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Abstract

Probabilistic knowledge bases are
commonly used in areas such as
large-scale information extraction,
data integration, and knowledge
capture, to name but a few. In-
ference in probabilistic knowledge
bases is a computationally chal-
lenging problem. With this con-
tribution, we present our vision
of a distributed inference algo-
rithm based on conflict graph con-
struction and hypergraph sampling.
Early empirical results show that
the approach efficiently and accu-
rately computes a-posteriori prob-
abilities of a knowledge base de-
rived from a well-known informa-
tion extraction system.

1 Introduction

In recent years, numerous applications of probabilis-
tic knowledge bases have emerged. For instance,
large-scale information extraction systems (Weikum
and Theobald, 2010) aim at building knowledge
bases by applying extraction algorithms to very large
text corpora. Examples of such projects include
KNOWITNOW (Cafarella et al., 2005), TEXTRUN-
NER (Etzioni et al., 2008), YAGO (Suchanek et al.,
2007; Hoffart et al., 2011; Hoffart et al., 2010), and
NELL (Carlson et al., 2010a; Carlson et al., 2010b).
These systems face challenges of scalability both
in terms of the degree of uncertainty and the sheer
size of the resulting knowledge bases. Most of these
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projects combine pattern learning and matching ap-
proaches with some form of logical reasoning, with
the majority of the systems employing weighted or
unweighted first-order Horn clauses (Suchanek et
al., 2007; Carlson et al., 2010a). More recently,
random walk algorithms were applied to NELL’s
knowledge base to infer novel facts (Lao et al., 2011)
and both pattern matching and reasoning algorithms
were distributed on the HADOOP platform to enrich
YAGO (Nakashole et al., 2011).

Similar to the distributed processes building in-
dices for web search engines, there are distributed
algorithms continuously building indices for struc-
tured knowledge (Carlson et al., 2010a). A combi-
nation of learned and manually specified common-
sense rules is an important factor for the quality of
the indexed knowledge. For the inference compo-
nent of a large-scale information extraction system
we propose a sampling approach consisting of two
continuously running processes. The first process
aggregates minimal conflict sets where each such set
contradicts one or more of the common-sense rules.
These conflicts are generated with relational queries
and pattern-based approaches. The second compo-
nent of the system is a sampling algorithm that op-
erates on hypergraphs built from the minimal con-
flict set. The hypergraph is first decomposed into
smaller disconnected sub-hypergraphs to allow dis-
tributed processing. Theoretical results on sampling
independent sets from hypergraphs are leveraged to
construct an ergodic Markov chain for probabilis-
tic knowledge bases. The Markov chains are con-
tinuously run on the various connected components
of the conflict hypergraph to compute a-posteriori
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probabilities of individual logical statements which
are in turn stored in a large relational index. While
this is still work in progress, we have developed the
theory, implemented the respective algorithms, and
conducted first experiments.

2 Related Work

The presented representational framework is related
to that of Markov logic (Richardson and Domingos,
2006) as the semantics is based on log-linear dis-
tributions. However, in this work we make the no-
tion of consistency explicit by defining a log-linear
distribution over consistent knowledge bases, that
is, knowledge bases without logical contradictions.
Moreover, the semantics of the knowledge bases is
that of description logics which are commonly used
for knowledge representation and exchange. There
is existing work on distributing large-scale infor-
mation extraction algorithms. For instance, pattern
matching and reasoning algorithms were distributed
on the HADOOP platform to enrich YAGO (Nakas-
hole et al., 2011). However, these algorithms are not
MCMC based and do not compute a-posteriori prob-
abilities of individual statements. GraphLab (Low et
al., 2010) is a recently developed parallel framework
for distributing machine learning algorithms similar
to MapReduce but better suited for classical learn-
ing algorithms. GraphLab was used to implement
two parallel Gibbs samplers (Gonzalez et al., 2011).
The approach is similar in that it identifies compo-
nents of the graph (using graph coloring algorithms)
from which one can sample in parallel without los-
ing ergodicity. While not a distributed algorithm,
query aware MCMC (Wick and McCallum, 2011) is
a related approach in that it exploits the locality of
the query to make MCMC more efficient.

