Large, Pruned or Continuous Space Language Models on a GPU

for Statistical Machine Translation

Holger Schwenk, Anthony Rousseau and Mohammed Attik
LIUM, University of Le Mans

72085 Le Mans cedex 9, FRANCE
Holger.Schwenk@lium.univ-lemans. fr

Abstract

Language models play an important role in
large vocabulary speech recognition and sta-
tistical machine translation systems. The
dominant approach since several decades are
back-off language models. Some years ago,
there was a clear tendency to build huge lan-
guage models trained on hundreds of billions
of words. Lately, this tendency has changed
and recent works concentrate on data selec-
tion. Continuous space methods are a very
competitive approach, but they have a high
computational complexity and are not yet in
widespread use. This paper presents an ex-
perimental comparison of all these approaches
on a large statistical machine translation task.
We also describe an open-source implemen-
tation to train and use continuous space lan-
guage models (CSLM) for such large tasks.
We describe an efficient implementation of the
CSLM using graphical processing units from
Nvidia. By these means, we are able to train
an CSLM on more than 500 million words in
20 hours. This CSLM provides an improve-
ment of up to 1.8 BLEU points with respect to
the best back-off language model that we were
able to build.

1 Introduction

Language models are used to estimate the proba-
bility of a sequence of words. They are an impor-
tant module in many areas of natural language pro-
cessing, in particular large vocabulary speech recog-
nition (LVCSR) and statistical machine translation
(SMT). The goal of LVCSR is to convert a speech
signal z into a sequence of words w. This is usually

11

approached with the following fundamental equa-
tion:
arg max P(w|x)
w
= argmax P(z|w)P(w) (1)
w
In SMT, we are faced with a sequence of words e
in the source language and we are looking for its

best translation f into the target language. Again,
we apply Bayes rule to introduce a language model:

o=
= argmax P(e|f)P(f) (2)

arg m?X P(fle)

Although we use a language model to evaluate the
probability of the produced sequence of words, w
and f respectively, we argue that the task of the lan-
guage model is not exactly the same for both ap-
plications. In LVCSR, the LM must choose among
a large number of possible segmentations of the
phoneme sequence into words, given the pronuncia-
tion lexicon. It is also the only component that helps
to select among homonyms, i.e. words that are pro-
nounced in the same way, but that are written dif-
ferently and which have usually different meanings
(e.g. ate/eight or build/billed). In SMT, on the other
hand, the LM has the responsibility to chose the best
translation of a source word given the context. More
importantly, the LM is a key component which has
to sort out good and bad word reorderings. This
is known to be a very difficult issue when translat-
ing from or into languages like Chinese, Japanese or
German. In LVCSR, the word order is given by the
time-synchronous processing of the speech signal.
Finally, the LM helps to deal with gender, number,

NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 11-19,

Montréal, Canada, June 8, 2012. (©)2012 Association for Computational Linguistics

etc accordance of morphologically rich languages,
when used in an LVCSR as well as an SMT system.
Overall, one can say that the semantic level seems
to be more important for language modeling in SMT
than LVCSR. In both applications, so called back-off
n-gram language models are the de facto standard
since several decades. They were first introduced
in the eighties, followed by intensive research on
smoothing methods. An extensive comparison can
be found in (Chen and Goodman, 1999). Modified-
Kneser Ney smoothing seems to be the best perform-
ing method and it is this approach that is almost ex-
clusively used today.

Some years ago, there was a clear tendency in
SMT to use huge LMs trained on hundreds on bil-
lions (10'1) of words (Brants et al., 2007). The au-
thors report continuous improvement of the trans-
lation quality with increasing size of the LM train-
ing data, but these models require a large cluster to
train and to perform inference using distributed stor-
age. Therefore, several approaches were proposed
to limit the storage size of large LMs, for instance
(Federico and Cettolo, 2007; Talbot and Osborne,
2007; Heafield, 2011).

