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Abstract

Datasets that answer difficult clinical ques-
tions are expensive in part due to the need for
medical expertise and patient informed con-
sent. We investigate the effect of small sample
size on the performance of a text categoriza-
tion algorithm. We show how to determine
whether the dataset is large enough to train
support vector machines. Since it is not pos-
sible to cover all aspects of sample size cal-
culation in one manuscript, we focus on how
certain types of data relate to certain proper-
ties of support vector machines. We show that
normal vectors of decision hyperplanes can
be used for assessing reliability and internal
cross-validation can be used for assessing sta-
bility of small sample data.

1 Introduction

Every patient visit generates data, some on paper,
some stored in databases as structured form fields,
some as free text. Regardless of how they are
stored, all such data are to be used strictly for pa-
tient care and for billing, not for research. Patient
health records are maintained securely according to
the provisions of the Health Insurance Portability
and Accountability Act (HIPAA). Investigators must
obtain informed consent from patients whose data
will be used for other purposes. This means defin-
ing which data will be used and how they will be
used. In addition to writing protocols and obtain-
ing consent from patients, medical experts must ei-
ther manually codify important information or teach
a machine how to do it. All of these labor-intensive

tasks are expensive. No one wants to collect more
data than is necessary.

Our research focuses on answering difficult neu-
ropsychiatric questions such as, “Who is at higher
risk of dying by suicide?” or “Who is a good
candidate for epilepsy surgery evaluation?” Large
amounts of data that might answer these questions
exist in the form of text dictated by clinicians or
written by patients and thus unavailable. Parallel
to the collection of such data, we explored whether
small datasets can be used to build reliable methods
of making this information available. Here, we in-
vestigate how text classification training size relates
to certain aspects of linear support vector machines.
We hypothesize that a sufficiently large training sub-
set will generate stable and reliable performance es-
timates of a classifier. On the other hand, if the
dataset is too small, then even small changes to
the training size will change the performance of a
classifier and manifest unstable and unreliable esti-
mates. We introduce quantitive definitions for sta-
bility and reliability and give empirical evidence on
how they work.

2 Background

How much data is needed for reliable and stable
analysis? This question has been answered for most
univariate problems, and a few solutions exist for
multivariate problems, but no widely accepted an-
swer is available for sparse and high-dimensional
data. Nonetheless, we will review the few sample
size calculation methods that have been used for ma-
chine learning.
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Hsieh et al. (1998) described a method for calcu-
lating the sample size needed for logistic and lin-
ear regression models. The multivariate problem
was simplified to a series of univariate two-sample t-
tests on the input variables. A variance inflation fac-
tor was used to correct for the multi-dimensionality
which quantifies the severity of multicollinearity in
the least squares regression: collinearity deflates
and non-collinearity inflates sample size estima-
tion. Computer simulations were done on low-
dimensional and continuous data, so it is not known
whether the method is applicable to text categoriza-
tion.

Guyon et al. (1998) addressed the problem of de-
termining what size test set guarantees statistically
significant results in a character recognition task, as
a function of the expected error rate. This method
does not assume which learner will be used. Instead,
it requires specific parameters that describe hand-
writing data collection properties such as between-
writers variance and within-writer variance. The
downside of this method is that it must assume the
worst-case scenario: a large variance in data and a
low error rate for the classifier. For this reason larger
datasets are recommended.

Dobbin et al. (2008) and Jianhua Hu (2005) fo-
cused only on sample size for a classifier that learns
from gene expression data. No assumptions were
made about the classifier, only about the data struc-
ture. All gene expressions were measured on a con-
tinuous scale that denotes some luminescence cor-
responding to the relative abundance of nucleic acid
sequences in the target DNA strand. The data, re-
gardless of size, can be qualified using just one pa-
rameter, fold change, which measures changes in the
expression level of a gene under two different con-
ditions. Furthermore, the fold change can be stan-
dardized for compatibility with other biological ex-
periments: with a lower standardized fold change,
more samples are needed, and with more genes,
more samples are needed. There is a strong assump-
tion about data makeup, but no assumption is made
about the classifier. This solution allows for small
sample sizes but does not generalize to text classifi-
cation data.