3 Log-Linear Knowledge Bases

We believe that the common-sense rules should be
stated in a representation language whose syntax and
semantics is well-understood and standardized so as
to support data and rule exchange between systems.
Description logics are a commonly used representa-
tion for knowledge bases. There are numerous tools
and standards for representing and reasoning with
knowledge using description logics. The descrip-
tion logics framework allows one to represent both
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facts about individuals (concept and role assertions)
as well as axioms expressing schema information.
Log-linear description logics integrate description
logics with probabilistic log-linear models (Niepert
etal., 2011). The syntax of log-linear DLs is equiva-
lent to that of the underlying DL except that it is pos-
sible to assign weights to general concept inclusion
axioms (GClIs), role inclusion axioms (RIs), and as-
sertions. We will use the term axiom to denote GCls,
RIs, and concept and role assertions. A log-linear
knowledge base K = (KP, KVY) is a pair consisting
of a deterministic knowledge base K° and an un-
certain knowledge base KXY = {(c,w.)} with each
c being an axiom and w,. a real-valued weight as-
signed to c. The deterministic KB contains axioms
that are known to hold and the uncertain knowledge
base contains the uncertain axioms. The greater the
a-priori probability of an uncertain axiom the greater
its weight. A set of axioms A is inconsistent if it has
no model. A set of axioms A’ is a minimal inconsis-
tency preserving subset if it is inconsistent and every

strict subset A" C A’ is consistent.

The semantics of log-linear knowledge bases is
based on probability distributions over consistent
knowledge bases — the distribution assigns a non-
zero probability only to consistent sets of axioms.
For a log-linear knowledge base K = (KP, KV) and
a knowledge base K’ with K° C K’ € KP U {c :
(c,w.) € KV}, we have that

1 o s . .
Pric (IC’): 7z €Xp (Z{CEK’\KD} wc> if K’ consistent;
0 otherwise

where Z is the normalization constant of the log-
linear distribution Pry.

The weights of the axioms determine the log-
linear probability (Koller and Friedman, 2009;
Richardson and Domingos, 2006). The marginal
probability of an axiom c given a log-linear knowl-
edge base is the sum of the probabilities of the
consistent knowledge bases containing c. Please
note that an axiom with weight O, that is, an a-
priori probability of 0.5, which is not in conflict
with other axioms has the a-posteriori probability of
0.5. Given these definitions, a Monte Carlo algo-
rithm must sample consistent knowledge bases ac-
cording to the distribution Prx.. This seems daunting
at first due to the reasoning complexity, the size of
web-extracted knowledge bases, and the presence of



Figure 1: Hypergraph with 7 vertices (axioms) and 4
edges (conflict sets). Both the maximum degree of the
hypergraph and the size of the largest edge are 3.

deterministic dependencies. However, we describe
an approach with two separate distributable compo-
nents. One that generates minimal conflict sets and
one that leverages these conflict sets to build parallel
Markov chains whose global unique stationary dis-
tribution is Pry.

4 Independent Sets in Hypergraphs

A hypergraph G = (V, E)) consists of a vertex set V'
and a set I of edges, where each edge is a subset of
V. Let m = max{le| : e € E} be the size of the
largest edge and let A = max{|{e € E : v € e}| :
v € V'} be the maximum degree of the graph. An
independent set X in the hypergraph G is a subset
of the vertex set V withe € X foralle € E. Let
v be a vertex, let e be an edge with v € e, and let
X CV.Ifv ¢ Xbut, forall u € (e\ {v}), we
have that u € X, then v is said to be critical for the
edge e in X. Figure 1 depicts a hypergraph with 7
vertices and 4 edges.

Let Z(G) be the set of all independent sets in the
hypergraph GG and let A € R be a positive parame-
ter. The distribution 7 on Z (@) is defined as

m(X) =Xy A
X'€T(G)

The problem of counting independent sets in
graphs and hypergraphs (Dyer and Greenhill, 2000)
was initially motivated by problems in statistical
physics. While NP-hard in general, approximately
counting independent sets in graphs is possible in
polynomial time using the Markov Chain Monte
Carlo method whenever a rapidly mixing Markov
chain is available (Jerrum and Sinclair, 1996).
Leveraging the theory of sampling independent sets
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from hypergraphs for efficient inference in proba-
bilistic knowledge bases is straight-forward once the
connection between consistent knowledge bases and
independent sets in conflict hypergraphs is made.

5 Sampling Consistent Knowledge Bases

The set of inconsistency preserving subsets of a log-
linear KB is denoted by S(KC). This set is iteratively
computed over the entire knowledge base consisting
of both the known and the uncertain axioms. The
conflict hypergraph is the projection of the minimal
conflict sets onto the set of uncertain axioms.

Definition 1. Let K = (KP,KY) be a log-KB base
and let S(IKC) be the set of all minimal conflict sets
in K. The conflict hypergraph G = (V, E) of K is
constructed as follows. For each axiom c in {c :
(c,w.) € KY} we add one vertex v. to V. For each
minimal conflict set S € S(K) we add the edge {v. :
ceSn{c:(c,w.) € kY}} 10 E.