1.1 Continuous space language models

The main drawback of back-off n-gram language
models is the fact that the probabilities are estimated
in a discrete space. This prevents any kind of inter-
polation in order to estimate the LM probability of
an n-gram which was not observed in the training
data. In order to attack this problem, it was pro-
posed to project the words into a continuous space
and to perform the estimation task in this space. The
projection as well as the estimation can be jointly
performed by a multi-layer neural network (Bengio
and Ducharme, 2001; Bengio et al., 2003). The ba-
sic architecture of this approach is shown in figure 1.

A standard fully-connected multi-layer per-
ceptron is used. The inputs to the neural
network are the indices of the n—1 pre-
vious words in the vocabulary hj=w; 1,
...,wj_2,wj_1 and the outputs are the posterior

probabilities of all words of the vocabulary:
P(w; = ilh;) Vi € [1, N] 3)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ¢th word of

12

Neural Network

_____________ ~
< output

layer |

® shared
projections

discrete continuous
representation: representation:
indices in wordlist P dimensional vectors

LM probabilities
for all words

Figure 1: Architecture of the continuous space LM. h;
denotes the context w;_n41,...,w;—1. P is the size of
one projection and H,N is the size of the hidden and out-
put layer respectively. When short-lists are used the size
of the output layer is much smaller then the size of the
vocabulary.

the vocabulary is coded by setting the ith element of
the vector to 1 and all the other elements to 0. The
ith line of the NV x P dimensional projection matrix
corresponds to the continuous representation of the
1th word. Let us denote ¢; these projections, d; the
hidden layer activities, o; the outputs, p; their soft-
max normalization, and mj;, bj, v;; and k; the hid-
den and output layer weights and the corresponding
biases. Using these notations, the neural network
performs the following operations:

dj = tanh (Z mg; cp + bj) @
l
0, = Z vij dj + k; 5)
J
N
pi = €/ > e (6)
r=1

The value of the output neuron p; is used as the prob-
ability P(w; = ilh;j). Training is performed with
the standard back-propagation algorithm minimiz-
ing the following error function:

N
E:Ztilogpi—i—ﬁ Zm?ﬁ—Zv% (7
i=1 gl ij

where t; denotes the desired output, i.e., the proba-

bility should be 1.0 for the next word in the training
sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from overfitting the training
data (weight decay). The parameter 3 has to be de-
termined experimentally.

The CSLM has a much higher complexity than a
back-off LM, in particular because of the high di-
mension of the output layer. Therefore, it was pro-
posed to limit the size of the output layer to the most
frequent words, the other ones being predicted by
a standard back-off LM (Schwenk, 2004). All the
words are still considered at the input layer.

It is important to note that the CSLM is still an
n-gram approach, but the notion of backing-off to
shorter contexts does not exist any more. The model
can provide probability estimates for any possible
n-gram. It also has the advantage that the complex-
ity only slightly increases for longer context win-
dows, while it is generally considered to be unfea-
sible to train back-off LMs on billions of words for
orders larger than 5.

The CSLM was very successfully applied to large
vocabulary speech recognition. It is usually used to
rescore lattices and improvements of the word er-
ror rate of about one point were consistently ob-
served for many languages and domains, for in-
stance (Schwenk and Gauvain, 2002; Schwenk,
2007; Park et al., 2010; Liu et al., 2011; Lamel et
al., 2011). More recently, the CSLM was also suc-
cessfully applied to statistical machine translation
(Schwenk et al., 2006; Schwenk and Esteve, 2008;
Schwenk, 2010; Le et al., 2010)

During the last years, several extensions were pro-
posed in the literature, for instance:

e Mikolov and his colleagues are working on
the use of recurrent neural networks instead of
multi-layer feed-forward architecture (Mikolov
et al., 2010; Mikolov et al., 2011).

e A simplified calculation of the short-list prob-
ability mass and the addition of an adaptation
layer (Park et al., 2010; Liu et al., 2011)

e the so-called SOUL architecture which allows
to cover all the words at the output layer instead

13

of using a short-list (Le et al., 2011a; Le et al.,
2011b), based on work by (Morin and Bengio,
2005; Mnih and Hinton, 2008).

e alternative sampling in large corpora (Xu et al.,
2011)

Despite significant and consistent gains in
LVCSR and SMT, CSLMs are not yet in widespread
use. Possible reasons for this could be the large com-
putational complexity which requires flexible and
carefully tuned software so that the models can be
build and used in an efficient manner.