Way et al. (2010) evaluated the performance of
various classifiers and featured a selection technique
in the presence of different training sample sizes.

Experiments were conducted on synthetic data, with
two classes drawn from multivariate Gaussian dis-
tributions with unequal means and either equal or
unequal covariance matrices. The conclusion was
that support vector machines with a radial kernel
performed slightly better than the LDA when the
training sample size was small. Only certain combi-
nations of feature selection and classification meth-
ods work well with small sample sizes. We will use
similar assumptions for sparse and high-dimensional
data.

Most recently, Juckett (2012) developed a method
for determining the number of documents needed for
a gold standard corpus. The sample size calculation
was based on the concept of capture probabilities.
It is defined as the normalized sum of probabilities
over all words of interest. For example, if the re-
quired capture probability is 0.95 for a set of med-
ical words, when using larger corpora that contain
these words, it must first be calculated how many
documents are needed to capture the same probabil-
ity in the target corpus. This method is specific to
linguistic research on annotated corpora, where the
probabilities of individual words in the sought cor-
pora must match the probabilities of words in the
target domain. This method focuses solely on the
data structure and does not assume an algorithm or
the task that it will serve. The downside is a higher
sample size.

When reviewing various methods for sample size
calculation, we found that as more assumptions can
be made, fewer data are needed for meaningful anal-
ysis. Assumptions can be made about data structure
and quality, the task the data serve, feature selection,
and the classifier. Our approach exploits a scenario
where the task, the feature selection, and the classi-
fier are known.

3 Data

We used four data sets to test our hypothesis: ver-
sicolor and virginica samples from the Iris dataset
(VV), newswires about corn and wheat from the
ModApte split of the Reuters-21578 dataset (WCT
and WCE), suicide notes reprinted in Shneidman
and Farberow (1957) (SN), and ubiquitous question-
naire patient interviews (UQ). Properties of these
data are summarized in Table 1.
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The first dataset was created by Anderson (1935)
and introduced to the world of statistics by Fisher
(1936). Since then it has been used on countless oc-
casions to benchmark machine learning algorithms.
Each row of data has four variables to describe the
shape of an iris calyx: sepal length, sepal width,
petal length, and petal width. The dataset contains
50 measurements for each of three subspecies of the
iris flower: setosa, versicolor, and virginica. All
measurements of the setosa calyx are separable from
the rest of the data and thus were not used in our ex-
periments. Instead, we used data corresponding to
versicolor and virginica (VV), which is more inter-
esting because of a small class overlap. The noise is
introduced mostly by sepal width and sepal length.

The second dataset was created by Lewis and
Ringuette (1994) and is the one most commonly
used to benchmark text classification algorithms.
The collection is composed of 21,578 short news
stories from the Reuters news agency. Some stories
have manually assigned topics, like “earn,” “acq,” or
“money-fx,” and others do not. In order to make the
dataset comparable across different uses, a “Modi-
fied Apte” (“ModApte”) split was proposed by Apté
et al. (1994). It has 9,603 training and 3,299 exter-
nal testing documents, a total of 135 distinct topics,
with at least one topic per document. The most fre-
quent topic is “earn,” which appears in 3,964 docu-
ments. Here, we used only the “wheat” and “corn”
categories, which appear 212 and 181 times in the
training set along with 71 and 56 cases in the test
set. These topics are semantically related, so it is
no surprise that 59 documents in the training set
and 22 documents in test set have both labels. This
gives a total of 335 unique training instances and
105 unique test instances. Interestingly, it is eas-
ier to distinguish “corn” news from “not corn just
wheat” news than it is to distinguish “wheat” from
“not wheat just corn.” The latter seems to be a good
dataset for benchmarking sample size calculation.
We will refer to the “wheat” versus “not wheat”
training set as WCT and the “wheat” versus “not
wheat” external test set as WCE.