Example 2. Let Student and Professor be concepts,
hasAdvisor an object property; and Peter, Anna,
and Bob be distinct individuals. Now, let KP =
{vo := Range(hasAdvisor) M Student C_L, v, :=
{Anna} M Student C_L } and

U1
V2

:= (hasAdvisor(Anna, Peter), 0.8),
:= (hasAdvisor(Bob, Peter), 0.5),
v3 := (Student(Peter),0.1),
KV ={ vy = (Student M Professor C_1,0.9),
=
=
=

U5 Professor(Peter), 1.0),
Student(Anna), 0.1),

Professor(Bob), 0.4)

Ve
v

Axiom vy expresses that advisors cannot be students
and axiom v, expresses that Anna is not a student.
Here, we have that S(K) = {{vo, v1,v3}, {v}, v},
{vo, va,v3},{vs,v4,v5}}. Figure I depicts the cor-
responding conflict hypergraph.

There is a one-to-one correspondence between
independent sets of the hypergraph and consistent
knowledge bases. Hence, analogous to sampling in-
dependent sets from hypergraphs we can now sam-
ple conflict-free knowledge bases from the conflict
hypergraph. The difference is that each vertex v, is
weighted with w.. Let G = (V, E) be the conflict
hypergraph and let m be the size of the largest edge
in G. The following Markov chain M¥ (Z(G)) sam-
ples independent sets from the conflict hypergraph



taking into account the weights of the axioms. If the
chain is in state X (*) at time ¢, the next state X (*+1)
is determined according to the following process:

e Choose a vertex v, € V uniformly at random;

o Ifv. € X® thenlet X 1) = X1\ {4} with
probability 1/(exp(w.) + 1);

e If v, € X1 and v, is not critical in X for
any edge then let X1 = X®) U {4} with
probability exp(w.) /(1 + exp(w,));

o If u. € XW and v, is critical in X® for
a unique edge e then with probability (m —
1) exp(w.)/(2m(exp(w.) + 1)) choose w €
e\ {vc} uniformly at random and let X (+1) =

(XOU{veh)\ {wh
e Otherwise let X (¢+1) = x (),

The following theorem is verifiable by showing
that the Markov chain MY (Z(G)) is aperiodic and
irreducible and that Pri, projected onto the set of
uncertain axioms, is a reversible distribution for the
Markov chain.

Theorem 3. Let C = (KP,KVY) be a log-linear
knowledge base with conflict hypergraph G. Let
Pr: p({c: (c,w.) € KY}) — [0,1] be a proba-
bility distribution. Then, Pr(U) = Pri(KP U U)
forevery U C {c: (c,w.) € KV} if and only if Pr
is the unique stationary distribution of M¥ (Z(G)).

The first component of the proposed approach
accumulates minimal inconsistency preserving sub-
sets. These minimal conflict sets can be efficiently
computed with relational queries and pattern-based
approaches and, therefore, are distributable. For
instance, consider the common-sense rule “Stu-
dents cannot be PhD advisors.” To compute the
sets of statements contradicting said rule, we pro-
cess the conjunctive query “hasAdvisor(z,y) A
Student(y).” Each returned tuple corresponds to a
minimal inconsistency preserving subset, that is,
a set of statements that together contradicts the
known rule. For instance, let us assume we exe-
cute the query “hasAdvisor(x,y) A Student(y)” for
the knowledge base in Example 2. The returned tu-
ples are (Anna, Peter) and (Bob, Peter) correspond-
ing to the minimal conflict sets {vo,v1,v3} and
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{vo,v2,v3}. Again, since we can iteratively accu-
mulate these sets of conflicts using relational joins
we can distribute the process, for instance using a
MAPREDUCE platform.

In order to facilitate distributed processing, the
global conflict hypergraph is decomposed into its
connected components. For instance, the con-
flict hypergraph in Figure 1 can be decomposed
into the sub-hypergraphs induced by the parti-
tion of the nodes {{v1,va,v3,v4,v5},{v6}, {v7}}.
Markov chain for independent sets of hypergraphs
are continuously run on the various conflict sub-
hypergraphs to (re-)compute the a-posteriori prob-
abilities of the statements.