In this paper we provide a detailed comparison of
the current most promising language modeling tech-
niques for SMT: huge back-off LMs that integrate
all available data, LMs trained on data selected with
respect to its relevance to the task by a recently pro-
posed method (Moore and Lewis, 2010), and a new
very efficient implementation of the CSLM which
integrates data selection.

2 Continuous space LM toolkit

Free software to train and use CSLM was proposed
in (Schwenk, 2010). The first version of this toolkit
provided no support for short lists or other means to
train CSLMs with large output vocabularies. There-
fore, it was not possible to use it for LVCSR and
large SMT tasks. We extended our tool with full
support for short lists during training and inference.
Short lists are implemented as proposed in (Park et
al., 2010), i.e. we add one extra output neuron for
all words that are not in the short list. This prob-
ability mass is learned by the neural network from
the training data. However, we do not use this prob-
ability mass to renormalize the output distribution,
we simply assume that it is sufficiently close to the
probability mass reserved by the back-off LM for
words that are not in the short list. In summary, dur-
ing inference words in the short-list are predicted by
the neural network and all the other ones by a stan-
dard back-off LM. No renormalization is performed.
We have performed some comparative experiments
with renormalization during inference and we could
not observe significant differences. The toolkit sup-
ports LMs in the SRILM format, an interface to the
popular KENLM is planed.

2.1 Parallel processing

The computational power of general purpose pro-
cessors like those build by Intel or AMD has con-
stantly increased during the last decades and opti-
mized libraries are available to take advantage of the
multi-core capabilities of modern CPUs. Our CSLM
toolkit fully supports parallel processing based on
Intel’s MKL library.! Figure 2 shows the time used
to train a large neural network on 1M examples. We
trained a 7-gram CSLM with a projection layer of
size 320, two hidden layers of size 1024 and 512 re-
spectively, and an output layer of dimension 16384
(short-list). We compared two hardware architec-
tures:

e atop-end PC with one Intel Core 17 3930K pro-
cessor (3.2 GHz, 6 cores).

e atypical server with two Intel Xeon X5675 pro-
cessors (2x 3.06 GHz, 6 cores each).

We did not expect a linear increase of the speed
with the number of threads run in parallel, but nev-
ertheless, there is a clear benefit of using multiple
cores: processing is about 6 times faster when run-
ning on 12 cores instead of a single one. The Core i7
3930K processor is actually slightly faster than the
Xeon X5675, but we are limited to 6 cores since it
can not interact with a second processor.

2.2 Running on a GPU

In parallel to the development efforts for fast general
purpose CPUs, dedicated hardware has been devel-
oped in order to satisfy the computational needs of
realistic 3D graphics in high resolutions, so called
graphical processing units (GPU). Recently, it was
realized that this computational power can be in
fact used for scientific computing, e.g. in chem-
istry, molecular physics, earth quake simulations,
weather forecasts, etc. A key factor was the avail-
ability of libraries and toolkits to simplify the pro-
gramming of GPU cards, for instance the CUDA
toolkit of Nvidia.> The machine learning commu-
nity has started to use GPU computing and several
toolkits are available to train generic networks. We
have also added support for Nvidia GPU cards to the

Uhttp://software.intel.com/en-us/articles/intel-mkl
2http://developer.nvidia.com/cuda-downloads

14

Intel Xeon X5675 ———
3200 ¢ Intel Core7 3690K]
Nvidia Tesla M2090 -
1600 | Nvidia GTX 580
(8]
Q
2]
c 800 |
£
=] 400 }
200
100

0 2 4 6 8 10 12
number of CPU cores

Figure 2: Time to train on 1M examples on various hard-
ware architectures (the speed is shown in log scale).