The third dataset was extracted from the appendix
in Shneidman and Farberow (1957). It contains 66
suicide notes (SN) organized into two categories: 33
genuine and 33 simulated. The authors of the notes
were matched in both groups by gender (male), race

(white), religion (Protestant), nationality (native-
born U.S. citizens), and age (25-59). Authors of the
simulated suicide notes were screened for personal-
ity disorders or tendencies toward morbid thoughts
that would exclude them from the study. Individu-
als enrolled in the study were asked to write a sui-
cide note as if they were going to take their own life.
Notes were anonymized, digitized, and prepared for
text processing (Pestian et al., 2010).

The fourth dataset was collected in a clinical con-
trolled trial at Cincinnati Children’s Hospital Med-
ical Center Emergency Department. Sixty patients
were enrolled, 30 with suicidal behavior and 30 con-
trols from the orthopedic service. The suicidal be-
havior group comprised 15 females and 15 males
with an average age of ≈ 15.7 years (SD ≈ 1.15).
The control group included 15 females and 15 males
with an average age of ≈ 14.3 years (SD ≈ 1.21).
The interview consisted of five open-ended ubiqui-
tous questions (UQ): “Does it hurt emotionally?”
“Do you have any fear?” “Are you angry?” “Do
you have any secrets?” and “Do you have hope?”
The interviews were recorded in an audio format,
transcribed by a medical transcriptionist, and pre-
pared for analysis by removing the sections of the
interview where the questions were asked. To pre-
serve the UQ structure, n-grams from each of the
five questions were separated (Pestian et al., 2012).

VV SN UQ WCT WCE
Samples (m) 100 66 60 335 105
Classes 2 2 2 2 2
Class balance 100% 100% 100% 58% 48%
Min row freq 100 2 2 3 0
Max row freq 100 66 60 335 105
Min cell value 1 0 0 0 0
Max cell value 7.9 102.045 64 117 892
Features (n) 4 60 7,282 7,132 7,132
Sparsity 0% 60% 92.3% 97% 98%

Table 1: Four very different benchmark data: versicolor
and virginica (VV) from iris data, representing a dense,
low-dimensional dataset; suicide notes (SN) from Clues
to Suicide (Shneidman and Farberow, 1957), represent-
ing a mildly sparse, high-dimensional dataset; ubiquitous
questionnaires, (UQ) representing a sparse, extremely
high-dimensional dataset; and “wheat” versus “not wheat
just corn” (WCT and WCE) from the “ModApte” split
of Reuters-21578 data, representing an unbalanced, ex-
tremely sparse, high-dimensional dataset.
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4 Methods

Feature extraction. Every text classification algo-
rithm starts with feature engineering. Documents
in the UQ, WCT, and WCE sets were represented
by a bag-of-n-grams model (Manning and Schuetze,
1999; Manning et al., 2008). Every document was
tokenized, and frequencies of unigrams, bigrams,
and trigrams were calculated. All digit numbers
that appeared in a document were converted to the
same token (”NUMB”). Documents become row
vectors and n-grams become column vectors in a
large sparse matrix. Each n-gram has its own dimen-
sion, with the exception of UQ data, where n-grams
are represented separately for each of the five ques-
tions. Neither stemming nor a stop word list were
applied to the textual data. Suicide notes (SN) were
not represented by n-grams. In previous studies, we
found that the structure of the note and its emotional
content are indicative of suicidality, not its seman-
tic content. Hence, the SN dataset is represented
by the frequency of 23 emotions assigned by men-
tal health professionals, the frequency of 34 parts of
speech, and by three readability scores: Flesch, Fog,
and Kincaid.

Feature weighting. Term weighting was chosen
ad hoc. UQ, WCT, and WCE had a logarithmic
term frequency (log-tf) as local weighting and an in-
verse document frequency (idf) as global weighting
but were derived only from the training data (Salton
and Buckley, 1988; Nakov et al., 2001).

