized forms of predi-
cates and would like to identify their equivalence. 

Not surprisingly, the alignment process used by 
Harris is based on a much richer linguistic analysis 
involving transformationally decomposed sen-
tences. This included regularization of passives, 
normalization of nominalizations (equating “up-
take of potassium by the cell” with “the cell takes 
up potassium”), treatment of support verbs (reduc-

                                                                                                
X” and “started Xing” for each verb X.  Disadvantages be-
cause paraphrases may require aligning a single predicate with 
two predicates, as in “grow” and “increase in size”.  Handling 
both cases may require maintaining both composite and 
decomposed forms of a relation. 
4 Some systems, such as WEBRE (Min et al. 2012), do use 
additional semantic resources and are able to achieve better 
recall. 

ing “take a walk” to “walk”), and handling of 
transparent nouns (reducing “I ate a pound of 
chocolate” to “I ate chocolate.” plus a quantity 
modifier on “chocolate”).  Many instances of 
equivalent sublanguage patterns could be recog-
nized based on such syntactic transformations. 

Incorporating such transformations into an NLP 
pipeline produces of course a slower and more 
complex analysis process than used by current 
URE systems, but it will be essential in the long 
term to get adequate cluster recall – in other words, 
to unify different relation phrases representing the 
same semantic relation. Its importance will in-
crease when we move from binary to n-ary struc-
tures. Fortunately there has been steady progress in 
this area over the last two decades, based on in-
creasingly rich representations:  starting with the 
function tags and indexing of Penn TreeBank II, 
which permitted regularization of passives, rela-
tives, and infinitival subjects; PropBank, which 
enabled additional regularization of verbal com-
plements (Kingsbury and Palmer 2002), and 
NomBank (Meyers et al. 2004) and NomLex, 
which support regularization between verbal and 
nominal constructs. These regularizations have 
been captured in systems such as GLARF (Meyers 
et al. 2009), and fostered by recent CoNLL evalua-
tions (Hajic et al. 2009). 

In addition to these transformations which can 
be implicitly realized through predicate-argument 
analysis, Harris (1989, pp. 21-23) described sev-
eral other classes of transformations essential to 
alignment.  One of these is modifier movement:  
modifiers which may attach to entities or argu-
ments (“In San Diego, the weather is sunny.” vs. 
“The weather in San Diego is sunny.”).  If we had 
a two-level representation, with both entities and 
predicates, this would have to be accommodated 
through the alignment procedure. 

There will be serious obstacles to automating the 
full discovery process.  The manual ‘mechanical’ 
process is no doubt not as mechanical as Harris 
would have us believe.  Knowledge of the meaning 
of individual words surely played at least an im-
plicit role in decisions regarding the granularity of 
word classes, for example.  Stability-based cluster-
ing (Chen et al. 2005) has been applied to select a 
suitable granularity for relation clusters but the 
optimization will be more complex when cluster-
ing both entities and relations. Obtaining accurate 
syntactic structure across multiple domains will 
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require adaptive methods (for modifier attachment, 
for example).  However, it should be possible to 
apply these enhancements – in structural complex-
ity and linguistic matching – incrementally starting 
from current URE systems, thus gradually produc-
ing more powerful discovery procedures. 
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