CSLM toolkit. Timing experiments were performed
with two types of GPU cards:

e a Nvidia GTX 580 GPU card with 3 GB of
memory. It has 512 cores running at 1.54 GHz.

e a Nvidia Tesla M2090 card with 6 GB of mem-
ory. It has 512 cores running at 1.3 GHz.

As can be seen from figure 2, for these network
sizes the GTX 580 is about 3 times faster than two
Intel X5675 processors (12 cores). This speed-up
is smaller than the ones observed in other studies to
run machine learning tasks on a GPU, probably be-
cause of the large number of parameters which re-
quire many accesses to the GPU memory. For syn-
thetic benchmarks, all the code and data often fits
into the fast shared memory of the GPU card. We
are continuing our work to improve the speed of our
toolkit on GPU cards. The Tesla M2090 is a little bit
slower than the GTX 580 due to the lower core fre-
quency. However, it has a much better support for
double precision floating point calculations which
could be quite useful when training large neural net-
works.

3 Experimental Results

In this work, we present comparative results for var-
ious LMs when integrated into a large-scale SMT
system to translate from Arabic into English. We use
the popular Moses toolkit to build the SMT system
(Koehn et al., 2007). As in our previous works, the
CSLM is used to rescore 1000-best lists. The sen-
tence probability calculated by the CSLM is added

AFP

APW
old | avrg |recent| old | avrg |recent| old | avrg |recent| old | avrg |recent| all

|

XIN WPB

all

CNA
all

NYT \ ILTW

Using all the data:

Words || 151M | 547M | 371M | 385M | 547M | 444M | 786M | 543M | 364M | 105M | 147M | 144M | 313M | 20M | 39M

Perplex || 167.7|141.0 | 138.6 | 192.7 | 170.3 | 163.4 | 234.1 | 203.5 | 197.1| 162.9] 126.4 | 121.8 | 170.3]269.3| 266.5

After data selection:

Word 36M | 77TM | 96M | 62M | 77M | 89M [110M | 54M | 44M | 23M | 35M | 38M | 6SM | 6M | ™™
ores 23% | 26% | 26% | 16% | 14% | 20% | 14% | 10% | 12% | 22% | 24% | 26% | 22% | 30% | 18%
Perplex || 160.9 | 135.0| 131.6 | 185.3 | 153.2 | 151.1 | 201.2 | 173.6 | 169.5 | 159.6 | 123.4 | 117.7 | 153.1 | 263.9 | 253.2

Table 1: Perplexities on the development data (news wire genre) of the individual sub-corpora in the LDC Gigaword

corpus, before and after data selection by the method of (Moore and Lewis, 2010).

as 15th feature function and the coefficients of all
the feature functions are optimized by MERT. The
CSLM toolkit includes scripts to perform this task.

3.1 Baseline systems

The Arabic/English SMT system was trained on par-
allel and monolingual data similar to those avail-
able in the well known NIST OpenMT evaluations.
About 151M words of bitexts are available from
LDC out of which we selected 41M words to build
the translation model. The English side of all the
bitexts was used to train the target language model.

In addition, we used the LDC Gigaword corpus
version 5 (LDC2011T07). It contains about 4.9 bil-
lion words coming from various news sources (AFP
and XIN news agencies, New York Times, etc) for
the period 1994 until 2010. All corpus sizes are
given after tokenization.

For development and tuning, we used the
OpenMT 2009 data set which contains 1313 sen-
tences. The corresponding data from 2008 was used
as internal test set. We report separate results for the
news wire part (586 sentence, 24k words) and the
web part (727 sentences, 24k words) since we want
to compare the performance of the various LMs for
formal and more informal language. Four reference
translations were available. Case and punctuation
were preserved for scoring.