Feature selection. To speed up calculations, the
least frequent features were removed from the SN,
UQ, WCT, and WCE datasets (see minimum row
frequency in Table 1). Further optimization of the
feature space was done using an information gain
filter (Guyon and Elisseeff, 2003; Yang and Peder-
sen, 1997). Depending on the experiment, some of
the features with the lowest information gain were
removed. For example, IG = 0.4 means that 40%
of the features, those with a higher information gain,
were kept, and the other 60%, those with a lower in-
formation gain, were removed. Lastly, all row vec-
tors in UQ, WCT, and WCE were normalized to
unit length (Joachims, 1998).

Learning algorithm. We used linear support vec-
tor machines (SVM) to learn from the data. Sup-
port vector machines are described in great detail in

Figure 1: Normal vector w of a hyperplane.

Schlkopf and Smola (2001). We will focus on just
two aspects: properties of the normal vector of de-
cision hyperplane (see Figure 1) and internal cross-
validation (see Figure 2). SVM is in essence a sim-
ple linear classifier:

f(x) = sgn(〈w,x〉+ b) (1)

where x is an input vector that needs to be classified,
〈·, ·〉 is the inner product, w is a weight vector with
the same dimensionality as x, and b is a scalar. The
function f outputs +1 if x belongs to the first class
or −1 if x belongs to the second class. SVM differs
from other linear classifiers on how w is computed.
Contrary to other classifiers, it does not solve w di-
rectly. Instead, it uses convex optimization to find
vectors from the training set that can be used for cre-
ating the largest margin between training examples
from the first and second class. Hence, the solution
to w is in the form of the linear combination of co-
efficients and training vectors:

w =

m∑
i=1

αiyixi (2)

where m is the number of training vectors, αi ≥ 0
are Lagrange multipliers, yi ∈ {−1, 1} are numer-
ical codes for class labels, and xi are training row
vectors. Vector w is perpendicular to the decision
boundary, and its proper name in the context of
SVM is the normal vector of decision hyperplane1

(see Figure 1). One of the properties of SVM is that
outlying training vectors are not used in w. These
vectors have the corresponding coefficient αi = 0.
In fact, these vectors can be removed from the train-
ing set and the convex optimization procedure will

1If R with SVM from the e1071 package is used,
the command to obtain the normal vector is w =
c(t(model$coefs)% ∗ %model$SV).
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result in exactly the same solution. We can use this
property to probe how reliable training data are for
the classification task. If we have enough data that
we can randomly remove some, what is left will re-
sult in w∗ ≈ w. On the other hand, if we do not
have enough data, then random removal of training
data will result in a very different equation, because
the decision boundary changes and w∗ 6= w.

Reliability of performance. The relationship be-
tween w∗ and w can be measured. We introduce the
SVM reliability index (SRI):

SRI(w∗,w) = |r(w∗,w)| (3)

=
|
∑n

i=1(w
∗
i −w∗)(wi −w)|√∑n

i=1(w
∗
i −w∗)2

√∑n
i=1(wi −w)2

which is the absolute value of the Pearson product-
moment correlation coefficient between convex op-
timization solution w∗ corresponding to a training
subset and w corresponding to the full dataset2.
Pearson’s correlation coefficient discovers linear de-
pendency between two normally distributed random
variables and has its domain on a continuous seg-
ment between −1 and +1. In our case, we are
looking for a strong linear dependency between con-
stituents of the training weight vector w∗i and con-
stituents of the full dataset weight vector wi. Some
numerical implementations of SVM cause the out-
put values for the class labels to switch. We cor-
rected for this effect by applying absolute value to
the Pearson’s coefficient, resulting in SRI ∈ [0, 1].
We did not have a formal proof on how SRI relates
to SVM performance. Instead, we showed empir-
ical evidence for the relationship based on a few
small benchmark data. Stability of performance.
SVM generalization performance is usually mea-
sured using cross-validation accuracy. In particu-
lar, we use balanced accuracy because it gives bet-
ter evidence for a drop in performance when solving
unbalanced problems. Following Guyon and Elis-
seeff (2003) and many others, we divided the data
into three sets: test, training, and validation. Mean
test balanced accuracy aT is estimated using strati-
fied Monte Carlo cross-validation (MCCV), where

2We experimented with Pearson’s correlation, Spearman’s
correlation, one-way intraclass correlation, Cosine correlation,
Cronbach’s coefficient, and Krippendorff’s coefficients and
found that Pearson’s correlation coefficient works well with
both low-dimensional and high-dimensional spaces.