6 Experiments

To assess the practicality of the approach, we con-
ducted preliminary experiments focusing on the data
and common-sense rules of the PROSPERA system
due to the availability of recent results! (Nakas-
hole et al., 2011). Each logical rule of the PROS-
PERA system was translated to a relational database
query returning the minimal conflict sets violat-
ing said rule. For instance, for the common-sense
PROSPERA rule “A student can have only one alma
mater that she/he graduated from (with a doctoral
degree),” the following relational query is executed:

graduatedFrom(z,y) A graduatedFrom(z,y’) A
—(y = y'). For the rule “The advisor of a stu-
dent must be older than her/his student” the query is
hasAdvisor(z, y) AbornOn(z, y') AbornOn(y, y”) A
(y' > y"). Analogously, these queries can be formu-
lated for the type constraints used by the PROSPERA
system. Figure 2 depicts a subset of the minimal
conflict sets in the academic domain of PROSPERA
involving the object Albert Einstein.

For the preliminary experiments we used the
academic domain facts that were extracted by
PROSPERA without reasoning, and employed the
common-sense rules mentioned in the descrip-
tion of PROSPERA' (Nakashole et al., 2011).
The knowledge base has 384,816 bornOn, 59,933
facultyAt, 154,874 graduatedFrom, and 5,606
hasAcademicAdvisor assertions. Each assertion was
assigned an a-priori probability of 0.5 except for
bornOn assertions contained in YAGO which were

"http://www.mpi-inf.mpg.de/yago-naga/prospera/
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Figure 2: A knowledge base fragment with object
A_Einstein and its properties. Some of the minimal con-
flicts between property assertions (edges in the graph) are
indicated by hyperedges.

assigned an a-priori probability of 0.75. To build a
gold standard for the evaluation, we selected 50 aca-
demics randomly for which the actual PhD advisor
or the alma mater was present in the data. To com-
pute the minimal conflict sets, we processed the join
queries using a relational database system. After the
construction of the conflict hypergraphs we ran the
Markov chains for 10° iterations on the individual
connected components.

In order to evaluate the marginal a-posteriori
probabilities we computed the mean reciprocal rank
measure (MRR) of the ranking induced by the com-
puted marginal probabilities and compared it to the
expected value of the MRR when no sampling is per-
formed. The MRR measure (for example, see (Lao
et al., 2011)) is defined as the inverse rank of the
highest ranked correct result in a set of results. More
formally, for a set of queries () we have

1
MRR = — :
Q| ng; rank of first correct answer

Table 1 list the averaged results of 100 experiments
each with 50 queries. The columns |E|, m, and
A are the averaged properties of the conflict hy-
pergraphs the Markov chain was run on. ¢, is the
time needed to execute the relational queries for
one connected component. The increase in MRR
and precision@1 of the ranking induced by the a-
posteriori probabilities over the initial ranking with-
out sampling is statistically significant (paired t-test,
p < 0.01). These results are encouraging and we are
optimistic that they can be improved when individ-
ual a-priori weights of assertions are available.

l sampling \ \ m \ A \ ts \ MMR \ p@l1 ‘
[ mo [ - [ -[ - [-]03 [024]
[ yes [1023]25]134[13] 08 [ 0.82 |
l sampling \ \ m \ \ ts \ MR \ p@l1 ‘
[ no [ - ] [ | - ] 060 [ 037 |
[ yes [2502[24]270[22] 086 [ 081 |
Table 1:  Empirical results for the probabilis-
tic query graduatedFrom(Individual,z) (top) and
hasAcademicAdvisor(Individual, z) (bottom). The

values are averaged over 100 repetitions of the 50
probabilistic queries. ¢,: seconds to compute samples for
one connected component; MRR: mean reciprocal rank
measure values; p@1: precision @ 1.

7 Discussion

Log-linear knowledge bases integrate description
logics with probabilistic log-linear models. Since
it is possible to express knowledge both on the
schema and the instance level it allows the explicit
representation of background knowledge that is al-
ready used implicitly by several information extrac-
tion systems such as PROSPERA. These systems
employ the common-sense rules to ensure a high-
quality knowledge base amid a high degree of un-
certainty in the extraction process. The presented
approach based on the generation of minimal con-
flict sets and hypergraph sampling is a first step to-
wards a distributed sampling algorithm for struc-
tured knowledge extraction. We are also working on
incorporating temporal information into the knowl-
edge base (Dylla et al., 2011). We have devel-
oped the theory, namely the adaptation of Markov
chains for independent sets in hypergraphs so as to
incorporate individual node weights, implemented
the respective algorithms, and conducted first exper-
iments with the YAGO and PROSPERA datasets and
rules. The robust implementation and distribution
of the presented algorithms on a HADOOP cluster
will be the main objective of future work. More-
over, in many real-world applications, the conflict
hypergraph might not be decomposable without the
removal of edges. Nevertheless, there are several hy-
pergraph partitioning approaches that one could em-
ploy to find an finer-grained decomposition of the
conflict hypergraph. We will also compare the pre-
sented approach to existing probabilistic inference
algorithms such as belief propagation.
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