It is well known that it is better to build LMs on
the individual sources and to interpolate them, in-
stead of building one LM on all the concatenated
data. The interpolation coefficients are tuned by op-
timizing the perplexity on the development corpus
using an EM procedure. We split the huge Giga-

15

word corpora AFP, APW, NYT and XIN into three
parts according to the time period (old, average and
recent). This gives in total 15 sub-corpora. The sizes
and the perplexities are given in Table 1. The inter-
polated 4-gram LM of these 15 corpora has a per-
plexity of 87 on the news part.

If we add the English side of all the bitexts, the
perplexity can be lowered to 71.1. All the observed
n-grams were preserved, e.g. the cut-off for n-gram
counts was set to 1 for all orders. This gives us an
huge LM with 1.4 billion 4-grams, 548M 3-grams
and 83M bigrams which requires more 26 GBytes
to be stored on disk. This LM is loaded into mem-
ory by the Moses decoder. This takes more than 10
minutes and requires about 70 GB of memory.

Moses supports memory mapped LMs, like
IRSTLM or KENLM, but this was not explored in
this study. We call this LM “big LM”. We believe
that it could be considered as a very strong base-
line for a back-off LM. We did not attempt to build
higher order back-off LM given the size require-
ments. For comparison, we also build a small LM
which was trained on the English part of the bitexts
and the recent XIN corpus only. It has a perplexity
of 78.9 and occupies 2 GB on disk (see table 2).

3.2 Data selection

We have reimplemented the method of Moore and
Lewis (2010) to select the most appropriate LM data
based on the difference between the sentence-wise
entropy of an in-domain and out-of domain LM.

In our experiments, we have observed exactly the
same behavior than reported by the authors: the per-
plexity decreases when less, but more appropriate

240 | [AFP ——
P LT VRR—
230 b | NYT o
2 220 XN
3
g 210
® 200} -
190 |
180 |
170

0 10 20 30 40 50 60 70 80 90 100
Percentage of corpus

Figure 3: Decrease in perplexity when selecting data with
the method proposed in (Moore and Lewis, 2010).

data is used, reaching a minimum using about 20%
of the data only. The improvement in the perplexity
can reach 20% relative. Figure3 shows the perplex-
ity for some corpora in function of the size of the
selected data. Detailed statistics for all corpora are
given in Table 1 for the news genre.

Unfortunately, these improvements in perplexity
almost vanish when we interpolate the individual
language models: the perplexity is 86.6 instead of
87.0 when all the data from the Gigaword corpus is
used. This LM achieves the same BLEU score on
the development data, and there is a small improve-
ment of 0.24 BLEU on the test set (Table 2). Never-
theless, the last LM has the advantage of being much
smaller: 7.2 instead of 25 GBytes. We have also per-
formed the data selection on the concatenated texts
of 4.9 billion words. In this case, we do observe an
decrease of the perplexity with respect to a model
trained on all the concatenated data, but overall, the
perplexity is higher than with an interpolated LM (as
expected).

Px BLEU
LM || Dev Size Dev Test
Small || 789 | 2.0GB | 56.89 | 49.66
Big || 71.1 | 26 GB | 58.66 | 50.75
Giga || 87.0 | 25.0GB | 57.08 | 50.08
GigaSel || 86.6 | 7.2GB | 57.03 | 50.32

Table 2: Comparison of several 4-gram back-off lan-
guage models. See text for explanation of the models.