Figure 2: Estimation and resampling: mean test balanced
accuracy and mean validation balanced accuracy should
match. To prevent overfitting, tuning machine learning
should be guided by mean validation accuracy and con-
firmed by mean test accuracy. This procedure requires
the “develop” set to be large enough to give reliable and
stable estimates.

the proportion of the training set to the test set is
varied between 0.06 and 0.99. Mean validation bal-
anced accuracy aV (MVA) is estimated using K-
fold cross-validation (also known as internal cross-
validation), where K = m

2 and m is the number
of training cases. In the case of the “wheat” versus
“not wheat just corn” dataset, we have, in addition,
the external validation set WCE and corresponding
mean external balanced accuracy aE . Correct esti-
mation of the learner’s generalization performance
should result in all three accuracies being equal:
aT ≈ aV ≈ aE . Furthermore, we want all three ac-
curacies to be the same regardless of the amount of
data. If we have enough data that we can randomly
remove some, what is left will result in aV ∗ ≈ aV ∗∗

.
On the other hand, if we do not have enough data,
then random removal of training data will result in
very different accuracy estimations: aV ∗ 6= aV ∗∗

.
Sample size calculation. We do not have a good

way of predicting how much data will be needed to
solve a problem with a small p-value, but this is a
matter of convenience. Rather than looking to the
future, we can simply ask if what we have now is
enough. If we can build a classifier that gives re-
liable and stable estimates of performance, we can
stop collecting data. Reliability is measured by SRI,
while stability is measured by MVA, not as a single
value but merely as a function of the training size:

SRI(t) = |r(wtm,wm)| and (4)

aT (t) = aT tm
(5)

where t is a proportion of the training data, t ∈
(0, 1), m is size of the full dataset, and tm is the
actual number of training instances. To quantify the
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ability of the dataset to produce classification mod-
els with reliable and stable performance estimates,
we need two more measures: sample dispersion of
SRI and sample dispersion of MVA:

cSRI(t ≥ p) =
sSRI(t≥p)

SRI(t ≥ p)
and (6)

cMV A(t ≥ p) =
saT (t≥p)

aT (t ≥ p)
(7)

defined as the coefficient of variation of all SRI or
MVA measurements for training data sizes greater
than pṁ. For example, we want to know if our 10-
fold cross-validation (CV) for a dataset that has 400
training samples is reliable and stable. 10-fold CV
is 0.9 of training data, so we need to measure SRI
and MVA for different proportions of training data,
t = {0.90, 0.91, . . . , 0.99}, and then calculate dis-
persion for cSRI(t ≥ 0.9) and cMV A(t ≥ 0.9). Nu-
merical calculations will give us sense of good and
bad dispersion across different datasets.

5 Results

Do I have enough data? The first set of experi-
ments was done with untuned algorithms. We set the
SVM parameter to C = 1 and did not use any fea-
ture selection. Figure 3 shows four examples of how
SVM performance depends on the training set size.
The performance was measured using mean test bal-
anced accuracy, MVA, and SRI. Numerical calcu-
lations showed that VV needs at least 30 randomly
selected training examples to produce reliable and
stable results with high accuracy. cSRI(t ≥ 0.75)
is 0.005 and cMV A(t ≥ 0.75) is 0.016. SN was
not encouraging regarding the estimated accuracy;
SRI dropped, suggesting that the SVM decision hy-
perplanes are unreliable. Mental health profession-
als can distinguish between genuine and simulated
notes about 63% of time. Machine learning does
it correctly about 73% of time if text structure and
emotional content are used. Even so, the sample
size calculation yields high dispersion (cSRI(t ≥
0.75) = 0.134 and cMV A(t ≥ 0.75) = 0.082).
UQ is small and high-dimensional, and yet the re-
sults were reliable and stable (cSRI(t ≥ 0.75) =
0.015 and cMV A(t ≥ 0.75) = 0.023). Patients
enrolled in the UQ study also received the Sui-
cide Ideation Questionnaire (Raynolds, 1987) and