16

3.3 Continuous space language models

The CSLM was trained on all the available
data using the resampling algorithm described in
(Schwenk, 2007). At each epoch we randomly re-
sampled about 15M examples. We build only one
CSLM resampling simultaneously in all the corpora.
The short list was set to 16k — this covers about 92%
of the n-gram requests. Since it is very easy to use
large context windows with an CSLM, we trained
right away 7-grams. We provide a comparison of
different context lengths later in this section. The
networks were trained for 20 epochs. This can be
done in about 64 hours on a server with two Intel
X5675 processors and in 20 hours on a GPU card.
This CSLM achieves a perplexity of 62.9, to be
compared to 71.1 for the big back-off LM. This is a
relative improvement of more than 11%, but actually
we can do better. If we train the CSLM on the small
corpus only, i.e. the English side of the bitexts and
the recent part of the XIN corpus, we achieve a per-
plexity of 61.9 (see table 3). This clearly indicates
that it is better to focus the CSLM on relevant data.
Random resampling is a possibility to train a neu-
ral network on very large corpora, but it does not
guarantee that all the examples are used. Even if
we resampled different examples at each epoch, we
would process at most 300M different examples (20
epochs times 15M examples). There is no reason to
believe that we randomly select examples which are
appropriate to the task (note, however, that the re-
sampling coefficients are different for the individual

LM || Corpus | Sent. | Perplex
size | select. | on Dev
Back-off 4-gram LM:
Small | 196M | no | 789
Big | 5057M | no | 711
CSLM 7-gram:
big | 5057M | no | 62.9
Small 196M no 61.9
Small 92M | yes 60.9
6x Giga || 425M | yes. 57.9
10x Giga | 553M | yes. 56.9

Table 3: Perplexity on the development data (news genre)
for back-off and continuous space language models.

Small LM | Huge LM | CSLM

Genre 4-gram back-off 7-gram
News 49.66 50.75 52.28
Web / 35.17 36.53

Table 4: BLEU scores on the test set for the translation
from Arabic into English for various language models.

corpora similar to the coefficients of an interpolated
back-off LM). Therefore, we propose to use the data
selection method of Moore and Lewis (2010) to con-
centrate the training of the CSLM on the most in-
formative examples. Instead of sampling randomly
n-grams in all the corpora, we do this in the selected
data by the method of (Moore and Lewis, 2010). By
these means, it is more likely that we train the CSLM
on relevant data. Note that this has no impact on the
training speed since the amount of resampled data is
not changed.

The results for this method are summarized in Ta-
ble 3. In a first experiment, we used the selected part
of the recent XIN corpus only. This reduces the per-
plexity to 60.9. In addition, if we use the six or ten
most important Gigaword corpora, we achieve a per-
plexity of 57.9 and 56.9 respectively. This is 10%
better than resampling blindly in all the data (62.9
— 56.9). Overall, the 7-gram CSLM improves the
perplexity by 20% relative with respect to the huge
4-gram back-off LM (71.1 — 56.9).

Finally, we used our best CSLM to rescore the
n-best lists of the Arabic/English SMT system. The
baseline BLEU score on the test set, news genre, is
49.66 with the small LM. This increases to 50.75
with the big LM. It was actually necessary to open
the beam of the Moses decoder in order to observe
such an improvement. The large beam had no effect
when the small LM was used. This is a very strong
baseline to improve upon. Nevertheless, this result
is further improved by the CSLM to 52.28, i.e. a
significant gain of 1.8 BLEU. We observe similar
behavior for the WEB genre.

All our networks have two hidden layers since
we have observed that this slightly improves perfor-
mance with respect to the standard architecture with
only one hidden layer. This is a first step towards
so-called deep neural networks (Bengio, 2007), but
we have not yet explored this systematically.

17

Order: H 4-gram \ 5-gram \ 6-gram \ 7-gram ‘

Px Dev: | 63.9 59.5 57.6 56.9
BLEU Dev: || 59.76 | 60.11 | 60.29 | 60.26
BLEU Test: | 51.91 | 51.85 | 52.23 | 52.28

Table 5: Perplexity on the development data (news genre)
and BLEU scores of the continuous space language mod-
els in function of the context size.

In an 1000-best list for 586 sentences, we have a
total of 14M requests for 7-grams out of which more
than 13.5M were processed by the CSLM, e.g. the
short list hit rate is almost 95%. This resulted in only
2670 forward passes through the network. At each
pass, we collected in average 5350 probabilities at
the output layer. The processing takes only a couple
of minutes on a server with two Xeon X5675 CPUs.

One can of course argue that it is not correct
to compare 4-gram and 7-gram language models.
However, building 5-gram or higher order back-off
LMs on 5 billion words is computationally very ex-
pensive, in particular with respect to memory usage.
For comparison, we also trained lower order CSLM
models. It can be clearly seen from Table 5 that the
CSLM can take advantage of longer contexts, but
it already achieves a significant improvement in the
BLEU score at the same LM order (BLEU on the
test data: 50.75 — 51.91).

The CSLM is very space efficient: a saved net-
work occupies about 600M on disk in function of
the network architecture, in particular in function of
the size of the continuous projection. Loading takes
only a couple of seconds. During training, 1 GByte
of main memory is sufficient. The memory require-
ment during n-best rescoring essentially depends on
the back-off LM that is eventually charged to deal
with out-off short-list words. Figure 4 shows some
example translations.

4 Conclusion

This paper presented a comparison of several pop-
ular techniques to build language models for sta-
tistical machine translation systems: huge back-off
models trained on billions of words, data selection
of most relevant examples and a highly efficient im-
plementation of continuous space methods.

Huge LMs perform well, but their storage may
require important computational resources — in our

dealse olone sual e Jai 1 o3l 6 yall gl EadlSL JolSEl e il 3L gl GG LS
by ag3lls alall el asall Lilhe (o8 pawaiill sbll (LaiIl Jaall sidig 6 adl &l

Foaall LaglsiSill 33429

Back-off LM:The minister inspected the sub-committee integrated combat marine
pollution with oil, which includes the latest equipment lose face marine pollution and
chemical plant in the port specializing in monitoring the quality of the crude oil supplier
and with the most modern technological devices.

CSLM: The minister inspected the integrated sub-committee to combat marine pollution
with oil, which includes the latest equipment deal with marine pollution and inspect the
chemical plant in the port specializing in monitoring the quality of the crude oil supplier,

with the most modern technological devices.

Google: The minister also inspected the sub-center for integrated control of marine
pollution with oil, which includes the latest equipment on the face of marine pollution and
chemical plant loses port specialist in quality control of crude oil and supplied

Sadl galinll sl Lbel il alialy wad Bliadsn

Back-off LM:Pyongyang is to respect its commitments to end nuclear program.

CSLM: Pyongyang promised to respect its commitments to end the nuclear program.

Google: Pyongyang is to respect its obligations to end nuclear program.
sl elall dola S Y T (o8 SURIAY T Sllaas LU galiis als

Back-off LM: The Taliban militants in kidnappings in the country over the past two years.

CSLM: Taliban militants have carried out kidnappings in the country repeatedly during

the past two years.

Google:The Taliban kidnappings in the country frequently over the past two years.

Figure 4: Example translations when using the huge back-off and the continuous space LM. For comparison we also

provide the output of Google Translate.

case, 26 GB on disk and 70 GB of main memory for
a model trained on 5 billions words. The data selec-
tion method proposed in (Moore and Lewis, 2010)
is very effective at the corpus level, but the observed
gains almost vanish after interpolation. However,
the storage requirement can be divided by four.

The main contributions of this paper are sev-
eral improvements of the continuous space language
model. We have shown that data selection is very
useful to improve the resampling of training data
in large corpora. Our best model achieves a per-
plexity reduction of 20% relative with respect to
the best back-off LM we were able to build. This
gives an improvement of up to 1.8 BLEU points in a

18

very competitive Arabic/English statistical machine
translation system.

We have also presented a very efficient imple-
mentation of the CSLM. The tool can take advan-
tage of modern multi-core or multi-processor com-
puters. We also support graphical extension cards
like the Nvidia 3D graphic cards. By these means,
we are able to train a CSLM on 500M words in
about 20 hours. This tool is freely available.> By
these means we hope to make large-scale continu-
ous space language modeling available to a larger
community.