the Columbia-Suicide Severity Rating Scale (Pos-
ner et al., 2011). We found that UQ was no dif-
ferent from the structured questionnaires. UQ de-
tects suicidality mostly by emotional pain and hope-
lessness, which were mildly present in four control
patients. Other instruments returned errors because
the same few teenagers reported risky behavior and
morbid thoughts. WCT produced reliable and sta-
ble accuracy estimates, but no large amounts of data
could be removed (cSRI(t ≥ 0.75) = 0.010 and
cMV A(t ≥ 0.75) = 0.053). It seems that WCE
is somehow different from WCT, or it might be a
case of overfitting, which causes the mean test ac-
curacy to diverge from MVA as the training dataset
gets smaller. Algorithm tuning. No results should
be regarded as satisfactory until a thorough param-
eter space search has been completed. Each step of
a text classification algorithm can be improved. To
attempt a complete description of the dependency
of a minimal viable sample size on text classifica-
tion would be both impossible and futile, since new
methods are discovered every day. However, to start
somewhere, we focused only on the feature selection
and SVM parameter C 3. Feature selection removes
noise from data. Parameter C informs the convex
optimization process about the expected noise level.
If both parameters are set correctly, we should see
an improvement in the reliability and stability of
the results. There are several methods for tuning
SVM; the most commonly used but computation-
ally expensive is internal cross-validation (Duan et
al., 2003; Chapelle et al., 2002). Figure 5 shows
the results of the parameter tuning procedure. VV
and SN are not extremely high-dimensional, so we
tuned just parameter C. MVA maxima were found
at C = 0.45 with VV, C = 0.05 with SN, C = 0.4
and IG = 0.1584 with UQ, and C = 2.5 and
IG = 0.8020 with WCT. Do I have enough data
after algorithm tuning? Internal cross-validation
(MVA) did not improve dispersion universally (see
Table 2). VV improved on reliability but not stabil-
ity. SN scored much better on both measures, but
we do not yet know what the cutoff for having a
low enough dispersion is. UQ did worse on all mea-
sures after tuning. WCT improved greatly on mean

3Please note that most SVM implementations do not allow
for simultaneous feature selection and internal cross-validation.
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VV SN UQ WCT and WCE

Figure 3: SRI index (S), MVA accuracy (V) and mean test accuracy (T) averaged over 120 repetitions and different
training data sizes. Linear SVM with C = 1 and no feature selection. VV (cSRI(t ≥ 0.75) = 0.005 and cMV A(t ≥
0.75) = 0.016), UQ (cSRI(t ≥ 0.75) = 0.015 and cMV A(t ≥ 0.75) = 0.023), and WCT (cSRI(t ≥ 0.75) = 0.010
and cMV A(t ≥ 0.75) = 0.053) gave stable and reliable estimates, but SN did not (cSRI(t ≥ 0.75) = 0.134 and
cMV A(t ≥ 0.75) = 0.082).

VV SN UQ WCT

Figure 4: MVA (internal cross-validation) parameter tuning results. Maxima were found at C = 0.45 with VV,
C = 0.05 with SN, C = 0.4 and IG = 0.1584 with UQ, and C = 2.5 and IG = 0.8020 with WCT.