3http://www-lium.univ-lemans.fr/ “cslm

Acknowledgments

This work has been partially funded by the French
Government under the project COSMAT (ANR-09-
CORD-004) and the European Commission under
the project FP7 EuromatrixPlus.

References

Yoshua Bengio and Rejean Ducharme. 2001. A neu-
ral probabilistic language model. In NIPS, volume 13,
pages 932-938.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. JMLR, 3(2):1137-1155.

Yoshua Bengio. 2007. learning deep architectures for
Al Technical report, University of Montréal.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. In EMNLP, pages 858-867.

Stanley F. Chen and Joshua T. Goodman. 1999. An
empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359—
394.

Marcello Federico and Maura Cettolo. 2007. Efficient
handling of n-gram language models for statistical ma-
chine translation. In Second Workshop on SMT, pages
88-95.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Sixth Workshop on SMT,
pages 187-197.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL,
demonstration session.

L. Lamel, J.-L. Gauvain, V.-B. Le, 1. Oparin, , and
S. Meng. 2011. Improved models for mandarin
speech-to-text transcription. In ICASSP, pages 4660—
4663.

H.S. Le, A. Allauzen, G. Wisniewski, and F. Yvon. 2010.
Training continuous space language models: Some
practical issues. In EMNLP, pages 778-788.

H.S. Le, I. Oparin, A. Allauzen, J-L. Gauvain, and
F. Yvon. 2011a. Structured output layer neural net-
work language model. In ICASSP, pages 5524-5527.

H.S. Le, I. Oparin, A. Messaoudi, A. Allauzen, J-L. Gau-
vain, and F. Yvon. 2011b. Large vocabulary SOUL
neural network language models. In Interspeech.

19

X. Liu, M. J. F. Gales, and P. C. Woodland. 2011. Im-
proving LVCSR system combination using neural net-
work language model cross adaptation. In Interspeech,
pages 2857-2860.

Tomas§ Mikolov, Martin Karafidt, Luk4§ Burget, Jan
Cernock}’l, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Interspeech,
pages 1045-1048.

T. Mikolov, S. Kombrink, L. Burget, J.H. Cernocky, and
S. Khudanpur. 2011. Extensions of recurrent neural
network language model. In ICASSP, pages 5528-
5531.

Andriy Mnih and Geoffrey Hinton. 2008. A scalable
hierarchical distributed language model. In NIPS.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In ACL,
pages 220-224.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics.

Junho Park, Xunying Liu, Mark J. F. Gales, and Phil C.
Woodland. 2010. Improved neural network based lan-
guage modelling and adaptation. In Inferspeech, pages
1041-1044.

Holger Schwenk and Yannick Esteve. 2008. Data selec-
tion and smoothing in an open-source system for the
2008 NIST machine translation evaluation. In Inter-
speech, pages 2727-2730.

Holger Schwenk and Jean-Luc Gauvain. 2002. Connec-
tionist language modeling for large vocabulary contin-
uous speech recognition. In ICASSP, pages I: 765—
768.

Holger Schwenk, Daniel Déchelotte, and Jean-Luc Gau-
vain. 2006. Continuous space language models for
statistical machine translation. In Proceedings of the
COLING/ACL 2006 Main Conference Poster Sessions,
pages 723-730.

Holger Schwenk. 2004. Efficient training of large neu-
ral networks for language modeling. In IJCNN, pages
3059-3062.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech and Language, 21:492—
518.

Holger Schwenk. 2010. Continuous space language
models for statistical machine translation. The Prague
Bulletin of Mathematical Linguistics, (93):137-146.

David Talbot and Miles Osborne. 2007. Smoothed
bloom filter language models: Tera-scale Ims on the
cheap. In EMNLP, pages 468-476.

Puyang Xu, Asela Gunawardana, and Sanjeev Khudan-
pur. 2011. Efficient subsampling for training complex
language models. In EMNLP, pages 1128-1136.