VV SN UQ WCT and WCE

Figure 5: SRI index (S), MVA accuracy (V), and mean test accuracy (T) averaged over 60 repetitions and different
training data sizes. Tuned classification algorithms: VV with C = 0.45 and no feature selection, SN with C = 0.05
and no feature selection, UQ with C = 0.4 and IG = 0.1584, and WCT with C = 2.5 and IG = 0.8020. Stability
and reliability: VV had cSRI(t ≥ 0.75) = 0.003 and cMV A(t ≥ 0.75) = 0.018), SN had cSRI(t ≥ 0.75) = 0.085
and cMV A(t ≥ 0.75) = 0.075, UQ had cSRI(t ≥ 0.75) = 0.025 and cMV A(t ≥ 0.75) = 0.024, and WCT had
cSRI(t ≥ 0.75) = 0.025 and cMV A(t ≥ 0.75) = 0.011.
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test accuracy, mean external validation, and stability
dispersion (see Figure 5). It would be interesting to
see if improvement on both reliability dispersion and
stability dispersion would bring mean test accuracy
and mean external validation even closer together.

aT (t ≥ 0.75) cSRI(t ≥ 0.75) cMV A(t ≥ 0.75)
VV no tuning 0.965 0.005 0.016
SN no tuning 0.744 0.134 0.082
UQ no tuning 0.946 0.015 0.023
WCT no tuning 0.862 0.010 0.053
VV with tuning 0.970 0.003 0.018
SN with tuning 0.755 0.085 0.075
UQ with tuning 0.941 0.025 0.024
WCT with tuning 0.946 0.025 0.011

Table 2: Sample size calculation before and after tuning
with internal cross-validation (MVA). Even though mean
test accuracy (aT (t ≥ 0.75)) improved for VV, SN, and
WCT, reliability and stability did not improve univer-
sally. Internal cross-validation alone might not be ade-
quate for tuning classification algorithms for all data.

6 Discussion

Sample size calculation data for a competition
and for problem-solving. In general, there might be
two conflicting objectives when calculating whether
what we have collected is a large enough dataset. If
the objective is to have a shared task with many par-
ticipants and, thus, many unknowns, the best course
of action is to assume the weakest classifier: uni-
grams with no feature weighting or selection trained
using the simplest logistic regression. On the other
hand, if the problem is to be solved with only one
classifier and the least amount of data, then the
strongest assumptions about the data and the algo-
rithm are required.

The fallacy of untuned algorithms. After years
of working with classification algorithms to solve
difficult patient care problems, we have found that
a large amount of data is not needed; usually sam-
ples measured in the hundreds will suffice, but this
is only possible when a thorough parameter space
search is conducted. It seems that reliability and
stability dispersions are good measures of how well
the algorithm is tuned to the data without overfitting.
Moreover, we now have a new direction for thinking
about optimizing classification algorithms: instead
of focusing solely on accuracy, we can also measure
the dispersion and see whether this is a better indi-

cator of what would happen with unevaluated data.
There is a great deal of data available, but very little
that can be used for training.

What to measure? VC-bound, span-bound, ac-
curacy, F1, reliability, and stability dispersions are
just a few examples of indicators of how well our
models fit. What we have outlined here is how
one of the many properties of SVM, the property
of the normal vector, can be used to obtain insights
into data. Normal vectors are constructed using La-
grangian multipliers and support vectors; accuracy
is constructed using a sign function on decision val-
ues. It is feasible that other parts of SVM may be
more suited to algorithm tuning and calculation of
minimum viable training size.

7 Conclusion

Power and sample size calculations are very impor-
tant in any domain that requires extensive expertise.
We do not want to collect more data than necessary.
There is, however, a scarcity of research in sample
size calculation for machine learning. Nonetheless,
the existing results are consistent: the more that can
be assumed about the data, the problem and the al-
gorithm, the fewer data are needed.

We proposed two independent measures for eval-
uating whether available datasets are sufficiently
large: reliability and stability dispersions. Reliabil-
ity dispersion measures indirectly whether the deci-
sion hyperplane is always similar and how much it
varies, while stability dispersion measures how well
we are generalizing and how much variability there
is. If the sample size is large enough, we should
always get the same decision hyperplane with the
same generalization accuracy.

With little empirical evidence, we can conclude
that classifier performance measured by just a single
K in a cross-validation test is not sufficient. K must
be be varied, and other measures must be present,
such as the SVM reliability index, that support or
contradict the generalization accuracy estimates. We
suggest that other measures for sample size calcula-
tion and algorithm tuning may exist and there is still
much to be learned about the mechanics of support
vector machines.
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